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Adaptive Inverse Control of Linear and Nonlinear
Systems Using Dynamic Neural Networks
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Abstract—in this paper, we see adaptive control as a three-part ness even ifthe inverse plant model is not perfect. In [4], a robust
adaptive-filtering problem. First, the dynamical system we wishto  gnd adaptive method is used to allow learning to occur on-line,
control is modeled using adaptive system-ldentlflc_:atlontechnlque_s. tuning performance as the system runs. Yet, even here, a better
Second, the dynamic response of the system is controlled using, ", . . . ! T
an adaptive feedforward controller. No direct feedback is used, Initial analytical plant model results in better control and distur-
except that the system output is monitored and used by an adap- bance rejection.
tive algorithm to adjust the parameters of the controller. Third, Nonlinear dynamic inversion may be computationally inten-
o_listurbance canceling is performed using an ao!ditional adaptive sive and precise dynamic models may not be available, so [5]
filter. The canceler does not affect system dynamics, but feeds back . .
plant disturbance in a way that minimizes output disturbance US€S two neural-network controllers to achieve feedback lin-
power. The techniques work to control minimum-phase or non- earization and learning. One radial-basis-function neural net-
minimum-phase, linear or nonlinear, single-input-single-output work is trained off-line to invert the plant nonlinearities, and
(SISO) or multiple-input-multiple-ouput (MIMO), stable or 4 gacond is trained on-line to compensate for inversion error.
stabilized systems. Constraints may additionally be placed on . .
control effort for a practical implementation. Simulation examples The use of neural networks reduces computational complexity
are presented to demonstrate that the proposed methods work Of the inverse dynamics calculation and improves precision by
very well. learning. In [6], an alternate scheme is used where a feedfor-

Index Terms—Adaptive inverse control, disturbance canceling, Ward inverse recurrent neural network is used with a feedback
disturbance rejection, feedforward control, system identification.  proportional-derivative controller to compensate for inversion
error and to reject disturbances.

All of these methods have certain limitations. For example,
they require that an inverse exist, so do not work for nonmin-

RECISE control of dynamic systems (“plants”) can be e4mum-phase plants or for ones with differing numbers of inputs

ceptionally difficult, especially when the system in quesand outputs. They generally also require that a fairly precise
tionis nonlinear. Inresponse, many approaches have been dexgjdel of the plant be knowa priori. This paper instead con-
oped to aid the control designer. For example, an early methgiglers a technique callelaptive inverse contrgV]-[13]—as
calledgain schedulingl] linearizes the plant dynamics aroundeformulated by Widrow and Walach [13]—which does not re-
a certain number of preselected operating conditions and egiiire a precise initial plant model. Like feedback linearization,
ploys different linear controllers for each regime. This methagaptive inverse control is based on the concept of dynamic in-
is simple and often effective, but applications exist for whiclersion, but an inverse need not exist. Rather, an adaptive ele-
the approximate linear model is not accurate enough to ensient is trained to control the plant such that model-reference
precise or even safe control. One example is the area of fligi{sed control is achieved in a least-mean-squared error optimal
control, where stalling and spinning of the airframe can resultdense. Control of plant dynamics and control of plant distur-
operated too far away from the linear region. bance are treated separately, without compromise. Control of

A more advanced technique callesbdback linearizatioor plant dynamics can be achieved by preceding the plant with
dynamic inversiorhas been used in situations including flightin adaptive controller whose dynamics are a type of inverse of
control (e.g., see [2]). Two feedback loops are used: 1) an inARbse of the plant. Control of plant disturbance can be achieved
loop uses an inverse of the plant dynamics to subtract out g}l an adaptive feedback process that minimizes plant output
nonlinearities, resulting in a closed-loop linear system and  disturbance without altering plant dynamics. The adaptive con-
2) an outer loop uses a standard linear controller to aid precisigdllers are implemented using nonlinear adaptive filters. Non-
in the face of inverse plant mismatch and disturbances. minimum-phase and nonsquare plants may be controlled with

Whenever an inverse is used, accuracy of the plant modetfigs method.
critical. So, in [3] a method is developed that guarantees robustig. 1 shows a block-diagram of an adaptive inverse control

system. The system we wish to control is labeled the plant. It is
subject to disturbances, and these are modeled additively at the

Manuscript received December 5, 2001; revised October 2, 2002. This w

was supported in part by the National Science Foundation under Contract E@ém output, without IOES oflgenerallt.y. To Contro,l the 'p'Iant., we
9522085 and the Electric Power Research Institute under Contract WOg016first adapt a plant mode? using adaptive system-identification
The author is with the Department of Electrical and Computer Engineeringgchniques. Second, the dynamic response of the system is con-
University of Colorado at Colorado Springs, Colorado Springs, CO 80933-71t'E»r00”ed usin dapti trollét. Th tout of th lant
USA (e-mail: glp@eas.uccs.edu). g an adaptive controller. € output 0 € plan
Digital Object Identifier 10.1109/TNN.2003.809412 model is compared to the measured plant output and the differ-

. INTRODUCTION

1045-9227/03$17.00 © 2003 IEEE



PLETT: ADAPTIVE INVERSE CONTROL OF LINEAR AND NONLINEAR SYSTEMS USING DYNAMIC NEURAL NETWORKS 361

Dist. wy network is called theutput layerand all other layers of neu-
+ Plant + rons are calledidden layersA layered network is a feedfor-
k. —» C > —> —> Yk . .
+ P + ward (nonrecurrent) structure that computes a static nonlinear
I function. Dynamics are introduced via the tapped delay lines at
P C) the input to the network, resulting indynamic neural network.

This layered structure also makes it easy to compactly de-
scribe the topology of a nonlinear filter. The following notation
is usedN(a, b):a:8...- This means: “The filter input is comprised
of a tapped delay line withd” delayed copies of the exoge-
nous input vectot;;, and ‘b” delayed copies of the output vector
Y. Furthermore, there are” neurons in the neural network’s
ence is a good estimate of the disturbance. A special adapfivst layer of neurons, 5™ neurons in the second layer, and so
filter X is used to cancel the disturbances. on.” Occasionally, filters are encountered with more than one
Control of linear systems require linear adaptive-filteringxogenous input. In that case, the parameter is a row vector
methods and control of nonlinear systems require nonlinedgscribing how many delayed copies of each input are used in
adaptive-filtering methods. However, even if the plant is lineathe input vector to the network. To avoid confusion, any strictly
nonlinear methods will yield better results than linear methofisedforward nonlinear filter is denoted explicitly with a zero in
if there are nonquadratic constraints on the control effort, ortifiat part of its description. For exampl€(z o).s:3.1-
the disturbance is generated from a nonlinear or chaotic sourceA dynamic neural network of this type is called a Nonlinear
Therefore, we focus on nonlinear adaptive inverse control (AftitoRegressive eXogenous input (NARX) filter. It is general
linear or nonlinear plants) using nonlinear adaptive filterenough to approximate any nonlinear dynamical system [14].
We proceed by first reviewing nonlinear adaptive filtering\ nonlinear single-input—single-output (SISO) filter is created
and system identification. Next, we discuss adaptive inverfer; andy, are scalars, and the network has a single output
control of plant dynamics and adaptive disturbance cancelingeuron. A nonlinear multiple-input—-multiple-output (MIMO)
We conclude with simulation examples to demonstrate tfider is constructed by allowings;, and y, to be (column)
techniques. vectors, and by augmenting the output layer with the correct
number of additional neurons. Additionally, notice that since
the output layer of neurons is linear, a neural network with
a single layer of neurons is a linear adaptive filter (if the
A. Structure of a Dynamic Neural Network bias weights of the neurons are zero). Therefore, the results
An adaptive filter has an inputy,, an outputy;, and a “spe- Of this paper—derived for the general NARX structure—can
cial input” dy, called the desired response. The filter compute8fcompass the situation where linear adaptive filters are desired
dynamical function of its input, and the desired response spefid degenerate neural-network structure is used.
fies the output we wish the filter to have at that point in time. It
is used to modify the internal parameters of the filter in suchBx Adapting Dynamic Neural Networks
way that the filter “learns” to perform a certain function.

X < Z-—lI |

Fig. 1. Adaptive inverse control system.

Il. DYNAMIC NEURAL NETWORKS

A i dantive fi i q . Afeedforward neural network is one whose input contains no
nonlinear adaptive filter computes a noniinear ynamlc_@L:If-feedback of its previous outputs. Its weights may be adapted

function of its input. It has a tapped delay line connected to 'E%ing the populabackpropagation algorithydiscovered inde-

input and, possibly, a tapped delay line connected to its outp E‘ndentl by se | h 151 1161 and larized b
The output of the filter is computed to beanonlinearfunction(g y by several researchers [15], [16] and popularized by

. . . umelhartet al.[17]. An NARX filter, on the other hand, gen-
these delayed inputs and outputs. The nonlinear function mayé?, lly has self-feedback and must be adapted using a method

|mpler|nentted ': any way, but here we use a layered feedforw%r ch ageal-time recurrent learningRTRL) [18] or backprop-
neural nework. . . . agation through timg¢BPTT) [19]. Although compelling argu-

A r_1eura| network is an interconnected set of very simple Priients may be made supporting either algorithm [20], we have
cessing elements called neurons. Each neuron computes anfiee 1o yse RTRL in this work, since it easily generalizes as

ternal sum that is equal to a constant plus the weighted Su"’ié)Fequired later and is able to adapt filters used in an implemen-

its inputs. The neuron outputs a nonlinear “activation” functioEmOn of adaptive inverse control in real time

of this sum. In this work, the activation function for nonoutput We assume that the reader is familiar with neural networks
neurons is chosen _to be thmh.(-) function and 6.1” _OUtDUt NeU- andthe backpropagation algorithm. If not, the tutorial paper [21]
rons have th(_a nonlinear function removed. This is done to 9Ve_ | excellent place to start. Briefly, the backpropagation algo-
them unresricted range. o rithm adapts the weights of a neural network using a simple opti-
Neural ”‘?tWOka may be constructed ff°'ﬂ”_'”d"’",“?a' NEUroNs:2 ation method known as gradient descent. That s, the change
connected in very general ways. However, it is sufficient to haYr?the weightsA T, is calculated as
layersof neurons, where the inputs to each neuron on a layer are
identical and equal to the collection of outputs from the previous .,

layer (plus the augmentdiiasvalue “1”). The final layer of the AW, = W
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where J;, is a cost function to be minimized and the smalk zero, sincelz /dW is zero for allk. The final term may be
positive constantn is called the learning rate Often, broken up into two parts. The firsty /0y, is @ component
Jp = (1/2)[E[ekT,ek] wheree;, = di — yi is the net- of the matrixdy,/0X, as delayed versions @f, are part of
work error computed as the desired response minus the acthal network’s input vectoX . The dual-subroutine algorithm
neural-network output. A stochastic approximation/jomay may be used to compute this. The second pat.-; /dW, is

be made ag}, ~ (1/2) e} e, which results in simply a previously calculated and stored valuedgf /dW .
dJ d When the system is “turned ondy; /dW are set to zero for
k_ 7Yk .
av = % g i = 0, -1, -2, ..., and the rest of the terms are calculated

. recursively from that point on.
For a feedforward neural networky;./dW = 9y./OW,  Note that the dual-subroutine procedure naturally calculates

which may be verified using the chain rule for total derivative§he Jacobians in such a way that the weight update is done with
The backpropagation algorithm is an elegant way of recursiveg}fnple matrix multiplication. Let

computing 0.J;, /OW by “backpropagating” the vectore; T
from the output of the neural network back through the network A dye_ 1\ [ dye_a\" dyp—m \ "
to its first layer of neurons. The values that are computed arel“*%)" < dw ) < dw ) ( dw >
multiplied by —» and are used to adapt the neuron’s weights.; g

Itis important for this work to notice that the backpropagation A Oy, Oy Oy,
algorithm may also be used to compute the veetady; /OW (dzy)r = Kayk_1> <3yk_2> - (i?yk_m ﬂ '
(wherew is an arbitrary vector) by simply backpropagating thq,he latter is simply the columns @y, /X corresponding to

vectorv instead c_)f the Ve.CtOFe’“' Specifically, we will need the feedback inputs to the network, and is directly calculated
to computeJacobian matricesf the neural network. These Ja-

cobians ardys /OW anddys /09X, whereX is the composite :;lét\ltlea?euda;zubroutlne. Then, the weight update is efficiently
input vector to the neural network (containing all tap-delay-line T
copies of the exogenous and feedback inputs). If we backprop- AW, = <77€£ [g% + (dmy)k(dmy)kD .
agate a vector through the neural network, then we have com-
puted the entries of the vectof dy, /OW. If v is chosen to
be a unit vector, then we have computed one row of the matﬁ:X
dyi /OW . By backpropagating as many unit vectors as there areln principle, a neural network can emulate a very general non-
outputs to the network, we may compose the JacabigrioW’  linear function. It has been shown that any “smooth” static non-
one row at a time. Also, if we backpropagate the veectpast linear function may be approximated by a two-layer neural net-
the first layer of neurons to the inputs to the network itself, waork with a “sufficient” number of neurons in its hidden layer
have computed” dy, /0X. Again, using the methodology of [22]. Furthermore, a NARX filter can compute any dynamical
backpropagating unit vectors, we may simultaneously build dipite-state machine (it can emulate any computer with finite
the Jacobian matrigy,, /0X one row at a time. Werbos calledmemory) [14].
this ability of the backpropagation algorithm the “dual-subrou- In practice a neural network seldom achieves its full poten-
tine.” The primary subroutine is the feedforward aspect of tfi&l. Gradient-descent based training algorithms converge to a
network. The dual subroutine is the recursive calculation of thgcal minimum in the solution space, and not to the global min-
Jacobians of the network. imum. However, it is instructive to exactly determine the op-
Now that we have seen how to adapt a feedforward neutéinal performance that could be expected from any nonlinear
network and how to compute Jacobians of a neural networksitstem, and then to use it as a lower bound on the mean-square
is a simple matter to extend the backpropagation algorithm @gror (MSE) of a trained neural network. Generally, a neural net-
adapt NARX filters. This was first done by Williams and Zipsework will get quite close to this bound.
[18] and called real-time recurrent learning (RTRL). A similar The optimal solution for a nonlinear filter is from reference
presentation follows. [23, Th. 4.2.1]. If the composite input vector to the adaptive filter
An NARX filter computes a function of the following form: is X3, the output igy,, and the desired responseijs then the
optimal filter computes the conditional expectation

e

Optimal Solution for a Nonlinear Adaptive Filter

Yk = f(@rs Thots ooy Thmy Yo 15 Yk 25 -5 Yhom> W).
To adapt using the familiar “sum of squared error” cost function, Y = E[di| Xi].
we need to be able to calculate )
d%llekIIQ - eT% D. Practical Issues
dw k aw While adaptation may proceed on-line, there is neither math-

de Oy O~ Oun diees O~ Oy dye ematical guarantee of stability of adaptation n_orof convergence
= W+Z o d—WIJFZ 5 d—WT (1) of the weights of a neural network. In practice, we find that
im0 k=i =1 TYk—i if n is “small enough,” the weights of the adaptive filter con-

The first termdy;, /OW is the direct effect of a change in theverge in a stable way, with a small amount of misadustment.
weights ony;, and is one of the Jacobians calculated by the dudf-may be wise to adapt the dynamic neural network off-line

subroutine of the backpropagation algorithm. The second tefaosing premeasured data) at least until close to a solution, and
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then use a small value @fto continue adapting on-line. Speed Dist. wy
of adaptation is also an issue. The reader may wish to consider I Plant +
. . Uk > Yk
faster second-order adaptation methods such as dynamically de- P + v+
coupled extended Kalman filter (DDEKF) learning [24], where /—S _e/(cmod)
the gradient matri¥{ (k) = dyl /dW, as computed above. We P -
have found order-of-magnitude improvement in speed of adap- Tk
tation using DDEKF versus RTRL [25]. /
(@)
[ll. ADAPTIVE SYSTEM IDENTIFICATION Dist
The first step in performing adaptive inverse control is to er
make an adaptive model of the plant. The model should cap-u« » Flant [—© AL >
ture the dynamics of the plant well enough that a controller de- * Series-Parallel
signed to control the plant model will also control the plant very e,(c'""d)
well. This is a straightforward application of the adaptive fil- > yk\T Parallel -1

tering techniques in Section 1.

A method for adaptive plant modeling is depicted in Fig. 2(a).
The plant is excited with the signal., and the disturbed output (b)

Y, IS measured. The plant modelis also excited withug, and  Fig. 2. Adaptive plant modeling. (a) Simplified and (b) detailed depictions.
its outputg is computed. The plant modeling errdf”"d) =

yr — Ui IS used by the adaptation algorithm to update the weight

values of the adaptive filter. )

NARX models have implicit feedback of delayed version{€S€ two assumptions, the plant model converges to the plant
of their output to the input of the model. This feedback is adeSPite the presence of disturbance. S
sumed in all block diagrams, and is not drawn explicitly, ex- Afinal comment.should be maderegardmgtherelat|vet!m|ng
cept in Fig. 2(b). The purpose of Fig. 2(b) is to show that th& the ur andy; signals. In order to be able to model either
feedback, when training an adaptive plant model, may be caiiriCtly- Or nonstrictly-proper plants, we outpuj at timet =

T — :  (L.\+ . .
nected to either the model outpit or the plant outpug,. The (¥7)” andmeasurg; attimet = (k7)", T being the sampling
first method is called arallel connection for system identifi- P&riod- We will see that this assumption can limit the extent to

cation, and the second method is callesesies-parallelcon- Whichwe can effectively cancel disturbance. If we kreopriori
nection for system identification. Networks configured in sdhat the plantis strictly proper, then we may instead meagure

fies-parallel may be trained using the standard backpropaghtime? = (k7)™ and use its value when computing (which
tion algorithm. Networks configured in parallel must be traineli CUtPUt at timef. = (£T))™), since we know that there is no
with either RTRL or BPTT. The series-parallel configuration iinmediate effect on the plant output due:ip

simple, but is biased by disturbance. The parallel configuration

is more complex to train, but is unbiased by disturbance. In thi¥- ADAPTIVE FEEDFORWARDCONTROL OF PLANT DYNAMICS

work, nonlinear system identification is first performed using To perform adaptive inverse control, we need to be able to
the series-parallel configuration to initialize weight values of thgdapt the three filters of Fig. 1: the plant modielthe controller
plant model. When the weight values converge, the plant moge| and the disturbance cancel&r We have seen how to adapt
is reconfigured in the parallel configuration and training is alp to make a plant model. For the time being we set aside con-
lowed to continue. This procedure allows speedy training of tR@jeration of the disturbance canceling filférand concentrate
network, but is not compromised by disturbance. on the design of the feedforward controltér: The goal is to

We now confirm that the adaptive plant modelconverges make the dynamics of the controlled systét' approximate
to P. From Section II-C we can find the Optlmal solution fBr the fixed filter M as C|Ose|y as possib|e’ whetéis a user-spec-

Plopt) (i) =E [yk k] ified reference modelThe input reference signal, is filtered
throughM to create a desired responggefor the plant output.
=E [P (i) + wy |t ] The measured plant output is compared with the desired plant
=E [P (i) |i@k] + E [wg |i] output to Cre.at.e gsystem error siga(,ﬁf“) = dp — yr. We vyill
adaptC' to minimize the mean-squared system error while con-
= P (il}) + E [wy] straining the control effort,.
— P (i) The reference model/ may be designed in a number of

ways. Following traditions of control theory, we might design

whereiiy, is a vector containing past values of the control signgly 1o have the step response of a second-order linear system
ug, Ug_1, -- -, g and where two assumptions were made:
1) in the fourth line, we assume that the disturbance is StatiSti%WE shall restrict our development to apply only to stable plants. If the plant

Ilv independent of the command inout sianaland 2) in the of interest is ur]sta_ble, conventional fe_edback should b_e_ applied to stabilize it.
cally indep p gnal ) Then the combination of the plant and its feedback stabilizer can be regarded as
final line, we assume that the disturbance is zero mean. Undekquivalent stable plant.
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that meets design specifications. However, we can often achie X Dist. wy
even better tracking control if we 1é be simply a delay cor- - 1 “ [P J\+

responding to the transport delay of the plant. The contraller * ¢ o '
will adapt to a delayed inverse of the plant dynandics.

> Yk

| - (sys)
.D ek
A +

A. Adapting a Constrained Controller Via the BPTM
Algorithm

Recall that an adaptive filter requires a desired response ing i

signal in order to be able to adapt its weights. While we do have . , .
. . Fig. 3. Structure diagram illustrating the BPTM method.

a desired response for the entire systdp,we do not have a
desired response for the output of the contralleA key hurdle ) ) o
that must be overcome by the algorithm is to find a mechanism_The con_trollerwelghts are updated in the direction of the neg-
for converting the system error to an adaptation signal used@ée gradient of the cost functional
adjustC.

One solution is to regard the series combinatiof'@ind P as T dJy
a single adaptive filter. Theiie a desired response for this com- (AWe)y = - ndWc
bined filter: d;. Therefore, we can us&, to computeweight d
updates for the conglomerate filtetowever, we only apply the =~
weight updates to the weightsdy P is still updated using the ©
plant modeling erroe,(cm"d). Fig. 3 shows the general frame- + h (g, up_1, ..., uk_,,)}
work to be used. We say that the system errbriskpropagated
through the plant model, and used to adapt the controller. For ] ) . o
this reason, the algorithm is named “backprop through (plaitj’€re” is the adaptive learning rate. Continuing

model” (BPTM). This solution allows for control of nonmin-

{el(:ys)T el(:ys)

imum-phase and nonsquare plants. (AWe)E _ r,, dix
The algorithm is derived as follows. We wish to train the con- =€, Q dWe
troller C' to minimize the squared system error and to simulta- . T
neously minimize some function of the control effort. We con- _ Z <8h (e -- - “’“‘7’)> (du’“_j> .
struct the following cost function that we will minimize = Qup—; dWe
J = E [% e}(:ys)TQeisys) + h (e, Weets - - uk_r)} . Using (2) and the chain rule for total derivatives, two further

substitutions may be made at this time

The differentiable functiok(-) defines the cost function asso- m
duk o 8uk + Z Buk duk_j (3)
dWC o E)WC (?uk_j dWC

ciated directly with the control signal, and is used to penalize

excessive control effort, slew rate, and so forth. The system error j=1
is the signabgfys) = dj, — Y%, and the symmetric matrig is a . P .
. . . . . . . dyk . 8yk duk_]’
weighting matrix that assigns different performance objectives W Z 3 W
to each plant output. o oo \YUk—i c
If we let g(-) be the function implemented by the controller n 9 din
C, andf(-) be the function implemented by the plant modkel + Z <8Ayk ) < dyI/Ik/_]> . 4)
we can state without loss of generality j=1 \9Yk—i ¢

With these definitions, we may find the weight update. We
need to find three quantitiegih(-)/Ou,_;, dur/dWe and
Yk ROk = [ (Uk—1, k-2« Jh—ns Uy Uk—1 ... Uk—p) (2) dir/dWe.
First, we note thadh(-)/0u,_; depends on the user-speci-
) ) fied functionh(-). It can be calculated giveh(-). Second, we
where W are the adjustable parameters (weights) of tensigerju, /diW, as expanded in (3). Itis the same in form as
controller. (1) and is computed the same way.
Third, we consideily, /dWe in (4). The first term in the
first summation is the Jacobia®y; /Ou,—;, which may be

2We note that nonlinear plants do not, in general, have inverses. So, wheng¥imputed via the backpropagation algorithm. The next term,
say thatC adapts to a (delayed) inverse of the plant dynamics, we meat'that AW is th ¢ . | ted d d
adapts so that the cascaB€’ approximates the (delayed) identity function adlk—j/ is the current or a previously computed and save

well as possible in the least-mean-squared error sense. version ofduy /dW¢, computed via (3). The first term in the

=0 (Uk—1, Uk—2 - - Uk—ns Thy Thel - - - Thiegq, W)
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begin {Adapt C} Dist. wy
Update duy /dWc: " i_}
o Shift dU; down N; rows, where N; is the number of plant inputs. r ;r\ C k| Plant >G > Vi
o Backpropagate N; unit vectors through C to form dyU; and x- P i
duy /dWc. Each backpropagation produces one row of both ma-
trices. &:; v+
o Compute top N; rows of dUy to be duy /dWc + (AyUy)(dUy). P 2%)
Update dyy /dW¢:

. Backpropagate N unit vectors through P to form dyYy and dyYy,
where N, is the number of plant outputs. Each backpropagation
produces one row of both matrices.

o Compute dwYy; = (3yYr)(dUy) + (ByYy)(dYy).

o Shift dYy down N, rows and save dyYy in the top N, rows. (a)

Compute dHj.

Update Weights:

o Compute (AW¢)f = ne Q(dka) — n(aH] )(dUy).

o Adapt, enumerating weights in the same order as when computing Tk
AwUg.

end {Adapt C} A

Y+

Uk Plant +

Fig. 4. Algorithm to adapt a NARX controller for a NARX plant model.

second summatiody, /dyx—; is another Jacobian. The final
term,dg,—,/dWc, is a previously computed and saved version (b)

of dyk/dWC
g. 5. Two methods to close the loop. (a) The output,is fed back to the
A practical implementation is realized by compacting the n(éontroller (b) An estimate of the disturbands, , is fed back to the controller.

tation into a collection of matrices. We define

V. ADAPTIVE DISTURBANCE CANCELING

r T
a2 ( duy, )T <‘9uk—1>T o <3uk—p>T Referring again to Fig. 1, we have seen how to adaptively
I IWe oWe oW model the plant dynamics, and how to use the plant model to
. . T adapt a feedforward adaptive controller. Using this controller,
a2 <3h ) ( oh(-) ) < oh(-) ) an undisturbed plant will very closely track the desired output.
Ouy, Oup_1 Oug_, A disturbed plant, on the other hand, may not track the desired
. . T output at all well. It remains to determine what can be done to
ay, A <8yk 1> <8yk2> <8ykn> ] ellmlnat_e pI_ant disturbance. o _ )
IWe W oW The first idea that may come to mind is to simply “close the
loop.” Two methods commonly used to do this are discussed in
oy \* [ our \7 oye \"© T Section V-A. Unfortunately, neither of these methods is appro-
Yy = <7k> <8uk 1> <8uk > priate if an adaptive controller is being designed. Closing the
- I loop will cause the controller to adapt to a “biased” solution.
N oue \T [ oy \© oue \ 7" T An alternate technique is introduced that leads to the correct so-
oyY, = (8 > <8 - ) (8 : ) ] lution if the plant is linear and has substantially less bias if the
i Yie—2 Yremn plant is nonlinear.
A [ 8uk T 8uk T 8uk T g . . . . .
opUy = <8uk 1) <8uk 2) <3uk ) . A. Conventional Disturbance Rejection Methods Fall
- - —-p

Two approaches to disturbance rejection commonly seen in
the literature are shown in Fig. 5. Both methods use feedback;

The algorithm is summarized in Fig. 4. Any programminghe first feeds back the disturbed plant outpytas in Fig. 5(a),
language supporting matrix mathematics can very easily impksd the second feeds back an estimate of the disturbance
ment this algorithm. It works well. Wy, as in Fig. 5(b). The approach shown in Fig. 5(a) is more

A similar algorithm may be developed for linear systemgonventional, but is difficult to use with adaptive inverse control
for which convergence and stability has been proven [7]. Vdince the dynamics of the closed-loop system are dramatically
have no mathematical proof of stability for the nonlinear vedifferent from the dynamics of the open-loop system. Different
sion, although we have observed it to be stablg i “small methods than those presented here are required to &dapt
enough.” As a practical matter, it may be wise to adapt thiéhe approach shown in Fig. 5(b) is callédternal model
controller off-line until convergence is approximated. Adaptaontrol [26]-[31]. The benefit of using this scheme is that the
tion may then continue on-line, with a small valuerpfFaster dynamics of the closed-loop system are equal to the dynamics
adaptation may be accomplished using DDEKF as the adaptéthe open-loop system if the plant model is identical to the
tion mechanism (BPTM-DDEKF) versus using RTRL (BPTMplant. Therefore, the methods found to adapt the controller for
RTRL). To do so, setl (k) = dJ' /dW¢ [25]. feedforward control may be used directly.
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will causeP to adapt to an incorrect solution. In the following
analysis the case of a plant controlled with internal model co y-
trol is considered. A similar analysis may be performed for tt
conventional feedback system in Fig. 5(a), with the same cc _

: Ui + Uk | +
clusion. " L ‘o o Pt "
K+ i >

B. Least-Mean-Squared Error Solution fﬁrUsing Internal = Y
Model Control Pcopy >

Unfortunately, closing the loop usiregthermethod in Fig. 5 ).
P

When the loop is closed as in Fig. 5(b), the estimated distt o
bance termi;_; is subtracted from the reference inpyt The X |
resulting composite signal is filtered by the controtléand be-
comes the plant input signal;.. In the analysis done so far, werig. 6. Correct on-line adaptive plant modeling in conjunction with
have assumed thay, is independent ofy;,, but that assumption disturbance canceling for linear plants. The circuitry for adap@ihgas been
is no longer valid. We need to revisit the analysis performed f8rrnItteOI for clarity.
system identification to see if the plant modektill converges
to P. Assumptions concerning the nature of theandw;, signals

The direct approach to the problem is to calculate the leadf€ needed to simplify this further. For exampleyif is white,
mean-squared error solution fét and see if it is equal t>. then the plant model converges to the plant. Under almost all
However, due to the feedback loop involved, it is not possibfiher conditions, however, the plant model converges to some-
to obtain a closed form solution fdP. An indirect approach thing else. In general, an adaptive plant model made using the
is taken here. We do not need to know exactly to wRaton- internal model control scheme will be biased by disturbance.
verges—we only need to know whether or not it converges to The bottom line is that if the loop is closed and the plant
P. The following indirect procedure is used. model is allowed to continue adapting after the loop is closed,

1) First, remove the feedback path (open the loop) and pgpsé overall ContrO_I system will becqme biased b_y the distur-
form on-line plant modeling and controller adaptatior?2NCe- One solution, applicable to linear plants, is to perform
When convergence is reachddl— P. plant mpdelmg with dither signals rather than WIFh th.e pommand

2) At this time, P ~ P, and the disturbance estimatg is input S|gnaluk.[13, schemes B, C]J. Hoyvevgr, this will mcreasg
very good. We assume that, — wy. This assumption the_ output noise IeveI: A better solutlo_n is presentt_ed next, in
allows us to construct a feedforward-only system that thlch the plant model is allowed to continue adaptation and the

equivalent to the internal-model-control feedback systePthpUt noise level is not mc_reaged. The plant dlsturpances will
by substitutingw;, for . be handled by a separate circuit from the one handling the task

3) Finally, analyze the system, substituting for . If the of dy_namic_ response. This re_sults in an overall control problem
least-mean-squared error solution fostill converges to 1t IS partitioned in a very nice way.
P, then the assumption made in the second step remaié'ls Soluti lowing On-Li d ion &
valid, and the plant is being modeled correctlyAfdi- - A Solution Allowing On-Line Adaptation
verges fromP with the assumption made in step 2), then The only means at our disposal to cancel disturbance is
it cannot converge t@ in a closed-loop setting. We con-through the plant input signal. This signal must be computed in
clude that the assumption is justiﬂed for the purpose 6tich a way that the plant output negates (as much as possible)
checking for proper convergence Bf the disturbance. Therefore, th@ant input signal must be
We now apply this procedure to analyze the system of Fig. 5(Sjatistically dependent on the disturbance. However, we have
We first open the loop and allow the plant model to converdHSt seen that thplant modeinput signal cannot contain terms
to the plant. Second, we assume thigt =~ wy.. Finally, we dependent on the disturbance or the plant model will be biased.
compute the least-mean squared error solutior’for This conundrum was first solved by Widrow and Walach [13],
as shown in Fig. 6.
By studying the figure, we see that the control scheme is very

POPY (i) = [y |y ] similar to internal model control. The main difference is that
—E [P () + ws |Tx] the fee@back loopis “moved m_such away that t.he disturbance
dynamics do not appear at the input to the adaptive plant model,
=E [P (i) |tx] + E [wy |tx] but do appear at the input to the plant. That is, the controller
R S, outputuy, is used as input to the adaptive plant motebn the
— P (i) +E [wy |ix] put P pive p ©

other hand, the input to the plant is equalkitot i, wheret,, is

the output of a special disturbance-canceling fitker,P is not
wheredy, is a function ofw;, sinceu;, = C(7’, — wWr_1) and so used directly to estimate the disturbance; rather, a filter whose
the conditional expectation in the last line is not zero. The plameights are a digital copy of those i is used to estimate the
model is biased by the disturbance. disturbance. This filter is calleﬁcopy.
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In later sections, we will see how to adafit and how to The linear term disappears, as we expect from our analysis for
modify the diagram if the plantis nonlinear. Now, we proceed @ linear plant. However, the remainder term is not eliminated.
show that the design is correct if the plant is linear. We compute principle, if the plant is very nonlinear, the plant model may

the optimal function? be quite different from the plant. lpractice however, we have
N seen that this method seems to work well, and much better than
POPY) (i) = [y |k ] an adaptive version of the internal-model control scheme.
—E [P (4’6 n 5k) +wg |ﬁk} So, we.conclgde that this system is nqt as good as desirgd if
the plant is nonlinear. It may not be possible to perform on-line
N S adaptive plant modeling while performing disturbance can-
=E [P (u" + u") |u’“} +E [w ] celing while retaining an unbiased plant model. One solution
N might involve freezing the weights of the plant model for long
=E |:P (uk + uk) |uk} . . ; . .
periods of time, and scheduling shorter periods for adaptive
o\ 2\ plant modeling with the disturbance canceler turned off when
=E [P [ix] + B [P (uk) |uk] requirements for output quality are not as stringent. Another
= P (iiy,) solution suggests itself from (5). If thg, terms are kept small,

the bias will disappear. We will see in Section V-E thgt
wherey, is a vector containing past values of the control signatay be adapted using the BPTM algorithm. We can enforce

Uk, Up—1, ..., ug, aNdiy is a vector containing past values ofonstraints on the output ok using our knowledge from
the disturbance cangeler outpit,, tg—1, ---, Ug. Inthe final Section IV to ensure thai, remains small. Also, since the
line, we assume that; is zero-mean (which it would be iy,  systemis biased, we use,; as an additional exogenous input
is zero mean and the plant is linear). to X to helpX determine plant state to cancel disturbance.
Unfortunately, there is still a bias if the plant is nonlinear. The
derivation is the same until the fourth line D. Function of the Disturbance Canceler
Slopt) /= T It is interesting to consider the mathematical function that
Peor) (i) = E [P (uk + uk) |uk} the disturbance ganceling circuit must compute. A little careful

which does not break up as it did for the linear plant. To préPoughtinthis direction leads to a great deal of insight. The anal-
ceed further than this, we must make an assumption about ¥$& IS Precise if the plant is minimum phase (that is, if it has a
plant. Considering a SISO plant, for example, if we assume tiigPle, causal inverse), but is merely qualitative if the plant is
P: R* — R s differentiable at “point’y,, then we may write r?on.mlmmum phase. The goal of this anaIyS|_s is not to be qu.an—
the first-order Taylor expansion [32, Th. 1] titative, but rather to develop an understanding of the function
performed byX.
o kooop - A useful way of viewing the overall system is to consider that
P (ﬁk + ﬂk) = P (i) + Zﬂl o1, () + B (akv ﬁk) the control goal is forX to produce an output so thg, =
=0 M (7). We can expresg; as
wherew; is the plant input at time index Furthermore, we have .
the result thaiR, (iiy,, @ )/||iix|| — 0 asix — 0 in R*. Then yp = wi + P (C (7) + X (@k_l, ’Jk)) :

Plopt) (iiy) =E

. _orP >,
P (i) +Y it — (k) + B (ug, ir) used when controlling nonlinear plants as it allows the distur-

bance canceler some knowledge of the plant state. It is not re-

. ] Note thatX takes the optional input signal.. This signal is
Uk,

quired if the plant is linear.
Ur, Next, we substitutg, = M (7,) and rearrange to solve for
the desired response af. We see that

+E [fa(in, 300 X (i, i) = P (M (7y) = @) = C (7)
Sincewy, is assumed to be independentqf, thend,, is inde- =P (P (iix) — @y) — up
pendent ofi;,.. We also assume thaj, is zero-mean
assuming that the controller has adapted upnify, ) ~ M (7%).
= i or The function ofX is a deterministic combination of known (by
PP (i) = P (i E [@;] — (@ _ .
(k) (@) + Z Jﬁil ou; (k) adaptation) elemenf8 andP !, but also of the unknown signal

1=0
=0 wy.. Because of the inherent delay in discrete-time systems, we
1E [Rl (5]“ ﬁk) ‘ ﬁk:| only_knowwk_l at any time, sow;, must be estimated frqm
previous samples ab;_1, ..., wo. ASsuming that the adaptive
= P (@) +E [R1 (51“ ﬁk) ‘ ﬁk] plant model is perfect, and that the controller has been adapted

to convergence, the internal structure X¥fis then shown in
~ P (i) . (5) Fig. 7(a). Thew, signal is computed by estimating its value
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two parts do not necessarily separate. ThafXismmplements
. some combination of predictors and delayed inverses that com-
- pute the least-mean-squared error solution.

Efwy | g—1]

S
=~
|

\ 4

L L P

o)

E. Adapting a Disturbance Canceler via the BPTM Algorithm

ut !

We have seen how a disturbance canceling filter can be in-
serted into the control-system design in such a way that it will
not bias the controller for a linear plant, and will minimally bias
a controller for a nonlinear plant. Proceeding to develop an algo-
rithm to adaptX, we consider that the system error is composed

@

~Efwy | 1] >

o)

(b)

Fig. 7. Internal structure oX . (a) For a general plant. (b) For a linear plant.

from previous samples af,. These are combined and passed
through the plant inverse to compute the desired sigpal .

Thus, we see that the disturbance canceler contains two parts.
The first part is an estimator part that depends on the dynamics
of the disturbance source. The second part is the canceler part
that depends on the dynamics of the plant. The diagram sim-
plifies for a linear plant since some of the circuitry cancels.
Fig. 7(b) shows the structure &f for a linear plant.

One very important point to notice is that the disturbance can- .
celer still depends on both the disturbance dynamics and the
plant dynamics. If the process generating the disturbance is non-
linear or chaotic, then the estimator required will in general be a
nonlinear function. The conclusion is that the disturbance c
celer should be implemented as a nonlinear fikgen if the
plant is a linear dynamical system

If the plant is generalized minimum phase (minimum phas
with a constant delay), then this solution must be modifie
slightly. The plant inverse must be a delayed plant inverse, w%
the delay equal to the transport delay of the plant. The estimagor
must estimate the disturbance one time step into the futu
plus the delay of the plant. For example, if the plant is strictl%

proper, there will be at least one delay in the plant’s impuls\,,(\;eI

response, and the estimator must predict the disturbance at Ieale

two time steps into the future. nen

It was stated earlier that these results are heuristic and do %8(
directly apply if the plant is nonminimum phase. We can sge
this easily now, since a plant inverse does not exist. However
the results still hold qualitatively since a delayed approximafe
inverse exists; the solution fof is similar to the one for a gen-
eralized minimum phase plant. The structureXo€onsists of a
part depending on the dynamics of the system, which amoun
to a delayed plant inverse, and a part that depends on the dy-
namics of the disturbance generating source, which must now
predict farther into the future than a single time step. Unlike the
case of the generalized minimum phase plant, however, these

3However, if the plant is knowa priori to be strictly proper, the delay I
block may be removed from the feedback path. Then the estimator needs to
dict the disturbance one fewer step into the future. Since estimation is imperf
this will improve performance.

of three parts.

One part of the system error is dependent on the input
command vectof, in C. This part of the system error

is reduced by adapting'.

Another part of the system error is dependent on the esti-
mated disturbance vectar, in X. This part of the system
error is reduced by adapting.

The minimum-mean-squared error, which is independent
of both the input command vector { and the estimate
disturbance vector inX. It is either irreducible (if the
system dynamics prohibit improvement), or may be re-
duced by making the tapped-delay lines at the input'to

or C larger. In any case, adaptation of the weightXior

C will not reduce the minimum-mean-squared error.

The fourth possible part of the system error is the part that
is dependent on both the input command vector and the
disturbance vector. However, by assumptignand wy,

are independent, so this part of the system error is zero.

al[]éing the BPTM algorithm to reduce the system error by
adaptingC, as discussed in Section IV, will reduce the compo-
nent of the system error dependent on the inputSince the
dfsturbance and minimum-mean-squared error are independent
71, their presence will not bias the solution 6f. The
ntroller will learn to control the feedforward dynamics of the
stem, but not to cancel disturbance.

f we were to use the BPTM algorithm and backpropagate

e system error through the plant model, using it to adaps

the disturbance canceler would learn to reduce the compo-

of the system error dependent on the estimated disturbance
ignal. The component of the system error due to unconverged
and minimum-mean-squared error will not bias the distur-
ance canceler.

'BPTM for the disturbance canceler may be developed as fol-
ows. Letg(-) be the function implemented by, f(-) be the
function implemented by the plant model coﬁyopy, andWx

b{asthe weights of the disturbance canceler neural network. Then

Uk =g (Uk—1 -+ Uk, Wh—1 - Wh—q,
U+ Uk—py Wx)

Yo ROk = [ (Jk—1" Uk—n, Uk +* Up—p)

wherew, = wug + u IS the input to the planty, is the
giﬁiput of the controller, andl;, is the output of the disturbance
canceler. BPTM computes the disturbance-canceler weight
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o M artificial as well. In each case, the command signal is uniform
independently identically distributed (i.i.d.), which was chosen
________ ). S L -t(">—> eysy  Since it is the most difficult to follow. The raw disturbance
/ P X% source is a first-order Markov process. In some cases the
/

Markov process is driven by i.i.d. uniform random variables,
and in other cases by i.i.d. Gaussian random variables. The
disturbance is added to either the input of the system, to the
output of the system, to a specific state in the plant’s state—space
representation or to an intermediate stage of the processing
performed by the plant.

System 1:The first plant was introduced to the literature
by Narendra and Parthasarathy [33]. The difference equations

up |+ ik
e c > Plant

-~

Y
—\/
>

L I Y

o
g8 o
%

i = . X i
k X defining its dynamics are
—— Sk_1 3
Sp =5 T Up_
14534
Fig. 8. Integrated nonlinear MIMO system. Yr = Sg + distg.

The plant model was &/, 1).s.1 network, and system identi-

NT . .T g5 i H
updateA (W), = —nej, dji/dWx. This can be found by the i0n was initially performed with the plant input signaj

following: being i.i.d. uniformly distributed betwedn-2, 2]. Disturbance
duy, duy, diy, diy, was a first-order Markov process, generated by filtering a
AWy  dWx  dWx  dWx primary random process of i.i.d. random variables. The i.i.d.
. m . _ random variables were uniformly distributed in the range
= Oty + Z < df“‘ ) <%> [—0.5, 0.5]. The filter used to generate the first-order Markov
OWx o \Qur—; ) \ dWx process was a one-pole filter with the polezat= 0.99. The
. » . - resulting disturbance was added directly to theéputof the
dyr  _ Z < L > <d”k—i> system. Note that the disturbance is adaéér the nonlinear
dWx g \du—j ) \ dWx filter, and hence it does not affect the internal state of the
N . R system.
+ Z < 8}/1« ) (dyk—j> ) System 2:The second plant is a nonminimum-phase
= Ok—j dWx (meaning that it does not have a stable causal inverse) non-

] o o _linear transversal system. The difference equation defining its
This method is illustrated in Fig. 8 where a complete iNdynamics is

tegrated MIMO nonlinear control system is drawn. The plant

model is adapted directly, as before. The controller is adapted yr = exp(up—1 — 2up_z + distp_1) — 1.
by backpropagating the system error through the plant moeieHe
and using the BPTM algorithm of Section IV. The disturbanc& nalu; being i.i.d. uniformly distributed betweén 0.5, 0.5].
canceler is adapted by backpropagating the system errorthroEﬂ urbance was a first-order Markov process, generated by

the copyof the plant model and using the BPTM algorithm Sfiitering a primary random process of i.i.d. random variables.
well. So we see that the BPTM algorithm serves two functiongj,e i 4. random variables were distributed according to a

itis able to adapt boti and X'. Gaussian distribution with zero mean and standard deviation

Since the disturbance canceler requires an accurate estimaify The filter used to generate the first-order Markov process
of the disturbance at its input, the plant model should be adapwgS a one-pole filter with the pole at= 0.99. The resulting
to near convergence before “turning the disturbance canc turbance was added to tigut of the system.
on” (connecting the disturbance canceler output to the pIantSystem 3:The third system is a nonlinear plant expressed
input). Adaptation of the disturbance canceler may begin befqﬁestate—space form. The system consists of a linear filter fol-

this point, however. lowed by a squaring device. The difference equations defining
this plant’s dynamics are

plant model was &3 ¢).3.1 network, with the plant input

VI. EXAMPLES

0 1 0.2 1

Four simple nonlinear SISO systems were chosen to demon<x = [ } Tp—1 + { } Up—1 + { ] disty 1
L - . . —-0.2 0.2 1 0

strate the principles of this paper. The collection includes

both minimum-phase and nonminimum-phase plants, plantssy = [1 2]y

described using difference equations and plants described in 2

state space, and a variety of ways to inject disturbance. Since’

the plants are not motivated by any particular “real” dynamicdhe plant model was. &/, 5).s.1 network, with the plant input

system, the command signal and disturbance sources sighal v, being i.i.d. uniformly distributed betweep-1, 1].



370 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 2, MARCH 2003

System 1 System 2
10 . - . 4
5 3
3 3
E S 2
g 0 .
g E 1
< <
-5 0
-10 -1 y :
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
System 3 System 4
8 v - - 3
6 g
Q Q
E 21
2l £
< <o
2 -1
0 -2

20 40 60 80 100

0 20 40 60 80 100 0
Iteration Iteration
(@)
System 1 System 2
10 - T -
Q Q
E E
= =
g g
< <
-10 v . v v -1
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
System 3 System 4
10 - v 2 T v
8 |
)
Q
g o
s
g
g 4
2 L
0 y _3 . . .
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

(b)

Fig.9. (a) System identification of four nonlinear SISO planthe absence of disturbancehe gray line (when visible) is the true plant output, and the solid line
is the output of the plant model. (b) System identification of four nonlinear SISO ptatits presence of disturbancthe dashed black line is the disturbed plant
output, and the solid black line is the output of the plant model. The gray solid line (when visible) shows what the plant output would have begurtidnealis
were absent. This signal is normally unavailable, but is shown here to demonstrate that the adaptive plant model captures the dynamics oft theryruelblan

Disturbance was a first-order Markov process, generated by fiésulting disturbance was added directly to the first state of the
tering a primary random process of i.i.d. random variables. Thgstem.

i.i.d. random variables were uniformly distributed in the range System 4:The final system is a generalization of one in ref-
[-0.5, 0.5]. The filter used to generate the first-order Markoerence [13]. The nonlinearity in this system has memory or
process was a one-pole filter with the polezat= 0.99. The “phase,” and is a type of hysteresis device. The system has two
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Tracking Uniform White Input Control Signal for Uniform White Input
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Fig. 10. (a) Feedforward control of system 1. The controlléf:, 1).¢.1, was trained to track uniformly distributed (white) random input, betweesy 8].
Trained performance and generalization are shown.

equilibrium states as opposed to the previous plants which All System Identification
had a single equilibrium state. The difference equations defining

its dynamics are System identification was first performed, starting with

random weight values, in thabsenceof disturbance, and a

sk =0.4sk_1 + 0.5uy summary plot of is presented in Fig. 9(a). This was repeated,
starting again with random weight values, in theesence

. of disturbance and a summary plot is presented in Fig. 9(b).
0.8yk—1 + 0.8 tanh(sy +2), if sp <sr-1. plant models were trained using a series-parallel method first
The plant model was &/(10,10):30.1 Network, with the plant to accomplish coarse training. Final training was always in
input signal v;, being i.i.d. uniformly distributed betweena parallel connection to ensure unbiased results. The RTRL
[-1, 1]. Disturbance was a first-order Markov process, gemgorithm was used with an adaptive learning rate for each
erated by filtering a primary random process of i.i.d. randotayer of neuronsy} = ming<,<x 1/||X; ;||> wherei is the
variables. The i.i.d. random variables were distributed atyer number andX; ; is the input vector to that layer. This
cording to a Gaussian distribution with zero mean and standaithple rule-of-thumb, based on stability results for LMS,
deviation 0.01. The filter used to generate the first-ord&as very effective in providing a ballpark adaptation rate for
Markov process was a one-pole filter with the pole at 0.95. RTRL.

The resulting disturbance was added to an intermediate pointn all cases, a neural network was found that satisfac-
in the system, just before the output filter. torily identified the system. Each system was driven with

] 0.8yr—1 + 0.8 tanh(sp — 2), if sp > sp_1;
yr = disty +
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Fig. 10. (Continued. (b) Feedforward control of system 2. The controll€fzo, 1).20.1, Was trained to track uniformly distributed (white) random input, between
[—0.75, 2.5].

an i.i.d. uniform control signal. This was not characteristi€ince the plants themselves are artificial, this artificial control
of the control signal generated by the trained controller wignal was chosen. In general, it is the hardest control signal to
the next section, but was a starting point and worked quitellow. The plants were undisturbed; disturbance canceling for
well to initialize the plant model for use in training the condisturbed plants is considered in the next section.
troller. Each plant produced its own very characteristic output The control signals generated by the trained controllers
for the same input, as seen in Fig. 9, but it was showare not i.i.d. uniform. Therefore, the system identification
that neural networks could be trained to identify each systgmerformed in the previous section is not sufficient to properly
nearly perfectly. train the controller. It provides a very good initial set of
When disturbance is added, it is useful to think of the “disalues for the weights of the controller, however, and system
turbed plant dynamics” and the “nominal plant dynamics.” lidlentification continues on-line as the controller is trained
each case, the system identification process matched the n@ih the BPTM algorithm. Again, the adaptive learning rate

inal dynamics of the plant, which is what theory predicts and, = mino<;<x 1/||X;, ;||* proved effective.
what we would like. First, the controllers were trained with an i.i.d. uniform

command input. The reference model in all cases (except for
system 2) was a unit delay. When the weights had converged,
the values of the network weights were frozen, and the con-
After system identification was done, the controller wasoller was tested with an i.i.d. uniform, a sinusoidal and a
trained to perform feedforward control of each system. Theguare wave to show the performance and generalization of
control input signal was always uniform i.i.d. random inputhe system. The results are presented in Fig. 10. The desired

B. Feedforward Control
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Fig. 10. (Continued) (c) Feedforward control of system 3. The controll§f., s).5:1, was trained to track uniformly distributed (white) random input, between
[0, 3].

plant output (gray line) and the true plant output (solid line) atatency is desirable, a reference model for this work was chosen
shown for each scenario. to be a delay of ten time sample®t(z) = 2~ 10,

Generally (specific variations will be addressed below) the Notes on System 3The output of system 3 is constrained
tracking of the uniform i.i.d. signal was nearly perfect, and th® be positive due to the squaring device in its representation.
tracking of the sinusoidal and square waves was excellentTderefore, it is interesting to see how well this system gener-
well. We see that the control signals generated by the controlidizes when asked to track a zero-mean sinusoidal signal. As
are quite different for the different desired trajectories, so tl#own in Fig. 10(c), the result is something like a full-wave
controller can generalize well. When tracking a sinusoid, threctified version of the desired result. This is neither good nor
control signal for a linear plant is also sinusoidal. Here, the cohad—just curious.
trol signal is never sinusoidal, indicating in a way the degree of Simulations were also done to see what would happen if the
nonlinearity in the plants. system wererained to follow this kind of command input.

Notes on System 2System 2 is a nonminimum-phase plantin that case, the plant output looks like a half-wave rectified
This can be easily verified by noticing that its linear-filter partersion of the input. Indeed, this is the result that minimizes
has a zero at = 2. This plant cannot follow a unit-delay ref- MSE—the training algorithm works!
erence model. Therefore, reference models with different latenNotes on System 4As can be seen from Fig. 10(d), the con-
cies were tried, for delays of zero time samples up to 15 tintel signal required to control this plant is extremely harsh. The
samples. In each case, the controller was fully trained and tisteresis in the plant requires a type of modulated bang-bang
steady-state mean-squared-system error was measured. Agaatrol. Notice that the control signals for the three different in-
of the results is shown in Fig. 11. Since both low MSE and loputs are almost identical. The plant is very sensitive to its input,
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Fig. 10. (Continued) (d) Feedforward control of system 4. The control€{o, 1):30:1, Was trained to track uniformly distributed (white) random input, between
[—0.1, 0.1]. Notice that the control signals are almost identical for these three very different inputs!
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C. Disturbance Canceling

With system identification and feedforward control accom-
plished, disturbance cancellation was performed. The input to
the disturbance canceling filtéf was chosen to be tap-delayed
copies of theu, andwy, signals.

The BPTM algorithm was used to train the distur-
bance cancelers with the same adaptive learning rate
pi = ming< <k 1/]|X; ;]|?. After training, the perfor-
mance of the cancelers was tested and the results are shown in
Fig. 12. In this figure, each system was run with the disturbance
canceler turned off for 500 time samples, and then turned on for
the next 500 time samples. The squared system error is plotted.
The disturbance cancelers do an excellent job of removing the

Fig. 11. Mean-squared system error (in decibels) plotted vers@iSturbance from the systems.
control-system latency for System 2.

VIl. CONCLUSION

yet can be controlled precisely by a neural network trained with Adaptive inverse control is very simple yet highly effective.
the BPTM algorithm.

It works for minimum-phase or nonminimum-phase, linear or
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Plots showing disturbance cancellation. Each system is run with the disturbance canceler turned off for 500 time steps. Then, the chstcelers

turned on and the system is run for an additional 500 time steps. The square amplitude of the system error is plotted. The disturbance-canteles aretéte

Ns. 51, 2):10:1, N

([5,5],1):10:14 -/\/([5, 5],4):10:1, and«”\"-([a, 5], 1):30:1, fespectively.

nonlinear, SISO or MIMO, stable or stabilized plants. The con- [9]
trol scheme is partitioned into smaller subproblems that can
be independently optimized. First, an adaptive plant model is
made; second, a constrained adaptive controller is generatga]
finally, a disturbance canceler is adapted. All three processes

may continue concurrently, and the control architecture is unbir

ased if the plant is linear, and is minimally biased if the plant is
nonlinear. Excellent control and disturbance canceling for min{12]
imum-phase or nonminimum-phase plants is achieved.
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