
Paper Number 07AE-304

Desktop and HIL Validation of Hybrid-Electric-Vehicle
Battery-Management-System Algorithms

Gregory L. Plett
University of Colorado at Colorado Springs, and consultant to Compact Power Inc.

Robert Billings and Martin J. Klein
Compact Power Inc.

Copyright © 2007 SAE International

ABSTRACT

The battery management system (BMS) of a hybrid-
electric-vehicle (HEV) battery pack comprises hardware
and software to monitor pack status and optimize
performance. One of its important functions is to
execute algorithms that continuously estimate battery
state-of-charge (SOC), state-of-health (SOH), and
available power. The primary difficulty when validating
these algorithms is that there are no sensors that can
measure SOC, SOH, or available power, so the
accuracy of the algorithms cannot be directly evaluated.
To address this problem, we have developed a
validation strategy based in part on a data synthesis
system to provide the missing “truth” data. This paper
presents the advantages and limitations of such a
system, describes how it works, and gives some results.

HEV BATTERY PACK OVERVIEW

Optimizing the cost, weight, size, and reliability of major
HEV systems is critical in maximizing the value of the
HEV to the end customer. Since the battery pack is
among the costliest and heaviest components of the
HEV drive train, it is worthwhile to expend effort on a
careful design, especially of those components of the
pack that might impact its lifetime affordability.

Figure 1 provides a block diagram of a typical HEV
battery pack. Comprising the pack are the battery cells,
junction module(s), BMS, thermal management system,
wiring and connectors, and the pack housing. In most
applications, the cells are wired in series to develop the
necessary high voltage.

The primary functions of the battery pack are to store
electrical energy produced by the vehicle (via the internal
combustion engine, or during regenerative braking) and
to provide electrical energy for use by the vehicle
particularly during acceleration or other peak energy
demands. The pack needs to do so in a manner that is

safe, reliable, and cost efficient. This includes not only
minimizing initial purchase costs, protecting the vehicle
from voltage surges or drop-outs, and preventing harmful
conditions, but also minimizing operational stresses—
such as excessive temperature, discharging or over-
charging—that can shorten the life of the battery cells.

This is accomplished with the aid of the BMS, which
manages the delivery and acceptance of electrical
energy to/from the cells, as well as the operation of the
cooling system and junction module. The BMS consists
of a printed circuit board (PCB)—generally under the
control of a microprocessor—and connectors (and
housing, if necessary). It provides the following
functions (among others):

- Cell state monitoring (e.g., voltage, temperature);
- Dis/charge current measurement and limiting;

Pack
Housing

BMS

Junction
Module

High Voltage
DC/DC

Converter

HCU
(HEV Control

Unit)

Vehicle
(Mounting)

Physical

Material

Data*

Energy*

•Data and Energy includes
Physical Input and output of
cable and connector

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Environment

. . .

Figure 1
HEV battery pack block diagram

Cooling
System

- Management of the cooling system;
- Necessary data conditioning, diagnostics and

battery-to-host vehicle communication functions;
- High voltage relay energizing and de-energizing;
- SOC, SOH, and power estimation, including the

effects of aging.

This latter function, in particular, is critical as accurate
estimates allow the pack to be used aggressively but
without causing damage, allowing for a less expensive,
lighter, and more reliable battery system than a similar
unit that is over-designed to compensate for poor
estimates. The focus of this paper is on validating these
algorithms for a production BMS.

VALIDATING BMS ALGORITHMS

Many of the BMS functions are quite straightforward, and
their implementation can be validated in standard ways.
The internal BMS algorithms that continuously estimate
battery SOC, SOH, and available power, however, can
be quite complex and pose unique challenges when
attempting to qualify them for production systems.

We have previously reported BMS algorithms that
perform these tasks [1–3]. Our approach has been
based on a “model-based estimation” strategy that uses
a mathematical model of cell behavior to predict internal
states (e.g., SOC, SOH) and measurable outputs (e.g.,
voltage) based on measurable inputs (e.g., current and
temperature). Any deviation between the true measured
output and the predicted value of the measured output
can be attributed to model inaccuracy, measurement
noise, and/or an error in the internal model state. An
algorithm is used to adapt the internal state to balance
between these effects and reduce the prediction error.

Regardless of which BMS estimation algorithm is used,
the primary difficulty when validating any such algorithm
on physical hardware is that the “truth” values are not
known. There are no sensors that can directly measure
SOC, SOH, or available power. At different points in
time, laboratory tests can be performed that can be used
to determine a posteriori what the SOC/SOH/power was
at that time, but cannot determine SOC/SOH/power in
real time, as the battery pack operates.

We have developed a validation methodology or system
comprising two data/execution parts and a third
evaluative part as one component of a strategy that
overcomes this obstacle (cf. Figure 2). The first part is a
software simulator of cell dynamics that can synthesize
various driving, temperature, parameter, and sensor-
fault profiles for the battery pack being modeled. All
internal variables that are dependent on the cycling
history of the cell (e.g., SOC/ SOH/ power) are known to
the software simulator, so “truth” values are established.
The input-output behavior of this model has been tested

against physical cells, and works well. We call this the
“Data Generator System” (DGS).

The second main part of the system executes the BMS
algorithms, using the synthetic cell data as input, and
compares the algorithm results, in real time or
accelerated time, to the “truth” values. This can be
performed using the prototype algorithms on a desktop
PC (which we call the BMS Algorithm Simulation System
(BASS)), or by feeding the simulated voltage/ current/
temperature data to the actual BMS hardware to
accomplish hardware-in-the-loop (HIL) validation. The
estimates generated by either the desktop or the HIL
system are compared to the truth values via an
evaluation routine, and conclusions are drawn as to the
quality of the estimates.

Some benefits of this approach are:

1) Standardizes validation of major releases and
incremental algorithm changes;

2) Low cost—does not require expensive pack cyclers
or environmental chambers;

3) Identifies areas of sensitivity to direct focused efforts
in future development;

4) Provides quantitative measures of rate of
convergence of estimates;

5) Assesses impact of cell-to-cell variations and the
effect of aged cells—pack refurbishing and matching
problems.

The following sections describe the cell model used to
synthesize the data, the Data Generator System, the
BMS Algorithm Simulation System, and the HIL
Validation System. We give some lessons learned from
testing and conclude.

THE DATA GENERATOR SYSTEM

The data-generator system is written in the MATLABTM
scientific computing language. It comprises a main
computational core, along with a graphical user interface
(GUI) to allow simple control over the system. In this
section, we first describe the primary element of the

Figure 2
Main components of the validation system

core—the cell model used to synthesize truth data—and
then describe features of the GUI.

CELL MODEL USED TO SYNTHESIZE TRUTH

In order for the proposed validation scheme to be
effective, the DGS must be able to synthesize cell input-
output and state information that matches that of a
physical cell operating under the same conditions with
very high fidelity. If the accuracy of this step cannot be
guaranteed, then it is impossible to interpret the results
of the algorithms meaningfully.

Our DGS uses a mathematical model of the cells used in
our BMS—called the “Enhanced Self-Correcting” (ESC)
cell model—that has been carefully crafted over several
years, and reported in a number of places [4,5]. To
summarize, the inputs to the ESC are: cell current, cell
temperature, and cell parameters, and the output is cell
voltage. The model has internal states that keep track of
polarization voltage(s), hysteresis voltage, and state-of-
charge, and the output voltage is computed as the sum
of the polarization voltages, ohmic voltage, OCV, and
hysteresis. The parameters of the cell model include:
cell capacity, cell resistance, time constants, and mixing
factors for the polarization voltages, and maximum
hysteresis.

The ESC has been optimized to predict performance of
the cells in our BMS under highly dynamic conditions
expected in an HEV environment [5]. Voltage estimation
errors are zero-mean, with typical RMS error in the
range of 5–10mV over the 10%–90% SOC range, for
temperatures greater than –10°C (lower-temperature
performance improvement of the model is the subject of
present and future work).

THE MAIN DGS GUI

In order to simulate cell states and outputs when
generating data using the ESC model, the data
generator needs a fair amount of information. First, the
initial values of all states for all cells are required.

Secondly, the drive-cycle (current) profile1 is needed.
Third, the temperature of all cells as a time profile must
be given. Fourth, all cell model parameters for all cells
as a function of time must be entered. Finally, sensor
faults and noises must be given.

Data for each of these five basic categories of
information are entered via a number of GUI windows,
are stored in individual files, and are later combined
when synthesizing the drive cycle. The individual DGS
GUIs are managed by a main MATLAB GUI, shown in
Figure 3.

One of the sub-GUIs allows entry of the initial cell state
information (polarization voltages, SOC value, hysteresis
voltage) for all of the cells in the battery pack. Another
allows entry of the drive cycle as a current-versus-time
profile. Such current profiles comprise a sequence of
sub-profiles, which may be either: dynamic drive cycles
(e.g., UDDS, US06, HWFET, etc.), rest intervals, or
constant-current intervals. The sub-profiles may be
sequenced in any desired order.

Temperature profiles are entered in a similar way. They
comprise constant-temperature intervals and ramping
temperature intervals, sequenced in any desired order.
Different temperature profiles may be entered for each
cell, if desired.

Parameter profiles may be entered for every parameter
of every cell in the battery pack. The profiles are
generated in a way that allows either the default value of
the parameter (temperature dependent, as specified in
the ESC model), or a biased version of the default
parameter, or simply replacing the default parameter
with another value.

Sensor-fault and sensor-noise profiles may be entered
for every sensor (current, voltage, temperature) in the
BMS. Sensor faults include: “stuck on”, “stuck off”, and
biases; noises are white Gaussian random variables of a
given variance. Note that these sensor faults/noise
profiles are not used when computing the true cell states
and parameters in the DGS, but are used when
computing the measured cell quantities. That is, they
represent sensor faults, not cell faults. Note also that
faults are applied first, and noise added to the faulted
sensor.

1 The word “profile” is used in this paper to refer to any
function of time. All profiles in the DGS are discrete-time
sequences with an interval of one second between
samples. Note that while HEV dis/charge dynamics are
considerably faster than this rate, the time constants of
battery SOC and SOH are considerably slower, so we
find this sample rate to be sufficient.

Figure 3

Screen capture of the DGS main GUI

Temperature-, parameter-, and fault profiles need not be
the same length (in time) as the drive-cycle profile. If a
profile is longer than the drive-cycle profile chosen, it is
simply truncated and the first portion of the profile is
used. If it is shorter than the drive-cycle profile, then two
options exist. The default is that the temperature (etc.)
profile is only applied for the first portion of the drive
cycle; after that, the default temperature (25 °C), default
parameter, or default sensor fault/noise (no fault, no
noise) is used. However, if the associated “Repeat”
checkbox is selected, the temperature (etc.) profile is
repeated over and over to fill the entire drive cycle.

When all inputs are specified, the data generator may be
run. The output of the data generation is stored in a file
for later input to the BASS. This file comprises all true
sensor values, all measured sensor values, all true
parameters, all true states, and maximum power
capability of the pack. The contents of this output file
may be viewed by a separate GUI, shown in Figure 4.
(Note that in this particular example there was no sensor
noise, so the “true current” is identical to the “measured
current”. Had sensor noise been included in the data
synthesized by the DGS for this example it would have
been immediately evident in the GUI.)

THE BMS ALGORITHM SIMULATION SYSTEM

After “truth” and measured data has been generated by
the DGS, they may be used as input to the BMS
algorithms in order to test how well they estimate cell
states, parameters, and available power. A MATLAB
GUI has been written to facilitate this task, and is shown
in Figure 5. The GUI allows entering the desired truth
data file (generated by the DGS, as just discussed), a
key-on/ key-off profile, the version of the algorithms to be
used in the simulation, the initial states and parameters
assumed by the BMS algorithms, and which version of
code to execute.

The second row of the main BASS GUI allows
associating a key-on value (i.e., when in time relative to
the drive cycle the vehicle and the BMS is turned on)
and/or a key-off value (i.e., when in time the vehicle and
the BMS is turned off, and (presumably) the battery pack
is allowed to rest) with every time-step in the data file, to
allow testing the algorithm initialization and shut-down
procedures. Note that for events nominally occurring
during the same time interval, key-on events happen
first, the algorithms then execute if the key is in the “on”
state, and key-off events happen last.

Figure 5

Screen capture of the main BASS GUI

BASS allows using different versions of the estimation
algorithms, and allows different cell models to be used
as well. (The cell version chosen when computing the
truth data in DGS is automatically used so does not need
to be re-entered here). The algorithm version may then
be selected; for example, the figure shows the version of
algorithm that we call A3.3 to be selected.

The different algorithm versions require different
information in order to run. Generally, however, they all
need some state/parameter initialization, and they need

Figure 4

Screen capture of the data display GUI

some tuning parameters, which control the amount of
sensor/process noise that the algorithms expect.

All states and parameters may either be set to default
values or be replaced by some constant that the user
enters. For example, in a hard-reset key-on event, the
default SOC is computed using open-circuit voltage and
temperature. However, to test the robustness of the
algorithms to poor initialization, the user may enter any
value of the initial SOC estimate here. It is then possible
to see how quickly the algorithm converges to the correct
SOC from its bad initial estimate.

When the initial state/parameter and tuning information
has been entered, it is time to run the algorithms. The
prototype MATLAB “m-code” algorithms, and/or the
hand-coded compiled C-language (“c-code”) algorithms
may be run.

When the algorithms have completed, the results may
be displayed in a separate GUI (cf. Figure 6). This GUI
allows powerful data visualization. All traces of
state/parameter profiles—both truth and estimate—may
be viewed. The state/parameter may be viewed in its
natural units and compared to the truth value, or may be
viewed as an estimation error, where the error is
computed as truth minus estimate. Error bars (three-
sigma uncertainties as estimated by the algorithms) may
be overlaid, and grid and legend may be added. An
analysis pane automatically computes either the RMS
estimation error of the present trace or the percentage of
time the error bounds correctly encompass the truth
value. Notice that in this particular example the
MATLAB m-code and the c-code produce results that
are too similar to distinguish by eye. In fact, the analysis
pane shows that the RMS difference between the two
curves is 0.002404(%). We also notice that the
difference between “true SOC” and estimated SOC is
indistinguishable by eye (which is typical for the
advanced SOC estimation methods we use when

everything is initialized properly). The present figure
may also be copied into a standard MATLAB figure
window, allowing zooming, editing, saving, printing, and
so forth.

THE HIL SYSTEM

Our algorithm development cycle has several phases.
The algorithms are first prototyped in MATLAB (for ease
and speed of development), then hand-coded in the C
programming language (for speed of execution, and less
demanding final processor requirements) on a desktop
platform, and finally included in the software that
executes on the BMS hardware. The preceding
discussion has shown how we can validate the MATLAB
and desktop C code, and here we discuss how the same
method can be extended to validate the C code
executing on the BMS hardware.

The idea of HIL battery algorithm validation is certainly
not unique to us (see, for example, [6]). Our
enhancement to this idea, however, is that we have
intentionally designed the HIL system to interface with
the desktop system, so that a further level of validation
can be performed on the same data set, with the same
expected results. The desktop c-code validation system
and the HIL c-code validation system intentionally use
the same algorithm code-base to reduce the chance of
introducing programming errors. The main difference
between the two systems is that the desktop system
reads measurements from files, while the HIL system
reads measurements from slave processors connected
via a serial bus. In the production BMS, the slave
processors in turn measure cell voltages, cell
temperatures, and pack current using appropriate
sensors, but in the HIL system we have introduced a
method to inject synthetic data created by the DGS into
the main BMS via the slave processor serial bus. This is
achieved by first converting the MATLAB cell model from
the DGS into SimulinkTM—a platform for multi-domain

Figure 6
Screen capture of the display results GUI

simulation of dynamic systems. The slave functionality
is modeled in Simulink and couples the cell model to a
current versus time drive cycle. A model of the serial
bus is also used for transmission of the cell voltages,
current and temperature matrix to the BMS. These
Simulink models are then converted to a form that is run
on a real-time platform. In our case, this platform is
dSPACETM (cf. Figure 7 for a block diagram). The BMS
receives the appropriate information from the simulator
as it normally would from actual slave processors.

With the real-time models of the cell and slave behavior,
the validation benefits of the desktop are greatly
enhanced. The actual implementation of specific
algorithms, such as SOC, can be evaluated on the BMS.
This can illuminate many issues that can be masked by
running algorithms in the desktop environment with
double precision data. Timing constraints and fixed-
point errors are a few. In the case of the SOC algorithm,
the evaluation routine compares the known truth values
from the simulator to the BMS estimated output and is
able to validate the performance in real time.

We have also devised a method whereby algorithm
tuning parameters may be downloaded to the BMS
independently of the main BMS software itself.
Therefore, the HIL system may be tested using different
tuning information without the need to recompile
software every time a new test is attempted. This also
allows us to intentionally inject bad initialization data to
the algorithms to test robustness to conditions we do not
expect to occur in practice, but to which we must be able
to respond.

The HIL system is designed but is still in progress of
being implemented. It will be able to execute all of the
tests described in the next section when completed.

THE TEST SUITE

The DGS, BASS, and HIL system just described provide
a very flexible framework that can be used to execute an
immense variety of tests on the algorithms. CPI has
contracted with a third party, Emmeskay [7], whose
personnel have helped in defining the tests that should
be run to properly validate the algorithms.

The present suite of tests for use in the desktop-
validation system comprises 729 different scenarios.
Some of these test the normal operation of the
algorithms, and others test the robustness of the
algorithms to improper initialization, sensor failures, and
the like. A range of static and time-varying ambient
temperatures are considered, and a variety of driving
profiles are also included. If these tests were
implemented in real time, a number of months would be
required to run the entire test suite (neglecting the time
required to set thermal chamber temperatures, etc.).
However, the entire set of tests can be run on the
desktop system in either two hours (the hand-optimized
“c-code” or in 24 hours (the MATLAB “m-code”),
approximately. We find it valuable to test both code sets
from time to time to make sure that the results agree, as
they should.

The HIL system operates in real time, so it is not feasible
to implement all of these 729 scenarios. We are
presently pursuing a design-of-experiments approach to
construct a more practical set of tests to run on this
system. We expect to report on these results in the
future. The HIL system is also ideal for Design Failure
Modes and Effects Analysis (DFMEA).

LESSONS LEARNED TO DATE

The multi-level validation system that we have presented
in this paper has provided a number of benefits and
lessons learned. We itemize several here:

- The speedup of the DGS versus a real-time HIL
implementation allowed testing many scenarios in
accelerated time. This would not have been
possible otherwise, and helped give confidence in
which aspects of the algorithm were working (and
which needed more attention).

- The ability of the DGS/BASS to instantly plot any
desired internal signal from a file containing data
from a specific test was invaluable to understanding
which factors were important and which were
marginal. Aspects of the algorithms that we “knew”
were working in fact needed more attention.

- Being able to execute the prototype m-code and
production c-code with the same stimulus (which
should have produced the same output) helped us
discover and eliminate a number of very subtle
programming errors.

- Generally, it will be impossible to meet all
specifications all the time (especially if testing
robustness and intentionally trying to confuse the
algorithms). It is necessary to prioritize the
importance of each test to be performed to balance
nominal operation against robustness.

Figure 7
Block diagram of HIL system.

CONCLUSION

This paper presents an approach to validating
algorithms, such as SOC estimation, for a battery
management system. Several levels of validation are
proposed: First, validation of the prototype m-code, next
validation of the desktop c-code, after that, validation of
the production software. To overcome the lack of any
sensor that can measure “truth” for the quantities of
interest in real time, all of these levels of testing use
synthetic test data generated from a cell model, and
benefit from the “truth” being known by construction.
The proposed approach also benefits from being
inexpensive, fast, and can give a good indication of how
well the algorithms will function in practice.

This method is no substitute for actual testing of real
cells. However, it can help to minimize the amount of
this testing that is required if a careful design-of-
experiments approach is taken. A balanced overall
validation strategy therefore comprises a large suite of
desktop validation tests and a smaller suite of real-time
tests on physical battery packs.

REFERENCES

1. G. Plett, Sigma-point Kalman filtering for battery
management systems of LiPB-based HEV battery
packs: Part 1. Introduction and state estimation,
International Journal of Power Sources, Vol. 152,
No. 2, October 2006, pp. 1356–68.

2. G. Plett, Sigma-point Kalman filtering for battery
management systems of LiPB-based HEV battery
packs: Part 2. Simultaneous state and parameter
estimation, International Journal of Power Sources,
Vol. 152, No. 2, October 2006, pp. 1369–84.

3. G. Plett and M. Klein, Advances in HEV Battery
Management Systems, Proc. SAE Convergence
2006, Paper Number 2006-21-0060.

4. G. Plett, LiPB dynamic cell models for Kalman-filter
SOC estimation, in: CD-ROM Proceedings of the
19th Electric Vehicle Symposium (EVS19), (Busan,
Korea: October 2002).

5. G. Plett, Results of Temperature-Dependent LiPB
Cell Modeling for HEV SOC Estimation, in: CD-ROM

Proceedings of the 21st Electric Vehicle Symposium
(EVS21), (Monaco: April 2005).

6. C. Massey, A. Bekaryan, P. Liu, A. Parulian, L.
Turner, D. Frisch, T. Weber, and M. Verbrugge,
Hardware-in-the-Loop Testing for Electrochemical
Cells in Hybrid Electric Vehicles, SAE Technical
Paper Series, Commercial Vehicle Engineering
Congress and Exhibition, Chicago, Illinois,
November 1–3, 2005, Paper 2005-01-3500.

7. www.emmeskay.com. Accessed 9/1/2006.

CONTACT

Gregory Plett is Associate Professor of Electrical
Engineering at the University of Colorado at Colorado
Springs and consultant to Compact Power Inc. He may
be reached at:

Dept. of Electrical and Computer Engineering,
University of Colorado at Colorado Springs,
1420 Austin Bluffs Parkway, P.O. Box 7150,
Colorado Springs, CO 80933–7150 USA
Tel: +1–719–262–3468, Fax: +1–719–262–3589,
E-mail: glp@eas.uccs.edu,
URL: http://mocha-java.uccs.edu

Robert Billings is Electrical/Electronics Engineer with
Compact Power Inc. He may be reached at:

Compact Power Inc.,
1857 Technology Drive, Troy, MI 48083 USA
Tel: +1–248–291–2381
E-mail: rbillings@compactpower.com
URL: http://www.compactpower.com

Martin Klein is Director of Engineering at Compact
Power Inc. He may be reached at:

Compact Power Inc.,
1857 Technology Drive, Troy, MI 48083 USA
Tel: +1–248–291–2379
E-mail: mklein@compactpower.com
URL: http://www.compactpower.com

