1586

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 53, NO. 5, SEPTEMBER 2004

High-Performance Battery-Pack Power
Estimation Using a Dynamic Cell Model

Gregory L. Plett, Senior Member, IEEE

Abstract—In some battery applications, such as in hybrid elec-
tric vehicles or battery electric vehicles, it is necessary to be able
to estimate, in real time, the present available power that may be
sourced by the battery pack. Similarly, in rechargeable packs, it
may be necessary to know how much charging power the pack can
accept. These values must be carefully calculated in such a way that
the pack will not be damaged by over/under charge or voltage or
by exceeding a design current or power limit. This paper describes
a method that uses a dynamic cell model and state-of-charge side
information to very accurately predict the battery-pack available
power.

Index Terms—Battery chargers, electric vehicle control, hybrid
electric vehicle control, power control, road vehicle power systems.

1. INTRODUCTION

NUMBER of high-performance battery applications re-
quire precise real-time estimates of the power available to
be sourced by the battery pack: hybrid electric vehicles (HEVs)
and battery electric vehicles (BEVs) are two examples. In both
cases, the vehicle controller requires continuous up-to-date
information from the battery-management system (BMS) re-
garding the power that may be supplied to the electric motor
from the battery pack and power that may be supplied to the
pack via regenerative braking or by active recharging via the
motor.
Specifically, the problem we address in this paper may be
described in the following way.

1) Discharge power: Based on present battery-pack condi-
tions, estimate the maximum discharge power that may be
maintained constant for At s without violating preset oper-
ational design limits on cell voltage, state-of-charge (SOC),
power, or current.
2) Charge power: Based on present battery-pack condi-
tions, estimate the maximum battery-charge power that may
be maintained constant for At s without violating preset
operational design limits on cell voltage, SOC, power, or
current.
3) Both discharge and charge power: Any combination of
1) and 2), where At may have different values for charge and
discharge.
A standard method—in present use by battery-management sys-
tems for vehicular applications—is one that we will refer to as
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the hybrid pulse power characterization (HPPC) method spec-
ified by the Partnership for New Generation Vehicles (PNGV)
[1] (described in Section II). In this paper, we compare the stan-
dard PNGV HPPC method with two new methods to be devel-
oped here.

The notation and assumptions we employ are as follows. We
denote the number of cells in the battery pack by n; cell voltage
for cell number k in the pack by vy (t), which has operational
design limits vyin < vg(¢) < Vmax that must be enforced for
allk : 1 < k < n; SOC for cell number & in the pack by 2z (%),
which has operational design limits zmin < 2k(t) < Zmax that
must be enforced for all k£ : 1 < k < n; cell power by pi(t),
which has operational design limits prin < pr(t) < Pmax that
must be enforced for all £ : 1 < k < m; and cell current by
i (t), which has operational design limits ¢,in < 7% (t) < tmax
that must be enforced for all £ : 1 < k& < m. Any particular
limit may be removed if desired by replacing its value with oo,
as appropriate. All limits (Vmaxs Vmin> Zmax> Zmin> ‘maxs ‘mins
Pmax> and pmin) may furthermore be functions of temperature
and other factors pertaining to the present battery-pack oper-
ating condition. Different cells may have different limits should
this be necessary for any reason. Here, we assume that discharge
current and power have positive sign and charge current and that
power have a negative sign. Other sign conventions may be used
and the method to be described may be adapted to these conven-
tions in a forthright manner.

For simplicity of description, the battery pack is assumed to
comprise ns cell modules connected in series, where each cell
module comprises n,, individual cells connected in parallel and
ng > 1, n, > 1. Other configurations are possible and are
accommodated by straightforward modifications to the way in
which the method is described.

II. PNGV HPPC METHOD

In this section, we will describe the PNGV HPPC method,
which considers operational design limits on voltage when esti-
mating available power, but does not consider design limits on
cell current, cell power, or cell SOC and only approximately ap-
plies a prediction horizon At to the estimate. The HPPC method
may be described by assuming that each cell in the battery pack
is modeled by the approximate relationship

vi(t) = OCV (2(t)) — R x ix(t), (1)

where OCV (z(t)) is the open-circuit-voltage of cell k at its
present SOC and R is a constant representing the cell’s internal
resistance. Different values of R may be used for charge and
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discharge currents, if desired, and are denoted as R°"& and R,
respectively.!

Since the design limits vpmin < vg(t) < Umax must be en-
forced, we may calculate the maximum discharge current as
constrained by voltage as

-dis,volt __ OCV(Zk(t)) — Umin )
max,k Rdis . 2

We may similarly calculate the maximum magnitude charge
current based on voltage. Note, however, that charge current is
assumed negative in sign by convention, so that the maximum-
magnitude current is a minimum in the signed sense, which is

-.chg,volt — OCV(Zk(t)) — Umax (3)

min,k Rchg

Pack power is then calculated as

chg _ -.chg,volt
Pl =nny m]?JX (Umaxlmin,k

dis  __ . dis,volt
Pl =nsny mk}n (Umiana;(,k ) .

The HPPC method is limited in several respects. First, as we
have noted, there are neither SOC, maximum current, nor max-
imum power design constraints involved in the computation.
More importantly, the cell model used is too primitive to give
precise results. Overly optimistic or pessimistic values could
be generated, either posing a safety or battery-health hazard or
being inefficient in battery use. A better cell model, combined
with a maximum-power algorithm that uses the cell model, can
give better power prediction. Here, we explore this idea and pro-
pose two improved methods. Method I will be developed in Sec-
tions IIT and I'V and method II will be developed in Sections III
and V.

III. RATE LiMITS BASED ON SOC

The first aspect of the new methods is the addition of SOC
limits to the power calculation and the explicit inclusion of a
time horizon At. (Limits based on cell power and current design
limits will be added later in a very straightforward way.) This
may be done as follows. First, for a constant current ¢, the SOC
recurrent relationship is

2e(t+ At) = 2z,(t) — (%M)Lk @)
where zi(t) is the present SOC for cell k, z; (¢t + At) is the
predicted SOC At s into the future, C' is the cell capacity in
ampere-seconds, and 7); is the Coulombic efficiency factor at
current level ¢;. Here, we assume that n; = 1 for discharge
currents and 7; = n < 1 for charge currents.
If we have design limits on SOC such that z,,;, < zg(t) <
Zmax for all cells in the pack, then we can compute current i,

IThe HPPC procedure implements a crude prediction horizon, as we will see,
by using values of R2& and R%* that have been modified somewhat from the
true Ohmic resistance of the cell in order to approximate the 18-s discharge and
the 2-s charge resistances. This approximation is not accurate over all states of
charge, however.
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such that these limits are not exceeded. Simple algebra gives
limits based on the SOC of each cell

.dis,soc __ Zk (t) — Zmin

Zma.x,k - At (5)
C

«chg,soc __ 2k (t) — Zmax 6

min,k nAt . ( )
C

The pack maximum currents—based only on cell SOC—then
are

-di . -dis,soc
Zdls,soc — min (Z s >
k

max max,k

~chg,soc
min

_ +chg,soc

= max (g ) -

This method assumes that we have a valid SOC estimate avail-
able for every cell in the pack. If this is not the case, then an
approximate remedy would be to calculate

dis,soc o, #() ~ Zmin_
max At )

C
2(t) — Zmax
nAt
C

-chg,soc _,
min

where z(t) is the pack SOC.

On the other hand, we might have more information available
than simply cell SOC. For example, if we use a Kalman filtering
method to estimate all cell SOCs in a pack, then we also have es-
timates of the uncertainty of the SOC estimate itself [2]-[7]. Let
the uncertainty have Gaussian distribution with standard devia-
tion, as estimated by the Kalman filter, denoted as o . Then, we
have 95.5% confidence that the true SOC is within the estimate
+20, and we have 99.7% confidence that the true SOC is within
the estimate +30,. We can incorporate this information into the
estimate of maximum current based on SOC to have very high
confidence that SOC design limits will not be violated. This is
done (assuming here that we desire to use a 30, confidence in-
terval) as

(Zk(t) - 302) — Zmin

.dis,soc __
max,k At
el
chg,soc __ (Zk (t) + 302) — Zmax
min,k - 7)A't :
c

IV. REVISED RATE LIMITS BASED ON VOLTAGE—METHOD I:
USING A SIMPLE CELL MODEL

The second aspect of the new methods corrects a limitation in
the HPPC method for applying voltage limits. If we assume the
cell model of (1) and that R°"® and R%S are the cell’s Ohmic
resistances, then (2) and (3) predict the instantaneously avail-
able current, not the constant value of current that is available
for the next At s. The result of this calculation, if applied to a
scenario in which At is large, poses a safety or battery-health
issue, as the cells may become over/under charged. For the time
being, retaining (1) for the cell model, the corrected prediction
is achieved by

vp(t + At) = OCV (24 (t + At)) — R x ix(t) (7
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which cannot be directly solved in closed form for the maximum
current iy, since zx(t + At) is itself a function of current [cf.
(4)] and OCV(+) is a nonlinear relationship.

In this paper, we propose two methods to solve (7) for the
maximum value of i(¢). The first uses a Taylor-series expan-
sion to linearize the equation, so that we may solve for an ap-
proximate value of i. We assume that OCV/(+) is differentiable
at point zj(t), which gives the result [8, Th.1]

OCV (z(t + At)) =0CV <Zk(t) _ z'k”iAt)

C
) i At
=OCV (z(t)) — ix ("C )
J0CV(z)
X —_—
Oz z=2z(t)

+ Ry <zk<t>7ik@>

where the first-order residual Ry (zx(t),
i(mA)/C)/|lze(®)|] — 0 as ix(n;At)/C — 0 in
R. Note that the change in SOC over At s is generally small,
SO we may approximate

At 00CV(2)

Uk(t + Af) ~ OCV(Zk(t)) — i

C 0z s ()
—R x i
which gives

I[;dis,volt _ OCV(Zk(t>) — Umin (8)
ek At 9OCVE) [ 4 pdis

C oz 21 (1)
,-ch_g,x];olt — OCV(Zk(t)) — Umax (9)
L nAt BOC—V(Z) Rchsg

c = | +

Both the function OCV(z) and its derivative 0OCV(z)/9z
might be computed from some known mathematical relation-
ship for OCV(2), (e.g., , Nernst’s equation) using either analytic
or numeric methods or by a table lookup of empirical data. This
quantity is positive for most battery electrochemistries over the
entire SOC range, so the values computed by (8) and (9) are
smaller in magnitude than those from (2) and (3) for the same
values of RS and R°"¢. The HPPC procedure compensates
for its inaccuracy by using modified values of R and R°P8,
determined experimentally, that approximate the denominator
terms in (8) and (9). We see that this cannot be accurate over the
entire SOC range, however, as 0OCV(z)/0z is not constant,
particularly near extreme values of z.

It is important to note that the denominator terms in (8) and
(9) depend on individual cell capacities and resistances, which
vary somewhat from cell to cell, even in high-volume produc-
tion. Additionally, these variations are likely to increase as the
cells age. The computations involved may be quite sensitive to
changes in the resistance term, but are relatively insensitive to
changes in the capacity term, as At is often on the order of
1/3600 (for sampling rates of around 1 Hz). Fortunately, it is
simple to maintain an adaptive estimate of each cell’s resistance

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 53, NO. 5, SEPTEMBER 2004

and capacity, which is the topic of other research [4], for use in
(8) and (9), if it proves necessary to do so. Sensitivity to SOC es-
timation error is relatively low since OCV (zy,) tends to be quite
flat except at extreme SOC values, where power is limited by
SOC in any case and the values computed by (8) and (9) are not
relevant.

Once all of the cell current limits have been calculated, the
pack discharge and charge currents with all limits enforced are
computed as

dls : -dis,soc -dis,volt
Ty = MmN (zmax, mkm o,k * mkm o,k (10)

min min,k min,k

1 h 1 1t
io°8 = max (zmm, maxi 2% maxi o’ ) (11D
k k

and power may be calculated using the sum of all cell powers.
These are equal to the product of the maximum allowed current
and the predicted future voltage.

Ns

2 : chg
nP mm

k=1

Pchg

min

k(t+ At)

chg ﬂLAt )

~n, Zlnign (ocv (zk(t) ~nin

— R JF) (12)
Pie =y Z iUk ( + A).
- At
dlS -dis
RNy Ymax ocv ( ( ) ~ tmax ~ )
k=1 < ¢
— RS x ;}m) (13)

Maximum and minimum cell power limits may also be imposed
in this calculation. Note that in all equations, OCV(z), C, vmax.,
Vrmins Zmaxs Zmins dmaxs fmin, B8, and RIS may be functions
of temperature and other factors pertaining to the present battery
pack operating conditions.

V. REVISED RATE LIMITS BASED ON VOLTAGE—METHOD II:
USING A COMPREHENSIVE CELL MODEL

The method for solving (7) presented in Section IV is appro-
priate when the battery-management-system computational ca-
pability is low. A second method may be used when this is not a
significant constraint. This second method assumes a more pre-
cise mathematical model of cell dynamics, which might be in
a discrete-time state—space form, such as the following coupled
pair of equations [9]:

wx[m + 1] = f(ax[m], u[m])

vi[m] = g(xr[m], ur[m])

(14)
15)

where m is the discrete time sample index, the vector function of
time x[m] is called the “state” of the system, uy[m] is the input
to the system, which includes cell current iz [m] as a component
and might also include temperature, resistance, capacity and so
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forth, and f(-) and g(-) are functions chosen to model the cell
dynamics. Alternate model forms, including continuous-time
state—space forms and differential or difference equations might
also be used. We assume that there is a method to compute SOC
given the model that is implemented.

For convenience of presentation, here we assume that the cell
model is in a discrete-time state—space form. Also assume that
At s may be represented in discrete time as 7" sample intervals.
Then, we can use this model to predict cell voltage At s into the
future by

vilm +T] = g(ex[m + T, urfm + T))

where x[m + T may be found by simulating (14) for T' time
samples. We assume that the input remains constant from time
index m to m + T, so if temperature change, for example, over
this interval is significant, it must be included as part of the
dynamics modeled by (14) and not as a part of the measured
input ug[m].

The method then uses a bisection search algorithm [10], to
be elaborated on in Section A, to find zii;:?clt die ‘kOIt by

looking for the 7; (as a member of the uy vector) that causes
equality in

VUmin :g(xk[m + T],’U,k[m + T])’ or

0 =g(zg[m + T, up[m + T]) — (16)

Umin

-dis,volt
max,k °

to find ¢ and by looking for the 7, that causes equality in

Vmax = g(zx[m + T|, ux[m + T]), or
0 =g(zr[m + T], ux[m + T]) —

Umax

a7

to find i chg volt

mln k

that is, when

. A special case is when the state (14) is linear;

xp[m + 1] = Azp[m] + Bug[m)

where A and B are constant matrices. The model presented in
Section VI is an example in which this is the case. Then, for
input u, constant over the entire prediction horizon (from time
m to m + 1), we have

T—1
= ATgp[m] + Z AT=1=IB | wy.
=0

xp[m + T

Most of these terms may be precomputed without knowledge of
uy, in order to speed calculation using the bisection algorithm.
Once the SOC-based current limits Ldlz Sokc and Lillgn sko ¢ are
computed using (5) and (6) and the voltage- _based current limits
;ﬁ;;",’c“ d ":ﬁlii’,‘/:m are computed using (16) and (17), overall
current limits may be computed using (10) and (11). Power is

then computed as

nS

m i
k=1

N s

=np Y i g(@i(m+T),uy)
k=1

chg
’min?

Pchg _

min

k(t + At)
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as its value for current and

with uy, containing me

PdlS

§ dlS
max ~— np tmaxV

Ns

k(t+ At)

=ny Y imegr(@r(m+T),uk)
k=1

sdis

e« as its value for current.

with uy containing ¢

A. Bisection Search

To solve (16) and (17), we require a method to solve for a
root of a nonlinear equation. Here, we use the bisection search
algorithm to do so. The bisection search algorithm looks for a
root of f(x) (i.e., a value of x such that f(z) = 0) where it is
known a priori that the root lies between values 1 < root <
T2. One way of knowing that a root lies in this interval is that
the sign of f(x1) is different from the sign of f(z2).

Each iteration of the bisection algorithm evaluates the func-
tion at the midpoint 2,;q9 = (21 + 2)/2. Based on the sign of
the evaluation, either x; or x5 is replaced by x,;q to retain dif-
ferent signs on f(z1) and f(z2). We see that the uncertainty in
the location of the root is halved by this algorithmic step. The
bisection algorithm repeats this iteration until the interval be-
tween z1 and x5 and, hence, the resolution of the root of f(z)
is as small as desired. If € is the desired root resolution, then the
algorithm will require at most [log, (|z2 — 21]/€)] iterations.
The bisection method is listed in Algorithm 1.

Algorithm 1 The bisection algorithm [10]
begin{bisection algorithm}
set x; = first search limit
set xo = second search limit
set e=desired resolution on current in bisection output
set JMAX = maximum number of bisection iterations

o (520

let func () be the function in which to find root
set the search interval dz = x9 — 21
if (func(x1) > 0){//constraint : func(x;) < 0
dx = —dx
T1 = T2
}//root is now between (x1,z; + dz)and func(z,) < 0
for j =1 to JMAX{
dx = 0.5 x dz
Tmid = 1 + dx
if (func(xmia) < 0){z1 = Zmia}
f (|dz| <e) {return (z;+ 0.5 x dz)}
}//we have bisected too many times, so return best guess
return (z1 + 0.5 X dz)
end{bisection algorithm}

B. Finding the Maximum/Minimum Current

To determine maximum discharge and charge current for any
particular cell, bisection is performed on (16) and (17). Bisec-
tion is incorporated in the overall algorithm as follows. First,
three simulations are performed to determine cell voltages At s
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into the future for cell current 2, = 0, 73, = 4 pin, and 2 = Tax.
If cell voltages are predicted to be between v,,i, and vy, .5 for the
maximum dis/charge rates, then these maximum rates may be
used. If the cell voltages, even during rest, are outside of bounds,
then set the maximum rates to zero. Otherwise, we know that
the true maximum rate may be found by bisecting between rate
equal to zero and its maximum value. Bisection is performed
between current limits (4min, 0) or (0, 4max)-

VI. EXAMPLE OF THE CELL MODEL

In order to examine and compare performance of the PNGV
HPPC method versus the two methods presented in this paper,
we must first define a discrete-time state—space model of the
form of (14) and (15) that applies to battery cells. Here, we
briefly review the “enhanced self-correcting cell model” from
[3] and [7]. This model includes effects due to open-circuit
voltage, internal resistance, voltage time constants, and hys-
teresis. As an example, we fit parameter values to this model
structure to model the dynamics of high-power lithium-ion
polymer battery (LiPB) cells, although the structure and
methods presented here are general.

The state of charge is captured by one state of the model. This
equation is

saln+ 1) = sl - (5T ) i

where AT represents the intersample period (in seconds) and C
represents the cell capacity (in ampere-seconds).

The time constants of the cell voltage response are captured
by several filter states. If we let there be ny time constants, then

felm + 1] = Ag fi[m] + Byir[m].

The matrix Ay € R™/*™/ may be a diagonal matrix with real-
valued entries. If so, the system is stable if all entries have mag-
nitude less than one. The vector By € R"/*! may simply be set
tony “1”s. The value of n¢ and the entries in the Ay matrix are
chosen as part of the system-identification procedure to best fit
the model parameters to measured cell data.

The hysteresis level is captured by a single state

)l

MD) sgn(ig[m])

hilm + 1] = exp <_ M

# (1o (-

where y is the hysteresis rate constant, again found by system
identification.
The overall model state is

arlm] = [ fulm] hilm]  zx[m]]

where the prime symbol () is the matrix/vector transpose oper-
ator. The state equation for the model is formed by combining
all of the individual equations above. Note that, at each time
step, the state equation is linear in the input

ur[m] = [ix[m] 1]

which speeds the prediction operation.
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Empirical determination of OCV as a function of SOC
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Fig. 1. Plot of open-circuit voltage as a function of the state of charge.

Empirical derivative of OCV versus SOC
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Fig. 2. Derivative of OCV as a function of SOC. The raw noisy version is
shown as gray and the filtered derivative is shown as black.

The output equation that combines the state values to predict
cell voltage is

vi[m] = OCV (zg[m]) + G fr[m] — Rig[m] + Mhy[m]

where G € RYX" is a vector of constants that blend the time-
constant states together in the output, R is the cell resistance
(different values may be used for dis/charge), and M is the max-
imum hysteresis level.

The open-circuit voltage as a function of the state of charge
for these cells is plotted in Fig. 1. This is an empirical relation-
ship found by cell testing. First, the cell was fully charged (con-
stant current to 4.2 V, constant voltage to 200 mA). Then, the
cell was discharged at the C/25 rate until fully discharged (3.0
V). The cell was then charged at the C/25 rate until the voltage
was 4.2 V. The low rates were used to minimize the dynamics
excited in the cells. The cell voltage as a function of state of
charge under discharge and under charge were averaged to com-
pute the OCV. This has the effect of eliminating, to the greatest
extent possible, the presence of hysteresis and ohmic resistance
in the final function. For the purpose of computations involving
OCY, the final curve was digitized at 200 points and stored in a
table. Linear interpolation is used to look up values in the table.

The partial derivative of OCV with respect to SOC is plotted
in Fig. 2. This relationship was computed by first taking finite
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Estimated and actual cell terminal voltage
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Fig. 3. Voltage prediction using the cell model. Gray is the true voltage and

black is the estimated voltage.

Estimated and actual cell terminal Voltage (zoom)
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Fig. 4. Zoom of voltage prediction for one UDDS cycle at around 50% SOC.
Gray is the true voltage and black is the estimated voltage.

differences between points in the OCV plot in Fig. 1 and di-
viding by the distance between points (i.e., Euler’s approxima-
tion to a derivative). The resulting data is too noisy to be of prac-
tical use, as shown in the gray line in Fig. 2. It was filtered using
a zero-phase low-pass filter, resulting in the black line in Fig. 2,
which may be used in the power calculation. This relationship
is also digitized at 200 points and linear interpolation into the
table of values is used when computations requiring this func-
tion are performed.

Other parameters are fit to the cell model. In particular, the
model employs four low-pass filter states (n; = 4), a nominal
capacity of 7.5 Ah, and an intersample interval of AT = 1s.
There is very close agreement between the cell model voltage
prediction and the cell true voltage. This is illustrated in Fig. 3.
For this figure, the cell test was a sequence of 16 UDDS cycles,
performed at room temperature, separated by discharge pulses
and 5-min rests, and spread over the 90%—-10% SOC range.
The difference between true cell terminal voltage and estimated
cell terminal voltage is very small [a root-mean-squared (rms)
voltage estimation error of less than 5 mV]. To better illustrate
the model’s fidelity, refer to the zoom on one UDDS cycle in
the 50% SOC region, shown in Fig. 4. The SOC as a function of
time is plotted in Fig. 5. We see that SOC increases by about 5%
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SOC trace versus time for cell test
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Fig. 5. SOC trace for cell test.

TABLE 1
PARAMETERS FOR POWER-CALCULATION EXAMPLES

Parameter Minimum Maximum
v (1) 3.0V 4.35V
ir(1) —200A 200A
i (1) 0.1 0.9
Pi(1) —00 00

during each UDDS cycle, but is brought down about 10% during
each discharge between cycles. The entire operating range for
these cells (10%-90% SOC, delineated on the figure as the re-
gion between the thin dashed lines) is excited during the cell
test.

VII. COMPARING MAXIMUM POWER CALCULATIONS

The PNGV HPPC power-estimation method gives a result
that is a function of only SOC. Therefore, it is possible to graph
available power versus SOC to summarize the algorithm calcu-
lations. The first method proposed in this paper is also possible
to display in this way. Estimated power is only a function of
SOC, 9OCV /9z (also a function of SOC), and static limits on
maximum current and power. The final method, however, de-
pends on all states of the system dynamically. Two systems at
the same state of charge, but with different voltage time-con-
stant state values or hysteresis state levels will have different
amounts of power available. To compare power computed by
the three methods, dynamic tests must be conducted.

For the following results, we assume a pack of LiPB cells with
ng = 40 and n,, = 1. The data to fit the models was collected
from prototype handmade cells jointly developed by LG Chem
(Daejeon, Korea) and Compact Power Inc. (Monument, CO).
Limits for the power calculations are listed in Table I. Each cell
has a nominal capacity of 7.5 Ah and At was 10 s for both charge
and discharge.

First, the PNGV HPPC method and Method I from this paper
are compared in Fig. 6. The black curves correspond tou charge
power and the gray curves correspond to discharge power. Note
that the absolute value of power is plotted to avoid confusion due
to sign conventions. First considering the calculations of charge
power, we see that the PNGV HPPC method produces similar
values to Method I in the mid-SOC range. The slight differences
are due to the fact that the 10-s R°"8 value used for the PNGV
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Maximum absolute power as a function of SOC
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Fig. 6. Comparing static maximum power calculations as functions of SOC
for the PNGV HPPC method and Method I of this paper.

method and the derivative-modified R°"® for Method I are not
identical. Outside the mid-SOC range, we see that Method I
ramps power down in the neighborhood of zy,,x to avoid over-
charging the cell, whereas the PNGV method has no such limit.
At very low SOCs, the PNGV method overpredicts how much
power is available since there are no current limits applied to
the calculation. The Method I estimate is automatically lower
due to the large derivative in the denominator of the calcula-
tion. This causes an anomaly near zero SOC, where the method
under-predicts the available charge power. However, since the
cell will not be operated in this range, this is not a concern.

Considering now the discharge power curves, we again see
that Method I imposes limits on discharge power to ensure that
the cell is not undercharged, whereas the PNGV method does
not. In the SOC range from about 15% to 35%, the two methods
predict similar powers. For SOC above about 35%, the power
predicted by Method I saturates, because the maximum dis-
charge current limit of 200 A has been reached. The PNGV
method does not consider this limit. At SOC around 99%, we
again see an anomaly in the Method I calculation where power
is underestimated due to the large derivative term. As before,
we are not concerned by this glitch, since the cell will not be
operated in this range.

The three methods described in this paper were used to esti-
mate power for the cell undergoing the dynamic UDDS cell test
whose voltage trace is shown in Fig. 3 and whose SOC trace
is shown in Fig. 5. The discharge power estimates are plotted
in Fig. 7 and the charge power estimates are plotted in Fig. 9.
Again, the absolute value of power is plotted.

In the discussion that follows, we consider the results of
Method II to be the “true” capability of the cell. We justify this
assumption by the fidelity of the cell model’s voltage estimates,
as supported by the data in Fig. 4. In Fig. 7, we see that the
three methods produce similar estimates. In particular, Methods
I and IT appear to be nearly identical when viewed at this scale.
At high SOCs, the PNGV HPPC method predicts higher power
than is actually available (by as much as 9.8%), and at low
SOCs the PNGV HPPC method underpredicts the available
power. Only the methods introduced in this paper include SOC
bounds, which explain why their predictions are so different
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Fig. 7. Discharge power capability estimates for cell cycle test comprising 16

UDDS cycles over an SOC range of 90%, down to 10%.
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Fig. 8. Discharge power capability estimates for cell cycle test comprising 16

UDDS cycles over an SOC range of 90% down to 10%.

from the PNGV HPPC estimates at low SOC. If the vehicle
controller were to discharge at the rates predicted by the PNGV
HPPC method, the cell would be overdischarged in some cases
(lowering its lifetime) and underutilized in other cases. Fig. 8
zooms in on Fig. 7 (the same region shown as in Fig. 4) to show
greater detail. In this region, the three methods produce nearly
identical predictions. A notable feature of Method II, however,
is that it takes into account the entire dynamics of the cell when
making a prediction. Therefore, the strong discharges at around
time 237 and 267 min draw the cell voltage down and allows
less discharge power than the other two methods, which only
consider SOC when making their estimate.

The three methods are also compared with respect to charge
power, shown in Fig. 9. At this scale, the estimates appear nearly
identical. Again, the PNGV HPPC method does not consider
SOC limits, so it overpredicts charge power at high SOCs. It
also overpredicts power at low SOCs, as it ignores the increase
to charge resistance at low SOC. A zoom of this plot is shown
in Fig. 10, which accentuates the differences between the pre-
dictions. Here, we see that the strong discharges at around time
237 and 267 min allow for greater charging power, as the voltage
will not quickly change.
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Fig. 9. Charging power capability estimates for cell cycle test comprising 16
UDDS cycles over an SOC range of 90% down to 10%.
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Fig. 10. Charging power capability estimates for cell cycle test comprising 16
UDDS cycles over an SOC range of 90% down to 10%.

VIII. CONCLUSION

In this paper, we have presented two new methods to predict
battery discharge and charge power that incorporate voltage,
state of charge, power and current design constraints; work for
a user-specified prediction horizon At; and are more robust and
precise than the PNGV HPPC method. The results indicate that
the two methods produce very similar results to each other. In
most circumstances, Method I is acceptable and requires min-
imal computation. The PNGV HPPC method might be adapted
to give results closely approximated by Method I if its resistance
values are tabulated as functions of SOC, but then it would have
no computational or storage advantage.
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If very precise estimates are desired, then Method II should be
used. It requires significantly more computation and a good cell
model. If a Kalman filter is being used to estimate SOC, then the
cell model will already be present and the state will be available
for use. Method II produces dynamic power estimates, is able to
take advantage of recent strong discharges to increase the tem-
porary available charge power, and is able to take advantage of
recent strong charges to increase temporary available discharge
power.
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