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Abstract

Battery management systems in hybrid-electric-vehicle battery packs must estimate values descriptive of the pack’s present operating
condition. These include: battery state-of-charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism
must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack.

In a series of three papers, we propose methods, based on extended Kalman filtering (EKF), that are able to accomplish these goals for
a lithium ion polymer battery pack. We expect that they will also work well on other battery chemistries. These papers cover the required
mathematical background, cell modeling and system identification requirements, and the final solution, together with results.

This third paper concludes the series by presenting five additional applications where either an EKF or results from EKF may be used in
typical BMS algorithms: initializing state estimates after the vehicle has been idle for some time; estimating state-of-charge with dynamic
error bounds on the estimate; estimating pack available dis/charge power; tracking changing pack parameters (including power fade and
capacity fade) as the pack ages, and therefore providing a quantitative estimate of state-of-health; and determining which cells must be
equalized. Results from pack tests are presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is the third in a series of three that describe ad-
vanced algorithms for a battery management system (BMS)
for hybrid-electric-vehicle (HEV) application. This BMS is
able to estimate battery state-of-charge (SOC), power fade,
capacity fade and instantaneous available power, and is able
to adapt to changing cell characteristics over time as the cells
in the battery pack age. The algorithms have been imple-
mented on a lithium-ion polymer battery (LiPB) pack, but
we expect them to work well for other battery chemistries.
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The method we use to estimate these quantities is based on
Kalman filter theory. Kalman filters are an intelligent—and
sometimes optimal—means for estimating thestate of a
dynamic system. By employing a mathematical model of
our battery system that includes the unknown quantities in
the model state, we may use the Kalman filter to estimate
them. An additional benefit of the Kalman filter is that it
automatically provides dynamic error bounds on these esti-
mates. We exploit this fact to give aggressive performance
from our battery pack, without fear of causing damage.

We focus on the HEV application, although we believe
that the results should generalize to other less strenuous
battery uses. To summarize, important aspects of state and
parameter estimation required in an HEV application are:

• The estimates must be accurate for all operating con-
ditions. These include: very high rates (many papers
consider rates up to about±3C for portable electronic ap-
plications; we need to consider rates up to and exceeding
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±20C), temperature variation in the automotive range
−30 to 50◦C, very dynamic rate profiles (unlike the more
benign portable electronic and battery electric vehicle
application). Charging (by the engine providing extra
power, or by regenerative braking) must be accounted for.

• We require noninvasive methods using only readily avail-
able signals. This requirement is imposed by the HEV
environment where the BMS has no direct control over
current and voltage experienced by the battery pack—this
is in the domain of the vehicle controller and inverter.
This requirement implies that we must rely on such mea-
surements as instantaneous cell terminal voltage, cell
current and cell external temperature.

• Our cell chemistry also limits the range of approaches
we might consider. Techniques specific to lead-acid
chemistries, for example, are not appropriate for LiPB
cells.

Methods based on extended Kalman filtering meet these
needs very well.

The first paper in the series introduces the problem[1]. It
describes the HEV environment and the requirements spec-
ifications for a BMS. The remainder of the paper is a quick
review of the Kalman filter theory necessary to grasp the
content of the remaining papers; additionally, a nonlinear
extension called the “extended Kalman filter” (EKF) is dis-
cussed.

The second paper describes some mathematical cell mod-
els that may be used with this method[2]. It also gives an
overview of other modeling methods in the literature and
shows how an EKF may be used to adaptively identify un-
known parameters in a cell model, in real time, given cell
voltage, current, and temperature measurements.

This third paper outlines the primary applications of EKF
to the estimation requirements for battery management.
Namely, how one can estimate SOC, available power, and
characteristics of aging cells. In particular, we might wish to
estimatepower fade andcapacity fade to somehow quantify
cell state-of-health (SOH). Power fade refers to the phe-
nomenon of increasing cell electrical resistance as the cell
ages. This increasing resistance causes the power that can
be sourced/sunk by the cell to drop. Capacity fade refers to
the phenomenon of decreasing cell total capacity as the cell
ages. The literature reports various different approaches to
estimating SOH (primarily capacity fade). These include:

• The discharge test, which completely discharges a fully
charged cell in order to determine its total capacity[3].
This test interrupts system function and wastes battery
energy, so is not applicable to the HEV BMS environment.

• Chemistry-dependent methods, such as measuring the
level of plate corrosion, electrolyte density or “coup de
fouet” for lead-acid batteries[4–7]. The methods pre-
sented here are general.

• Ohmic tests, such as resistance, conductance or impedance
tests, perhaps combined with fuzzy-logic algorithms
[6,8–22]. These methods require making measurements

we cannot make for our application, as we may not inject
signals into the battery pack.

• Partial discharge, or other methods that compare
cell-under-test to a good cell or model of a good cell
[3,23–26]. Extended Kalman filtering is a rigorous ap-
proach using this idea.

These methods are also limited by their specificity. For ex-
ample, cell resistance and capacity are only two of a number
of time-varying cell parameters we might wish to estimate.
In this paper we will show that EKF may be used to estimate
all cell parameters.

This paper proceeds to describe applications of EKF to
BMS. First, EKF for SOC estimation is presented, secondly,
dynamic maximum power estimation relying on the EKF
state estimate is outlined. Thirdly, dual EKF for state and
parameter estimation is introduced. Finally, an equalization
calculation using dual EKF derived parameters and state es-
timates is derived. In all sections, relevant results are pre-
sented.

2. Applications I and II: initialization and SOC
estimation

The principal focus of this paper is to present applications
of the EKF algorithm (explained in[1] and summarized in
Table 1for clarity), combined with cell models (identified
in [2] and summarized inTable 2), to battery management
system functions. The first application we explore is that of
estimating cell SOC in a dynamic environment.

As we have seen, EKF is a method for system state estima-
tion in real time. In our application, the algorithm compares
measured cell terminal voltage, under load, with the value
predicted by a cell model. The difference between these

Table 1
Summary of the nonlinear extended Kalman filter from[27]

Nonlinear state-space modela

xk+1 = f(xk, uk)+ wk

yk = g(xk, uk)+ vk

Definitions

Ak−1 = ∂f(xk−1, uk−1)

∂xk−1

∣∣∣∣
xk−1=x̂+

k−1

, Ck = ∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂−

k

Initialization
For k = 0, set
x̂+

0 = E[x0]
Σ+
x̃,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T]

Computation
For k = 1,2, . . . compute

State estimate time update:x̂−
k = f(x̂+

k−1, uk−1)

Error covariance time update:Σ−
x̃,k

= Ak−1Σ
+
x̃,k−1A

T
k−1 +Σw

Kalman gain matrix:Lk = Σ−
x̃,k
CT
k [CkΣ

−
x̃,k
CT
k +Σv]−1

State estimate measurement update:x̂+
k = x̂−

k + Lk [yk − g(x̂−
k , uk)]

Error covariance measurement update:Σ+
x̃,k

= (I − LkCk)Σx̃,k

awk andvk are independent, zero-mean, Gaussian noise processes of
covariance matricesΣw andΣv, respectively.
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Table 2
Summary of cell models from[2]

Combined model: note thatK0 throughK4 are constants to fit the model

zk+1 = zk −
(
ηi�t

C

)
ik

yk = K0 − Rik − K1

zk
−K2zk +K3 ln(zk)+K4 ln(1 − zk)

Simple model: note that OCV(·) is open-circuit-voltage

zk+1 = zk −
(
ηi�t

C

)
ik

yk = OCV(zk)− Rik

Zero-state hysteresis model: note thatM(·) is maximum hysteresis

zk+1 = zk −
(
ηi�t

C

)
ik

yk = OCV(zk)− skM(zk)− Rik

Single-state hysteresis model: note thatF(ik) = exp

(
−

∣∣∣∣ηiikγ�tC

∣∣∣∣
)

, γ is hysteresis rate constant,M(·, ·) is maximum hysteresis

[
hk+1

zk+1

]
=

[
F(ik) 0

0 1

] [
hk

zk

]
+


 0 (1 − F(ik))

−ηi�t

C
0


 [

ik

M(z, ż)

]

yk = OCV(zk)− Rik + hk

Enhanced self-correcting (ESC) model:α are filter-pole locations

fk+1

hk+1

zk+1


 =




diag(α) 0 0

0 F(ik) 0

0 0 1






fk

hk

zk


 +




1 0

0 (1 − F(ik))

−ηi�t

C
0




[
ik

M(z, ż)

]

yk = OCV(zk)− Rik + hk + Gfk

zk is SOC,ηi the Coulombic efficiency,ik the current,yk the predicted cell voltage,�t the sampling interval,C the nominal capacity,R the cell resistance.

quantities is used to adapt the state of the cell model so that
the model output more closely matches the measured cell
voltage, and the model state more closely matches the real
quantities it estimates. By enforcing that SOC be a member
of the model state, as is the case with all model structures in
Table 2, we directly estimateboth SOC and the uncertainty
(error bounds) of the estimate. Note that since we use EKF
versus KF, we are able to use precise nonlinear cell models
in our SOC estimator, improving the SOC estimation accu-
racy.

Before presenting some results, we first discuss how the
algorithm’s state and uncertainties might be initialized when
the vehicle is started. That is, how we might propagateẑk
andΣz̃,k across the interval between key-off and key-on. For
this, we employ the SOC estimate andΣz̃ values saved when
the vehicle was previously turned off, the period of time the
vehicle was off, and a very simple cell self-discharge model.
Our empirical data indicates that SOC decays approximately
exponentially due to self-discharge, allowing us to create
a continuous-time state-space model for self-discharge. Let
z(t) be the state-of-charge as a function of self-discharge
time. Then

z(t) = −φz(t)+ w(t)

y(t) = OCV(z(t))+ v(t),

whereφ is the rate of SOC decay,w is small andv depends
on the period since key-off. We can form a discrete-time

version of this model. Lettoff be the period that the vehicle
is off. Then,

zk+1 = e−φtoff zk + wk

yk = OCV(zk)+ vk.

Applying the EKF to this system estimates SOC andΣz̃.
Filter states are initialized to zero withΣ

f̃
initialized to small

values. The hysteresis state and covariance are unchanged
by power-down.

In order to demonstrate the performance of EKF in esti-
mating SOC with the various cell models, we need to first
discuss some cell tests. Data was gathered from a proto-
type hand-made LiPB cell comprising a LiMn2O4 cathode,
an artificial graphite anode, and designed for high-power
applications, having a nominal capacity of 7.5 Ah and a
nominal voltage of 3.8 V. For the tests, we used a Tenney
thermal chamber set at 25◦C and an Arbin BT2000 cell
cycler. Each channel of the Arbin was capable of 20 A cur-
rent, and 10 channels were connected in parallel to achieve
currents of up to 200 A. The cycler’s voltage measurement
accuracy was±5 mV and its current measurement accuracy
was±200 mA. Two different cell tests were performed:

• Pulsed-current test: The first test comprised a sequence
of discharge pulses and rests followed by a sequence of
charge pulses and rests. This test was designed to ex-
plore the cell response to very high and very low currents
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Fig. 1. Plots showing SOC versus time and rate versus time for pulsed-current cell tests. Discharge portion of test is shown in (a); charge portion of test
is shown in (b). Dark line is SOC, gray line is current.

where dynamics were minimally excited. The cell was
initially fully charged. Discharge current pulses from
150 A down to 1 A were used. Charge pulses from 150 A
down to 1 A were used. The current and SOC profiles for
this test are shown in Fig. 1(a) and (b). Frame (a) shows
the discharge portion of the test and frame (b) shows the
charge portion of the test. Data points (including volt-
age, current, ampere-hours discharged and ampere-hours
charged) were collected once per second.

• UDDS dynamic test: The second test was a sequence of
fifteen “urban dynamometer driving schedule” (UDDS)
cycles, separated by 40 A discharge pulses and 5-min
rests, and spread over the 90–10% SOC range. This test
was designed to excite all cell dynamics in a fashion
similar to what would be experienced in an HEV battery
pack. The rate profile was generated from a Matlab AD-
VISOR [28] simulation for a vehicle roughly twice the
size of the Honda Insight, and is shown in Fig. 2(a) for
one UDDS cycle. Fig. 2(b) shows the SOC trace for the
entire test. We see that SOC increases by about 5% dur-
ing each UDDS cycle, but is brought down about 10% by
the 40 A discharge between cycles. The entire operating
range for these cells (10% SOC to 90% SOC) is excited
during the cell test. Data points were collected once per
second for this test as well.
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Fig. 2. Plots showing SOC versus time and rate versus time for UDDS cell tests. Rate for one UDDS cycle is shown in (a); SOC for the entire test is
shown in (b).

In all cases, “ true” SOC was calculated from the Arbin data
log using Coulomb counting on measured data. Note that
the “ true” SOC is only approximately accurate since cur-
rent sensor error accumulated over time causes any estimate
computed using Coulomb counting to eventually diverge.

Results using the EKF to estimate SOC for the
pulsed-current test—using the six cell models—are shown
in Figs. 3–5. Results for the UDDS tests are shown in
Fig. 6. Rather than plotting both “ true” and estimated SOC
for purpose of evaluating the effectiveness of the EKF,
we instead plot estimation error calculated as “ true” value
minus estimated value. This amplifies the detail that can
be seen in the plots. Also shown are the three-sigma error
bounds (the confidence region of the estimate) using EKF.
In all plots, the thick black line is the estimation error,
and the thin gray lines delineate the confidence region of
the estimate. Ideally, the estimation error is zero and the
confidence region always includes the value zero.

We first discuss the results of the pulsed-current tests.
Fig. 3 shows the results of EKF SOC estimation for all mod-
els with only SOC as a state, when the SOC state was cor-
rectly initialized to 100%. Results for the combined model
are shown in frames (a) and (d); results for the simple model
are shown in frames (b) and (e); and results for the zero-state
hysteresis model are shown in frames (c) and (f). The left
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Fig. 3. Results of SOC estimation using models with only SOC as a state for the pulsed-current cell tests. Discharge portion of test is shown in (a)–(c);
charge portion of test is shown in (d)–(f). The dark line is the true cell SOC minus the estimated SOC, and the thin gray lines demarcate the error
bounds on the estimate.

column shows results for the discharge portion of the test,
and the right column shows results for the charge portion
of the test. Since the EKF was correctly initialized in all
cases, the estimation error starts at zero. For both the com-
bined and simple models, the error slowly diverges away
from zero for much of the discharge segment; the zero-state
hysteresis model does a better job. As the discharge por-
tion of the test concludes, the estimation error of all three
models drops to about 1% or better. One reason for the di-
vergence of the SOC estimate for the simpler models is that
the OCV curve for these cells is extremely flat over much of
the SOC range. Voltage measurement error of ±5 mV can
account for as much as 6.5% SOC error if used alone, and

is worst around the level of SOC = 60%. The simpler mod-
els do not sufficiently account for the dynamics of the cell,
and rely most heavily on OCV. In these cells, as SOC ap-
proaches zero, the OCV curve drops precipitously to 3.0 V,
so is a much more accurate estimator of SOC. The effect of
this in the EKF SOC estimators is that the estimation error
improves considerably toward the end of the discharge. (All
models using OCV as part of the output equation converge
to an error of about 1%, which indicates that the empirical
OCV versus SOC relationship used by the models may be
slightly incorrect.)

The discharge portion of the pulsed-current test that is
shown in the figures draws the cell’s true SOC down to about
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Fig. 4. Results of SOC estimation using models with multiple states for the pulsed-current cell tests. Discharge portion of test is shown in (a)–(c); charge
portion of test is shown in (d)–(f). The black line is the true cell SOC minus the estimated cell SOC, and the thin gray lines demarcate the error bounds
on the estimate.

1%. Not shown is a subsequent long slow discharge down to
0%. The charge portion of the pulsed-current test immedi-
ately follows this long discharge. In the EKF validation tests,
the discharge portion(s) and charge portion are not consid-
ered separately, but as a unit; that is, the EKF is initialized be-
fore the discharge, and then run for the entire 160+ minutes
without re-initialization between the discharge and charge
portions. This explains why the SOC estimation error is not
initially zero in all of the charge portions of the test. The
combined model starts with the worst estimation error as
it does not use true OCV versus SOC in its output equa-
tion, but only an approximation. This approximation is worst

around 0%. Again, estimation error for the simpler models
diverges over a large portion of the test, only converging to-
ward zero as SOC approaches 100% where the OCV versus
SOC curve is no longer flat. The zero-state hysteresis model
is somewhat better than the other two models in this respect.

In all of the tests discussed so far, the confidence interval
of the estimation error is also poor. The EKF “ thinks” that
its estimate is much better than it actually is. This is not the
fault of the EKF method itself, but rather of the cell model
being used. If the cell model were accurate, the error bounds
would also be accurate. The inaccuracy of the simpler cell
models leads to over-confidence in the estimate.
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Fig. 5. Results of SOC estimation where the initial estimator state was set to 80% while the true initial state was 100%. The dark line is the true cell
SOC minus the estimated SOC, and the thin gray lines demarcate the error bounds on the estimate.

Fig. 4 shows the results of EKF SOC estimation for mod-
els with multiple states, when the SOC state was correctly
initialized to 100% (filter and hysteresis states were initial-
ized to zero). Results for the single-state hysteresis model
are shown in frames (a) and (d); results for the ESC model
using two filter states are shown in frames (b) and (e); and
results for the ESC model using four filter states are shown in
frames (c) and (f). In all cases, estimation error is much im-
proved over the models with only SOC as a state. We again
see that error converges to about 1% at the end of discharge,
most likely due to an imprecise OCV versus SOC relation-
ship. We also see that the EKF confidence region much more
accurately describes the true confidence of the estimate.

From these figures alone, it would be difficult to defini-
tively determine the “best” model to be used in a BMS. We
now present some additional results that help with the deci-
sion, based on considerations of robustness. In practice, the
Kalman filter would be initialized with a priori state esti-
mates when the vehicle is turned on (based on OCV readings
and a look-up table, plus self-discharge rate data from the
cell model and the prior SOC when the vehicle was turned
off). In the results we have seen, the EKFs were initialized
using the correct SOC of 100%. Correct initialization is not
guaranteed in practice, especially if the SOC is in the neigh-
borhood of 50% (around the flat portion of the OCV versus
SOC curve), and if the cells have not relaxed from recent ac-
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Fig. 6. Results of SOC estimation on UDDS data. In (a) the initial estimator state was correctly set to 100%; in (b) the initial estimator state was set to
80% while the true initial SOC was 100%. Dark line is SOC estimation error, gray lines demarcate the error bounds on the estimate.

tivity (For example, the automobile might have been turned
off for only a few minutes while the driver filled the gas tank
or purchased a cup of coffee.) Fig. 5 show examples of EKF
SOC estimation for the pulsed-current data set (discharge
portion only for purpose of brevity) where the filter SOC
state was incorrectly initialized to 80% instead of 100%. All
of the models eventually converge to very low estimation er-
ror, which shows that the EKF method is much more robust
than others (Coulomb counting, for example, would never
recover if incorrectly initialized). Eventual convergence is
no great surprise with the EKF, however, as the cell volt-
age approaching 3.0 V will force the SOC estimate toward
0%. The best convergence results are seen with the higher
fidelity cell models. The ESC model, in particular, shows
fastest convergence, within only a few minutes, with most
accurate error bounds. While an initialization error of 20%
is an extreme condition, not expected in practice, the EKF
is able to recover; this robustness is a very positive feature.

Not to belabor the discussion any further, we briefly report
some results using EKF SOC estimation for the UDDS tests,
shown in Fig. 6. Again, the ESC model performed best, so
we only report results for that model, using four filter states.
Frame (a) shows estimation error for correct initialization
to 100% SOC, and frame (b) shows error when the EKF
SOC state was incorrectly initialized to 80%. Estimation
error is small, the confidence interval is reasonable, and
convergence within a few minutes is observed even when
poorly initialized.

Before we conclude our discussion of SOC estimation, it
is necessary to emphasize that this method may be used to
estimate the SOC of a cell. Multiple extended Kalman filters
must be employed to estimate the states-of-charge of cells in
a battery pack comprising a series string of cells; that is, the
EKF does not directly estimate the SOC of a battery pack.
In fact, the problem of finding pack SOC is ill-posed. If one
cell has SOC equal to 0% and another has SOC equal to
100%, is the pack SOC equal to 50%? This would indicate
that half of the rated pack capacity is available for charge
or discharge, when in fact no charging or discharging may
be done without taking one of these two cells outside of

their design limits. If all cell SOCs are relatively similar,
then “pack SOC” computed as an average or median value
of cell SOCs might be somewhat useful to an HEV or BEV
operator as a crude “gas gauge” , but is not appropriate for
computing available power, for example. We now present a
better way to do so.

3. Application III: computing available power

State estimates and their uncertainties may be used to
very accurately estimate how much power is available to be
sourced or sunk by a battery pack while the pack is in a
dynamic environment. This is described in some detail in
[29], and summarized here.

The “Hybrid Pulse Power Characterization” (HPPC)
method specified by the “Partnership for New Generation
Vehicles” (PNGV) [30] is commonly used to calculate the
available power from a cell during cell testing. Maximum
current is computed using a simple cell model, enforcing
that the cell’s terminal voltage remains within limits, and
power is computed by multiplying cell current by cell volt-
age. SOC is an input to this procedure, as are modified
dis/charge resistances, found by cell tests.2 Pack power is
calculated by multiplying cell power by the number of cells
in the pack.

By using an advanced cell model, such as the enhanced
self-correcting cell model, together with the cell’s present
state vector estimated by EKF, we can achieve more accurate
power estimates that depend on the cells’ dynamic status.
The battery pack cell models are simulated for �t seconds
into the future, using present states as identified by the EKF
as the starting point, for some level of current ik. A bisection
search is used to find the maximum values of ik for charge
and discharge that do not cause any cell voltages or SOC

2 The PNGV HPPC method uses modified resistances that model the
relative voltage change for a 18-s prediction horizon on discharge or a
2-s prediction horizon on charge. The method presented here works for
any horizon �t.
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Fig. 7. Results of power estimation on pulsed-current data. Frame (a) shows the power estimates for the discharge portion of the test; Frame (b) shows
the estimates for the charge portion of the tests.

values to violate design limits. Power is computed as the
minimum of the maximum cell current limits, multiplied by
cell voltage �t seconds into the future.

Because this method uses all state information, more
charging power is allowed immediately after a discharge
event than after the cell has rested for some time, as the
voltages will take more time to exceed design limits for the
same current level. Similarly, immediately after a charge
event, more discharge power will be available than after the
cell has rested some time. Maximum power results for the
pulsed-current test are shown in Fig. 7(a) for discharge and
(b) for charge. (We assume a pack of 40 series-connected
cells. Note that it is not our purpose here to comment on the
absolute capability of these cells as compared to other cells,
but rather on the merits of two power-calculation methods.
The optimization of cell electrochemistry is the topic of
other research.)

Over the discharge portion of the pulsed-current test we
see fair agreement between the EKF-based power calcula-
tions and the HPPC estimate. The EKF method imposes
the constraint that SOC is not allowed outside the range
10–90%, which explains why the permitted charge power
is initially zero, until the cell SOC drops to below 90%,
and why the discharge power drops to zero after about
60 min, when the cell SOC falls below 10%. Over the in-
termediate SOC range the results are “close” , although we
believe that the HPPC results are less accurate than the
EKF results as the simple resistance model of a cell em-
ployed by HPPC is not very accurate. In particular, note
that the EKF correctly allows greater charge power and
lower discharge power during discharge pulses, converging
to some constant value during rest periods as the cell re-
laxes. The HPPC method—which has no information regard-
ing voltage-relaxation states—predicts a constant value for
dis/charge power during rest periods, which may be overly
optimistic or pessimistic, depending on recent cell history.

Over the charge portion of the pulsed-current test, shown
in frame (b), we see less agreement between the two meth-
ods. The HPPC method does not take into account any

model of hysteresis. In fact, during charge, the at-rest ter-
minal voltage is always higher than during discharge at the
same SOC level, so greater discharge power and less charge
power should be available. The EKF method takes into ac-
count cell voltage hysteresis, and is able to more accurately
predict cell available power.

4. Application IV: dual state and cell parameter
estimation

Not all cells are created equal. Most of the research re-
ported here has been conducted using prototype high-power
LiPB cells, constructed by hand. In these cells, there is a
great deal of variability in resistance, capacity, time con-
stants, and so forth. Even in mass-produced cells, however,
there is some cell-to-cell variation, which only increases as
the cells age, both in accumulated cycles and in calendar life.

Some of the critical parameters, such as cell resistance
and capacity, directly limit the pack performance through
“power fade” and “capacity fade” . The state-of-health (SOH)
of a battery is often described using these values. It is im-
portant to be able to estimate these and other parameters to
understand the present battery state-of-health, and to predict
remaining service life.

Keeping in mind the previous discussion on estimating
SOC, it is apparent that the quantities descriptive of the
present battery pack condition exist on two time scales.
Some change rapidly, such as SOC, which can traverse its
entire range within minutes. Others may change very slowly,
such as pack cell capacity, which might change as little as
20% in a decade or more of regular use. The quantities that
tend to change quickly comprise the state of the system,
and the quantities that tend to change slowly comprise the
time-varying parameters of the system.

The method used to estimate SOC might be adapted
to concurrently estimate both the state and the slowly
time-varying cell parameters by augmenting the cell-model
state vector with the model parameters and simultaneously
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estimating the values of this augmented state vector. This
method is called joint estimation. It has the disadvantage
of large matrix operations due to the high dimensionality
of the resulting augmented model. The method we describe
here, dual estimation, also uses a Kalman filtering approach
to estimate both state and parameter values, but uses sep-
arate Kalman filters for state estimation and parameter
estimation. The matrix operations are simpler.

We slightly revise the mathematical model of cell dynam-
ics to explicitly include the parameters

xk+1 = f(xk, uk, θk)+ wk

yk = g(xk, uk, θk)+ vk,

where xk is the cell-model state, θk the set of time-varying
model parameters, uk the exogenous input, yk the system
output, and wk and vk are “noise inputs” ; all quantities may
be scalars or vectors. f(·, ·, ·) and g(·, ·, ·) are functions de-
fined by the cell model being used. Non-time-varying nu-
meric values required by the model may be embedded within
f(·, ·, ·) and g(·, ·, ·), and are not included in θk.

To use the enhanced self-correcting cell model as an ex-
ample, the possibly time-varying parameters comprise the
following: the Coulombic efficiency η, the total capacity
C, the filter poles α1, . . . , αnf , the filter weighting factors
g1, . . . , gnf−1, the cell discharge and charge resistances R+

and R−, the hysteresis rate constant γ , and the maximum
level of hysteresis M. Combined, they are

θ = [η,C, α1, . . . , αnf , g1, . . . , gnf−1, R
+, R−, γ,M]′.

We assume that there is a true value for θ that describes the
cell under consideration, and wish to adapt an estimate θ̂ to
converge to the true value. To do so using EKF we require a
state-space model for the “dynamics” of the true parameters

θk+1 = θk + rk

dk = g(xk, uk, θk)+ ek.

The first equation states that the parameters are essentially
constant, but that they may change slowly over time by some
driving process, modeled by a process rk of small fictitious
“noise” . The output equation for the state-space model of
true parameter dynamics is the cell output estimate plus
some estimation error ek.

With these two systems defined, we can apply the stan-
dard procedure of dual extended Kalman filtering [31]. The
algorithm is outlined in Table 3 and comprises two carefully
integrated EKFs. The algorithm is initialized by setting θ̂ to
the best guess of the true parameters θ̂+

0 = E[θ0], and by
setting x̂+

0 to the best guess of the cell state x̂+
0 = E[x0]. The

estimation error covariance matrices are also initialized.
Each measurement interval, several steps are performed.

First, the previous parameter estimate is propagated forward
in time. The new parameter estimate is equal to the old
parameter estimate, and the parameter error uncertainty is
increased due to the passage of time (as accommodated for

Table 3
Summary of the dual extended Kalman filter for state and parameter
estimation [27]

Nonlinear state-space modelsa

xk+1 = f(xk, uk, θk)+ wk , θk+1 = θk + rk
and

yk = g(xk, uk, θk)+ vk dk = g(xk, uk, θk)+ ek

Definitions

Ak−1 = ∂f(xk−1, uk−1, θ̂
−
k )

∂xk−1

∣∣∣∣∣
xk−1=x̂+

k−1

, Cx
k = ∂g(xk, uk, θ̂

−
k )

∂xk

∣∣∣∣∣
xk=x̂−

k

,

Cθ
k = dg(x̂−

k , uk, θ)

dθ

∣∣∣∣∣
θ=θ̂−

k

Initialization
For k = 0, set
θ̂+

0 = E[x0], Σ+
θ̃,0

= E[(θ0 − θ̂+
0 )(θ0 − θ̂+

0 )
T]

x̂+
0 = E[x0], Σ+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )
T]

Computation
For k = 1, 2, . . . compute

Time update for the weight filter
θ̂−
k = θ̂+

k−1
Σ−
θ̃,k

= Σ+
θ̃,k−1

+Σr

Time update for the state filter
x̂−
k = f(x̂+

k−1, uk−1, θ̂
−
k )

Σ−
x̃,k

= Ak−1Σ
+
x̃,k−1A

T
k−1 +Σw

Measurement update for the state filter
Lx
k = Σ−

x̃,k
(Cx

k )
T[Cx

kΣ
−
x̃,k
(Cx

k )
T +Σv]−1

x̂+
k = x̂−

k + Lx
k[yk − g(x̂−

k , uk, θ̂
−
k )]

Σ+
x̃,k

= (I − Lx
kC

x
k)Σ

−
x̃,k

Measurement update for the weight filter
Lθ
k = Σ−

θ̃,k
(Cθ

k)
T[Cθ

kΣ
−
θ̃,k
(Cθ

k)
T +Σe]−1

θ̂+
k = θ̂−

k + Lθ
k[yk − g(x̂−

k , uk, θ̂
−
k )]

Σ+
θ̃,k

= (I − Lθ
kC

θ
k)Σ

−
θ̃,k

a wk, vk, rk and ek are independent, zero-mean, Gaussian noise pro-
cesses of covariance matrices Σw,Σv,Σr and Σe, respectively.

in the model by the fictitious driving noise ek). Next, the
state estimate and its uncertainty are propagated forward
one step in time. A measurement of the cell output is made,
compared with the predicted output based on x̂−

k and θ̂−
k ,

and used to update the values of x̂ and θ̂.
A subtle point relates to the computation of Cθ

k , which
requires a total-differential expansion to be correct

Cθ
k = dg(x̂−

k , uk, θ)

dθ

∣∣∣∣∣
θ=θ̂−

k

dg(x̂−
k , uk, θ)

dθ
= ∂g(x̂−

k , uk, θ)

∂θ
+ ∂g(x̂−

k , uk, θ)

∂x̂−
k

dx̂−
k

dθ

dx̂−
k

dθ
= ∂f(x̂+

k−1, uk−1, θ)

∂θ

+∂f(x̂+
k−1, uk−1, θ)

∂x̂+
k−1

dx̂+
k−1

dθ
,

dx̂+
k−1

dθ
= dx̂−

k−1

dθ
− Lxk−1

dg(x̂−
k−1, uk−1, θ)

dθ
,
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Fig. 8. Diagram of dual estimation method. Solid lines represent state
and parameter vector signal flow, and dashed gray lines represent error
covariance matrix signal flow.

assuming that Lxk−1 is not a function of θ. (Its is, weakly, so
that it is not usually worth the extra computation to include
the effects of Lxk−1 as a function of θ.) The three total deriva-
tives are computed recursively, initialized on key-on with
zero values. The partial derivatives are computed each time
step, given knowledge of the specific f(·, ·, ·) and g(·, ·, ·)
from the cell model being used.

The dual extended Kalman filter can be viewed by draw-
ing a block diagram as in Fig. 8. We see that the process
essentially comprises two extended Kalman filters run-
ning in parallel—one adapting the state and one adapting
parameters—with some information exchange between the
filters.

4.1. Ensuring correct convergence

The dual extended Kalman filter will adapt x̂ and θ̂ so
that the model input–output relationship matches the cell
input–output data as closely as possible. There is no built-in
guarantee that the state of the model converges to anything
with physical meaning. Here, we are concerned that the state
converge to a very specific meaning. That is, assuming the
enhanced self-correcting cell model, we require some state
values to be filter voltages, one to be hysteresis level, and one
to be SOC. We take special steps to ensure that this occurs.

First, a very crude cell model may be used, combined
with the dual EKF to ensure convergence of the SOC state.
Specifically, the cell terminal voltage

vk ≈ OCV(zk)− Rik

OCV(zk) ≈ vk + Rik

ẑk = OCV−1(vk + Rik).

By measuring the cell voltage under load, vk, the cell current
ik, and having knowledge of R (perhaps through θ̂ from the
dual EKF), and knowing the inverse OCV function for the
cell chemistry, one can compute a noisy estimate of SOC, ẑk.

The cell model being used for dual EKF has its output
equation augmented with SOC. For example,

g(xk, uk, θ) =
[

OCV(zk)− Rik + Mhk + Gfk
zk

]
.

The dual EKF is run using this modified model with the
“measured” information used in the measurement update
being

yk =
[
vk

ẑk

]
.

While the “noise” of ẑk (short-term bias due to hysteresis
effects and polarization filter voltages being ignored) pro-
hibit it from being used as the primary estimator of SOC,
its expected long-term behavior in a dynamic environment
is accurate, and maintains the accuracy of the SOC state in
the dual EKF.

Convergence of the hysteresis state and voltage polariza-
tion states to the true values may be indirectly ensured if
the cell model has been carefully crafted. For example, con-
sider the output equation of the enhanced self-correcting cell
model:

g(xk, uk) = OCV(zk)︸ ︷︷ ︸
fn(zk)

+ hk︸︷︷︸
fn(zk,ik)

+ filt(ik)− Rik︸ ︷︷ ︸
fn(ik)

.

The filter filt(ik) is designed to have zero dc gain, so a dc
bias can only be accounted for by OCV(zk), whose conver-
gence has already been ensured, and hk. For the model rest
voltage to match the cell rest voltage, the hysteresis value is
forced to converge to the actual level. The dc value during a
constant-current dis/charge adds another term—the R value
in Rik, forcing R to converge. Finally, fluctuations around
the dc value due to dynamic current events are only accom-
modated for by the poles and weighting factors of the filter
Gfk. The filter time constants, related to α1, . . . , αnf , must
converge due to the near stationarity of cell dynamics, and
the weighting values G only determine the gains of the fk
states.

4.2. Methods for estimating SOH without the full
dual EKF

The full dual EKF method is computationally intensive.
If precise values for the full set of cell-model parameters are
not necessary, then other methods might be used. Here, we
present methods to determine cell capacity and resistance
using EKF-based methods. The change in capacity and re-
sistance from the nominal “new-cell” values give capacity
fade and power fade, which are the most commonly em-
ployed indicators of cell SOH.

4.2.1. Estimating resistance
To estimate cell resistance using an EKF mechanism, we

formulate a simple model

Rk+1 = Rk + rk

yk = OCV(zk)− Rkik + ek,

where Rk is the cell resistance and is modeled as a constant
value with a fictitious noise process rk allowing adaptation.
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yk is a crude estimate of the cell’s voltage, ik is the cell cur-
rent, and ek models estimation error. If we use an estimate of
zk from the state EKF, or from some other source, we simply
apply an EKF to this model to estimate cell resistance. In
the standard EKF, we compute the model’s prediction of yk
with the true measured cell voltage, and use the difference
to adapt Rk.

Note that the above model may be extended to handle
different values of resistance on charge and discharge, dif-
ferent values of resistance at different SOCs, and different
values of resistance at different temperatures, for example.
The scalar Rk would be changed into a vector comprising
all of the resistance values being modified, and the appro-
priate element from the vector would be used each time step
of the EKF during the calculations.

4.2.2. Estimating capacity
To estimate cell capacity using an EKF, we again formu-

late a simple cell model

Ck+1 = Ck + rk

dk = zk − zk−1 + ηiik−1�t

Ck−1
+ ek.

The second equation is a reformulation of the SOC state
equation such that the expected value of dk is equal to zero
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Fig. 9. Plots showing results of dual estimation. Frame (a) plots the “steady-state” capacity estimate and (b) plots the “steady-state” resistance estimate.
Frame (c) plots the transient behavior of the capacity estimate and frame (d) plots the transient behavior of the resistance estimate.

by construction. Again, an EKF is constructed using the
model defined by these two equations to produce a capac-
ity estimate. As the EKF runs, the computation for dk in
the second equation is compared to the known value (zero,
by construction), and the difference is used to update the
capacity estimate. Note that good estimates of the present
and previous states-of-charge are required, possibly from an
EKF estimating SOC. Estimated capacity may again be a
function of temperature (and so forth), if desired, by employ-
ing a capacity vector, from which the appropriate element
is used in each time step of the EKF during calculations.

4.3. Results of dual EKF

We now present several results to demonstrate fea-
tures of the dual EKF algorithm. The first two results are
“steady-state” estimates of resistance and capacity produced
directly by the dual EKF algorithm. The second two results
are from the auxiliary filters described in Sections 4.2.1 and
4.2.2.

Fig. 9 shows some results from dual estimation. In frame
(a), we see the steady-state capacity estimate produced di-
rectly by the dual EKF. It has converged to the correct value,
and exhibits little variation over time. In frame (b), we see
the “steady-state” charge and discharge resistances produced
directly by the dual EKF. We see that these estimates do
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not converge to a constant, but vary according to the present
state-of-charge. As is expected for this chemistry, the (dis-
charge) resistance is highest at high and low SOCs, and is
lowest at moderate SOCs. The quickly varying nature of the
dis/charge resistance estimates allows slightly better SOC
estimation using dual EKF than using standard EKF with
fixed resistance values.

If the complexity of the dual EKF is not warranted by
an application, the simple filters from Sections 4.2.1 and
4.2.2 may be used. Results using these methods are plotted
in Fig. 9(c) and (d). In frame (c), the state of the auxiliary
capacity estimation filter was initially set about 10% too
high and adaptation was allowed to occur. In frame (d) the
states of the auxiliary resistance estimation filter were set
significantly too low, and adaptation was allowed to occur.
In both cases, the estimates converge to the correct values.3

The horizontal axis for the plots was determined by noting
that a UDDS cycle covers 7.45 miles, and that the UDDS
test has 15 such cycles in it. Many repetitions of the UDDS
test were required for parameter convergence.

Is convergence fast enough? If we consider that the ca-
pacity of an HEV cell must degrade less than 20% over a
vehicle lifetime (say, 150,000 miles), then the time constant
of capacity change is in the order of 50,000 miles. For an es-
timator to track a moving target, its time constant must be at
least four times faster than that of the moving target (faster is
better). Here, we see that the capacity filter time constant is
in the order of 2000 miles, and the resistance filter time con-
stant is in the order of 500 miles. Both filters are faster than
they need be. Note that this example is extreme; in an ap-
plication the HEV cells would be mass produced with high
quality control and tight tolerances on initial capacity and
resistance. The filters would then be initialized with accu-
rate values, and are fast enough to track changes. In fact, the
filters can be “ tuned” by varying the values for Σr and Σe

to be either faster or slower than those shown. Faster filters
do converge more quickly, but produce noisier steady-state
estimates. Slower filters produce cleaner steady-state esti-
mates. The tuning of the filter must be done to meet design
specifications.

5. Application V: equalization via SOC

Over time, cells in a battery pack (comprising a
series-connected string of cells) may become “out of
balance” as small differences in their dynamics—principally,

3 The resistance values in frame (b) differ from those in frame (d)
because the ESC model used in the simulations in frame (b) has a separate
hysteresis term and so the resistance states are adapted to their true
values. The crude cell model used in the simulations of fame (d) have no
such hysteresis correction factor, so the resistances attempt to capture the
ohmic behavior as well as the hysteretic behavior of the cell dynamics.
This results in larger-than-true values for resistance, which may be taken
into account in an implementation.

in their Coulombic efficiencies and capacities—cause their
states of charge to drift apart from each other. The danger
is that one or more cells may eventually limit the discharge
ability of the pack if their SOC is much lower than that
of the others, and one or more cells may limit the charg-
ing capacity of the pack if their SOC is much higher than
that of the others. In an extreme case, the pack can neither
be discharged nor charged if one cell is at the low SOC
limit and another is at the high SOC limit, even if all other
cells are at intermediate values. Packs may be balanced
or equalized by “boosting” (individually adding charge to)
cells with SOC too low, “bucking” (individually deplet-
ing charge from) cells with SOC too high or “shuffling”
(moving charge from one cell to another).

In HEV, determining which cells must have their charge
levels adjusted to equalize the pack is generally done on the
basis of cell voltage alone. The pack is considered to be
properly balanced if all cell voltages are the same, perhaps
within some tolerance. Various electronic means are avail-
able to perform the equalization, either automatically, or un-
der microprocessor control. These include: shuffling charge
using a switched capacitor, depleting charge with a resistor,
adding charge with a DC–DC converter, or moving charge
with a transformer-based system. These methods are very
well described in [32].

With the information available from a dual EKF, for ex-
ample, another opportunity presents itself. We propose that
equalizing cell voltage is only approximately the correct
thing to do. Recall that the purpose of equalization is to
maintain the battery pack in a state where the maximum
level of charge and discharge power is available for use.
Cells that limit the pack availability may then be boosted or
bucked in order to improve performance. These cells might
be determined in at least two ways. First, one might use
side-information from the maximum power calculation stat-
ing which cells caused the available power to be limited. If
using the method from Section 3, then this determination
would consider cells by voltage limit and by SOC limit. The
second way more simply considers potential SOC limits.
Here, we investigate this approach.

Consider a pack with operational design limits such that
every cell SOC zk(t) must reside in the range zmin ≤ zk(t) ≤
zmax. For SOC of cell k at level zk(t), the “distance” in
ampere-hours from the upper limit is

C
charge
k (t) = (zmax − zk(t))Ck

and the distance in ampere-hours from the lower limit is

C
discharge
k (t) = (zk(t)− zmin)Ck,

where Ck is the capacity of cell k, in ampere-hours. If all
cells have equalCcharge

k (t), then no cell will limit pack charge
capacity. However, if the capacity of one cell is lower than
that of others, it will limit the ability of the pack to accept
charge. Similarly, if all cells have equal Cdischarge

k (t), then
no cell will limit pack discharge capacity. If one capacity is



290 G.L. Plett / Journal of Power Sources 134 (2004) 277–292

lower than the others, it will limit the ability of the pack to
supply charge.

We can use this information to derive a simple procedure
to determine which cells require equalization:

1. Compute Cdischarge
k for all cells, and sort from smallest to

largest. The cells with smallest value may benefit from
having some charge depleted via bucking, prioritized by
the magnitude of its Cdischarge

k .

2. Compute C
charge
k for all cells, and sort from smallest to

largest. The cells with smallest value may benefit from
having charge added via boosting, prioritized by the mag-
nitude of its Ccharge

k .
3. If charge shuffling is available, it should be shuffled from

the cell with minimum C
charge
k to the one with minimum

C
discharge
k .

The EKF used to estimate SOC may also contribute the es-
timation error bounds to help determine when to stop equal-
ization. For example, one might turn off equalization if the
difference between maximum and minimum C

discharge
k and

the difference between maximum and minimum C
charge
k falls

within 3σCn. Also, if the same cell is targeted for both
boosting and bucking, it is the cell limiting performance
whether or not its SOC is changed, so equalization may be
turned off.

If cell capacity information is not individually available,
then the nominal capacity Cn may be used. If so, the pro-
cedure then equalizes SOC, which is not exactly the same
as equalizing cell voltage. If all cell dynamic characteristics
are equal, then the method becomes the same as equalizing
by voltage. We expect that as cells in a battery pack age,
their characteristics will not remain equal, so that by using
the proposed method here the pack will provide better per-
formance in the long run.

6. Conclusions

In this series of three papers, we have described how ex-
tended Kalman filtering might be used by a battery man-
agement system in some of its key algorithmic roles. In this
paper, we have looked at the applications of the theory and
cell models presented in the earlier two.

First, we showed how an EKF might be used during
key-on initialization, to update cell SOC estimates saved on
key-off, to account for cell self-discharge during the key-off
interval. A very simple self-discharge model is used together
with a single step of the EKF.

Secondly, we showed how an EKF might be used, to-
gether with a model of cell dynamics, to dynamically esti-
mate SOC and other state vector values. Additionally, error
bounds on the estimate are generated. Robust behavior, even
when poorly initialized, is observed. SOC estimation error
within a few percent is typical.

An argument against using EKF for SOC estimation is that
it appears very complex to implement. Instead, one might
wish to use a simpler method; for example, Coulomb count-
ing. However, estimation error accumulates when integrating
ampere-hours, and is guaranteed to eventually diverge. Even
in short tests of several hours duration with state-of-the-art
battery test equipment (an Aerovironment ABC-150), we
have observed occasions where the EKF SOC estimate (us-
ing much poorer and less expensive sensors) is more accu-
rate than the ABC-150 ampere-hour integration. One might
add correction factors to a simple method to perform volt-
age versus SOC correction. However, the discharge curve
for our cells is very flat, so there is very little information in
a voltage measurement alone. Other correction factors must
be added for temperature, cell aging, and so forth. In the
end, the “simple” method boils down to a spaghetti-heap
of correction factors and special cases. The EKF, however,
is an extension of the optimal recursive estimation method
first developed by Kalman in 1960 [33,34]. Its extensive
use in other applications (e.g., defense, control, navigation,
space, etc.) and its kinship with other DSP applications has
ensured the development of microprocessors that are capa-
ble of implementing the required multiply and accumulate
operations quickly and efficiently. In short, we feel that the
EKF provides the best solution for the long term.

The third application presented in this paper uses the state
estimate provided by the EKF to give dynamic available
power estimates. These estimates automatically compensate
for recent dis/charge events, which have brought cell voltage
out of equilibrium and give a more precise estimate of how
much power may be drawn without exceeding voltage limits.
Methods that do not use this information, such as the PNGV
HPPC method, either give estimates that are too conservative
or too risky.

The fourth application integrates two nearly independent
extended Kalman filters in order to simultaneously estimate
state and cell-model parameter values. This is very valuable
for keeping the other EKFs “honest” over the lifetime of the
battery pack as cells age and their characteristics change.
This has the important benefit of extending the useful ser-
vice life during which the pack may be safely and reliably
operated. Estimates of SOH are also generated by the di-
rect estimation of cell resistance (power fade) and capacity
(capacity fade).

The fifth, and final, application is to use information from
the dual EKF to enhance the selection of cells that require
equalization. Voltage-based equalization only approximately
implements the best strategy. If hardware is available to in-
dividually select cells for equalization, the SOC-based strat-
egy presented here will work better, especially as the pack
ages and cell capacities diverge.

We have tested these methods using data collected from
hand-made prototype LiPB cells jointly developed by LG
Chem (Daejeon, Korea) and Compact Power Inc. (Mon-
ument, Colorado). Furthermore, to date we have imple-
mented a large subset of the algorithms on a prototype BMS
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developed by Compact Power Inc. for HEV application. We
find that even with hand-made cells the full implementation
provides similar performance to the cell-by-cell results. For
example, SOC estimation error is rarely greater than 5%
over operating conditions between 0 and 50 ◦C for all types
of tests. We expect that performance will improve with
mass-produced cells which will have more homogeneous
characteristics. Future research will focus on improving
low-temperature performance.

In conclusion, EKF methods are a good approach to ful-
filling the algorithmic requirements of an HEV BMS.
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