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Adaptive Inverse Control of Linear and Nonlinear
Systems Using Dynamic Neural Networks

Gregory L. Plett, Senior Member, IEEE

Abstract—In this paper, we see adaptive control as a three-part
adaptive-filtering problem. First, the dynamical system we wish to
control is modeled using adaptive system-identification techniques.
Second, the dynamic response of the system is controlled using
an adaptive feedforward controller. No direct feedback is used,
except that the system output is monitored and used by an adap-
tive algorithm to adjust the parameters of the controller. Third,
disturbance canceling is performed using an additional adaptive
filter. The canceler does not affect system dynamics, but feeds back
plant disturbance in a way that minimizes output disturbance
power. The techniques work to control minimum-phase or non-
minimum-phase, linear or nonlinear, single-input–single-output
(SISO) or multiple-input–multiple-ouput (MIMO), stable or
stabilized systems. Constraints may additionally be placed on
control effort for a practical implementation. Simulation examples
are presented to demonstrate that the proposed methods work
very well.

Index Terms—Adaptive inverse control, disturbance canceling,
disturbance rejection, feedforward control, system identification.

I. INTRODUCTION

PRECISE control of dynamic systems (“plants”) can be ex-
ceptionally difficult, especially when the system in ques-

tion is nonlinear. In response, many approaches have been devel-
oped to aid the control designer. For example, an early method
calledgain scheduling[1] linearizes the plant dynamics around
a certain number of preselected operating conditions and em-
ploys different linear controllers for each regime. This method
is simple and often effective, but applications exist for which
the approximate linear model is not accurate enough to ensure
precise or even safe control. One example is the area of flight
control, where stalling and spinning of the airframe can result if
operated too far away from the linear region.

A more advanced technique calledfeedback linearizationor
dynamic inversionhas been used in situations including flight
control (e.g., see [2]). Two feedback loops are used: 1) an inner
loop uses an inverse of the plant dynamics to subtract out all
nonlinearities, resulting in a closed-loop linear system and
2) an outer loop uses a standard linear controller to aid precision
in the face of inverse plant mismatch and disturbances.

Whenever an inverse is used, accuracy of the plant model is
critical. So, in [3] a method is developed that guarantees robust-
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ness even if the inverse plant model is not perfect. In [4], a robust
and adaptive method is used to allow learning to occur on-line,
tuning performance as the system runs. Yet, even here, a better
initial analytical plant model results in better control and distur-
bance rejection.

Nonlinear dynamic inversion may be computationally inten-
sive and precise dynamic models may not be available, so [5]
uses two neural-network controllers to achieve feedback lin-
earization and learning. One radial-basis-function neural net-
work is trained off-line to invert the plant nonlinearities, and
a second is trained on-line to compensate for inversion error.
The use of neural networks reduces computational complexity
of the inverse dynamics calculation and improves precision by
learning. In [6], an alternate scheme is used where a feedfor-
ward inverse recurrent neural network is used with a feedback
proportional-derivative controller to compensate for inversion
error and to reject disturbances.

All of these methods have certain limitations. For example,
they require that an inverse exist, so do not work for nonmin-
imum-phase plants or for ones with differing numbers of inputs
and outputs. They generally also require that a fairly precise
model of the plant be knowna priori. This paper instead con-
siders a technique calledadaptive inverse control[7]–[13]—as
reformulated by Widrow and Walach [13]—which does not re-
quire a precise initial plant model. Like feedback linearization,
adaptive inverse control is based on the concept of dynamic in-
version, but an inverse need not exist. Rather, an adaptive ele-
ment is trained to control the plant such that model-reference
based control is achieved in a least-mean-squared error optimal
sense. Control of plant dynamics and control of plant distur-
bance are treated separately, without compromise. Control of
plant dynamics can be achieved by preceding the plant with
an adaptive controller whose dynamics are a type of inverse of
those of the plant. Control of plant disturbance can be achieved
by an adaptive feedback process that minimizes plant output
disturbance without altering plant dynamics. The adaptive con-
trollers are implemented using nonlinear adaptive filters. Non-
minimum-phase and nonsquare plants may be controlled with
this method.

Fig. 1 shows a block-diagram of an adaptive inverse control
system. The system we wish to control is labeled the plant. It is
subject to disturbances, and these are modeled additively at the
plant output, without loss of generality. To control the plant, we
first adapt a plant model using adaptive system-identification
techniques. Second, the dynamic response of the system is con-
trolled using an adaptive controller. The output of the plant
model is compared to the measured plant output and the differ-
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Fig. 1. Adaptive inverse control system.

ence is a good estimate of the disturbance. A special adaptive
filter is used to cancel the disturbances.

Control of linear systems require linear adaptive-filtering
methods and control of nonlinear systems require nonlinear
adaptive-filtering methods. However, even if the plant is linear,
nonlinear methods will yield better results than linear methods
if there are nonquadratic constraints on the control effort, or if
the disturbance is generated from a nonlinear or chaotic source.
Therefore, we focus on nonlinear adaptive inverse control (of
linear or nonlinear plants) using nonlinear adaptive filters.
We proceed by first reviewing nonlinear adaptive filtering
and system identification. Next, we discuss adaptive inverse
control of plant dynamics and adaptive disturbance canceling.
We conclude with simulation examples to demonstrate the
techniques.

II. DYNAMIC NEURAL NETWORKS

A. Structure of a Dynamic Neural Network

An adaptive filter has an input , an output , and a “spe-
cial input” called the desired response. The filter computes a
dynamical function of its input, and the desired response speci-
fies the output we wish the filter to have at that point in time. It
is used to modify the internal parameters of the filter in such a
way that the filter “learns” to perform a certain function.

A nonlinear adaptive filter computes a nonlinear dynamical
function of its input. It has a tapped delay line connected to its
input and, possibly, a tapped delay line connected to its output.
The output of the filter is computed to be a nonlinear function of
these delayed inputs and outputs. The nonlinear function may be
implemented in any way, but here we use a layered feedforward
neural network.

A neural network is an interconnected set of very simple pro-
cessing elements called neurons. Each neuron computes an in-
ternal sum that is equal to a constant plus the weighted sum of
its inputs. The neuron outputs a nonlinear “activation” function
of this sum. In this work, the activation function for nonoutput
neurons is chosen to be the function and all output neu-
rons have the nonlinear function removed. This is done to give
them unrestricted range.

Neural networks may be constructed from individual neurons
connected in very general ways. However, it is sufficient to have
layersof neurons, where the inputs to each neuron on a layer are
identical and equal to the collection of outputs from the previous
layer (plus the augmentedbiasvalue “1”). The final layer of the

network is called theoutput layerand all other layers of neu-
rons are calledhidden layers. A layered network is a feedfor-
ward (nonrecurrent) structure that computes a static nonlinear
function. Dynamics are introduced via the tapped delay lines at
the input to the network, resulting in adynamic neural network.

This layered structure also makes it easy to compactly de-
scribe the topology of a nonlinear filter. The following notation
is used: . This means: “The filter input is comprised
of a tapped delay line with “” delayed copies of the exoge-
nous input vector , and “ ” delayed copies of the output vector

. Furthermore, there are “” neurons in the neural network’s
first layer of neurons, “”’ neurons in the second layer, and so
on.” Occasionally, filters are encountered with more than one
exogenous input. In that case, the “” parameter is a row vector
describing how many delayed copies of each input are used in
the input vector to the network. To avoid confusion, any strictly
feedforward nonlinear filter is denoted explicitly with a zero in
that part of its description. For example, .

A dynamic neural network of this type is called a Nonlinear
AutoRegressive eXogenous input (NARX) filter. It is general
enough to approximate any nonlinear dynamical system [14].
A nonlinear single-input–single-output (SISO) filter is created
if and are scalars, and the network has a single output
neuron. A nonlinear multiple-input–multiple-output (MIMO)
filter is constructed by allowing and to be (column)
vectors, and by augmenting the output layer with the correct
number of additional neurons. Additionally, notice that since
the output layer of neurons is linear, a neural network with
a single layer of neurons is a linear adaptive filter (if the
bias weights of the neurons are zero). Therefore, the results
of this paper—derived for the general NARX structure—can
encompass the situation where linear adaptive filters are desired
if a degenerate neural-network structure is used.

B. Adapting Dynamic Neural Networks

A feedforward neural network is one whose input contains no
self-feedback of its previous outputs. Its weights may be adapted
using the popularbackpropagation algorithm, discovered inde-
pendently by several researchers [15], [16] and popularized by
Rumelhartet al. [17]. An NARX filter, on the other hand, gen-
erally has self-feedback and must be adapted using a method
such asreal-time recurrent learning(RTRL) [18] or backprop-
agation through time(BPTT) [19]. Although compelling argu-
ments may be made supporting either algorithm [20], we have
chosen to use RTRL in this work, since it easily generalizes as
is required later and is able to adapt filters used in an implemen-
tation of adaptive inverse control in real time.

We assume that the reader is familiar with neural networks
and the backpropagation algorithm. If not, the tutorial paper [21]
is an excellent place to start. Briefly, the backpropagation algo-
rithm adapts the weights of a neural network using a simple opti-
mization method known as gradient descent. That is, the change
in the weights is calculated as
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where is a cost function to be minimized and the small
positive constant is called the learning rate. Often,

where is the net-
work error computed as the desired response minus the actual
neural-network output. A stochastic approximation tomay
be made as , which results in

For a feedforward neural network, ,
which may be verified using the chain rule for total derivatives.
The backpropagation algorithm is an elegant way of recursively
computing by “backpropagating” the vector
from the output of the neural network back through the network
to its first layer of neurons. The values that are computed are
multiplied by and are used to adapt the neuron’s weights.

It is important for this work to notice that the backpropagation
algorithm may also be used to compute the vector
(where is an arbitrary vector) by simply backpropagating the
vector instead of the vector . Specifically, we will need
to computeJacobian matricesof the neural network. These Ja-
cobians are and , where is the composite
input vector to the neural network (containing all tap-delay-line
copies of the exogenous and feedback inputs). If we backprop-
agate a vector through the neural network, then we have com-
puted the entries of the vector . If is chosen to
be a unit vector, then we have computed one row of the matrix

. By backpropagating as many unit vectors as there are
outputs to the network, we may compose the Jacobian
one row at a time. Also, if we backpropagate the vectorpast
the first layer of neurons to the inputs to the network itself, we
have computed . Again, using the methodology of
backpropagating unit vectors, we may simultaneously build up
the Jacobian matrix one row at a time. Werbos called
this ability of the backpropagation algorithm the “dual-subrou-
tine.” The primary subroutine is the feedforward aspect of the
network. The dual subroutine is the recursive calculation of the
Jacobians of the network.

Now that we have seen how to adapt a feedforward neural
network and how to compute Jacobians of a neural network, it
is a simple matter to extend the backpropagation algorithm to
adapt NARX filters. This was first done by Williams and Zipser
[18] and called real-time recurrent learning (RTRL). A similar
presentation follows.

An NARX filter computes a function of the following form:

To adapt using the familiar “sum of squared error” cost function,
we need to be able to calculate

(1)

The first term is the direct effect of a change in the
weights on , and is one of the Jacobians calculated by the dual-
subroutine of the backpropagation algorithm. The second term

is zero, since is zero for all . The final term may be
broken up into two parts. The first, , is a component
of the matrix , as delayed versions of are part of
the network’s input vector . The dual-subroutine algorithm
may be used to compute this. The second part, , is
simply a previously calculated and stored value of .
When the system is “turned on,” are set to zero for

, and the rest of the terms are calculated
recursively from that point on.

Note that the dual-subroutine procedure naturally calculates
the Jacobians in such a way that the weight update is done with
simple matrix multiplication. Let

and

The latter is simply the columns of corresponding to
the feedback inputs to the network, and is directly calculated
by the dual subroutine. Then, the weight update is efficiently
calculated as

C. Optimal Solution for a Nonlinear Adaptive Filter

In principle, a neural network can emulate a very general non-
linear function. It has been shown that any “smooth” static non-
linear function may be approximated by a two-layer neural net-
work with a “sufficient” number of neurons in its hidden layer
[22]. Furthermore, a NARX filter can compute any dynamical
finite-state machine (it can emulate any computer with finite
memory) [14].

In practice, a neural network seldom achieves its full poten-
tial. Gradient-descent based training algorithms converge to a
local minimum in the solution space, and not to the global min-
imum. However, it is instructive to exactly determine the op-
timal performance that could be expected from any nonlinear
system, and then to use it as a lower bound on the mean-square
error (MSE) of a trained neural network. Generally, a neural net-
work will get quite close to this bound.

The optimal solution for a nonlinear filter is from reference
[23, Th. 4.2.1]. If the composite input vector to the adaptive filter
is , the output is , and the desired response is, then the
optimal filter computes the conditional expectation

D. Practical Issues

While adaptation may proceed on-line, there is neither math-
ematical guarantee of stability of adaptation nor of convergence
of the weights of a neural network. In practice, we find that
if is “small enough,” the weights of the adaptive filter con-
verge in a stable way, with a small amount of misadustment.
It may be wise to adapt the dynamic neural network off-line
(using premeasured data) at least until close to a solution, and
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then use a small value ofto continue adapting on-line. Speed
of adaptation is also an issue. The reader may wish to consider
faster second-order adaptation methods such as dynamically de-
coupled extended Kalman filter (DDEKF) learning [24], where
the gradient matrix , as computed above. We
have found order-of-magnitude improvement in speed of adap-
tation using DDEKF versus RTRL [25].

III. A DAPTIVE SYSTEM IDENTIFICATION

The first step in performing adaptive inverse control is to
make an adaptive model of the plant. The model should cap-
ture the dynamics of the plant well enough that a controller de-
signed to control the plant model will also control the plant very
well. This is a straightforward application of the adaptive fil-
tering techniques in Section II.

A method for adaptive plant modeling is depicted in Fig. 2(a).
The plant is excited with the signal , and the disturbed output

is measured. The plant modelis also excited with , and
its output is computed. The plant modeling error

is used by the adaptation algorithm to update the weight
values of the adaptive filter.

NARX models have implicit feedback of delayed versions
of their output to the input of the model. This feedback is as-
sumed in all block diagrams, and is not drawn explicitly, ex-
cept in Fig. 2(b). The purpose of Fig. 2(b) is to show that this
feedback, when training an adaptive plant model, may be con-
nected to either the model output or the plant output . The
first method is called aparallel connection for system identifi-
cation, and the second method is called aseries-parallelcon-
nection for system identification. Networks configured in se-
ries-parallel may be trained using the standard backpropaga-
tion algorithm. Networks configured in parallel must be trained
with either RTRL or BPTT. The series-parallel configuration is
simple, but is biased by disturbance. The parallel configuration
is more complex to train, but is unbiased by disturbance. In this
work, nonlinear system identification is first performed using
the series-parallel configuration to initialize weight values of the
plant model. When the weight values converge, the plant model
is reconfigured in the parallel configuration and training is al-
lowed to continue. This procedure allows speedy training of the
network, but is not compromised by disturbance.

We now confirm that the adaptive plant modelconverges
to . From Section II-C we can find the optimal solution for

where is a vector containing past values of the control signal
and where two assumptions were made:

1) in the fourth line, we assume that the disturbance is statisti-
cally independent of the command input signaland 2) in the
final line, we assume that the disturbance is zero mean. Under

(a)

(b)

Fig. 2. Adaptive plant modeling. (a) Simplified and (b) detailed depictions.

these two assumptions, the plant model converges to the plant
despite the presence of disturbance.

A final comment should be made regarding the relative timing
of the and signals. In order to be able to model either
strictly- or nonstrictly-proper plants, we output at time

and measure at time , being the sampling
period. We will see that this assumption can limit the extent to
which we can effectively cancel disturbance. If we knowa priori
that the plant is strictly proper, then we may instead measure
at time and use its value when computing (which
is output at time ), since we know that there is no
immediate effect on the plant output due to.

IV. A DAPTIVE FEEDFORWARDCONTROL OFPLANT DYNAMICS

To perform adaptive inverse control, we need to be able to
adapt the three filters of Fig. 1: the plant model, the controller

, and the disturbance canceler. We have seen how to adapt
to make a plant model. For the time being we set aside con-

sideration of the disturbance canceling filterand concentrate
on the design of the feedforward controller.1 The goal is to
make the dynamics of the controlled system approximate
the fixed filter as closely as possible, whereis a user-spec-
ified reference model. The input reference signal is filtered
through to create a desired responsefor the plant output.
The measured plant output is compared with the desired plant
output to create a system error signal . We will
adapt to minimize the mean-squared system error while con-
straining the control effort .

The reference model may be designed in a number of
ways. Following traditions of control theory, we might design

to have the step response of a second-order linear system

1We shall restrict our development to apply only to stable plants. If the plant
of interest is unstable, conventional feedback should be applied to stabilize it.
Then the combination of the plant and its feedback stabilizer can be regarded as
an equivalent stable plant.
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that meets design specifications. However, we can often achieve
even better tracking control if we let be simply a delay cor-
responding to the transport delay of the plant. The controller
will adapt to a delayed inverse of the plant dynamics.2

A. Adapting a Constrained Controller Via the BPTM
Algorithm

Recall that an adaptive filter requires a desired response input
signal in order to be able to adapt its weights. While we do have
a desired response for the entire system,, we do not have a
desired response for the output of the controller. A key hurdle
that must be overcome by the algorithm is to find a mechanism
for converting the system error to an adaptation signal used to
adjust .

One solution is to regard the series combination ofand as
a single adaptive filter. Thereis a desired response for this com-
bined filter: . Therefore, we can use to computeweight
updates for the conglomerate filter.However, we only apply the
weight updates to the weights in; is still updated using the
plant modeling error . Fig. 3 shows the general frame-
work to be used. We say that the system error isbackpropagated
through the plant model, and used to adapt the controller. For
this reason, the algorithm is named “backprop through (plant)
model” (BPTM). This solution allows for control of nonmin-
imum-phase and nonsquare plants.

The algorithm is derived as follows. We wish to train the con-
troller to minimize the squared system error and to simulta-
neously minimize some function of the control effort. We con-
struct the following cost function that we will minimize

The differentiable function defines the cost function asso-
ciated directly with the control signal and is used to penalize
excessive control effort, slew rate, and so forth. The system error
is the signal , and the symmetric matrix is a
weighting matrix that assigns different performance objectives
to each plant output.

If we let be the function implemented by the controller
, and be the function implemented by the plant model,

we can state without loss of generality

(2)

where are the adjustable parameters (weights) of the
controller.

2We note that nonlinear plants do not, in general, have inverses. So, when we
say thatC adapts to a (delayed) inverse of the plant dynamics, we mean thatC

adapts so that the cascadePC approximates the (delayed) identity function as
well as possible in the least-mean-squared error sense.

Fig. 3. Structure diagram illustrating the BPTM method.

The controller weights are updated in the direction of the neg-
ative gradient of the cost functional

where is the adaptive learning rate. Continuing

Using (2) and the chain rule for total derivatives, two further
substitutions may be made at this time

(3)

(4)

With these definitions, we may find the weight update. We
need to find three quantities: , and

.
First, we note that depends on the user-speci-

fied function . It can be calculated given . Second, we
consider as expanded in (3). It is the same in form as
(1) and is computed the same way.

Third, we consider in (4). The first term in the
first summation is the Jacobian , which may be
computed via the backpropagation algorithm. The next term,

is the current or a previously computed and saved
version of , computed via (3). The first term in the
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Fig. 4. Algorithm to adapt a NARX controller for a NARX plant model.

second summation, is another Jacobian. The final
term, , is a previously computed and saved version
of .

A practical implementation is realized by compacting the no-
tation into a collection of matrices. We define

The algorithm is summarized in Fig. 4. Any programming
language supporting matrix mathematics can very easily imple-
ment this algorithm. It works well.

A similar algorithm may be developed for linear systems,
for which convergence and stability has been proven [7]. We
have no mathematical proof of stability for the nonlinear ver-
sion, although we have observed it to be stable ifis “small
enough.” As a practical matter, it may be wise to adapt the
controller off-line until convergence is approximated. Adapta-
tion may then continue on-line, with a small value of. Faster
adaptation may be accomplished using DDEKF as the adapta-
tion mechanism (BPTM-DDEKF) versus using RTRL (BPTM-
RTRL). To do so, set [25].

(a)

(b)

Fig. 5. Two methods to close the loop. (a) The output,y , is fed back to the
controller. (b) An estimate of the disturbance,ŵ , is fed back to the controller.

V. ADAPTIVE DISTURBANCE CANCELING

Referring again to Fig. 1, we have seen how to adaptively
model the plant dynamics, and how to use the plant model to
adapt a feedforward adaptive controller. Using this controller,
an undisturbed plant will very closely track the desired output.
A disturbed plant, on the other hand, may not track the desired
output at all well. It remains to determine what can be done to
eliminate plant disturbance.

The first idea that may come to mind is to simply “close the
loop.” Two methods commonly used to do this are discussed in
Section V-A. Unfortunately, neither of these methods is appro-
priate if an adaptive controller is being designed. Closing the
loop will cause the controller to adapt to a “biased” solution.
An alternate technique is introduced that leads to the correct so-
lution if the plant is linear and has substantially less bias if the
plant is nonlinear.

A. Conventional Disturbance Rejection Methods Fail

Two approaches to disturbance rejection commonly seen in
the literature are shown in Fig. 5. Both methods use feedback;
the first feeds back the disturbed plant output, as in Fig. 5(a),
and the second feeds back an estimate of the disturbance

, as in Fig. 5(b). The approach shown in Fig. 5(a) is more
conventional, but is difficult to use with adaptive inverse control
since the dynamics of the closed-loop system are dramatically
different from the dynamics of the open-loop system. Different
methods than those presented here are required to adapt.
The approach shown in Fig. 5(b) is calledinternal model
control [26]–[31]. The benefit of using this scheme is that the
dynamics of the closed-loop system are equal to the dynamics
of the open-loop system if the plant model is identical to the
plant. Therefore, the methods found to adapt the controller for
feedforward control may be used directly.
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Unfortunately, closing the loop usingeithermethod in Fig. 5
will cause to adapt to an incorrect solution. In the following
analysis the case of a plant controlled with internal model con-
trol is considered. A similar analysis may be performed for the
conventional feedback system in Fig. 5(a), with the same con-
clusion.

B. Least-Mean-Squared Error Solution forUsing Internal
Model Control

When the loop is closed as in Fig. 5(b), the estimated distur-
bance term is subtracted from the reference input. The
resulting composite signal is filtered by the controllerand be-
comes the plant input signal, . In the analysis done so far, we
have assumed that is independent of , but that assumption
is no longer valid. We need to revisit the analysis performed for
system identification to see if the plant modelstill converges
to .

The direct approach to the problem is to calculate the least-
mean-squared error solution for and see if it is equal to .
However, due to the feedback loop involved, it is not possible
to obtain a closed form solution for . An indirect approach
is taken here. We do not need to know exactly to whatcon-
verges—we only need to know whether or not it converges to

. The following indirect procedure is used.

1) First, remove the feedback path (open the loop) and per-
form on-line plant modeling and controller adaptation.
When convergence is reached, .

2) At this time, , and the disturbance estimate is
very good. We assume that . This assumption
allows us to construct a feedforward-only system that is
equivalent to the internal-model-control feedback system
by substituting for .

3) Finally, analyze the system, substituting for . If the
least-mean-squared error solution forstill converges to

, then the assumption made in the second step remains
valid, and the plant is being modeled correctly. Ifdi-
verges from with the assumption made in step 2), then
it cannot converge to in a closed-loop setting. We con-
clude that the assumption is justified for the purpose of
checking for proper convergence of.

We now apply this procedure to analyze the system of Fig. 5(b).
We first open the loop and allow the plant model to converge
to the plant. Second, we assume that . Finally, we
compute the least-mean squared error solution for

where is a function of since and so
the conditional expectation in the last line is not zero. The plant
model is biased by the disturbance.

Fig. 6. Correct on-line adaptive plant modeling in conjunction with
disturbance canceling for linear plants. The circuitry for adaptingC has been
omitted for clarity.

Assumptions concerning the nature of theand signals
are needed to simplify this further. For example, if is white,
then the plant model converges to the plant. Under almost all
other conditions, however, the plant model converges to some-
thing else. In general, an adaptive plant model made using the
internal model control scheme will be biased by disturbance.

The bottom line is that if the loop is closed and the plant
model is allowed to continue adapting after the loop is closed,
the overall control system will become biased by the distur-
bance. One solution, applicable to linear plants, is to perform
plant modeling with dither signals rather than with the command
input signal [13, schemes B, C]. However, this will increase
the output noise level. A better solution is presented next, in
which the plant model is allowed to continue adaptation and the
output noise level is not increased. The plant disturbances will
be handled by a separate circuit from the one handling the task
of dynamic response. This results in an overall control problem
that is partitioned in a very nice way.

C. A Solution Allowing On-Line Adaptation of

The only means at our disposal to cancel disturbance is
through the plant input signal. This signal must be computed in
such a way that the plant output negates (as much as possible)
the disturbance. Therefore, theplant input signal must be
statistically dependent on the disturbance. However, we have
just seen that theplant modelinput signal cannot contain terms
dependent on the disturbance or the plant model will be biased.
This conundrum was first solved by Widrow and Walach [13],
as shown in Fig. 6.

By studying the figure, we see that the control scheme is very
similar to internal model control. The main difference is that
the feedback loop is “moved” in such a way that the disturbance
dynamics do not appear at the input to the adaptive plant model,
but do appear at the input to the plant. That is, the controller
output is used as input to the adaptive plant model; on the
other hand, the input to the plant is equal to , where is
the output of a special disturbance-canceling filter,. is not
used directly to estimate the disturbance; rather, a filter whose
weights are a digital copy of those in is used to estimate the
disturbance. This filter is called .
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In later sections, we will see how to adapt and how to
modify the diagram if the plant is nonlinear. Now, we proceed to
show that the design is correct if the plant is linear. We compute
the optimal function

where is a vector containing past values of the control signal
, and is a vector containing past values of

the disturbance canceler output, . In the final
line, we assume that is zero-mean (which it would be if
is zero mean and the plant is linear).

Unfortunately, there is still a bias if the plant is nonlinear. The
derivation is the same until the fourth line

which does not break up as it did for the linear plant. To pro-
ceed further than this, we must make an assumption about the
plant. Considering a SISO plant, for example, if we assume that

is differentiable at “point” , then we may write
the first-order Taylor expansion [32, Th. 1]

where is the plant input at time index. Furthermore, we have
the result that as in . Then

Since is assumed to be independent of, then is inde-
pendent of . We also assume that is zero-mean

(5)

The linear term disappears, as we expect from our analysis for
a linear plant. However, the remainder term is not eliminated.
In principle, if the plant is very nonlinear, the plant model may
be quite different from the plant. Inpractice, however, we have
seen that this method seems to work well, and much better than
an adaptive version of the internal-model control scheme.

So, we conclude that this system is not as good as desired if
the plant is nonlinear. It may not be possible to perform on-line
adaptive plant modeling while performing disturbance can-
celing while retaining an unbiased plant model. One solution
might involve freezing the weights of the plant model for long
periods of time, and scheduling shorter periods for adaptive
plant modeling with the disturbance canceler turned off when
requirements for output quality are not as stringent. Another
solution suggests itself from (5). If the terms are kept small,
the bias will disappear. We will see in Section V-E that
may be adapted using the BPTM algorithm. We can enforce
constraints on the output of using our knowledge from
Section IV to ensure that remains small. Also, since the
systemis biased, we use as an additional exogenous input
to to help determine plant state to cancel disturbance.

D. Function of the Disturbance Canceler

It is interesting to consider the mathematical function that
the disturbance canceling circuit must compute. A little careful
thought in this direction leads to a great deal of insight. The anal-
ysis is precise if the plant is minimum phase (that is, if it has a
stable, causal inverse), but is merely qualitative if the plant is
nonminimum phase. The goal of this analysis is not to be quan-
titative, but rather to develop an understanding of the function
performed by .

A useful way of viewing the overall system is to consider that
the control goal is for to produce an output so that

. We can express as

Note that takes the optional input signal . This signal is
used when controlling nonlinear plants as it allows the distur-
bance canceler some knowledge of the plant state. It is not re-
quired if the plant is linear.

Next, we substitute and rearrange to solve for
the desired response of. We see that

assuming that the controller has adapted until .
The function of is a deterministic combination of known (by
adaptation) elementsand , but also of the unknown signal

. Because of the inherent delay in discrete-time systems, we
only know at any time, so must be estimated from
previous samples of . Assuming that the adaptive
plant model is perfect, and that the controller has been adapted
to convergence, the internal structure of is then shown in
Fig. 7(a). The signal is computed by estimating its value
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(a)

(b)

Fig. 7. Internal structure ofX . (a) For a general plant. (b) For a linear plant.

from previous samples of . These are combined and passed
through the plant inverse to compute the desired signal.

Thus, we see that the disturbance canceler contains two parts.
The first part is an estimator part that depends on the dynamics
of the disturbance source. The second part is the canceler part
that depends on the dynamics of the plant. The diagram sim-
plifies for a linear plant since some of the circuitry cancels.
Fig. 7(b) shows the structure of for a linear plant.

One very important point to notice is that the disturbance can-
celer still depends on both the disturbance dynamics and the
plant dynamics. If the process generating the disturbance is non-
linear or chaotic, then the estimator required will in general be a
nonlinear function. The conclusion is that the disturbance can-
celer should be implemented as a nonlinear filtereven if the
plant is a linear dynamical system.

If the plant is generalized minimum phase (minimum phase
with a constant delay), then this solution must be modified
slightly. The plant inverse must be a delayed plant inverse, with
the delay equal to the transport delay of the plant. The estimator
must estimate the disturbance one time step into the future
plus the delay of the plant. For example, if the plant is strictly
proper, there will be at least one delay in the plant’s impulse
response, and the estimator must predict the disturbance at least
two time steps into the future.3

It was stated earlier that these results are heuristic and do not
directly apply if the plant is nonminimum phase. We can see
this easily now, since a plant inverse does not exist. However,
the results still hold qualitatively since a delayed approximate
inverse exists; the solution for is similar to the one for a gen-
eralized minimum phase plant. The structure ofconsists of a
part depending on the dynamics of the system, which amounts
to a delayed plant inverse, and a part that depends on the dy-
namics of the disturbance generating source, which must now
predict farther into the future than a single time step. Unlike the
case of the generalized minimum phase plant, however, these

3However, if the plant is knowna priori to be strictly proper, the delayz I

block may be removed from the feedback path. Then the estimator needs to pre-
dict the disturbance one fewer step into the future. Since estimation is imperfect,
this will improve performance.

two parts do not necessarily separate. That is,implements
some combination of predictors and delayed inverses that com-
pute the least-mean-squared error solution.

E. Adapting a Disturbance Canceler via the BPTM Algorithm

We have seen how a disturbance canceling filter can be in-
serted into the control-system design in such a way that it will
not bias the controller for a linear plant, and will minimally bias
a controller for a nonlinear plant. Proceeding to develop an algo-
rithm to adapt , we consider that the system error is composed
of three parts.

• One part of the system error is dependent on the input
command vector in . This part of the system error
is reduced by adapting .

• Another part of the system error is dependent on the esti-
mated disturbance vector in . This part of the system
error is reduced by adapting.

• The minimum-mean-squared error, which is independent
of both the input command vector in and the estimate
disturbance vector in . It is either irreducible (if the
system dynamics prohibit improvement), or may be re-
duced by making the tapped-delay lines at the input to
or larger. In any case, adaptation of the weights inor

will not reduce the minimum-mean-squared error.
• The fourth possible part of the system error is the part that

is dependent on both the input command vector and the
disturbance vector. However, by assumption,and
are independent, so this part of the system error is zero.

Using the BPTM algorithm to reduce the system error by
adapting , as discussed in Section IV, will reduce the compo-
nent of the system error dependent on the input. Since the
disturbance and minimum-mean-squared error are independent
of , their presence will not bias the solution of. The
controller will learn to control the feedforward dynamics of the
system, but not to cancel disturbance.

If we were to use the BPTM algorithm and backpropagate
the system error through the plant model, using it to adaptas
well, the disturbance canceler would learn to reduce the compo-
nent of the system error dependent on the estimated disturbance
signal. The component of the system error due to unconverged

and minimum-mean-squared error will not bias the distur-
bance canceler.

BPTM for the disturbance canceler may be developed as fol-
lows. Let be the function implemented by , be the
function implemented by the plant model copy , and
be the weights of the disturbance canceler neural network. Then

where is the input to the plant, is the
output of the controller, and is the output of the disturbance
canceler. BPTM computes the disturbance-canceler weight
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Fig. 8. Integrated nonlinear MIMO system.

update . This can be found by the
following:

This method is illustrated in Fig. 8 where a complete in-
tegrated MIMO nonlinear control system is drawn. The plant
model is adapted directly, as before. The controller is adapted
by backpropagating the system error through the plant model
and using the BPTM algorithm of Section IV. The disturbance
canceler is adapted by backpropagating the system error through
thecopyof the plant model and using the BPTM algorithm as
well. So we see that the BPTM algorithm serves two functions:
it is able to adapt both and .

Since the disturbance canceler requires an accurate estimate
of the disturbance at its input, the plant model should be adapted
to near convergence before “turning the disturbance canceler
on” (connecting the disturbance canceler output to the plant
input). Adaptation of the disturbance canceler may begin before
this point, however.

VI. EXAMPLES

Four simple nonlinear SISO systems were chosen to demon-
strate the principles of this paper. The collection includes
both minimum-phase and nonminimum-phase plants, plants
described using difference equations and plants described in
state space, and a variety of ways to inject disturbance. Since
the plants are not motivated by any particular “real” dynamical
system, the command signal and disturbance sources are

artificial as well. In each case, the command signal is uniform
independently identically distributed (i.i.d.), which was chosen
since it is the most difficult to follow. The raw disturbance
source is a first-order Markov process. In some cases the
Markov process is driven by i.i.d. uniform random variables,
and in other cases by i.i.d. Gaussian random variables. The
disturbance is added to either the input of the system, to the
output of the system, to a specific state in the plant’s state–space
representation or to an intermediate stage of the processing
performed by the plant.

System 1:The first plant was introduced to the literature
by Narendra and Parthasarathy [33]. The difference equations
defining its dynamics are

The plant model was a network, and system identi-
fication was initially performed with the plant input signal
being i.i.d. uniformly distributed between . Disturbance
was a first-order Markov process, generated by filtering a
primary random process of i.i.d. random variables. The i.i.d.
random variables were uniformly distributed in the range

. The filter used to generate the first-order Markov
process was a one-pole filter with the pole at . The
resulting disturbance was added directly to theoutput of the
system. Note that the disturbance is addedafter the nonlinear
filter, and hence it does not affect the internal state of the
system.

System 2:The second plant is a nonminimum-phase
(meaning that it does not have a stable causal inverse) non-
linear transversal system. The difference equation defining its
dynamics is

The plant model was a network, with the plant input
signal being i.i.d. uniformly distributed between .
Disturbance was a first-order Markov process, generated by
filtering a primary random process of i.i.d. random variables.
The i.i.d. random variables were distributed according to a
Gaussian distribution with zero mean and standard deviation
0.03. The filter used to generate the first-order Markov process
was a one-pole filter with the pole at . The resulting
disturbance was added to theinput of the system.

System 3:The third system is a nonlinear plant expressed
in state–space form. The system consists of a linear filter fol-
lowed by a squaring device. The difference equations defining
this plant’s dynamics are

The plant model was a network, with the plant input
signal being i.i.d. uniformly distributed between .
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(a)

(b)

Fig. 9. (a) System identification of four nonlinear SISO plantsin the absence of disturbance. The gray line (when visible) is the true plant output, and the solid line
is the output of the plant model. (b) System identification of four nonlinear SISO plantsin the presence of disturbance. The dashed black line is the disturbed plant
output, and the solid black line is the output of the plant model. The gray solid line (when visible) shows what the plant output would have been if the disturbance
were absent. This signal is normally unavailable, but is shown here to demonstrate that the adaptive plant model captures the dynamics of the true plant very well.

Disturbance was a first-order Markov process, generated by fil-
tering a primary random process of i.i.d. random variables. The
i.i.d. random variables were uniformly distributed in the range

. The filter used to generate the first-order Markov
process was a one-pole filter with the pole at . The

resulting disturbance was added directly to the first state of the
system.

System 4:The final system is a generalization of one in ref-
erence [13]. The nonlinearity in this system has memory or
“phase,” and is a type of hysteresis device. The system has two
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(a)

Fig. 10. (a) Feedforward control of system 1. The controller,N , was trained to track uniformly distributed (white) random input, between[�8; 8].
Trained performance and generalization are shown.

equilibrium states as opposed to the previous plants which all
had a single equilibrium state. The difference equations defining
its dynamics are

if

if

The plant model was a network, with the plant
input signal being i.i.d. uniformly distributed between

. Disturbance was a first-order Markov process, gen-
erated by filtering a primary random process of i.i.d. random
variables. The i.i.d. random variables were distributed ac-
cording to a Gaussian distribution with zero mean and standard
deviation 0.01. The filter used to generate the first-order
Markov process was a one-pole filter with the pole at .
The resulting disturbance was added to an intermediate point
in the system, just before the output filter.

A. System Identification

System identification was first performed, starting with
random weight values, in theabsenceof disturbance, and a
summary plot of is presented in Fig. 9(a). This was repeated,
starting again with random weight values, in thepresence
of disturbance and a summary plot is presented in Fig. 9(b).
Plant models were trained using a series-parallel method first
to accomplish coarse training. Final training was always in
a parallel connection to ensure unbiased results. The RTRL
algorithm was used with an adaptive learning rate for each
layer of neurons: where is the
layer number and is the input vector to that layer. This
simple rule-of-thumb, based on stability results for LMS,
was very effective in providing a ballpark adaptation rate for
RTRL.

In all cases, a neural network was found that satisfac-
torily identified the system. Each system was driven with
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(b)

Fig. 10. (Continued). (b) Feedforward control of system 2. The controller,N , was trained to track uniformly distributed (white) random input, between
[�0:75; 2:5].

an i.i.d. uniform control signal. This was not characteristic
of the control signal generated by the trained controller in
the next section, but was a starting point and worked quite
well to initialize the plant model for use in training the con-
troller. Each plant produced its own very characteristic output
for the same input, as seen in Fig. 9, but it was shown
that neural networks could be trained to identify each system
nearly perfectly.

When disturbance is added, it is useful to think of the “dis-
turbed plant dynamics” and the “nominal plant dynamics.” In
each case, the system identification process matched the nom-
inal dynamics of the plant, which is what theory predicts and
what we would like.

B. Feedforward Control

After system identification was done, the controller was
trained to perform feedforward control of each system. The
control input signal was always uniform i.i.d. random input.

Since the plants themselves are artificial, this artificial control
signal was chosen. In general, it is the hardest control signal to
follow. The plants were undisturbed; disturbance canceling for
disturbed plants is considered in the next section.

The control signals generated by the trained controllers
are not i.i.d. uniform. Therefore, the system identification
performed in the previous section is not sufficient to properly
train the controller. It provides a very good initial set of
values for the weights of the controller, however, and system
identification continues on-line as the controller is trained
with the BPTM algorithm. Again, the adaptive learning rate

proved effective.
First, the controllers were trained with an i.i.d. uniform

command input. The reference model in all cases (except for
system 2) was a unit delay. When the weights had converged,
the values of the network weights were frozen, and the con-
troller was tested with an i.i.d. uniform, a sinusoidal and a
square wave to show the performance and generalization of
the system. The results are presented in Fig. 10. The desired
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(c)

Fig. 10. (Continued.) (c) Feedforward control of system 3. The controller,N , was trained to track uniformly distributed (white) random input, between
[0; 3].

plant output (gray line) and the true plant output (solid line) are
shown for each scenario.

Generally (specific variations will be addressed below) the
tracking of the uniform i.i.d. signal was nearly perfect, and the
tracking of the sinusoidal and square waves was excellent as
well. We see that the control signals generated by the controller
are quite different for the different desired trajectories, so the
controller can generalize well. When tracking a sinusoid, the
control signal for a linear plant is also sinusoidal. Here, the con-
trol signal is never sinusoidal, indicating in a way the degree of
nonlinearity in the plants.

Notes on System 2:System 2 is a nonminimum-phase plant.
This can be easily verified by noticing that its linear-filter part
has a zero at . This plant cannot follow a unit-delay ref-
erence model. Therefore, reference models with different laten-
cies were tried, for delays of zero time samples up to 15 time
samples. In each case, the controller was fully trained and the
steady–state mean-squared-system error was measured. A plot
of the results is shown in Fig. 11. Since both low MSE and low

latency is desirable, a reference model for this work was chosen
to be a delay of ten time samples: .

Notes on System 3:The output of system 3 is constrained
to be positive due to the squaring device in its representation.
Therefore, it is interesting to see how well this system gener-
alizes when asked to track a zero-mean sinusoidal signal. As
shown in Fig. 10(c), the result is something like a full-wave
rectified version of the desired result. This is neither good nor
bad—just curious.

Simulations were also done to see what would happen if the
system weretrained to follow this kind of command input.
In that case, the plant output looks like a half-wave rectified
version of the input. Indeed, this is the result that minimizes
MSE—the training algorithm works!

Notes on System 4:As can be seen from Fig. 10(d), the con-
trol signal required to control this plant is extremely harsh. The
hysteresis in the plant requires a type of modulated bang-bang
control. Notice that the control signals for the three different in-
puts are almost identical. The plant is very sensitive to its input,
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(d)

Fig. 10. (Continued.) (d) Feedforward control of system 4. The controller,N , was trained to track uniformly distributed (white) random input, between
[�0:1; 0:1]. Notice that the control signals are almost identical for these three very different inputs!

Fig. 11. Mean-squared system error (in decibels) plotted versus
control-system latency for System 2.

yet can be controlled precisely by a neural network trained with
the BPTM algorithm.

C. Disturbance Canceling

With system identification and feedforward control accom-
plished, disturbance cancellation was performed. The input to
the disturbance canceling filter was chosen to be tap-delayed
copies of the and signals.

The BPTM algorithm was used to train the distur-
bance cancelers with the same adaptive learning rate

. After training, the perfor-
mance of the cancelers was tested and the results are shown in
Fig. 12. In this figure, each system was run with the disturbance
canceler turned off for 500 time samples, and then turned on for
the next 500 time samples. The squared system error is plotted.
The disturbance cancelers do an excellent job of removing the
disturbance from the systems.

VII. CONCLUSION

Adaptive inverse control is very simple yet highly effective.
It works for minimum-phase or nonminimum-phase, linear or
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Fig. 12. Plots showing disturbance cancellation. Each system is run with the disturbance canceler turned off for 500 time steps. Then, the disturbance canceler is
turned on and the system is run for an additional 500 time steps. The square amplitude of the system error is plotted. The disturbance-canceler architectures were:
N ,N ,N , andN , respectively.

nonlinear, SISO or MIMO, stable or stabilized plants. The con-
trol scheme is partitioned into smaller subproblems that can
be independently optimized. First, an adaptive plant model is
made; second, a constrained adaptive controller is generated;
finally, a disturbance canceler is adapted. All three processes
may continue concurrently, and the control architecture is unbi-
ased if the plant is linear, and is minimally biased if the plant is
nonlinear. Excellent control and disturbance canceling for min-
imum-phase or nonminimum-phase plants is achieved.
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