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ABSTRACT 

The battery management system (BMS) of a hybrid-
electric-vehicle (HEV) battery pack comprises hardware 
and software to monitor pack status and optimize 
performance.  One of its important functions is to 
execute algorithms that continuously estimate battery 
state-of-charge (SOC), state-of-health (SOH), and 
available power.  The primary difficulty when validating 
these algorithms is that there are no sensors that can 
measure SOC, SOH, or available power, so the 
accuracy of the algorithms cannot be directly evaluated.  
To address this problem, we have developed a 
validation strategy based in part on a data synthesis 
system to provide the missing “truth” data.  This paper 
presents the advantages and limitations of such a 
system, describes how it works, and gives some results. 

HEV BATTERY PACK OVERVIEW  

Optimizing the cost, weight, size, and reliability of major 
HEV systems is critical in maximizing the value of the 
HEV to the end customer.  Since the battery pack is 
among the costliest and heaviest components of the 
HEV drive train, it is worthwhile to expend effort on a 
careful design, especially of those components of the 
pack that might impact its lifetime affordability. 

Figure 1 provides a block diagram of a typical HEV 
battery pack.  Comprising the pack are the battery cells, 
junction module(s), BMS, thermal management system, 
wiring and connectors, and the pack housing.  In most 
applications, the cells are wired in series to develop the 
necessary high voltage. 

The primary functions of the battery pack are to store 
electrical energy produced by the vehicle (via the internal 
combustion engine, or during regenerative braking) and 
to provide electrical energy for use by the vehicle 
particularly during acceleration or other peak energy 
demands.   The pack needs to do so in a manner that is 

safe, reliable, and cost efficient.  This includes not only 
minimizing initial purchase costs, protecting the vehicle 
from voltage surges or drop-outs, and preventing harmful 
conditions, but also minimizing operational stresses—
such as excessive temperature, discharging or over-
charging—that can shorten the life of the battery cells.  

 

This is accomplished with the aid of the BMS, which 
manages the delivery and acceptance of electrical 
energy to/from the cells, as well as the operation of the 
cooling system and junction module.  The BMS consists 
of a printed circuit board (PCB)—generally under the 
control of a microprocessor—and connectors (and 
housing, if necessary).  It provides the following 
functions (among others): 

- Cell state monitoring (e.g., voltage, temperature); 
- Dis/charge current measurement and limiting; 
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- Management of the cooling system; 
- Necessary data conditioning, diagnostics and 

battery-to-host vehicle communication functions; 
- High voltage relay energizing and de-energizing; 
- SOC, SOH, and power estimation, including the 

effects of aging. 

This latter function, in particular, is critical as accurate 
estimates allow the pack to be used aggressively but 
without causing damage, allowing for a less expensive, 
lighter, and more reliable battery system than a similar 
unit that is over-designed to compensate for poor 
estimates.  The focus of this paper is on validating these 
algorithms for a production BMS. 

VALIDATING BMS ALGORITHMS 

Many of the BMS functions are quite straightforward, and 
their implementation can be validated in standard ways.  
The internal BMS algorithms that continuously estimate 
battery SOC, SOH, and available power, however, can 
be quite complex and pose unique challenges when 
attempting to qualify them for production systems. 

We have previously reported BMS algorithms that 
perform these tasks [1–3].  Our approach has been 
based on a “model-based estimation” strategy that uses 
a mathematical model of cell behavior to predict internal 
states (e.g., SOC, SOH) and measurable outputs (e.g., 
voltage) based on measurable inputs (e.g., current and 
temperature).  Any deviation between the true measured 
output and the predicted value of the measured output 
can be attributed to model inaccuracy, measurement 
noise, and/or an error in the internal model state.  An 
algorithm is used to adapt the internal state to balance 
between these effects and reduce the prediction error.  

Regardless of which BMS estimation algorithm is used, 
the primary difficulty when validating any such algorithm 
on physical hardware is that the “truth” values are not 
known.  There are no sensors that can directly measure 
SOC, SOH, or available power.  At different points in 
time, laboratory tests can be performed that can be used 
to determine a posteriori what the SOC/SOH/power was 
at that time, but cannot determine SOC/SOH/power in 
real time, as the battery pack operates. 

We have developed a validation methodology or system 
comprising two data/execution parts and a third 
evaluative part as one component of a strategy that 
overcomes this obstacle (cf. Figure 2).  The first part is a 
software simulator of cell dynamics that can synthesize 
various driving, temperature, parameter, and sensor-
fault profiles for the battery pack being modeled.  All 
internal variables that are dependent on the cycling 
history of the cell (e.g., SOC/ SOH/ power) are known to 
the software simulator, so “truth” values are established.  
The input-output behavior of this model has been tested 

against physical cells, and works well.  We call this the 
“Data Generator System” (DGS). 

The second main part of the system executes the BMS 
algorithms, using the synthetic cell data as input, and 
compares the algorithm results, in real time or 
accelerated time, to the “truth” values.  This can be 
performed using the prototype algorithms on a desktop 
PC (which we call the BMS Algorithm Simulation System 
(BASS)), or by feeding the simulated voltage/ current/ 
temperature data to the actual BMS hardware to 
accomplish hardware-in-the-loop (HIL) validation.  The 
estimates generated by either the desktop or the HIL 
system are compared to the truth values via an 
evaluation routine, and conclusions are drawn as to the 
quality of the estimates. 

Some benefits of this approach are: 

1) Standardizes validation of major releases and 
incremental algorithm changes;  

2) Low cost—does not require expensive pack cyclers 
or environmental chambers; 

3) Identifies areas of sensitivity to direct focused efforts 
in future development; 

4) Provides quantitative measures of rate of 
convergence of estimates; 

5) Assesses impact of cell-to-cell variations and the 
effect of aged cells—pack refurbishing and matching 
problems. 

The following sections describe the cell model used to 
synthesize the data, the Data Generator System, the 
BMS Algorithm Simulation System, and the HIL 
Validation System.  We give some lessons learned from 
testing and conclude. 

THE DATA GENERATOR SYSTEM 

The data-generator system is written in the MATLABTM 
scientific computing language.  It comprises a main 
computational core, along with a graphical user interface 
(GUI) to allow simple control over the system.  In this 
section, we first describe the primary element of the 

Figure 2 
Main components of the validation system 



core—the cell model used to synthesize truth data—and 
then describe features of the GUI. 

CELL MODEL USED TO SYNTHESIZE TRUTH 

In order for the proposed validation scheme to be 
effective, the DGS must be able to synthesize cell input-
output and state information that matches that of a 
physical cell operating under the same conditions with 
very high fidelity.  If the accuracy of this step cannot be 
guaranteed, then it is impossible to interpret the results 
of the algorithms meaningfully. 

Our DGS uses a mathematical model of the cells used in 
our BMS—called the “Enhanced Self-Correcting” (ESC) 
cell model—that has been carefully crafted over several 
years, and reported in a number of places [4,5].  To 
summarize, the inputs to the ESC are: cell current, cell 
temperature, and cell parameters, and the output is cell 
voltage.  The model has internal states that keep track of 
polarization voltage(s), hysteresis voltage, and state-of-
charge, and the output voltage is computed as the sum 
of the polarization voltages, ohmic voltage, OCV, and 
hysteresis.  The parameters of the cell model include: 
cell capacity, cell resistance, time constants, and mixing 
factors for the polarization voltages, and maximum 
hysteresis.   

The ESC has been optimized to predict performance of 
the cells in our BMS under highly dynamic conditions 
expected in an HEV environment [5].  Voltage estimation 
errors are zero-mean, with typical RMS error in the 
range of 5–10mV over the 10%–90% SOC range, for 
temperatures greater than –10°C (lower-temperature 
performance improvement of the model is the subject of 
present and future work). 

THE MAIN DGS GUI 

In order to simulate cell states and outputs when 
generating data using the ESC model, the data 
generator needs a fair amount of information.  First, the 
initial values of all states for all cells are required.  

Secondly, the drive-cycle (current) profile1 is needed.  
Third, the temperature of all cells as a time profile must 
be given.  Fourth, all cell model parameters for all cells 
as a function of time must be entered.  Finally, sensor 
faults and noises must be given.  

Data for each of these five basic categories of 
information are entered via a number of GUI windows, 
are stored in individual files, and are later combined 
when synthesizing the drive cycle.  The individual DGS 
GUIs are managed by a main MATLAB GUI, shown in 
Figure 3.  

One of the sub-GUIs allows entry of the initial cell state 
information (polarization voltages, SOC value, hysteresis 
voltage) for all of the cells in the battery pack.  Another 
allows entry of the drive cycle as a current-versus-time 
profile. Such current profiles comprise a sequence of 
sub-profiles, which may be either: dynamic drive cycles 
(e.g., UDDS, US06, HWFET, etc.), rest intervals, or 
constant-current intervals.  The sub-profiles may be 
sequenced in any desired order. 

Temperature profiles are entered in a similar way.  They 
comprise constant-temperature intervals and ramping 
temperature intervals, sequenced in any desired order.  
Different temperature profiles may be entered for each 
cell, if desired. 

Parameter profiles may be entered for every parameter 
of every cell in the battery pack.  The profiles are 
generated in a way that allows either the default value of 
the parameter (temperature dependent, as specified in 
the ESC model), or a biased version of the default 
parameter, or simply replacing the default parameter 
with another value. 

Sensor-fault and sensor-noise profiles may be entered 
for every sensor (current, voltage, temperature) in the 
BMS.  Sensor faults include: “stuck on”, “stuck off”, and 
biases; noises are white Gaussian random variables of a 
given variance.  Note that these sensor faults/noise 
profiles are not used when computing the true cell states 
and parameters in the DGS, but are used when 
computing the measured cell quantities.  That is, they 
represent sensor faults, not cell faults.  Note also that 
faults are applied first, and noise added to the faulted 
sensor. 

                                                        
1 The word “profile” is used in this paper to refer to any 
function of time.  All profiles in the DGS are discrete-time 
sequences with an interval of one second between 
samples.  Note that while HEV dis/charge dynamics are 
considerably faster than this rate, the time constants of 
battery SOC and SOH are considerably slower, so we 
find this sample rate to be sufficient. 

 
Figure 3 

Screen capture of the DGS main GUI 



Temperature-, parameter-, and fault profiles need not be 
the same length (in time) as the drive-cycle profile.  If a 
profile is longer than the drive-cycle profile chosen, it is 
simply truncated and the first portion of the profile is 
used.  If it is shorter than the drive-cycle profile, then two 
options exist.  The default is that the temperature (etc.) 
profile is only applied for the first portion of the drive 
cycle; after that, the default temperature (25 °C), default 
parameter, or default sensor fault/noise (no fault, no 
noise) is used.  However, if the associated “Repeat” 
checkbox is selected, the temperature (etc.) profile is 
repeated over and over to fill the entire drive cycle. 

When all inputs are specified, the data generator may be 
run.  The output of the data generation is stored in a file 
for later input to the BASS.  This file comprises all true 
sensor values, all measured sensor values, all true 
parameters, all true states, and maximum power 
capability of the pack.  The contents of this output file 
may be viewed by a separate GUI, shown in Figure 4. 
(Note that in this particular example there was no sensor 
noise, so the “true current” is identical to the “measured 
current”.  Had sensor noise been included in the data 
synthesized by the DGS for this example it would have 
been immediately evident in the GUI.) 

THE BMS ALGORITHM SIMULATION SYSTEM 

After “truth” and measured data has been generated by 
the DGS, they may be used as input to the BMS 
algorithms in order to test how well they estimate cell 
states, parameters, and available power.  A MATLAB 
GUI has been written to facilitate this task, and is shown 
in Figure 5.  The GUI allows entering the desired truth 
data file (generated by the DGS, as just discussed), a 
key-on/ key-off profile, the version of the algorithms to be 
used in the simulation, the initial states and parameters 
assumed by the BMS algorithms, and which version of 
code to execute. 

The second row of the main BASS GUI allows 
associating a key-on value (i.e., when in time relative to 
the drive cycle the vehicle and the BMS is turned on) 
and/or a key-off value (i.e., when in time the vehicle and 
the BMS is turned off, and (presumably) the battery pack 
is allowed to rest) with every time-step in the data file, to 
allow testing the algorithm initialization and shut-down 
procedures. Note that for events nominally occurring 
during the same time interval, key-on events happen 
first, the algorithms then execute if the key is in the “on” 
state, and key-off events happen last. 

 
Figure 5 

Screen capture of the main BASS GUI 

BASS allows using different versions of the estimation 
algorithms, and allows different cell models to be used 
as well.  (The cell version chosen when computing the 
truth data in DGS is automatically used so does not need 
to be re-entered here).  The algorithm version may then 
be selected; for example, the figure shows the version of 
algorithm that we call A3.3 to be selected. 

The different algorithm versions require different 
information in order to run.  Generally, however, they all 
need some state/parameter initialization, and they need 
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Screen capture of the data display GUI 



some tuning parameters, which control the amount of 
sensor/process noise that the algorithms expect. 

All states and parameters may either be set to default 
values or be replaced by some constant that the user 
enters.  For example, in a hard-reset key-on event, the 
default SOC is computed using open-circuit voltage and 
temperature.  However, to test the robustness of the 
algorithms to poor initialization, the user may enter any 
value of the initial SOC estimate here.  It is then possible 
to see how quickly the algorithm converges to the correct 
SOC from its bad initial estimate. 

When the initial state/parameter and tuning information 
has been entered, it is time to run the algorithms.  The 
prototype MATLAB “m-code” algorithms, and/or the 
hand-coded compiled C-language (“c-code”) algorithms 
may be run. 

When the algorithms have completed, the results may 
be displayed in a separate GUI (cf. Figure 6).  This GUI 
allows powerful data visualization.  All traces of 
state/parameter profiles—both truth and estimate—may 
be viewed.  The state/parameter may be viewed in its 
natural units and compared to the truth value, or may be 
viewed as an estimation error, where the error is 
computed as truth minus estimate.  Error bars (three-
sigma uncertainties as estimated by the algorithms) may 
be overlaid, and grid and legend may be added.  An 
analysis pane automatically computes either the RMS 
estimation error of the present trace or the percentage of 
time the error bounds correctly encompass the truth 
value.  Notice that in this particular example the 
MATLAB m-code and the c-code produce results that 
are too similar to distinguish by eye.  In fact, the analysis 
pane shows that the RMS difference between the two 
curves is 0.002404(%).  We also notice that the 
difference between “true SOC” and estimated SOC  is 
indistinguishable by eye (which is typical for the 
advanced SOC estimation methods we use when 

everything is initialized properly).  The present figure 
may also be copied into a standard MATLAB figure 
window, allowing zooming, editing, saving, printing, and 
so forth. 

THE HIL SYSTEM 

Our algorithm development cycle has several phases.  
The algorithms are first prototyped in MATLAB (for ease 
and speed of development), then hand-coded in the C 
programming language (for speed of execution, and less 
demanding final processor requirements) on a desktop 
platform, and finally included in the software that 
executes on the BMS hardware.  The preceding 
discussion has shown how we can validate the MATLAB 
and desktop C code, and here we discuss how the same 
method can be extended to validate the C code 
executing on the BMS hardware. 

The idea of HIL battery algorithm validation is certainly 
not unique to us (see, for example, [6]).  Our 
enhancement to this idea, however, is that we have 
intentionally designed the HIL system to interface with 
the desktop system, so that a further level of validation 
can be performed on the same data set, with the same 
expected results.  The desktop c-code validation system 
and the HIL c-code validation system intentionally use 
the same algorithm code-base to reduce the chance of 
introducing programming errors.  The main difference 
between the two systems is that the desktop system 
reads measurements from files, while the HIL system 
reads measurements from slave processors connected 
via a serial bus.  In the production BMS, the slave 
processors in turn measure cell voltages, cell 
temperatures, and pack current using appropriate 
sensors, but in the HIL system we have introduced a 
method to inject synthetic data created by the DGS into 
the main BMS via the slave processor serial bus.  This is 
achieved by first converting the MATLAB cell model from 
the DGS into SimulinkTM—a platform for multi-domain 
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simulation of dynamic systems.  The slave functionality 
is modeled in Simulink and couples the cell model to a 
current versus time drive cycle.  A model of the serial 
bus is also used for transmission of the cell voltages, 
current and temperature matrix to the BMS.  These 
Simulink models are then converted to a form that is run 
on a real-time platform.  In our case, this platform is 
dSPACETM (cf. Figure 7 for a block diagram).  The BMS 
receives the appropriate information from the simulator 
as it normally would from actual slave processors. 

With the real-time models of the cell and slave behavior, 
the validation benefits of the desktop are greatly 
enhanced.  The actual implementation of specific 
algorithms, such as SOC, can be evaluated on the BMS.  
This can illuminate many issues that can be masked by 
running algorithms in the desktop environment with 
double precision data.  Timing constraints and fixed-
point errors are a few.  In the case of the SOC algorithm, 
the evaluation routine compares the known truth values 
from the simulator to the BMS estimated output and is 
able to validate the performance in real time. 

We have also devised a method whereby algorithm 
tuning parameters may be downloaded to the BMS 
independently of the main BMS software itself.  
Therefore, the HIL system may be tested using different 
tuning information without the need to recompile 
software every time a new test is attempted.  This also 
allows us to intentionally inject bad initialization data to 
the algorithms to test robustness to conditions we do not 
expect to occur in practice, but to which we must be able 
to respond. 

The HIL system is designed but is still in progress of 
being implemented.  It will be able to execute all of the 
tests described in the next section when completed. 

THE TEST SUITE 

The DGS, BASS, and HIL system just described provide 
a very flexible framework that can be used to execute an 
immense variety of tests on the algorithms.  CPI has 
contracted with a third party, Emmeskay [7], whose 
personnel have helped in defining the tests that should 
be run to properly validate the algorithms. 

The present suite of tests for use in the desktop-
validation system comprises 729 different scenarios.  
Some of these test the normal operation of the 
algorithms, and others test the robustness of the 
algorithms to improper initialization, sensor failures, and 
the like.  A range of static and time-varying ambient 
temperatures are considered, and a variety of driving 
profiles are also included.  If these tests were 
implemented in real time, a number of months would be 
required to run the entire test suite (neglecting the time 
required to set thermal chamber temperatures, etc.).  
However, the entire set of tests can be run on the 
desktop system in either two hours (the hand-optimized 
“c-code” or in 24 hours (the MATLAB “m-code”), 
approximately.  We find it valuable to test both code sets 
from time to time to make sure that the results agree, as 
they should. 

The HIL system operates in real time, so it is not feasible 
to implement all of these 729 scenarios.  We are 
presently pursuing a design-of-experiments approach to 
construct a more practical set of tests to run on this 
system.  We expect to report on these results in the 
future.  The HIL system is also ideal for Design Failure 
Modes and Effects Analysis (DFMEA). 

LESSONS LEARNED TO DATE 

The multi-level validation system that we have presented 
in this paper has provided a number of benefits and 
lessons learned.  We itemize several here: 

- The speedup of the DGS versus a real-time HIL 
implementation allowed testing many scenarios in 
accelerated time.  This would not have been 
possible otherwise, and helped give confidence in 
which aspects of the algorithm were working (and 
which needed more attention). 

- The ability of the DGS/BASS to instantly plot any 
desired internal signal from a file containing data 
from a specific test was invaluable to understanding 
which factors were important and which were 
marginal.  Aspects of the algorithms that we “knew” 
were working in fact needed more attention. 

- Being able to execute the prototype m-code and 
production c-code with the same stimulus (which 
should have produced the same output) helped us 
discover and eliminate a number of very subtle 
programming errors. 

- Generally, it will be impossible to meet all 
specifications all the time (especially if testing 
robustness and intentionally trying to confuse the 
algorithms).  It is necessary to prioritize the 
importance of each test to be performed to balance 
nominal operation against robustness. 

 

Figure 7 
Block diagram of HIL system.  



CONCLUSION 

This paper presents an approach to validating 
algorithms, such as SOC estimation, for a battery 
management system.  Several levels of validation are 
proposed: First, validation of the prototype m-code, next 
validation of the desktop c-code, after that, validation of 
the production software.  To overcome the lack of any 
sensor that can measure “truth” for the quantities of 
interest in real time, all of these levels of testing use 
synthetic test data generated from a cell model, and 
benefit from the “truth” being known by construction.  
The proposed approach also benefits from being 
inexpensive, fast, and can give a good indication of how 
well the algorithms will function in practice. 

This method is no substitute for actual testing of real 
cells.  However, it can help to minimize the amount of 
this testing that is required if a careful design-of-
experiments approach is taken.  A balanced overall 
validation strategy therefore comprises a large suite of 
desktop validation tests and a smaller suite of real-time 
tests on physical battery packs. 
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