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Abstract

We have previously described algorithms for a battery management system (BMS) that uses Kalman filtering (KF) techniques to estimate such
quantities as: cell self-discharge rate, state-of-charge, nominal capacity, resistance, and others. Since the dynamics of electrochemical cells are not
linear, we used a nonlinear extension to the original KF called the extended Kalman filter (EKF).

Now, we introduce an alternative nonlinear Kalman filtering technique known as “sigma-point Kalman filtering” (SPKF), which has some
theoretical advantages that manifest themselves in more accurate predictions. The computational complexity of SPKF is of the same order as EKF,

so the gains are made at little or no additional cost.

This paper is the second in a two-part series. The first paper explored the theoretical background to the Kalman filter, the extended Kalman
filter, and the sigma-point Kalman filter. It explained why the SPKF is often superior to the EKF and applied SPKF to estimate the state of a
third-generation prototype lithium-ion polymer battery (LiPB) cell in dynamic conditions, including the state-of-charge of the cell.

In this paper, we first investigate the use of the SPKF method to estimate battery parameters. A numerically efficient “square-root sigma-point
Kalman filter” (SR-SPKF) is introduced for this purpose. Additionally, we discuss two SPKF-based methods for simultaneous estimation of both
the quickly time-varying state and slowly time-varying parameters. Results are presented for a battery pack based on a fourth-generation prototype
LiPB cell, and some limitations of the current approach, based on the probability density functions of estimation error, are also discussed.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper applies results from the field of study known vari-
ously as sequential probabilistic inference or optimal estimation
theory to advanced algorithms for a battery management system
(BMS). This BMS is able to estimate battery state-of-charge
(SOCQ), instantaneous available power, and parameters indica-
tive of the battery state-of-health (SOH) such as power fade and
capacity fade, and is able to adapt to changing cell characteristics
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over time as the cells in the battery pack age. The algorithms have
been successfully implemented on a lithium-ion polymer battery
(LiPB) pack for hybrid-electric-vehicle (HEV) application,? and
we also expect them to work well for other battery chemistries
and less demanding applications.

We have previously reported work using extended Kalman
filters (EKF) to solve the HEV BMS algorithm requirements
[1-6]. We have since explored a different form of Kalman filter-

2 HEV is a particularly good benchmark for these algorithms since it imposes
demanding requirements on a pack of limited capacity, resulting in cell elec-
trochemistries that are most often far from equilibrium. Therefore, advanced
methods must be used to estimate SOC, SOH, and instantaneous power in order
to safely, efficiently and aggressively exploit the pack capabilities.
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ing called sigma-point Kalman filters (SPKF), and have found
them to have several important advantages. We introduce SPKF
here in a two-part series, of which this is the second part. The
companion to this paper [7] introduces the SPKF and applies
it to estimating the state of an LiPB-based HEV battery cell,
particularly its SOC. In this paper, we build on the introduc-
tion to first investigate the use of the SPKF method to estimate
battery parameters. A numerically efficient “square-root sigma-
point Kalman filter” (SR-SPKF) is described for this purpose.
Additionally, we discuss two SPKF-based methods for simul-
taneous estimation of both the quickly time-varying state and
slowly time-varying parameters. Applications to the HEV BMS
algorithm requirements are outlined, example results given using
fourth-generation prototype LiPB cells, and conclusions made.

We note before continuing that there are conflicting objectives
in making this paper both self-contained and simultaneously
reducing redundant material with respect to the first paper in
this series. We have perhaps erred on the side of conciseness
in several areas. For a more in-depth discussion of sequential
probabilistic inference and the base-line SPKF algorithm, the
reader is referred to Ref. [7].

2. Summary of sequential probabilistic inference

Very generally, any causal dynamic system (e.g., a battery
cell) generates its outputs as some function of its past and present
inputs. Often, we can define a state vector for the system whose
values together summarize the effect of all past inputs. Present
system output is a function of present input and present state
only; past input values need not be stored. The system’s pa-
rameter vector comprises all quasi-static numeric quantities that
describe how the system state evolves and how the system out-
put may be computed. The state-vector quantities change on a
relatively rapid time scale, and the parameter-vector quantities
change on a relatively long time scale (or, not at all).

We assume that the electrochemical cell under consideration
may be modeled using a discrete-time state—space model of the
form

X = f(xk—1, ug—1, wk—1, k — 1) (1)
Yk = h(xk, ug, vk, k). (2)

Here, x; € R" is the system state vector at time index k, and Eq.
(1) is called the “state equation” or “process equation’” and cap-
tures the evolving system dynamics. The known/deterministic
input to the system is u; € R”, and wy € R" is stochastic “pro-
cess noise” or “disturbance” that models some unmeasured input
which affects the state of the system. The output of the sys-
tem is y;x € R™, computed by the “output equation” (2) as a
function of the states, input, and vy € R™, which models “sen-
sor noise” that affects the measurement of the system output
in a memoryless way, but does not affect the system state.
f(xx—1, uk—1, wg—1, kK — 1) is a (possibly nonlinear) state tran-
sition function and g(xg, ug, vk, k) is a (possibly nonlinear) mea-
surement function.

In the companion to this paper we introduced the relevant the-
ory describing the optimal solution to state estimation —based on

Table 1
Summary of the general sequential probabilistic inference solution

General state—space model
X = fOk—1, uk—1, wk—1,k — 1)
Yk = h(xk, uk, vg, k),
where wy and v are independent, Gaussian noise processes of covariance
matrices X, and X, respectively

Definitions: let
Yo=xe =%, W=w—
Initialization: for kK = 0, set
3¢ = Elxo]
) =Elxo — &)(xo — )]

Computation: for k = 1, 2, ... compute
State estimate time update: &, = B[f(xk—1, ug—1, wk—1, k — D[Y—1]
Error covariance time update: X7, = E[(¥;)(&)"]
Output estimate: % = E[A(xk, uk, vi, k) | Ye—1]
Estimator gain matrix: Ly = E[(&;)(50) IELG)G0) )™
State estimate measurement update: & = & + Lk (yk — %)
Error covariance measurement update: Z‘;r_ 0= Yer— Lk Z'_;.,kL;f

a body of knowledge known as “sequential probabilistic infer-
ence” — and showed how various approximations and assump-
tions resulted in the Kalman filter, the extended Kalman filter,
and the sigma-point Kalman filter [7]. Here, we summarize the
key points required to understand parameter estimation and si-
multaneous state and parameter estimation. For greater detail,
the reader should consult Ref. [7].

The general solution from which all the KF variants are de-
rived comprises two major stages per measurement interval.
First, it predicts the present state (the “time update”) given all
prior information; second, it corrects the prediction using the
current measurement (the “measurement update”). The KFs not
only estimate the state, but also the state error covariance matrix
to provide an ongoing uncertainty estimate on the state estima-
tion error.

Table 1 summarizes the general solution. In the notation we
use, the decoration “circumflex” indicates an estimated quantity
(e.g., X indicates an estimate of the true quantity x). A super-
script “—”" indicates an a priori estimate (i.e., a prediction of
a quantity’s present value based on past data) and a superscript
“+” indicates an a posteriori estimate (e.g., 5c,:r is the estimate of
true quantity x at time index k based on all measurements taken
up to and including time k). The decoration “tilde” indicates the
error of an estimated quantity.

Yi = {yks Y—1, -, Yol

The symbol X, = E[xyT] indicates the auto- or cross-
correlation of the variables in its subscript. (Note that often these
variables are zero-mean, so the correlations are identical to co-
variances.) Also, for brevity of notation, we often use X, to
indicate the same quantity as Y.

The algorithm first initializes the filter and iteratively ex-
ecutes six steps each measurement interval. First, the present
state value is predicted using prior data. Second, the covariance
of this state estimate error is updated. Third, the present cell out-
put is predicted. Fourth, the Kalman gain matrix is computed.
Fifth, the actual cell output is measured and compared to the
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Table 2
Weighting constants for two sigma-point methods
v 0tgn) a/({m) agc) a;{c)
UKF  VIFE 1 GRS R S S .
L+ X 2(L+Ar) L+ 2(L+A)
CDKF oL L oL .
h? 2h? h? 2h2
r=0o*(L+x)—Lisa scaling parameter, with (1072 < a < 1). Note that this

ais different from o™ and o(©). « is either 0 or 3 — L. B incorporates prior infor-
mation. For Gaussian RVs, = 2. h may take any positive value. For Gaussian
RVs, h = /3.

estimate. The output estimate error is weighted by the Kalman
gain and used to update the state estimate. Finally, the state esti-
mate error covariance is updated. The output of the filter at each
time instant is the state estimate from step 5 and the error co-
variance from step 6 (used to compute error bounds on the state
estimate).

3. Summary of sigma-point Kalman filters

For nonlinear systems, a closed-form solution or even an al-
gorithm to exactly implement the general probabilistic inference
solution in Table 1 is not available. The EKF is one approach
to approximating the solution using a first-order linearization of
the system dynamics, which is based on some questionable as-
sumptions. Sigma-point Kalman filters are an alternate approach
to generalizing the Kalman filter to state estimation for nonlin-
ear systems. SPKFs rely on numeric approximations rather than
analytic approximations of the EKF. Each time step, a set of
points (sigma points) is chosen so that the (possibly weighted)

Table 3
Summary of the nonlinear sigma-point Kalman filter

1371

mean and covariance of the points exactly matches the mean and
covariance of the a priori random variable. These points are then
passed through the nonlinear function, resulting in a transformed
cloud of points. The a posteriori mean and covariance that are
sought are then approximated by the mean and covariance of this
cloud. Note that the sigma points comprise a fixed small num-
ber of vectors that are calculated deterministically—not like the
Monte Carlo or particle filter methods. This method is used to
approximate state and output estimates, and their covariances.

Specifically, if the input random vector x has dimension L,
mean X, and covariance X, then p + 1 = 2L + 1 sigma points
are generated as the set

X = (%% +yVEn X - yV/Ex),
with elements of X indexed from O to p, and where the matrix
square-root R = +/X computes a result such that ¥ = RRT.
Usually, the efficient Cholesky decomposition [8,9] is used, re-
sulting in lower-triangular R. The reader can verify that the
weighted mean and covariance of A" equal the original mean and
covariance of random vector x for a specific set of {y, ™, a(°>}
if we define the weighted mean as X = Zp 0 a(m)X i, the

Pl )(X —x)(.){ ~- 0T X;

as the ith element of X', and both o™
the necessary (but not sufficient) conditions that Zp 0%

weighted covariance as

as real scalars with
(m) _ 1

and cx

and ) f:o aEC) = 1. The various sigma-point methods differ only
in the choices taken for these weighting constants. Values for the
two most common methods — the unscented Kalman filter (UKF)
[10-15] and the central difference Kalman filter (CDKF) [16—
18] — are summarized in Table 2. In this work, we use the CDKF
parameters.

Nonlinear state—space model
Xg = fQok—1, Ug—1, Wg—1,k — 1)
Yk = h(xk, uk, vk, k)

where wy and v are independent, Gaussian noise processes of covariance matrices X, and X, respectively

Deﬁnitiom let

=g, wi, odT, XL =1 )T, (DT, p =2 x dim(x])
Initialization: for k = 0, set

5(0 = E[xo]

iy = El(xo — £)(xo — )71

Computation: for k = 1, 2, ... compute

State estimate time update

Error covariance time update

Output estimate

Estimator gain matrix

State estimate measurement update
Error covariance measurement update

5 =Bl = [Gg)", o, oI

i’(J)r = Bl(x§ — 5 ) — 20T = diag(ZF ), Zu, £0)

a,+ Aa+ ~d,+ a,+ ~d,+ a,+
Al =15, l’xk (R AVRZTIRTE AR VR PNY

X = PG e XY k=)

A= P (m) —
xk - i=0 «; Xx
P © X A
D DG AR D C A
ykl —h(X’,(, ,uk,XZ 1,~k)
ZI—O fm)ykl
3o, = 14 (C) _ T
vk =D ii0®% Yii = I)Vki — Ii)
4
sk = ,[0 fc)(X/:, =3 Vki — 30T
L= Eﬁkz_l

3 =% + LeOk — 50
- )
E:‘(.k = Ei.k — Ly X5L
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To use SPKF in an estimation problem, we first define an
augmented random vector x“ that combines the randomness of
the state, process noise, and sensor noise. This augmented vector
is used in the estimation process. The math behind the SPKF is
described in Ref. [7] and the overall solution is summarized in
Table 3.

4. Computationally efficient square-root sigma-point
Kalman filters

Sigma-point Kalman filters may be used directly for state
estimation and we have shown that they produce better state
estimates and much better covariance estimates than EKF [7].
The computational complexity is O(L>), which is of equivalent
complexity to EKF state estimation, where L is the dimension
of the augmented state. They may also be used for parameter
estimation, as will be described in the sequel, but the compu-
tational complexity remains O(L>), whereas the corresponding
EKF method has complexity O(L?).

The bottleneck in the SPKF algorithm is the computation of
the matrix square-root SkSkT = X} each time step, which has
computational complexity O(L>/6) using a Cholesky factor-
ization. A variant of the SPKF, to which we will refer as the
square-root SPKF, propagates Sy directly without needing to
re-factor each time step [15,19,20]. This approach has several
advantages: there are improved numeric properties as the covari-
ances are guaranteed to be positive semi-definite, and although
the state estimation update is still O(L>), the parameter update
may now be done in O(L?). Therefore, for the same computa-
tional complexity of EKF, better results are obtained.

Three important linear-algebra techniques are required to im-
plement SR-SPKF [8,9]:

® OR decomposition: The QR decomposition algorithm com-
putes two factors Q € RV*N and R € REXN for a matrix
A € REXN such that A = QR, Q is orthogonal, R is upper-
triangular, and N > L. The property of the QR factorization
that is important here is that R is related to the Cholesky fac-
tor we wish to find. Specifically, if R € RE*L is the upper-
triangular portion of R, then RT is the Cholesky factor of
Y = ATA. Thatis,if R = qr(AT)T, where qr(-) performs the
QR decomposition and returns the upper-triangular portion
of R only, then R = chol(AAT).?
This information may be used by noticing that step 2 of
the SPKF method computes

k_za(C)(sz DGR

which may also be written as X., = AAT, where

A= [\/agc)(z\,’ 10 — %)l A similar computation is
performed in step 4. Rather than computing AAT and then

3 Some implementational care is advised as the QR decomposition and
Cholesky factorizations are not defined identically by all numeric packages.
For example, chol() or qr() may return the transpose of the desired result.

later computing the Cholesky factor thereof, we can instead
compute the QR decomposition of AT, and propagate the R
component. The computational complexity of the QR decom-
position is O(NL?), whereas the complexity of the Cholesky
factor is O(L3/6) plus O(NL?) to first compute AAT.

® Cholesky downdating: Note that the previous method

(c)

fails whenever «; " is negative, because the square-root

involved will not have a real value. In particular, aE)C) is
frequently negative, and the final step of SPKF computes
ZL =25 LkZ‘;,,kLz. Using the latter case as an
example we cannot simply append a column to A with
value /—X5 Ly because of the negative sign inside the
square-root. The solution to this problem is the Cholesky
downdating procedure, which takes as input the Cholesky
factorto AAT and ,/ 25,k Lk, and computes the updated factor
for AAT — Ly X5 ¢ L]. If Xy is not a scalar, downdating is
done using each of its columns. This algorithm is only O(L?).

® Backsubstitution: Finally, the solution to the estimator gain
matrix computationis Ly X5 = 25, » Whichmay be written
as Ly = E~y (854S
ke If y; is not a scalar, this equation may often be
computed most efficiently via back-substitution in two steps.
First, (z)S~k = Zl-k is found, and then LSy =z is
solved. Slnce Sy,k is already triangular, no matrix inversion
need be done. Backsubstitution has complexity O(N?/2).

’k)_l, or alternately as Lk(Sy,kS},’k) =

To use SR-SPKF in an estimation problem, we again define an
augmented random vector x? that combines the randomness of
the state, process noise, and sensor noise. This augmented vector
is used in the estimation process as described below.

SR-SPKF step 1: state estimate time update. As with
SPKF, each measurement interval, the state estimate time
update is computed by first forming the augmented a pos-
teriori state estimate vector for the previous time interval:
R0 =& T, w, 9]7. With SR-SPKF, the square-root aug-
mented a posteriori covariance estimate is computed: Sfl‘,:r =

dlag( k-1 Sw, Sy). These factors are used to generate the

ald,+  ad,+ ~d,+
+1 sigma points: X} lz{xk 1 X 1+yS~k LA —

yS& Tk ]} From the augmented s1gma points, the p + 1 vectors
comprising the state portion X 1 and the p + 1 vectors com-
prising the process noise portion X’} pl 1 are extracted The pro—

cess equation is evaluated using all pairs of X'} 1 ;and X} 1 ;
(where the subscript i denotes that the ith clement is being ex-
tracted from the original set), yielding the a priori sigma points
Xy for time step k. Finally, the a priori state estimate is com-
puted as iy = Y ga™Apr.

SR-SPKF step 2: error covariance time update. Using the a
priori sigma points from step 1, the square-root a priori covari-
ance estimate is computed as

T
_ — A—\T
Sic,k:qr{{\/a56)(Xz:(0:p)_xk) ” .

SR-SPKF step 3: estimate system output yy. The system out-
put is estimated by evaluating the model output equation using
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Table 4
Summary of the square-root sigma-point Kalman filter for state estimation
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Nonlinear state—space model
X = fOk—1, uk—1, wk—1,k — 1)
Yk = h(xg, uk, vk, k)

where wy and vi are independent, zero-mean, Gaussian noise processes of covariance matrices X, and X, respectively

Definitions: let

=, wl, ofIT, X = (@D, @, @D, p =2 x dim(x)

Initialization: for k = 0, set
37 = Elxo]
57 = chol{B[(xo — X )(xo — &)1}

Computation: for k = 1, 2, ... compute
State estimate time update

Error covariance time update

Output estimate

Estimator gain matrix

State estimate measurement update
Error covariance measurement update

i =Elx§l =[G, 0, 0]
8¢ = chol{E[(x§ — &5 M) — 20 )1} = diag(S7y, S, Su)

Gt _ att aat a+  sat a+

X0 = {xk—l’+xk—l + ySi,kjrl’xk—l = VSth-t)
X, — X, w,

XET = f e AP k= 1)

p (m)Xx,—
ki

Xk: o

i=0 i

o = Al X, = 50T
Vei = WXy, u, XZ’jL,-, k)

=0 o™ Ve
Sy, = qr{[/ a,('C)(yk,(O:p) — 30T
Tou = D4 Xy = ROk — 30

Ly = Z;y’k(S;kS;,,k)*l (solved by backsubstitution)

=% 4 Ln — )
Si = downdate{Sc ., Ly Sy.x}

the sigma points describing the spread in the state and noise vec-
tors. First, we compute the points Vi ; = h(Xz:; , U, XZf] i k).
The output estimate is then y; = Z,P:o ag”‘)yk,,-.

SR-SPKF step 4: estimator gain matrix Li. To compute the
estimator gain matrix, we must first compute the required co-
variance and square-root covariance matrices.

T
Sy k= qr{ {\/ aEC)(yk,(O:p) - j’k)T} }
Tok = 2ico “,('C)(iji_ = X)) Vk,i — )

Then, we simply compute Ly = 25k, ,1(, solved by backsub-
stitution.

SR-SPKF step 6: error covariance measurement update. The
final step computes the square-root form of Z’; K= 25k —

LiZyiLf as ST, = downdate { S, LiSy.c |- The SR-SPKF
solution for state estimation is summarized in Table 4, and re-

sults for both SPKF and SR-SPKF for SOC estimation are given
in Section 8.3.

5. Parameter estimation using SR-SPKF

The various methods for state estimation presented so far have
assumed a known system model in the form of Egs. (1) and (2).
These equations will generally involve numeric values in their
computations. Some of these values might be intrinsic constants,
but others might be factors determined by the electrochemistry
or construction of a particular cell. We refer to these latter factors
as the “parameters” of the cell model.

To use the enhanced self-correcting (ESC) cell model as an
example (cf. Section 7), the parameters comprise the following:
the Coulombic efficiency 5, the total capacity C, the filter poles

PN A the filter weighting factors g1, .. ., 8ns_ 1 the cell
discharge and charge resistances R and R™, the hysteresis rate
constant y, and the maximum level of hysteresis M. Combined,
they are
O=[nCoar....0n;.81,....8 ., R". R,y MI".

We have previously shown how to estimate a system’s state
given a known model and noisy measurements. We now show
how to estimate a system’s parameters given a known state and
clean measurements. We assume that there is a true value for 6
that describes the cell under consideration, and wish to adapt an
estimate 6 to converge to the true value. We begin by proposing a
state—space model for the “dynamics” of the system parameters.

Ok = Ok—1 +rr—1
dr = h(xg, ug, O, Ok, k) + ex.

The first equation states that the parameters are essentially con-
stant, but that they may change slowly over time by some driving
process, modeled by a process ry of small fictitious “noise”. The
output equation for the state—space model of true parameter dy-
namics is the estimate of cell output based on the previous state,
the measured inputs, and parameter estimates, added to some
estimation error e.

With this system defined, we can apply SR-SPKF to estimate
the parameters. The SR-SPKF solution for parameter estimation
is summarized in Table 5. The dominant differences between
state and parameter estimation are: in parameter estimation the
noises are assumed to contribute linearly to the state and mea-
surement equations, and an approximate process noise update is
performed (see [15] for details).
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Table 5

Summary of the square-root sigma-point Kalman filter for parameter estimation

Nonlinear state—space model
Ok = Ok—1 + rk—1
di = h(xg, uk, Ok, O, k) + ek

where ry and e are independent, zero-mean, Gaussian noise processes of covariance matrices X, and X,, respectively

Definition: let

Dyj—1 = fdiag{Sgk,l

Initialization: for k = 0, set
B =El6o] S, = chol {E[(6 — 856 — 7)1}

Computation: for k = 1, 2, ... compute
Parameter estimate time update
Error covariance time update

Output estimate

Estimator gain matrix

Parameter estimate measurement update
Error covariance measurement update

)+ \/dmg{sg;H}2 +diag{Z,x_1} p =2 x dim(by)

A= _ o+
O =0,

— ot
Si = Spact T Pri

Wi = 6.8 +vS;,. 00 —vS;,)

Dr,i = h(xk, uk, Vg, Wi, k)

dy = ip=0 Oll(.m)Dk'i

Sqp = qr{[\/o?('Dky(ij) ) NOARY
= T Wi = 9D — )T
L, = E(.;a,k(S;kS;i_,()*1 (solved by backsubstitution)
OF =0 + Li(dx — di)

S(;k = downdate(S; . LiS; ¢}

6. Joint and dual sigma-point filtering

We have now shown how to estimate the state of a system
given a known model and noisy measurements and how to esti-
mate the parameters of the system given a known state and clean
measurements. We proceed to give two methods whereby one
can simultaneously estimate both the state and parameters of a
system given noisy measurements.

The various methods of state estimation presented so far have
assumed a constant system model. However, when applying
these procedures to estimate battery SOC, for example, we en-
counter a possible source of error: not all cells are created equal.
Most of the research reported here has been conducted using
prototype high-power LiPB cells, constructed by hand. In these
cells, there is a great deal of variability in resistance, capacity,
time constants, and so forth. Even when mass-produced, how-
ever, there is some cell-to-cell variation, which only increases
as the cells age, both in accumulated cycles and in calendar life.

Some of the critical parameters, such as cell resistance and
capacity, directly limit the pack performance through “power
fade” and “capacity fade”, so are indicators of the battery state-
of-health. It is important to be able to estimate these and other
parameters to: (1) maintain an accurate model for SOC estima-
tion, (2) understand the present battery state-of-health, and (3)
predict remaining service life.

Keeping in mind the previous discussion on estimating SOC,
it is apparent that the quantities descriptive of the present battery
pack condition exist on two time scales. Some change rapidly,
such as SOC, which can traverse its entire range within minutes.
Others may change very slowly, such as cell capacity, which
might change as little as 20% in a decade or more of regular
use. The quantities that tend to change quickly comprise the
state of the system, and the quantities that tend to change slowly
comprise the time-varying parameters of the system.

Any of the KF methods used to estimate SOC might be
adapted to concurrently estimate both the state and the slowly
time-varying cell parameters by combining the cell model state
vector with the model parameters and simultaneously estimat-
ing the values of this augmented state vector. This method is
called joint estimation. It has the disadvantages of large matrix
operations due to the high dimensionality of the resulting aug-
mented model and potentially poor numeric conditioning due to
the vastly different time scales of the states (including parame-
ters) in the augmented state vector. However, it is quite straight-
forward to implement. We first combine the state and parameter
vectors to form an augmented state such that the dynamics may
be represented by

Xk || fOk—1s urk—1, Op—1, wk—1, k — 1)
Ok Ok—1 + -1
Yk = h(xk, ug, vk, k).

Note that to simplify notation, we will refer to the vector com-
prising both the present state and the present parameters as Xy,
the vector comprising the present process noise and present pa-
rameter noise as Wy, and the equation combining the dynamics
of the state and the dynamics of the parameters as F. This allows
us to write

X = F(Xp—1, ug—1, Wi—1, k= 1)
Yk = h(Xg, ug, vg, k).

With the augmented model of the system state dynamics and
parameter dynamics defined, we apply the SPKF method. Table
6 gives a listing of the steps, which correspond directly to
the state estimation SPKF steps, except with larger matrix
operations.

The second method, dual estimation, also uses a Kalman fil-
tering approach to estimate both state and parameter values, but
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Table 6
Summary of the nonlinear sigma-point Kalman filter for joint estimation

State—space model
X | | SOt et w1, 1, k= 1)
Ok Ok—1 + 151

T
Vi = h(Xg, ug, vk, k)
Yk = h(xg, ug, v, O, k)

= FAXg—1, Up—1, Wi—1, k = 1)

where wy, r¢, and vi are independent, Gaussian noise processes of covariance matrices X, X\, and X, respectively. For

brevity, we let X; = [xz, QE]T, Wy = [w{, rg]T and Xw = diag(Xy,, X))
Deﬁnitions let
=[XL, WL, 0T, X =[)T, DT, @™,
Initialization: for k = 0, set
X = E[Xol

25 o = BlXo — X0 — X))

Computation: for k = 1, 2, ... compute

State estimate time update

Error covariance time update

Output estimate

Estimator gain matrix

State estimate measurement update
Error covariance measurement update

p =2 x dim(X¢)

Xt = B¢ = (KD, W, 91"

= EI(X§ — X5 OXG — X5 = diag(Z . Zw. £0)
+ + + + -+
XZ 1_{XZ 1»Xa 1+V\/2§§k lxa V\/Euxkfl}
X,— X,+
X Z};(Xk( 1),”;{k I’Xk 1 k=1
K L Tk
Xk = im0 % Xy
- _ r (c) &— X, - &—\T
i = =0 o (X R D aE o
yk,i = h(Xk,( »)ukvXE 1 ‘,k)
=y 0 o™ Vi
Su= Y000 Vi = 50k — 507
X, —
D f’o X = X)Wk — 50"
_ -1
Lk_EX gy
X=X + Le(x —yk)
):;_k_& — Ly Z5L]

uses separate Kalman filters for state estimation and parameter
estimation. The computational complexity is smaller and the ma-
trix operations may be numerically better conditioned. However,
by decoupling state from parameters, any cross-correlations
between changes are lost, leading to potentially poorer
accuracy.

The mathematical model of cell dynamics again explicitly
includes the parameters as the vector 6:

X = fO—1, ug—1, Wk—1, k1, k — 1)
Yk = h(Xg, ug, v, Ok—1, k).

Non-time-varying numeric values required by the model may
be embedded within f(-) and A(-), and are not included in 6.
We also slightly revise the mathematical model of parameter
dynamics to explicitly include the effect of the state equation.

Or = Ok—1 + rr—1

di = h(f(Xk—1, ug—1, Wk—1, Ok—1, k — 1), ug, O, Ok—1, k)+eg.

With these two systems defined, we can apply the standard pro-
cedure of dual extended Kalman filtering [6,21], or generalize
the procedure to other forms of Kalman filtering. Dual sigma-
point Kalman filtering is outlined in Table 7, and comprises two
carefully integrated SPKFs. The algorithm is initialized with the
best guess of the true parameters 93’ = [E[6p], and with the best
guess of the cell state xO = E[xg]. The estimation error covari-
ance matrices are also initialized. The algorithm may be adapted
to use an SR-SPKF for the state- and/or the parameter-estimation
filter in a straightforward manner.

The dual sigma-point Kalman filter can be viewed by drawing
a block diagram, as in Fig. 1. We see that the process essentially

comprises two sigma-point Kalman filters running in parallel —
one adapting the state and one adapting parameters — with some
information exchange between the filters.

6.1. Convergence

The dual/joint extended Kalman filters will adapt & and & so
that the model input-output relationship matches the cell input-
output data as closely as possible. There is no built-in guarantee
that the state or parameters of the model converge to anything
with physical meaning. We take special steps to ensure that this
occurs.

A very crude cell model may be used, combined with the
dual/joint SPKE, to ensure convergence of the SOC state. Specif-

gt ol et A T ST A
o | B 5= '
il 1 Time Update »k | Measurement g
Uj— »| SPKF, | »| Update SPKF, »iF
- A A
% Uk —4 Yk —
|_,+ , A0
Time Update 1 Measurement ail 9;:_
ék'" vl | | SPKFg: || [ irityn =] Update SPKFg | . [ ™
5=
—1 + e’ |
26,&—1 k :

Fig. 1. Diagram of dual estimation method. Solid lines represent state- and
parameter-vector signal flow, and dashed gray lines represent error covariance
matrix signal flow.
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Table 7

Summary of the sigma-point Kalman filter for dual state and parameter estimation
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Nonlinear state—space models
= f(Xk—1, Uk—1, Wg—1, Ok—1,k — 1) d Ok = Ok—1 + rr—1
Yk = h(xk, uk, vk, Ok, k)

dr = h(f(xk—1, ug—1, Wk—1, Ok—1, k — 1), ug, Vg, O—1, k) + e

where wg, vk, i and e, are independent, Gaussian noise processes of covariance matrices X, X, X, and X,, respectively

Definitions
xk [XZ, wk, Uk]T Xa — [(XX)T (Xw)T (XU)T]T —2x dim(xZ)

Imtlahzatlon: fork = 0, set
= E[6o]
xo = E[xo]
) =Elxo — £)(xo — )71
Computation: for k = 1, 2, ... compute
Parameter estimate time update

Parameter covariance time update

State estimate time update

State covariance time update

Output estimate, parameter filter

Output estimate, state filter

State filter gain matrix

Parameter filter gain matrix

State estimate measurement update

State covariance measurement update
Parameter estimate measurement update
Parameter covariance measurement update

=, =El6o — 676 — o))"
“’* = Elxf] = & EAS LR N DJT

2;1* El(x§ — % +>(x0 — 50T = diag(Z ), 2, Z0)
o =8,

- +
29 Eek  F 2

a4+ _ ) sat+ a+ a+ - sa+
X 1_{xk TR S AV PN i 4
X7 = P e X B k=)

P (m)»—
lOlX

b Y f”(;\fﬁt — BT =357

Wi = {Qk,Q +y1/29k,077y1/29ik}

Dri = h(f&]_ | uk—1, Wr—1, Wei k — 1), e, D, Wei, k)

a,+
Z‘)‘c,k—l }

&k = 17_0 fm)Dk i, OF dk = Dk 0

ykt _h(th vukvXk ll’ek 1k)

e = IPO fm)ykl

gk = lp 0 " Vei = 90 Vei — 5007

T = Dico IC S T TR AL

Lx EXS kZ'_

Sk = ‘”_O o (Dii — di)(Dri — de)T

2@_21.1( = 2ui=0 EC)(sz — 0Dy — di)"
E(:)dkzdk

Xk —Xk +Lk(yk - j’k) T
2)'( k= Zap Lizi';k(Li)
OF =0 + LGk — do)

+ oy 6y oNT
= Zé,k — Ly X5 (LY)

ically,

& ~ OCV(zx) — Riy
OCV(zx) = yr + Rix
2 = OCV~!(yx + Riy).

By measuring the cell voltage under load, the cell current, and
having knowledge of R (perhaps through @ from the dual/joint
SPKF), and knowing the inverse OCV function for the cell chem-
istry, one can compute a noisy estimate of SOC, Z.

To combine this simple model with the dual/joint SPKF,
the cell model being used (e.g., perhaps the ESC model in
Section 7) has its output equation augmented with SOC:

OCV(z) — Rix + Gfi + Mhy
Tk

h(xg, ug, vk, O, k) =

The joint/dual SPKF is run on this modified model, with the
“measured” information in the measurement update being

Yk

2k
While the “noise” of Z; (short-term bias due to hysteresis ef-
fects and polarization filter voltages being ignored) prohibit it
from being used as the primary estimator of SOC, its expected
long-term behavior in a dynamic environment is accurate, and
maintains the accuracy of the SOC state in the joint/dual SPKF.

7. The enhanced self-correcting cell model

In order to examine and compare performance of the pro-
posed algorithms, we must first define a discrete-time state—
space model of the form of (1) and (2) that applies to battery
cells. Here, we briefly review the “enhanced self-correcting cell
model” from Refs. [5,3]. This model includes effects due to
open-circuit-voltage, internal resistance, voltage time constants,
and hysteresis. For the purpose of example, we will later fit pa-
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SOC as a function of time
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Current for one UDDS cycle (zoom)
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Fig. 2. Plots showing SOC vs. time and rate vs. time for UDDS cell tests. SOC is shown in (a) and rate for one UDDS cycle is shown in (b).

rameter values to this model structure to model the dynamics
of high-power lithium-ion polymer battery cells, although the
structure and methods presented here are general.

State-of-charge is captured by one state of the model. This
equation is

ni AT\ |
Tk = Zh—1 — i—1,

C

where AT represents the inter-sample period (in seconds), and
C represents the cell capacity (in ampere-seconds).

The time constants of the cell voltage response are captured
by several filter states. If we let there be n ¢ time constants, then

fi =Agfio1+ Brig_1.

The matrix Ay € R"/*"/ may be a diagonal matrix with real-
valued entries. If so, the system is stable if all entries have mag-
nitude less than one. The vector By € R"7*! may simply be set
ton g “1”s. The value of n y and the entries in the A y matrix are
chosen as part of the system identification procedure to best fit
the model parameters to measured cell data.

The hysteresis level is captured by a single state

) hi—1

Niik—1y AT

hy = —

k CXP( C
ilk—1y AT

+ (1 — exp <— WD) sgn(ig—1),

where y is the hysteresis rate constant, again found by system
identification.
The overall model state is

e =LA he, zi]T

The state equation for the model is formed by combining all of
the individual equations, above.

The output equation that combines the state values to predict
cell voltage is

vk = OCV(z) + Gfi — Rix + Mhy,

where G € R'*"f is a vector of constants that blend the time-
constant states together in the output, R the cell resistance (dif-
ferent values may be used for dis/charge), and M is the maximum
hysteresis level.

8. Application to battery management systems
8.1. Cell and cell test description

The cells used in this paper differ electrochemically from
those reported in previous work. We refer to the older cells as
GENZ3 cells, and to the newer cells as G4 cells. The GEN3 cells
are high-power (>20 C capable) 7.5Ah Mn spinel/graphite LiPB,
and the G4 cells are very high-power (>30 C capable) 5Ah Mn
spinel/blended-carbon LiPB, both reported in Ref. [22].

In order to compare the various Kalman filtering methods’
abilities to estimate SOC and SOH, we gathered data from two
prototype LiPB cells. One cell’s data was used to tune cell model
parameters, and the second cell’s data was used in some tests to
see how well the filters generalized to slightly different dynamics
than expected. For the tests, we used a Tenney thermal chamber
set at 25 °C and an Arbin BT2000 cell cycler. Each channel of
the Arbin was capable of 20 A current, and 10 channels were
connected in parallel to achieve currents of up to 200 A. The cy-
cler’s voltage measurement accuracy was £5 mV and its current
measurement accuracy was =200 mA.

The cell test we use here comprised a sequence of 18 (full)
“urban dynamometer driving schedule” (UDDS) cycles, sepa-
rated by 15 A discharge pulses and 5-min rests, and spread over
the 90-10% SOC range. The SOC as a function of time is plotted
in Fig. 2(a), and rate as a function of time for one of the UDDS

OCYV as a function of SOC
4.2 T T T T T T T T T
-==50°C
4F J
—25°C
3.8F 0°c ]
S 36f| -~ -25°C ]
L34} > ¢ :
S 3.2k 27 ]
> P
3t Lz ]
&
28H4 :
26 E
24

0O 10 20 30 40 50 B0 70 80 90 100
SOC (percent)

Fig. 3. Plot of open-circuit-voltage as a function of state-of-charge.
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Fig. 4. Modeling of voltage and SOC: (a) ESC modeling of cell voltage vs. true cell voltage for one UDDS cycle and (b) instantaneous voltage-based (non-SPKF-based)

SOC estimate plotted vs. true SOC.
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Fig. 5. SOC estimation error for SPKF vs. SR-SPKF with correct filter initialization: (a and b) use training data and (c and d) use generalization data.

Table 8
Comparison of SPKF vs. SR-SPKF in UDDS test results predicting SOC

Correctly initialized

Incorrectly initialized

RMS error Maximum Bounds error (%) RMS error (%) Maximum error (%) Bounds error (%) Time to converge (s)
(%) error (%)

SPKF 0.30 1.51 0.99 1.44 20.19 2.74 1138

SR-SPKF 0.30 1.51 0.98 1.44 20.19 2.68 1138

SPKF generalize 0.95 4.49 0.35 2.01 23.15 7.75 2816

SR-SPKF generalize ~ 0.94 449 0.35 2.01 23.15 7.76 2816
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Fig. 6. SOC estimation error for SPKF vs. SR-SPKF with incorrect filter initialization: (a and b) use training data and (c and d) use generalization data.

Table 9

Comparison of joint SPKF vs. dual SPKF vs. dual SR-SPKF in UDDS test results predicting SOC

Correctly initialized

Incorrectly initialized

RMS error (%) Maximum Bounds error (%) RMS error (%) Maximum error (%) Bounds error (%)  Time to
error (%) converge (s)
Joint SPKF 0.29 1.34 1.31 1.13 19.83 3.02 1134
Dual SPKF 0.32 1.33 0.21 1.35 19.83 2.15 1181
Dual SR-SPKF 0.27 1.33 1.05 1.26 19.83 2.74 1138
Joint SPKF generalize 0.93 4.40 0.21 2.11 22.94 8.02 2839
Dual SPKF generalize 1.18 543 10.75 2.02 22.87 12.30 3950
Dual SR-SPKF generalize  0.90 4.35 0.23 2.01 22.87 10.33 3369

cycles is plotted in Fig. 2(b). We see that SOC increases by about
5% during each UDDS cycle, but is brought down slightly less
than 10% during each discharge between cycles. The entire op-
erating range for these cells (10-90% SOC, delineated by dashed
lines in the figure) is excited during the cell test.

8.2. Fitting data to the enhanced self-correcting model

Data collected from the first cell was used to identify initial
parameters for the ESC cell model. The goal is to have the cell
model output resemble the cell terminal voltage under load as
closely as possible, at all times, when the cell model input is
equal to the cell current. Model fit was judged by comparing root-
mean-squared (RMS) estimation error (estimation error equals
cell voltage minus model voltage) over the portions of the cell
tests where SOC was between 5 and 95%. Model error outside

that SOC range was not considered as the HEV pack operation
design limits are 10-90% SOC. Details for how the open-circuit-
voltage curve was generated and how the model parameters were
fit are described in Ref. [23]. In particular, the open-circuit-
voltage as a function of state-of-charge for these cells is plotted in
Fig. 3. Values were fit to the other ESC-model parameters, with
very close agreement between the cell model voltage prediction
and the cell true voltage. In this work, the model employs two
low-pass filter states (n s = 2), a nominal capacity of 5.0 Ah,
and an inter-sample interval of AT = 1s.*

4 We note here that prior work with the third-generation cells used n r=4%and
that this work using fourth-generation cells uses n y = 2. There are competing
objectives here: to make the model as accurate as possible, and to make the filter
as computationally efficient as possible. The minimum number of filter states
that can result in a zero dc-gain is two, and we find that SPKF is enough superior
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Fig. 7. SOC estimation error for joint SPKF vs. dual SPKF vs. dual SR-SPKF with correct initialization: (a—c) use training data and (d—f) use generalization data.

Some modeling results are shown in Fig. 4. In frame (a), the
ESC cell voltage prediction is compared with test data. Very
close agreement is observed especially during the dynamic part
of the test. In frame (b), an instantaneous voltage-based SOC es-
timate, calculated as Z; = OCV_I()’k + Riy) (cf. Section 6.1),
is compared with true SOC.> This comparison is made to show:

to EKF that it gives acceptable estimates with a poorer model. Therefore, we
have chosen to use n y = 2 here.

5 We calculate “true” SOC using Coulomb counting from the Arbin test equip-
ment. Bias and noise in the Arbin current sensor will cause this value to drift from
the ideal value, but over the relatively short duration of the tests and given the

(1) that such an estimate is too noisy to be used as an estimate
of SOC by itself (and therefore we need to use more advanced
methods, such as SPKF), but (2) it yields average behavior in
dynamic tests that is accurate, and so is useful to ensure conver-
gence of the parameters in a dual or joint application. Note that
there is no point in low-pass filtering this result, as the delay of
such a filter would make the estimate useless. Rather, the tuning

high accuracy of the Arbin sensors we feel that this is a reasonable approximation
to true SOC. The cost of using such high-accuracy sensors in a production BMS
is prohibitive, which is why we instead investigate using intelligent algorithms
and less-expensive sensors.
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Fig. 8. SOC estimation error for joint SPKF vs. dual SPKF vs. dual SR-SPKF with incorrect initialization: (a—c) use training data and (d—f) use generalization data.

parameters of the SPKF are used to adjust the “belief” that the
filter has in the accuracy of Z; when adapting its own internal
state.

8.3. Examples of SPKF and SR-SPKF

In the companion to this paper, we showed SPKF SOC esti-
mation results compared against EKF results for th GEN3 cell.
The conclusion was that the SPKF was better in all cases, so we
do not include EKF results here. Rather, we begin by present-
ing SPKF results for the G4 cell. For brevity, we include only
room-temperature results here.

Fig. 5(a) shows SOC estimation error and predicted error
bounds for the training cell, where the SPKF state was correctly
initialized.® In particular, the SOC state of the SPKF was ini-
tialized to the correct value of 100%. Frame (b) shows the same
result using SR-SPKF. The results are nearly identical, as ex-
pected. RMS SOC estimation error was 0.3% and maximum

6 The error bounds are computed as plus/minus three times the square-root of
the covariance matrix diagonal element corresponding to the SOC state. These
are referred to as “three-sigma” bounds, and if all densities are Gaussian, the
bounds should correctly encompass the true value of SOC 99.7% of the time.
Section 8.5 discusses the validity of this assumption in more detail.
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Instantaneous resistance and capacity estimates
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Fig. 9. Instantaneous resistance and capacity estimates by joint SPKF (dual filter
results similar).

SOC error was 1.51%. The estimation error bounds correctly
included the true SOC value for all but about 1% of the test run.
The bounds were incorrect only at the very end of the test where
true SOC was below 10% and out of the expected operating
range of the cell—thus the bounds correctly included the true
SOC for all SOCs of importance.

Frames (c¢) and (d) show the same results when the SPKF
was applied to data from the second cell—the one not used to

SOC error: Training data and good initialization
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train the model parameters. We see slightly poorer performance,
as would be expected. Note that post-test analysis indicates that
this cell may have been overcharged to about 104% before the
test began —based on OCV data — which explains why the SPKF
gave an initial 4% error when initialized to 100%. The filter was
still able to converge to the true SOC.

Fig. 6 shows results parallel to those of Fig. 5 for the case
where the filter SOC state was intentionally initialized with an
incorrect value (80% rather than 100%) to demonstrate the con-
vergence properties of SPKF. We see relatively fast convergence
to within 5% SOC error, about 20-min convergence to 2% error
for the training cell and about 45-min convergence to 2% error
for the generalization cell. Convergence time may be adjusted
by varying X, and X, and could have been made faster than
the results shown. The tradeoff would have been poorer SOC
bounds estimate.

Table 8 summarizes the results of these tests. The “bounds
error”’ column shows the percentage of time the SOC estimation
bounds did not encompass the true SOC. Note that this was
always at very low and high SOC - out of the operating range
of the cell — so is not of concern here. The “time to converge”
column for the generalization tests show how many iterations
(seconds) were required for the SOC error to converge to less
than 2%.

SOC error: Training data and bad initialization
0‘7 F T T T T T T

— Histogram from data
06k —— Gaussian pdf

Relative frequency

-5 -4 -3 -2 4 0 1 2 3 4 5
(b) Standard deviations away from zero

SOC error: Testing data and bad initialization
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Fig. 10. Empirical probability—density functions of SOC estimation error normalized by standard deviation: (a) training data and correct initialization, (b) training data
and incorrect initialization, (c) generalization data and correct initialization, and (d) generalization data and incorrect initialization. The standard-normal distribution

is overlaid in each case.
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8.4. Examples of joint and dual ID

We conducted tests to determine the SOC estimation perfor-
mance of the joint/dual SPKEF filters as well. Figs. 7 and 8 show
results parallel to those of Figs. 5 and 6.

In Fig. 7, results are shown when the filter state was correctly
initialized; in Fig. 8, the SOC state was intentionally initialized to
an incorrect value (80% rather than 100%) to show convergence
properties. In frames (a)—(c), results using the cell from which
parameters were originally trained are shown; in frames (d)—
(f), generalization results are shown. Note that the joint/dual
filters adapt their parameters, so that over time they learn the
dynamics of any cell they are modeling, and SOC estimation
error improves.

Table 9 summarizes results for these tests. We note that they
are very similar to the SOC results for the plain SPKF filter. Over
a (much) longer test we would expect some improvement in the
joint/dual results as the filters adapt to changing cell dynamics.

In particular, Fig. 9 shows the 1-Hz resistance and capacity
parameters adapting over the course of the test. The change in re-
sistance is valid—these cells have much higher resistance at low
SOC than at moderate SOC. The variation in the capacity esti-
mate between 5.02 and 5.04 Ah is a little less certain. It is likely
that the capacity state is exhibiting some short-term variation
to mask some other modeling error. We have observed that the
long-term behavior of the capacity state is stable, however, and
is able to track changes in the true cell capacity. The adaptation
may be slowed down to minimize the masking effect shown here
by lowering the fictitious noise covariance in X, corresponding
to the capacity state.

8.5. Analysis of SOC estimation error

Before concluding this paper, we present some results ana-
lyzing the SOC estimation error. All of the Kalman filter vari-
ants make the assumption that the noises affecting the system
of concern and the measurements made are Gaussian (normal)
random variables, and that the state estimation errors are also
Gaussian. In Fig. 10, we plot summary histograms of SOC es-
timation error accumulated through the various test runs using
SPKF, SR-SPKE, joint SPKF, dual SPKF, and dual SR-SPKF. In
every case, each instantaneous SOC estimation error was divided
by its corresponding one-sigma error bound before computing
the histogram, and then the histogram was normalized to have
unit area to form an empirical probability density function (PDF)
of the SOC estimation error. If all KF assumptions were being
met, this distribution should match a unit-variance standard nor-
mal PDF. We see that this assumption is fairly close to being met
when using the training data, but less well met when using the
generalization data. In particular, we note that three-sigma error
bounds (as reported elsewhere in this paper) are theoretically
accurate 99.7% of the time, but we see from the histograms that
four-sigma bounds would give a little more safety in an imple-
mentation. Also, since we now see that the KF assumptions are
not being met, doubt is cast on how much better we might be
able to do using KF techniques. Most likely, one would need to
use a particle filter — which does not assume Gaussian RVs — to

do better, but the added computational complexity might not be
tolerable in a commercial application.

9. Conclusions

This paper concludes a two-part series discussing the ap-
plication of sigma-point Kalman filters to battery management
algorithms. In the first paper, we introduced the general prob-
abilistic inference solution to optimal estimation, and derived
the KF, EKF, and SPKF from this solution using different sets
of assumptions. The SPKF was shown to be theoretically more
precise than EKF; testing with real cell data supported this anal-
ysis.

This paper showed how SPKF could be very closely approx-
imated by SR-SPKF, which gives speed advantages in the case
of a linear state equation, such as when estimating parameters
rather than states. Simultaneous state and parameter estimation
was also introduced via joint and dual SPKF methods. Results
were presented for a prototype LiPB HEV cell that demonstrate
that these methods work very well. For example, typical SOC
estimation errors of less than 1% are reported, both using train-
ing and testing data, with near perfect error bounds—these were
in fact perfect over the 10-90% expected SOC operating range
of the cell. Parameters such as cell resistance and SOC can also
be simultaneously estimated.

The various KF methods are derived assuming that the prob-
ability density functions of sensor and process noises are Gaus-
sian. We have seen by example that this assumption is not strictly
adhered to in this application (nor can it be exactly). This limits
the ability of the KF methods to estimate states and parameters,
and indicates that different approaches might need to be taken if
even greater accuracy is needed. However, the SPKF does very
well even though this assumption is not met exactly.

For further reading, we have shown elsewhere that the state
and parameters may be used to very precisely estimate dynamic
available power, and to compute which cells must be equalized
[6,24].
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