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bstract

We have previously described algorithms for a battery management system (BMS) that uses Kalman filtering (KF) techniques to estimate such
uantities as: cell self-discharge rate, state-of-charge, nominal capacity, resistance, and others. Since the dynamics of electrochemical cells are not
inear, we used a nonlinear extension to the original KF called the extended Kalman filter (EKF).

Now, we introduce an alternative nonlinear Kalman filtering technique known as “sigma-point Kalman filtering” (SPKF), which has some
heoretical advantages that manifest themselves in more accurate predictions. The computational complexity of SPKF is of the same order as EKF,
o the gains are made at little or no additional cost.

This paper is the second in a two-part series. The first paper explored the theoretical background to the Kalman filter, the extended Kalman
lter, and the sigma-point Kalman filter. It explained why the SPKF is often superior to the EKF and applied SPKF to estimate the state of a

hird-generation prototype lithium-ion polymer battery (LiPB) cell in dynamic conditions, including the state-of-charge of the cell.
In this paper, we first investigate the use of the SPKF method to estimate battery parameters. A numerically efficient “square-root sigma-point

alman filter” (SR-SPKF) is introduced for this purpose. Additionally, we discuss two SPKF-based methods for simultaneous estimation of both
he quickly time-varying state and slowly time-varying parameters. Results are presented for a battery pack based on a fourth-generation prototype

iPB cell, and some limitations of the current approach, based on the probability density functions of estimation error, are also discussed.
2006 Elsevier B.V. All rights reserved.
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We have previously reported work using extended Kalman
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. Introduction

This paper applies results from the field of study known vari-
usly as sequential probabilistic inference or optimal estimation
heory to advanced algorithms for a battery management system
BMS). This BMS is able to estimate battery state-of-charge

SOC), instantaneous available power, and parameters indica-
ive of the battery state-of-health (SOH) such as power fade and
apacity fade, and is able to adapt to changing cell characteristics
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ver time as the cells in the battery pack age. The algorithms have
een successfully implemented on a lithium-ion polymer battery
LiPB) pack for hybrid-electric-vehicle (HEV) application,2 and
e also expect them to work well for other battery chemistries
lters (EKF) to solve the HEV BMS algorithm requirements
1–6]. We have since explored a different form of Kalman filter-

2 HEV is a particularly good benchmark for these algorithms since it imposes
emanding requirements on a pack of limited capacity, resulting in cell elec-
rochemistries that are most often far from equilibrium. Therefore, advanced

ethods must be used to estimate SOC, SOH, and instantaneous power in order
o safely, efficiently and aggressively exploit the pack capabilities.
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1 r Sources 161 (2006) 1369–1384

i
t
h
c
i
p
t
b
p
A
t
s
a
f

i
r
t
i
p
r

2

c
i
v
s
o
r
d
p
r
c

m
f

x

y

H
(
t
i
c
w
t
f
s
i
f

s
s

o

Table 1
Summary of the general sequential probabilistic inference solution

General state–space model
xk = f (xk−1, uk−1, wk−1, k − 1)
yk = h(xk, uk, vk, k),
where wk and vk are independent, Gaussian noise processes of covariance
matrices Σw and Σv, respectively

Definitions: let
x̃−

k
= xk − x̂−

k
, ỹk = yk − ŷk

Initialization: for k = 0, set
x̂+

0 = E[x0]
Σ+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T]

Computation: for k = 1, 2, . . . compute
State estimate time update: x̂−

k
= E[f (xk−1, uk−1, wk−1, k − 1)|Yk−1]

Error covariance time update: Σ−
x̃,k

= E[(x̃−
k

)(x̃−
k

)T]
Output estimate: ŷk = E[h(xk, uk, vk, k) | Yk−1]
Estimator gain matrix: Lk = E[(x̃−

k
)(ỹk)T](E[(ỹk)(ỹk)T])−1
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ng called sigma-point Kalman filters (SPKF), and have found
hem to have several important advantages. We introduce SPKF
ere in a two-part series, of which this is the second part. The
ompanion to this paper [7] introduces the SPKF and applies
t to estimating the state of an LiPB-based HEV battery cell,
articularly its SOC. In this paper, we build on the introduc-
ion to first investigate the use of the SPKF method to estimate
attery parameters. A numerically efficient “square-root sigma-
oint Kalman filter” (SR-SPKF) is described for this purpose.
dditionally, we discuss two SPKF-based methods for simul-

aneous estimation of both the quickly time-varying state and
lowly time-varying parameters. Applications to the HEV BMS
lgorithm requirements are outlined, example results given using
ourth-generation prototype LiPB cells, and conclusions made.

We note before continuing that there are conflicting objectives
n making this paper both self-contained and simultaneously
educing redundant material with respect to the first paper in
his series. We have perhaps erred on the side of conciseness
n several areas. For a more in-depth discussion of sequential
robabilistic inference and the base-line SPKF algorithm, the
eader is referred to Ref. [7].

. Summary of sequential probabilistic inference

Very generally, any causal dynamic system (e.g., a battery
ell) generates its outputs as some function of its past and present
nputs. Often, we can define a state vector for the system whose
alues together summarize the effect of all past inputs. Present
ystem output is a function of present input and present state
nly; past input values need not be stored. The system’s pa-
ameter vector comprises all quasi-static numeric quantities that
escribe how the system state evolves and how the system out-
ut may be computed. The state-vector quantities change on a
elatively rapid time scale, and the parameter-vector quantities
hange on a relatively long time scale (or, not at all).

We assume that the electrochemical cell under consideration
ay be modeled using a discrete-time state–space model of the

orm

k = f (xk−1, uk−1, wk−1, k − 1) (1)

k = h(xk, uk, vk, k). (2)

ere, xk ∈ R
n is the system state vector at time index k, and Eq.

1) is called the “state equation” or “process equation” and cap-
ures the evolving system dynamics. The known/deterministic
nput to the system is uk ∈ R

p, and wk ∈ R
n is stochastic “pro-

ess noise” or “disturbance” that models some unmeasured input
hich affects the state of the system. The output of the sys-

em is yk ∈ R
m, computed by the “output equation” (2) as a

unction of the states, input, and vk ∈ R
m, which models “sen-

or noise” that affects the measurement of the system output
n a memoryless way, but does not affect the system state.
(xk−1, uk−1, wk−1, k − 1) is a (possibly nonlinear) state tran-
ition function and g(xk, uk, vk, k) is a (possibly nonlinear) mea-
urement function.

In the companion to this paper we introduced the relevant the-
ry describing the optimal solution to state estimation – based on

s
o
p
F

State estimate measurement update: x̂+
k

= x̂−
k

+ Lk(yk − ŷk)
Error covariance measurement update: Σ+

x̃,k
= Σ−

x̃,k
− LkΣỹ,kL

T
k

body of knowledge known as “sequential probabilistic infer-
nce” – and showed how various approximations and assump-
ions resulted in the Kalman filter, the extended Kalman filter,
nd the sigma-point Kalman filter [7]. Here, we summarize the
ey points required to understand parameter estimation and si-
ultaneous state and parameter estimation. For greater detail,

he reader should consult Ref. [7].
The general solution from which all the KF variants are de-

ived comprises two major stages per measurement interval.
irst, it predicts the present state (the “time update”) given all
rior information; second, it corrects the prediction using the
urrent measurement (the “measurement update”). The KFs not
nly estimate the state, but also the state error covariance matrix
o provide an ongoing uncertainty estimate on the state estima-
ion error.

Table 1 summarizes the general solution. In the notation we
se, the decoration “circumflex” indicates an estimated quantity
e.g., x̂ indicates an estimate of the true quantity x). A super-
cript “−” indicates an a priori estimate (i.e., a prediction of
quantity’s present value based on past data) and a superscript
+” indicates an a posteriori estimate (e.g., x̂+

k is the estimate of
rue quantity x at time index k based on all measurements taken
p to and including time k). The decoration “tilde” indicates the
rror of an estimated quantity.

k = {yk, yk−1, . . . , y0}.
he symbol Σxy = E[xyT] indicates the auto- or cross-
orrelation of the variables in its subscript. (Note that often these
ariables are zero-mean, so the correlations are identical to co-
ariances.) Also, for brevity of notation, we often use Σx to
ndicate the same quantity as Σxx.

The algorithm first initializes the filter and iteratively ex-
cutes six steps each measurement interval. First, the present

tate value is predicted using prior data. Second, the covariance
f this state estimate error is updated. Third, the present cell out-
ut is predicted. Fourth, the Kalman gain matrix is computed.
ifth, the actual cell output is measured and compared to the
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Table 2
Weighting constants for two sigma-point methods

γ α
(m)
0 α

(m)
k

α
(c)
0 α

(c)
k

UKF
√

L + λ
λ

L + λ

1

2(L + λ)

λ

L + λ
+ (1 − α2 + β)

1

2(L + λ)

CDKF h
h2 − L

h2

1

2h2

h2 − L

h2

1

2h2

λ = α2(L + κ) − L is a scaling parameter, with (10−2 ≤ α ≤ 1). Note that this
α (m) (c)
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is different from α and α . κ is either 0 or 3 − L. β incorporates prior infor-
ation. For Gaussian RVs, β = 2. h may take any positive value. For Gaussian
Vs, h = √

3.

stimate. The output estimate error is weighted by the Kalman
ain and used to update the state estimate. Finally, the state esti-
ate error covariance is updated. The output of the filter at each

ime instant is the state estimate from step 5 and the error co-
ariance from step 6 (used to compute error bounds on the state
stimate).

. Summary of sigma-point Kalman filters

For nonlinear systems, a closed-form solution or even an al-
orithm to exactly implement the general probabilistic inference
olution in Table 1 is not available. The EKF is one approach
o approximating the solution using a first-order linearization of
he system dynamics, which is based on some questionable as-
umptions. Sigma-point Kalman filters are an alternate approach

o generalizing the Kalman filter to state estimation for nonlin-
ar systems. SPKFs rely on numeric approximations rather than
nalytic approximations of the EKF. Each time step, a set of
oints (sigma points) is chosen so that the (possibly weighted)

able 3
ummary of the nonlinear sigma-point Kalman filter

Nonlinear state–space model
xk = f (xk−1, uk−1, wk−1, k − 1)
yk = h(xk, uk, vk, k)
where wk and vk are independent, Gaussian noise processes of covariance matrice

Definitions: let
xa

k
= [xT

k
, wT

k
, vT

k
]T, X a

k = [(X x
k)T, (X w

k )T, (X v
k)T]T, p = 2 × dim(xa

k
)

Initialization: for k = 0, set
x̂+

0 = E[x0]
Σ+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T]

Computation: for k = 1, 2, . . . compute

State estimate time update

Error covariance time update

Output estimate

Estimator gain matrix

State estimate measurement update
Error covariance measurement update

t
[
1
p

ces 161 (2006) 1369–1384 1371

ean and covariance of the points exactly matches the mean and
ovariance of the a priori random variable. These points are then
assed through the nonlinear function, resulting in a transformed
loud of points. The a posteriori mean and covariance that are
ought are then approximated by the mean and covariance of this
loud. Note that the sigma points comprise a fixed small num-
er of vectors that are calculated deterministically—not like the
onte Carlo or particle filter methods. This method is used to

pproximate state and output estimates, and their covariances.
Specifically, if the input random vector x has dimension L,

ean x̄, and covariance Σx̃, then p + 1 = 2L + 1 sigma points
re generated as the set

= {x̄, x̄ + γ
√

Σx̃, x̄ − γ
√

Σx̃},
ith elements of X indexed from 0 to p, and where the matrix

quare-root R = √
Σ computes a result such that Σ = RRT.

sually, the efficient Cholesky decomposition [8,9] is used, re-
ulting in lower-triangular R. The reader can verify that the
eighted mean and covariance ofX equal the original mean and

ovariance of random vector x for a specific set of {γ, α(m), α(c)}
f we define the weighted mean as x̄ = ∑p

i=0 α
(m)
i X i, the

eighted covariance as Σx̃ = ∑p
i=0 α

(c)
i (X i − x̄)(X i − x̄)T, X i

s the ith element ofX , and both α
(m)
i and α

(c)
i as real scalars with

he necessary (but not sufficient) conditions that
∑p

i=0 α
(m)
i = 1

nd
∑p

i=0 α
(c)
i = 1. The various sigma-point methods differ only

n the choices taken for these weighting constants. Values for the
s Σw and Σv, respectively

x̂
a,+
0 = E[xa

0] = [(x̂+
0 )T, w̄, v̄]T

Σ
a,+
x̃,0 = E[(xa

0 − x̂
a,+
0 )(xa

0 − x̂
a,+
0 )T] = diag(Σ+

x̃,0, Σw, Σv)

X a,+
k−1 = {x̂a,+

k−1, x̂
a,+
k−1 + γ

√
Σ

a,+
x̃,k−1, x̂

a,+
k−1 − γ

√
Σ

a,+
x̃,k−1}

X x,−
k,i

= f (X x,+
k−1,i

, uk−1,X w,+
k−1,i

, k − 1)

x̂−
k

=
∑p

i=0 α
(m)
i X x,−

k,i

Σ−
x̃,k

=
∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(X x,−

k,i
− x̂−

k
)T

Yk,i = h(X x,−
k,i

, uk,X v,+
k−1,i

, k)

ŷk = ∑p

i=0 α
(m)
i Yk,i

Σỹ,k = ∑p

i=0 α
(c)
i (Yk,i − ŷk)(Yk,i − ŷk)T

Σ−
x̃ỹ,k

=
∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(Yk,i − ŷk)T

Lk = Σ−
x̃ỹ,k

Σ−1
ỹ,k

x̂+
k

= x̂−
k

+ Lk(yk − ŷk)
Σ+

x̃,k
= Σ−

x̃,k
− LkΣỹ,kL

T
k

wo most common methods – the unscented Kalman filter (UKF)
10–15] and the central difference Kalman filter (CDKF) [16–
8] – are summarized in Table 2. In this work, we use the CDKF
arameters.



1 r Sour

a
t
i
d
T

4
K

e
e
T
c
o
e
t
E

t
c
i
s
r
a
a
t
m
t

p

•

C
F

•

•

T
a
t
i

S
u
t
x

m
d

p

γ

c
p
c
(
t
X
p

372 G.L. Plett / Journal of Powe

To use SPKF in an estimation problem, we first define an
ugmented random vector xa that combines the randomness of
he state, process noise, and sensor noise. This augmented vector
s used in the estimation process. The math behind the SPKF is
escribed in Ref. [7] and the overall solution is summarized in
able 3.

. Computationally efficient square-root sigma-point
alman filters

Sigma-point Kalman filters may be used directly for state
stimation and we have shown that they produce better state
stimates and much better covariance estimates than EKF [7].
he computational complexity is O(L3), which is of equivalent
omplexity to EKF state estimation, where L is the dimension
f the augmented state. They may also be used for parameter
stimation, as will be described in the sequel, but the compu-
ational complexity remains O(L3), whereas the corresponding
KF method has complexity O(L2).

The bottleneck in the SPKF algorithm is the computation of
he matrix square-root SkS

T
k = Σk each time step, which has

omputational complexity O(L3/6) using a Cholesky factor-
zation. A variant of the SPKF, to which we will refer as the
quare-root SPKF, propagates Sk directly without needing to
e-factor each time step [15,19,20]. This approach has several
dvantages: there are improved numeric properties as the covari-
nces are guaranteed to be positive semi-definite, and although
he state estimation update is still O(L3), the parameter update

ay now be done in O(L2). Therefore, for the same computa-
ional complexity of EKF, better results are obtained.

Three important linear-algebra techniques are required to im-
lement SR-SPKF [8,9]:

QR decomposition: The QR decomposition algorithm com-
putes two factors Q ∈ R

N×N and R ∈ R
L×N for a matrix

A ∈ R
L×N such that A = QR, Q is orthogonal, R is upper-

triangular, and N ≥ L. The property of the QR factorization
that is important here is that R is related to the Cholesky fac-
tor we wish to find. Specifically, if R̃ ∈ R

L×L is the upper-
triangular portion of R, then R̃T is the Cholesky factor of
Σ = ATA. That is, if R̃ = qr(AT)T, where qr(·) performs the
QR decomposition and returns the upper-triangular portion
of R only, then R̃ = chol(AAT).3

This information may be used by noticing that step 2 of
the SPKF method computes

Σ−
x̃,k =

p∑
i=0

α
(c)
i (X x,−

k,i − x̂−
k )(X x,−

k,i − x̂x
k,i)

T,

− T
which may also be written as Σx̃,k = AA , where

A = [
√

α
(c)
i (X x,−

k,(0:p) − x̂−
k )]. A similar computation is

performed in step 4. Rather than computing AAT and then

3 Some implementational care is advised as the QR decomposition and
holesky factorizations are not defined identically by all numeric packages.
or example, chol() or qr() may return the transpose of the desired result.

p
a

S

p

ces 161 (2006) 1369–1384

later computing the Cholesky factor thereof, we can instead
compute the QR decomposition of AT, and propagate the R̃

component. The computational complexity of the QR decom-
position is O(NL2), whereas the complexity of the Cholesky
factor is O(L3/6) plus O(NL2) to first compute AAT.
Cholesky downdating: Note that the previous method
fails whenever α

(c)
i is negative, because the square-root

involved will not have a real value. In particular, α
(c)
0 is

frequently negative, and the final step of SPKF computes
Σ+

x̃,k = Σ−
x̃,k − LkΣỹ,kL

T
k . Using the latter case as an

example, we cannot simply append a column to A with
value

√−Σỹ,kLk because of the negative sign inside the
square-root. The solution to this problem is the Cholesky
downdating procedure, which takes as input the Cholesky
factor to AAT and

√
Σỹ,kLk, and computes the updated factor

for AAT − LkΣỹ,kL
T
k . If Σỹ,k is not a scalar, downdating is

done using each of its columns. This algorithm is onlyO(L2).
Backsubstitution: Finally, the solution to the estimator gain
matrix computation is LkΣỹ,k = Σ−

x̃ỹ,k, which may be written

as Lk = Σ−
x̃ỹ,k(Sỹ,kS

T
ỹ,k)−1, or alternately as Lk(Sỹ,kS

T
ỹ,k) =

Σ−
x̃ỹ,k. If yk is not a scalar, this equation may often be

computed most efficiently via back-substitution in two steps.
First, (z)ST

ỹ,k = Σ−
x̃ỹ,k is found, and then LkSỹ,k = z is

solved. Since Sỹ,k is already triangular, no matrix inversion
need be done. Backsubstitution has complexity O(N2/2).

o use SR-SPKF in an estimation problem, we again define an
ugmented random vector xa that combines the randomness of
he state, process noise, and sensor noise. This augmented vector
s used in the estimation process as described below.

SR-SPKF step 1: state estimate time update. As with
PKF, each measurement interval, the state estimate time
pdate is computed by first forming the augmented a pos-
eriori state estimate vector for the previous time interval:
ˆa,+
k−1 = [(x̂+

k−1)T, w̄, v̄]T. With SR-SPKF, the square-root aug-
ented a posteriori covariance estimate is computed: S

a,+
x̃,k−1 =

iag(S+
x̃,k−1, Sw, Sv). These factors are used to generate the

+ 1 sigma points: X a,+
k−1 = {

x̂
a,+
k−1, x̂

a,+
k−1 + γS

a,+
x̃,k−1, x̂

a,+
k−1 −

S
a,+
x̃,k−1

}
. From the augmented sigma points, the p + 1 vectors

omprising the state portion X x,+
k−1 and the p + 1 vectors com-

rising the process noise portion Xw,+
k−1 are extracted. The pro-

ess equation is evaluated using all pairs of X x,+
k−1,i and Xw,+

k−1,i

where the subscript i denotes that the ith element is being ex-
racted from the original set), yielding the a priori sigma points

x,−
k,i for time step k. Finally, the a priori state estimate is com-

uted as x̂−
k = ∑p

i=0 α
(m)
i X x,−

k,i .
SR-SPKF step 2: error covariance time update. Using the a

riori sigma points from step 1, the square-root a priori covari-
nce estimate is computed as{[√ ( ) ]}T

−
x̃,k = qr α

(c)
i X x,−

k,(0:p) − x̂−
k

T
.

SR-SPKF step 3: estimate system output yk. The system out-
ut is estimated by evaluating the model output equation using
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Table 4
Summary of the square-root sigma-point Kalman filter for state estimation

Nonlinear state–space model
xk = f (xk−1, uk−1, wk−1, k − 1)
yk = h(xk, uk, vk, k)
where wk and vk are independent, zero-mean, Gaussian noise processes of covariance matrices Σw and Σv, respectively

Definitions: let
xa

k
= [xT

k
, wT

k
, vT

k
]T, X a

k = [(X x
k)T, (X w

k )T, (X v
k)T]T, p = 2 × dim(xa

k
)

Initialization: for k = 0, set
x̂+

0 = E[x0] x̂
a,+
0 = E[xa

0] = [(x̂+
0 )T, 0, 0]T

S+
x̃,0 = chol{E[(x0 − x̂+

0 )(x0 − x̂+
0 )T]} S

a,+
x̃,0 = chol{E[(xa

0 − x̂
a,+
0 )(xa

0 − x̂
a,+
0 )T]} = diag(S+

x̃,0, Sw, Sv)

Computation: for k = 1, 2, . . . compute
State estimate time update X a,+

k−1 = {x̂a,+
k−1, x̂

a,+
k−1 + γS

a,+
x̃,k−1, x̂

a,+
k−1 − γS

a,+
x̃,k−1}

X x,−
k,i

= f (X x,+
k−1,i

, uk−1,X w,+
k−1,i

, k − 1)

x̂−
k

=
∑p

i=0 α
(m)
i X x,−

k,i

Error covariance time update S−
x̃,k

= qr{[
√

α
(c)
i (X x,−

k,(0:p) − x̂−
k

)T]}T

Output estimate Yk,i = h(X x,−
k,i

, uk,X v,+
k−1,i

, k)

ŷk =
∑p

i=0 α
(m)
i Yk,i

Estimator gain matrix Sỹ,k = qr{[
√

α
(c)
i (Yk,(0:p) − ŷk)T]}T

Σ−
x̃ỹ,k

= ∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(Yk,i − ŷk)T

Lk

x̂+
k

S+
x̃,k

t
t

T

e
v

T
s
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With this system defined, we can apply SR-SPKF to estimate
the parameters. The SR-SPKF solution for parameter estimation
is summarized in Table 5. The dominant differences between
State estimate measurement update
Error covariance measurement update

he sigma points describing the spread in the state and noise vec-
ors. First, we compute the pointsYk,i = h(X x,−

k,i , uk,X v,+
k−1,i, k).

he output estimate is then ŷk = ∑p
i=0 α

(m)
i Yk,i.

SR-SPKF step 4: estimator gain matrix Lk. To compute the
stimator gain matrix, we must first compute the required co-
ariance and square-root covariance matrices.

Sỹ,k = qr

{[√
α

(c)
i (Yk,(0:p) − ŷk)T

]}T

Σ−
x̃ỹ,k = ∑p

i=0 α
(c)
i (X x,−

k,i − x̂−
k )(Yk,i − ŷk).

hen, we simply compute Lk = Σ−
x̃ỹ,kΣ

−1
ỹ,k, solved by backsub-

titution.
SR-SPKF step 6: error covariance measurement update. The

nal step computes the square-root form of Σ+
x̃,k = Σ−

x̃,k −
kΣỹ,kL

T
k as S+

x̃,k = downdate
{

S−
x̃,k, LkSỹ,k

}
. The SR-SPKF

olution for state estimation is summarized in Table 4, and re-
ults for both SPKF and SR-SPKF for SOC estimation are given
n Section 8.3.

. Parameter estimation using SR-SPKF

The various methods for state estimation presented so far have
ssumed a known system model in the form of Eqs. (1) and (2).
hese equations will generally involve numeric values in their
omputations. Some of these values might be intrinsic constants,
ut others might be factors determined by the electrochemistry
r construction of a particular cell. We refer to these latter factors

s the “parameters” of the cell model.

To use the enhanced self-correcting (ESC) cell model as an
xample (cf. Section 7), the parameters comprise the following:
he Coulombic efficiency η, the total capacity C, the filter poles

s
n
s
p

= Σ−
x̃ỹ,k

(ST
ỹ,k

Sỹ,k)−1 (solved by backsubstitution)

= x̂−
k

+ Lk(yk − ŷk)
= downdate{S−

x̃,k
, LkSỹ,k}

1, . . . , αnf
, the filter weighting factors g1, . . . , gnf−1 , the cell

ischarge and charge resistances R+ and R−, the hysteresis rate
onstant γ , and the maximum level of hysteresis M. Combined,
hey are

= [η, C, α1, . . . , αnf
, g1, . . . , gnf−1 , R

+, R−, γ, M]T.

We have previously shown how to estimate a system’s state
iven a known model and noisy measurements. We now show
ow to estimate a system’s parameters given a known state and
lean measurements. We assume that there is a true value for θ

hat describes the cell under consideration, and wish to adapt an
stimate θ̂ to converge to the true value. We begin by proposing a
tate–space model for the “dynamics” of the system parameters.

θk = θk−1 + rk−1

dk = h(xk, uk, v̄k, θk, k) + ek.

he first equation states that the parameters are essentially con-
tant, but that they may change slowly over time by some driving
rocess, modeled by a process rk of small fictitious “noise”. The
utput equation for the state–space model of true parameter dy-
amics is the estimate of cell output based on the previous state,
he measured inputs, and parameter estimates, added to some
stimation error ek.
tate and parameter estimation are: in parameter estimation the
oises are assumed to contribute linearly to the state and mea-
urement equations, and an approximate process noise update is
erformed (see [15] for details).
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Table 5
Summary of the square-root sigma-point Kalman filter for parameter estimation

Nonlinear state–space model
θk = θk−1 + rk−1

dk = h(xk, uk, v̄k, θk, k) + ek

where rk and ek are independent, zero-mean, Gaussian noise processes of covariance matrices Σr and Σe, respectively

Definition: let

Dr,k−1 = −diag{S+
θ̃,k−1

} +
√

diag{S+
θ̃,k−1

}2 + diag{Σr,k−1} p = 2 × dim(θk)

Initialization: for k = 0, set
θ̂+

0 = E[θ0] S+
θ̃,0

= chol
{
E[(θ0 − θ̂+

0 )(θ0 − θ̂+
0 )T]

}
Computation: for k = 1, 2, . . . compute

Parameter estimate time update θ̂−
k

= θ̂+
k−1

Error covariance time update S−
θ̃,k

= S+
θ̃,k−1

+ Dr,k−1

Output estimate Wk = {θ̂−
k

, θ̂−
k

+ γS−
θ̃,k

, θ̂−
k

− γS−
θ̃,k

}
Dk,i = h(xk, uk, v̄k,Wk,i, k)
d̂k = ∑p

i=0 α
(m)
i Dk,i

Estimator gain matrix Sd̃,k = qr{[
√

α
(c)
i (Dk,(0:p) − d̂k)

√
Σe]T}T

Σ−
θ̃d̃,k

=
∑p

i=0 α
(c)
i (Wk,i − θ̂−

k
)(Dk,i − d̂k)T

Lk = Σ−
˜ ˜ (ST

˜ Sd̃,k)−1 (solved by backsubstitution)
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Parameter estimate measurement update
Error covariance measurement update

. Joint and dual sigma-point filtering

We have now shown how to estimate the state of a system
iven a known model and noisy measurements and how to esti-
ate the parameters of the system given a known state and clean
easurements. We proceed to give two methods whereby one

an simultaneously estimate both the state and parameters of a
ystem given noisy measurements.

The various methods of state estimation presented so far have
ssumed a constant system model. However, when applying
hese procedures to estimate battery SOC, for example, we en-
ounter a possible source of error: not all cells are created equal.
ost of the research reported here has been conducted using

rototype high-power LiPB cells, constructed by hand. In these
ells, there is a great deal of variability in resistance, capacity,
ime constants, and so forth. Even when mass-produced, how-
ver, there is some cell-to-cell variation, which only increases
s the cells age, both in accumulated cycles and in calendar life.

Some of the critical parameters, such as cell resistance and
apacity, directly limit the pack performance through “power
ade” and “capacity fade”, so are indicators of the battery state-
f-health. It is important to be able to estimate these and other
arameters to: (1) maintain an accurate model for SOC estima-
ion, (2) understand the present battery state-of-health, and (3)
redict remaining service life.

Keeping in mind the previous discussion on estimating SOC,
t is apparent that the quantities descriptive of the present battery
ack condition exist on two time scales. Some change rapidly,
uch as SOC, which can traverse its entire range within minutes.
thers may change very slowly, such as cell capacity, which

ight change as little as 20% in a decade or more of regular

se. The quantities that tend to change quickly comprise the
tate of the system, and the quantities that tend to change slowly
omprise the time-varying parameters of the system.

t
o

t

θd,k d,k

θ̂+
k

= θ̂−
k

+ Lk(dk − d̂k)
S+

θ̃,k
= downdate{S−

θ̃,k
, LkSd̃,k}

Any of the KF methods used to estimate SOC might be
dapted to concurrently estimate both the state and the slowly
ime-varying cell parameters by combining the cell model state
ector with the model parameters and simultaneously estimat-
ng the values of this augmented state vector. This method is
alled joint estimation. It has the disadvantages of large matrix
perations due to the high dimensionality of the resulting aug-
ented model and potentially poor numeric conditioning due to

he vastly different time scales of the states (including parame-
ers) in the augmented state vector. However, it is quite straight-
orward to implement. We first combine the state and parameter
ectors to form an augmented state such that the dynamics may
e represented by[
xk

θk

]
=

[
f (xk−1, uk−1, θk−1, wk−1, k − 1)

θk−1 + rk−1

]

yk = h(xk, uk, vk, k).

ote that to simplify notation, we will refer to the vector com-
rising both the present state and the present parameters as Xk,
he vector comprising the present process noise and present pa-
ameter noise as Wk, and the equation combining the dynamics
f the state and the dynamics of the parameters asF. This allows
s to write

Xk = F(Xk−1, uk−1, Wk−1, k − 1)

yk = h(Xk, uk, vk, k).

ith the augmented model of the system state dynamics and
arameter dynamics defined, we apply the SPKF method. Table
gives a listing of the steps, which correspond directly to
he state estimation SPKF steps, except with larger matrix
perations.

The second method, dual estimation, also uses a Kalman fil-
ering approach to estimate both state and parameter values, but



G.L. Plett / Journal of Power Sources 161 (2006) 1369–1384 1375

Table 6
Summary of the nonlinear sigma-point Kalman filter for joint estimation

State–space model[
xk

θk

]
=

[
f (xk−1, uk−1, wk−1, θk−1, k − 1)

θk−1 + rk−1

]
yk = h(xk, uk, vk, θk, k)

or
Xk = F(Xk−1, uk−1,Wk−1, k − 1)
yk = h(Xk, uk, vk, k)

where wk , rk , and vk are independent, Gaussian noise processes of covariance matrices Σw, Σr , and Σv, respectively. For
brevity, we let Xk = [xT

k
, θT

k
]T,Wk = [wT

k
, rT

k
]T and ΣW = diag(Σw, Σr)

Definitions: let
X

a
k

= [XT
k
, WT

k
, vT

k
]T, X a

k = [(X Xk )T, (XWk )T, (X v
k)T]T, p = 2 × dim(Xa

k
)

Initialization: for k = 0, set
X̂

+
0 = E[X0] X̂

a,+
0 = E[Xa

0] = [(X̂+
0 )T, W̄, v̄]T

Σ+
X̃,0

= E[(X0 − X̂+
0 )(X0 − X̂+

0 )T] Σ
a,+
X̃,0

= E[(Xa
0 − X̂a,+

0 )(Xa
0 − X̂a,+

0 )T] = diag(Σ+
X̃,0

, ΣW, Σv)

Computation: for k = 1, 2, . . . compute

State estimate time update X a,+
k−1 =

{
X̂

a,+
k−1, X̂

a,+
k−1 + γ

√
Σ

a,+
X̃,k−1

, X̂
a,+
k−1 − γ

√
Σ

a,+
X̃,k−1

}
X X,−

k,i
= F(X X,+

k−1,i
, uk−1,XW,+

k−1,i
, k − 1)

X̂
−
k

=
∑p

i=0 α
(m)
i X X,−

k,i

Error covariance time update Σ−
X̃,k

=
∑p

i=0 α
(c)
i (X X,−

k,i
− X̂−

k
)(X X,−

k,i
− X̂−

k
)T

Output estimate Yk,i = h(X X,−
k,i

, uk,X v,+
k−1,i

, k)

ŷk = ∑p

i=0 α
(m)
i Yk,i

Estimator gain matrix Σỹ,k =
∑p

i=0 α
(c)
i (Yk,i − ŷk)(Yk,i − ŷk)T

Σ−
X̃ỹ,k

=
∑p

i=0 α
(c)
i (X X,−

k,i
− X̂−

k
)(Yk,i − ŷk)T

Lk = Σ−
X̃ỹ,k

Σ−1
ỹ,k

X̂
+
k

= X̂−
k

+ Lk(yk − ŷk)
Σ+
X̃,k

= Σ−
x̃,k

− LkΣỹ,kL
T
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a

comprises two sigma-point Kalman filters running in parallel –
one adapting the state and one adapting parameters – with some
information exchange between the filters.

6.1. Convergence

The dual/joint extended Kalman filters will adapt x̂k and θ̂k so
that the model input-output relationship matches the cell input-
output data as closely as possible. There is no built-in guarantee
that the state or parameters of the model converge to anything
with physical meaning. We take special steps to ensure that this
occurs.

A very crude cell model may be used, combined with the
dual/joint SPKF, to ensure convergence of the SOC state. Specif-
State estimate measurement update
Error covariance measurement update

ses separate Kalman filters for state estimation and parameter
stimation. The computational complexity is smaller and the ma-
rix operations may be numerically better conditioned. However,
y decoupling state from parameters, any cross-correlations
etween changes are lost, leading to potentially poorer
ccuracy.

The mathematical model of cell dynamics again explicitly
ncludes the parameters as the vector θk:

xk = f (xk−1, uk−1, wk−1, θk−1, k − 1)

yk = h(xk, uk, vk, θk−1, k).

on-time-varying numeric values required by the model may
e embedded within f (·) and h(·), and are not included in θk.
e also slightly revise the mathematical model of parameter

ynamics to explicitly include the effect of the state equation.

θk = θk−1 + rk−1

dk = h(f (xk−1, uk−1, w̄k−1, θk−1, k − 1), uk, v̄k, θk−1, k)+ek.

ith these two systems defined, we can apply the standard pro-
edure of dual extended Kalman filtering [6,21], or generalize
he procedure to other forms of Kalman filtering. Dual sigma-
oint Kalman filtering is outlined in Table 7, and comprises two
arefully integrated SPKFs. The algorithm is initialized with the
est guess of the true parameters θ̂+

0 = E[θ0], and with the best
uess of the cell state x̂+

0 = E[x0]. The estimation error covari-
nce matrices are also initialized. The algorithm may be adapted

o use an SR-SPKF for the state- and/or the parameter-estimation
lter in a straightforward manner.

The dual sigma-point Kalman filter can be viewed by drawing
block diagram, as in Fig. 1. We see that the process essentially

Fig. 1. Diagram of dual estimation method. Solid lines represent state- and
parameter-vector signal flow, and dashed gray lines represent error covariance
matrix signal flow.
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Table 7
Summary of the sigma-point Kalman filter for dual state and parameter estimation

Nonlinear state–space models
xk = f (xk−1, uk−1, wk−1, θk−1, k − 1)
yk = h(xk, uk, vk, θk, k)

and
θk = θk−1 + rk−1

dk = h(f (xk−1, uk−1, w̄k−1, θk−1, k − 1), uk, v̄k, θk−1, k) + ek

where wk , vk , rk and ek are independent, Gaussian noise processes of covariance matrices Σw, Σv, Σr and Σe, respectively

Definitions
xa

k
= [xT

k
, wT

k
, vT

k
]T, X a

k = [(X x
k)T, (X w

k )T, (X v
k)T]T, p = 2 × dim(xa

k
)

Initialization: for k = 0, set
θ̂+

0 = E[θ0] Σ+
θ̃,0

= E[(θ0 − θ̂+
0 )(θ0 − θ̂+

0 )T]

x̂+
0 = E[x0] x̂

a,+
0 = E[xa

0] = [(x̂+
0 )T, w̄, v̄]T

Σ+
x̃,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T] Σ

a,+
x̃,0 = E[(xa

0 − x̂
a,+
0 )(xa

0 − x̂
a,+
0 )T] = diag(Σ+

x̃,0, Σw, Σv)

Computation: for k = 1, 2, . . . compute
Parameter estimate time update θ̂−

k
= θ̂+

k−1
Parameter covariance time update Σ−

θ̃,k
= Σ+

θ̃,k−1
+ Σr

State estimate time update X a,+
k−1 =

{
x̂

a,+
k−1, x̂

a,+
k−1 + γ

√
Σ

a,+
x̃,k−1, x̂

a,+
k−1 − γ

√
Σ

a,+
x̃,k−1

}
X x,−

k,i
= f (X x,+

k−1,i
, uk−1,X w,+

k−1,i
, θ̂−

k
, k − 1)

x̂−
k

=
∑p

i=0 α
(m)
i X x,−

k,i

State covariance time update Σ−
x̃,k

= ∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(X x,−

k,i
− x̂−

k
)T

Output estimate, parameter filter Wk =
{

θ̂−
k

, θ̂−
k

+ γ

√
Σ−

θ̃,k
, θ̂−

k
− γ

√
Σ−

θ̃,k

}
Dk,i = h(f (x̂+

k−1, uk−1, w̄k−1,Wk,i, k − 1), uk, v̄k,Wk,i, k)

d̂k =
∑p

i=0 α
(m)
i Dk,i, or d̂k = Dk,0

Output estimate, state filter Yk,i = h(X x,−
k,i

, uk,X v,+
k−1,i

, θ̂−
k

, k)

ŷk =
∑p

i=0 α
(m)
i Yk,i

State filter gain matrix Σỹ,k =
∑p

i=0 α
(c)
i (Yk,i − ŷk)(Yk,i − ŷk)T

Σ−
x̃ỹ,k

=
∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(Yk,i − ŷk)T

Lx
k

= Σ−
x̃ỹ,k

Σ−1
ỹ,k

Parameter filter gain matrix Σd̃,k =
∑p

i=0 α
(c)
i (Dk,i − d̂k)(Dk,i − d̂k)T

Σ−
θ̃d̃,k

=
∑p

i=0 α
(c)
i (Wk,i − θ̂−

k
)(Dk,i − d̂k)T

Lθ
k

= Σ−
θ̃d̃,k

Σ−1
d̃,k

State estimate measurement update x̂+
k

= x̂− + Lx(yk − ŷk)
Σ

θ̂+
k
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State covariance measurement update
Parameter estimate measurement update
Parameter covariance measurement update

cally,

yk ≈ OCV(zk) − Rik

OCV(zk) ≈ yk + Rik

ẑk = OCV−1(yk + Rik).

y measuring the cell voltage under load, the cell current, and
aving knowledge of R (perhaps through θ̂ from the dual/joint
PKF), and knowing the inverse OCV function for the cell chem-

stry, one can compute a noisy estimate of SOC, ẑk.
To combine this simple model with the dual/joint SPKF,

he cell model being used (e.g., perhaps the ESC model in
ection 7) has its output equation augmented with SOC:
(xk, uk, vk, θk, k) =
[

OCV(zk) − Rik + Gfk + Mhk

zk

]
.

c
m
o
a

k k+
x̃,k

= Σ−
x̃,k

− Lx
k
Σỹ,k(Lx

k
)T

= θ̂−
k

+ Lθ
k
(yk − d̂k)

+
θ̃,k

= Σ−
θ̃,k

− Lθ
k
Σd̃,k(Lθ

k
)T

he joint/dual SPKF is run on this modified model, with the
measured” information in the measurement update being

yk

ẑk

]
.

hile the “noise” of ẑk (short-term bias due to hysteresis ef-
ects and polarization filter voltages being ignored) prohibit it
rom being used as the primary estimator of SOC, its expected
ong-term behavior in a dynamic environment is accurate, and

aintains the accuracy of the SOC state in the joint/dual SPKF.

. The enhanced self-correcting cell model

In order to examine and compare performance of the pro-
osed algorithms, we must first define a discrete-time state–
pace model of the form of (1) and (2) that applies to battery

ells. Here, we briefly review the “enhanced self-correcting cell
odel” from Refs. [5,3]. This model includes effects due to

pen-circuit-voltage, internal resistance, voltage time constants,
nd hysteresis. For the purpose of example, we will later fit pa-
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tests. SOC is shown in (a) and rate for one UDDS cycle is shown in (b).

r
o
s

e

z

w
C

b

f

T
v
n
t
c
t

h

w
i

x

T
t

c

y

w
c
f
h

8. Application to battery management systems

8.1. Cell and cell test description

The cells used in this paper differ electrochemically from
those reported in previous work. We refer to the older cells as
GEN3 cells, and to the newer cells as G4 cells. The GEN3 cells
are high-power (>20 C capable) 7.5Ah Mn spinel/graphite LiPB,
and the G4 cells are very high-power (>30 C capable) 5Ah Mn
spinel/blended-carbon LiPB, both reported in Ref. [22].

In order to compare the various Kalman filtering methods’
abilities to estimate SOC and SOH, we gathered data from two
prototype LiPB cells. One cell’s data was used to tune cell model
parameters, and the second cell’s data was used in some tests to
see how well the filters generalized to slightly different dynamics
than expected. For the tests, we used a Tenney thermal chamber
set at 25 ◦C and an Arbin BT2000 cell cycler. Each channel of
the Arbin was capable of 20 A current, and 10 channels were
connected in parallel to achieve currents of up to 200 A. The cy-
cler’s voltage measurement accuracy was ±5 mV and its current
measurement accuracy was ±200 mA.

The cell test we use here comprised a sequence of 18 (full)
“urban dynamometer driving schedule” (UDDS) cycles, sepa-
rated by 15 A discharge pulses and 5-min rests, and spread over
the 90–10% SOC range. The SOC as a function of time is plotted
in Fig. 2(a), and rate as a function of time for one of the UDDS
Fig. 2. Plots showing SOC vs. time and rate vs. time for UDDS cell

ameter values to this model structure to model the dynamics
f high-power lithium-ion polymer battery cells, although the
tructure and methods presented here are general.

State-of-charge is captured by one state of the model. This
quation is

k = zk−1 −
(

ηi 
T

C

)
ik−1,

here 
T represents the inter-sample period (in seconds), and
represents the cell capacity (in ampere-seconds).
The time constants of the cell voltage response are captured

y several filter states. If we let there be nf time constants, then

k = Af fk−1 + Bf ik−1.

he matrix Af ∈ R
nf ×nf may be a diagonal matrix with real-

alued entries. If so, the system is stable if all entries have mag-
itude less than one. The vector Bf ∈ R

nf ×1 may simply be set
o nf “1”s. The value of nf and the entries in the Af matrix are
hosen as part of the system identification procedure to best fit
he model parameters to measured cell data.

The hysteresis level is captured by a single state

k = exp

(
−

∣∣∣∣ηiik−1γ 
T

C

∣∣∣∣
)

hk−1

+
(

1 − exp

(
−

∣∣∣∣ηiik−1γ 
T

C

∣∣∣∣
))

sgn(ik−1),

here γ is the hysteresis rate constant, again found by system
dentification.

The overall model state is

k = [f T
k , hk, zk]T.

he state equation for the model is formed by combining all of
he individual equations, above.

The output equation that combines the state values to predict
ell voltage is

k = OCV(zk) + Gfk − Rik + Mhk,
here G ∈ R
1×nf is a vector of constants that blend the time-

onstant states together in the output, R the cell resistance (dif-
erent values may be used for dis/charge), and M is the maximum
ysteresis level. Fig. 3. Plot of open-circuit-voltage as a function of state-of-charge.
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Fig. 4. Modeling of voltage and SOC: (a) ESC modeling of cell voltage vs. true cell voltage for one UDDS cycle and (b) instantaneous voltage-based (non-SPKF-based)
SOC estimate plotted vs. true SOC.

Fig. 5. SOC estimation error for SPKF vs. SR-SPKF with correct filter initialization: (a and b) use training data and (c and d) use generalization data.

Table 8
Comparison of SPKF vs. SR-SPKF in UDDS test results predicting SOC

Correctly initialized Incorrectly initialized

RMS error
(%)

Maximum
error (%)

Bounds error (%) RMS error (%) Maximum error (%) Bounds error (%) Time to converge (s)

SPKF 0.30 1.51 0.99 1.44 20.19 2.74 1138
SR-SPKF 0.30 1.51 0.98 1.44 20.19 2.68 1138
SPKF generalize 0.95 4.49 0.35 2.01 23.15 7.75 2816
SR-SPKF generalize 0.94 4.49 0.35 2.01 23.15 7.76 2816
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Fig. 6. SOC estimation error for SPKF vs. SR-SPKF with incorrect filter initialization: (a and b) use training data and (c and d) use generalization data.

Table 9
Comparison of joint SPKF vs. dual SPKF vs. dual SR-SPKF in UDDS test results predicting SOC

Correctly initialized Incorrectly initialized

RMS error (%) Maximum
error (%)

Bounds error (%) RMS error (%) Maximum error (%) Bounds error (%) Time to
converge (s)

Joint SPKF 0.29 1.34 1.31 1.13 19.83 3.02 1134
Dual SPKF 0.32 1.33 0.21 1.35 19.83 2.15 1181
Dual SR-SPKF 0.27 1.33 1.05 1.26 19.83 2.74 1138
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fi
v
F
v
and the cell true voltage. In this work, the model employs two
low-pass filter states (nf = 2), a nominal capacity of 5.0 Ah,
and an inter-sample interval of 
T = 1 s.4
Joint SPKF generalize 0.93 4.40 0.21
Dual SPKF generalize 1.18 5.43 10.75
Dual SR-SPKF generalize 0.90 4.35 0.23

ycles is plotted in Fig. 2(b). We see that SOC increases by about
% during each UDDS cycle, but is brought down slightly less
han 10% during each discharge between cycles. The entire op-
rating range for these cells (10–90% SOC, delineated by dashed
ines in the figure) is excited during the cell test.

.2. Fitting data to the enhanced self-correcting model

Data collected from the first cell was used to identify initial
arameters for the ESC cell model. The goal is to have the cell
odel output resemble the cell terminal voltage under load as

losely as possible, at all times, when the cell model input is

qual to the cell current. Model fit was judged by comparing root-
ean-squared (RMS) estimation error (estimation error equals

ell voltage minus model voltage) over the portions of the cell
ests where SOC was between 5 and 95%. Model error outside

t
o
a
t

2.11 22.94 8.02 2839
2.02 22.87 12.30 3950
2.01 22.87 10.33 3369

hat SOC range was not considered as the HEV pack operation
esign limits are 10–90% SOC. Details for how the open-circuit-
oltage curve was generated and how the model parameters were
t are described in Ref. [23]. In particular, the open-circuit-
oltage as a function of state-of-charge for these cells is plotted in
ig. 3. Values were fit to the other ESC-model parameters, with
ery close agreement between the cell model voltage prediction
4 We note here that prior work with the third-generation cells used nf = 4, and
hat this work using fourth-generation cells uses nf = 2. There are competing
bjectives here: to make the model as accurate as possible, and to make the filter
s computationally efficient as possible. The minimum number of filter states
hat can result in a zero dc-gain is two, and we find that SPKF is enough superior
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Fig. 7. SOC estimation error for joint SPKF vs. dual SPKF vs. dual SR-SPKF

Some modeling results are shown in Fig. 4. In frame (a), the
SC cell voltage prediction is compared with test data. Very
lose agreement is observed especially during the dynamic part

f the test. In frame (b), an instantaneous voltage-based SOC es-
imate, calculated as ẑk = OCV−1(yk + Rik) (cf. Section 6.1),
s compared with true SOC.5 This comparison is made to show:

o EKF that it gives acceptable estimates with a poorer model. Therefore, we
ave chosen to use nf = 2 here.
5 We calculate “true” SOC using Coulomb counting from the Arbin test equip-
ent. Bias and noise in the Arbin current sensor will cause this value to drift from

he ideal value, but over the relatively short duration of the tests and given the

d
g
t
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h
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correct initialization: (a–c) use training data and (d–f) use generalization data.

1) that such an estimate is too noisy to be used as an estimate
f SOC by itself (and therefore we need to use more advanced
ethods, such as SPKF), but (2) it yields average behavior in

ynamic tests that is accurate, and so is useful to ensure conver-

ence of the parameters in a dual or joint application. Note that
here is no point in low-pass filtering this result, as the delay of
uch a filter would make the estimate useless. Rather, the tuning

igh accuracy of the Arbin sensors we feel that this is a reasonable approximation
o true SOC. The cost of using such high-accuracy sensors in a production BMS
s prohibitive, which is why we instead investigate using intelligent algorithms
nd less-expensive sensors.
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tialized to the correct value of 100%. Frame (b) shows the same
result using SR-SPKF. The results are nearly identical, as ex-
pected. RMS SOC estimation error was 0.3% and maximum
ig. 8. SOC estimation error for joint SPKF vs. dual SPKF vs. dual SR-SPKF w

arameters of the SPKF are used to adjust the “belief” that the
lter has in the accuracy of ẑk when adapting its own internal
tate.

.3. Examples of SPKF and SR-SPKF

In the companion to this paper, we showed SPKF SOC esti-
ation results compared against EKF results for th GEN3 cell.

he conclusion was that the SPKF was better in all cases, so we
o not include EKF results here. Rather, we begin by present-
ng SPKF results for the G4 cell. For brevity, we include only
oom-temperature results here.

t
a
b
S

correct initialization: (a–c) use training data and (d–f) use generalization data.

Fig. 5(a) shows SOC estimation error and predicted error
ounds for the training cell, where the SPKF state was correctly
nitialized.6 In particular, the SOC state of the SPKF was ini-
6 The error bounds are computed as plus/minus three times the square-root of
he covariance matrix diagonal element corresponding to the SOC state. These
re referred to as “three-sigma” bounds, and if all densities are Gaussian, the
ounds should correctly encompass the true value of SOC 99.7% of the time.
ection 8.5 discusses the validity of this assumption in more detail.
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ig. 9. Instantaneous resistance and capacity estimates by joint SPKF (dual filter
esults similar).

OC error was 1.51%. The estimation error bounds correctly
ncluded the true SOC value for all but about 1% of the test run.
he bounds were incorrect only at the very end of the test where

rue SOC was below 10% and out of the expected operating

ange of the cell—thus the bounds correctly included the true
OC for all SOCs of importance.

Frames (c) and (d) show the same results when the SPKF
as applied to data from the second cell—the one not used to

ig. 10. Empirical probability–density functions of SOC estimation error normalized b
nd incorrect initialization, (c) generalization data and correct initialization, and (d) g
s overlaid in each case.

o
c
(
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ces 161 (2006) 1369–1384

rain the model parameters. We see slightly poorer performance,
s would be expected. Note that post-test analysis indicates that
his cell may have been overcharged to about 104% before the
est began – based on OCV data – which explains why the SPKF
ave an initial 4% error when initialized to 100%. The filter was
till able to converge to the true SOC.

Fig. 6 shows results parallel to those of Fig. 5 for the case
here the filter SOC state was intentionally initialized with an

ncorrect value (80% rather than 100%) to demonstrate the con-
ergence properties of SPKF. We see relatively fast convergence
o within 5% SOC error, about 20-min convergence to 2% error
or the training cell and about 45-min convergence to 2% error
or the generalization cell. Convergence time may be adjusted
y varying Σw and Σv, and could have been made faster than
he results shown. The tradeoff would have been poorer SOC
ounds estimate.

Table 8 summarizes the results of these tests. The “bounds
rror” column shows the percentage of time the SOC estimation
ounds did not encompass the true SOC. Note that this was
lways at very low and high SOC – out of the operating range
y standard deviation: (a) training data and correct initialization, (b) training data
eneralization data and incorrect initialization. The standard-normal distribution

f the cell – so is not of concern here. The “time to converge”
olumn for the generalization tests show how many iterations
seconds) were required for the SOC error to converge to less
han 2%.
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.4. Examples of joint and dual ID

We conducted tests to determine the SOC estimation perfor-
ance of the joint/dual SPKF filters as well. Figs. 7 and 8 show

esults parallel to those of Figs. 5 and 6.
In Fig. 7, results are shown when the filter state was correctly

nitialized; in Fig. 8, the SOC state was intentionally initialized to
n incorrect value (80% rather than 100%) to show convergence
roperties. In frames (a)–(c), results using the cell from which
arameters were originally trained are shown; in frames (d)–
f), generalization results are shown. Note that the joint/dual
lters adapt their parameters, so that over time they learn the
ynamics of any cell they are modeling, and SOC estimation
rror improves.

Table 9 summarizes results for these tests. We note that they
re very similar to the SOC results for the plain SPKF filter. Over
(much) longer test we would expect some improvement in the

oint/dual results as the filters adapt to changing cell dynamics.
In particular, Fig. 9 shows the 1-Hz resistance and capacity

arameters adapting over the course of the test. The change in re-
istance is valid—these cells have much higher resistance at low
OC than at moderate SOC. The variation in the capacity esti-
ate between 5.02 and 5.04 Ah is a little less certain. It is likely

hat the capacity state is exhibiting some short-term variation
o mask some other modeling error. We have observed that the
ong-term behavior of the capacity state is stable, however, and
s able to track changes in the true cell capacity. The adaptation

ay be slowed down to minimize the masking effect shown here
y lowering the fictitious noise covariance in Σr corresponding
o the capacity state.

.5. Analysis of SOC estimation error

Before concluding this paper, we present some results ana-
yzing the SOC estimation error. All of the Kalman filter vari-
nts make the assumption that the noises affecting the system
f concern and the measurements made are Gaussian (normal)
andom variables, and that the state estimation errors are also
aussian. In Fig. 10, we plot summary histograms of SOC es-

imation error accumulated through the various test runs using
PKF, SR-SPKF, joint SPKF, dual SPKF, and dual SR-SPKF. In
very case, each instantaneous SOC estimation error was divided
y its corresponding one-sigma error bound before computing
he histogram, and then the histogram was normalized to have
nit area to form an empirical probability density function (PDF)
f the SOC estimation error. If all KF assumptions were being
et, this distribution should match a unit-variance standard nor-
al PDF. We see that this assumption is fairly close to being met
hen using the training data, but less well met when using the
eneralization data. In particular, we note that three-sigma error
ounds (as reported elsewhere in this paper) are theoretically
ccurate 99.7% of the time, but we see from the histograms that
our-sigma bounds would give a little more safety in an imple-

entation. Also, since we now see that the KF assumptions are

ot being met, doubt is cast on how much better we might be
ble to do using KF techniques. Most likely, one would need to
se a particle filter – which does not assume Gaussian RVs – to
ces 161 (2006) 1369–1384 1383

o better, but the added computational complexity might not be
olerable in a commercial application.

. Conclusions

This paper concludes a two-part series discussing the ap-
lication of sigma-point Kalman filters to battery management
lgorithms. In the first paper, we introduced the general prob-
bilistic inference solution to optimal estimation, and derived
he KF, EKF, and SPKF from this solution using different sets
f assumptions. The SPKF was shown to be theoretically more
recise than EKF; testing with real cell data supported this anal-
sis.

This paper showed how SPKF could be very closely approx-
mated by SR-SPKF, which gives speed advantages in the case
f a linear state equation, such as when estimating parameters
ather than states. Simultaneous state and parameter estimation
as also introduced via joint and dual SPKF methods. Results
ere presented for a prototype LiPB HEV cell that demonstrate

hat these methods work very well. For example, typical SOC
stimation errors of less than 1% are reported, both using train-
ng and testing data, with near perfect error bounds—these were
n fact perfect over the 10–90% expected SOC operating range
f the cell. Parameters such as cell resistance and SOC can also
e simultaneously estimated.

The various KF methods are derived assuming that the prob-
bility density functions of sensor and process noises are Gaus-
ian. We have seen by example that this assumption is not strictly
dhered to in this application (nor can it be exactly). This limits
he ability of the KF methods to estimate states and parameters,
nd indicates that different approaches might need to be taken if
ven greater accuracy is needed. However, the SPKF does very
ell even though this assumption is not met exactly.
For further reading, we have shown elsewhere that the state

nd parameters may be used to very precisely estimate dynamic
vailable power, and to compute which cells must be equalized
6,24].
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