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bstract

We have previously described algorithms for a battery management system (BMS) that uses Kalman filtering (KF) techniques to estimate such
uantities as: cell self-discharge rate, state-of-charge (SOC), nominal capacity, resistance, and others. Since the dynamics of electrochemical cells
re not linear, we used a non-linear extension to the original KF called the extended Kalman filter (EKF).

We were able to achieve very good estimates of SOC and other states and parameters using EKF. However, some applications e.g., that of
he battery-management-system (BMS) of a hybrid-electric-vehicle (HEV) can require even more accurate estimates than these. To see how to
mprove on EKF, we must examine the mathematical foundation of that algorithm in more detail than we presented in the prior work to discover the
ssumptions that are made in its derivation. Since these suppositions are not met exactly in BMS application, we explore an alternative non-linear
alman filtering techniques known as “sigma-point Kalman filtering” (SPKF), which has some theoretical advantages that manifest themselves

n more accurate predictions. The computational complexity of SPKF is of the same order as EKF, so the gains are made at little or no additional
ost.

The SPKF method as applied to BMS algorithms is presented here in a series of two papers. This first paper is devoted primarily to deriving
he EKF and SPKF algorithms using the framework of sequential probabilistic inference. This is done to show that the two algorithms, which at
rst may look quite different, are actually very similar in most respects; also, we discover why we might expect the SPKF to outperform EKF in
on-linear estimation applications. Results are presented for a battery pack based on a third-generation prototype LiPB cell, and compared with
rior results using EKF. As expected, SPKF outperforms EKF, both in its estimate of SOC and in its estimate of the error bounds thereof. The
econd paper presents some more advanced algorithms for simultaneous state and parameter estimation, and gives results for a fourth-generation

rototype LiPB cell.

2006 Elsevier B.V. All rights reserved.
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. Introduction
This paper applies results from the field of study known vari-
usly as sequential probabilistic inference or optimal estimation
heory to advanced algorithms for a battery management sys-
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em (BMS) for hybrid-electric vehicle (HEV) application. This
MS is able to estimate battery state-of-charge (SOC), instanta-
eous available power, and parameters indicative of the battery
tate-of-health (SOH) such as an increase in cell resistance (i.e.,
ower fade) and capacity fade, and is able to adapt to chang-
ng cell characteristics over time as the cells in the battery pack
ge. The algorithms have been successfully implemented on a
ithium-ion polymer battery (LiPB) pack, and we also expect

hem to work well for other battery chemistries.

A hybrid-electric vehicle is one with both an internal-
ombustion engine and an electric motor. Both may be cou-
led directly to the power train—resulting in a “parallel hybrid”

mailto:glp@eas.uccs.edu
mailto:gplett@compactpower.com
dx.doi.org/10.1016/j.jpowsour.2006.06.003
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onfiguration—where the motor provides boost energy to sup-
lement the engine, and acts as a generator when coasting, brak-
ng, or when the engine can supply extra power to charge the
attery pack. Alternately, the engine may be used exclusively
o drive a generator that charges the battery pack; the motor is
hen coupled directly to the power train—resulting in a “series
ybrid” configuration. The series configuration promises greater
otential efficiency, at the cost of a larger required battery pack.
t the time of the writing of this paper, the only HEVs mar-
eted in the US are parallel hybrid systems and require a battery
ack of fairly modest size. Even so, and because demanding
equirements on a pack of limited capacity result in cell electro-
hemistries that are often far from equilibrium, advanced meth-
ds must be used to estimate SOC, SOH, and instantaneous
ower in order to safely, efficiently and aggressively exploit the
ack capabilities.

The methods we use to estimate these numeric quantities
re based on model-based-estimation theory. Two separate com-
onents are needed to implement model-based estimation: (1)
model of cell dynamics, and (2) an algorithm that uses that
odel. The general approach is to use measured model inputs to

redict measurable model outputs using present values of model
tate and parameters. Any difference between the model out-
ut and the measured system output can be attributed to errors
n the measurements, states, parameters, or the model frame-
ork itself. An algorithm uses this difference signal to intelli-
ently update its estimate of the model state and/or parameters.
n this work, the model of cell dynamics is the “enhanced self-
orrecting” (ESC) model, introduced elsewhere [3,5] and briefly
eviewed in Section 7.2 here. However, the model is not the fo-
us of this work, but rather the algorithms that use that model,
hich comprise the family of Kalman filters.2

Kalman filters are an intelligent—and sometimes optimal—
eans for estimating the present value of the time-varying

state” of a dynamic system. By modeling our battery system to
nclude the wanted unknown quantities in its state description,
e may use a Kalman filter to estimate their values. An addi-

ional benefit of the Kalman filter is that it automatically provides
ynamic error-bounds on these estimates as well. We exploit this
act to give aggressive performance from our battery pack, with-
ut fear of causing damage by overcharge or overdischarge.

We have previously reported work using extended Kalman
lters (EKF) to solve the BMS algorithm requirements [1–6].
e have since explored a different form of Kalman filtering

alled sigma-point Kalman filters (SPKF), and have found them
o have several important advantages to be outlined herein.

We present the base-line SPKF and some variants, along with
esting results and analysis, in a two-part series of papers. This
rst paper primarily derives the equations that govern optimal

aussian sequential probabilistic inference, and then shows how

hese equations apply to standard Kalman filtering, extended
alman filtering, and sigma-point Kalman filtering. The SPFK

2 These algorithms may be applied to any cell model in the correct format, and
ence may be used to estimate the state and parameters of cells with differing
lectrochemistries and physical configurations.
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lgorithm is exercised on the same data as presented in [5] to
ompare with EKF on a third-generation prototype LiPB HEV
ell. In all cases, the SPKF outperforms the EKF, both in its
bility to estimate SOC, and in its estimates of the error bounds
hereof.

The second paper in this series [7] explores some more ad-
anced algorithms: square-root sigma-point Kalman filtering,
arameter estimation, and simultaneous state and parameter es-
imation using the joint and dual methods. Since it has already
een established in this first paper that SPKF outperforms EKF,
e no longer use data from the (now obsolete) third-generation

ells, but present testing data from fourth-generation LiPB high-
ower HEV cells.

While there is necessarily some redundancy in presenting
his work in a two-paper series, we felt that this approach had
ertain advantages to a single monolithic manuscript. First, each
art is self-contained, with the first paper primarily serving to
how the theoretical benefits of SPKF and to demonstrate these
ith examples and the second paper primarily serving to show
ow the SPKF might be used in actual application; secondly,
he results of the first paper are found for the third-generation
ell, and are directly comparable to previously reported results,
hile the results of the second paper are found for a fourth-
eneration cell only—since we have already established that the
PKF outperforms EKF, there is no need to rehash old data with

he SPKF and burden this work with an excess of figures and
ables—rather, we can lay the foundation for future work that
ill be reported for these cells.

. Sequential probabilistic inference

Very generally, any causal dynamic system (e.g., a battery
ell) generates its outputs as some function of its past and present
nputs. Often, we can define a state vector for the system whose
alues together summarize the effect of all past inputs. Present
ystem output is a function of present input and present state
nly; past input values need not be stored. The system’s pa-
ameter vector comprises all quasi-static numeric quantities that
escribe how the system state evolves and how the system out-
ut may be computed. The state-vector quantities change on a
elatively rapid time scale, and the parameter-vector quantities
hange on a relatively long time scale (or, not at all).

For some applications, we desire to estimate the state- or
arameter-vector quantities in real time, as the system operates.
robabilistic inference and optimal estimation theory are names
iven to the field of study that concerns estimating these hidden
ariables in an optimal and consistent fashion, given noisy or
ncomplete observations. For example, in this paper we will be
oncerned with estimating the state of an electrochemical cell
nd the parameters for a mathematical model describing the cell
ynamics. SOC is one element of the state vector of particular
oncern, and factors such as resistance increase and power fade
re elements from the parameter vector of concern to help esti-

ate SOH. Observations are available to us at sampling points

nd include: cell current ik, cell terminal voltage yk, and cell
emperature Tk, where the subscript k indicates that the mea-
urement is taken at the kth sampling point.
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In the following, we will assume that the electrochemical
ell under consideration may be modeled using a discrete-time
tate-space model of the form

k = f (xk−1, uk−1, wk−1, k − 1) (1)

k = h(xk, uk, vk, k). (2)

ere, xk ∈ Rn is the system state vector at time index k,
nd Eq. (1) is called the “state equation” or “process equation”.
he state equation captures the evolving system dynamics.
ystem stability, dynamic controllability and sensitivity to
isturbance may all be determined from this equation. The
nown/deterministic input to the system is uk ∈ Rp, and
k ∈ Rn is stochastic “process noise” or “disturbance” that
odels some unmeasured input which affects the state of the

ystem. The output of the system is yk ∈ Rm, computed by
he “output equation” (2) as a function of the states, input, and
k ∈ Rm, which models “sensor noise” that affects the measure-
ent of the system output in a memoryless way, but does not

ffect the system state. f (xk−1, uk−1, wk−1, k − 1) is a (possi-
ly non-linear) state transition function and g(xk, uk, vk, k) is
(possibly non-linear) measurement function.

With this model structure, the evolution of unobserved states
nd observed measurements may be visualized as shown in
ig. 1. The conditional probability p(xk|xk−1) indicates that the
ew state is a function of not only the deterministic input uk−1,
ut also the stochastic input wk−1, so that the unobserved state
ariables do not form a deterministic sequence. Similarly, the
onditional probability density function p(yk|xk) indicates that
he observed output is not a deterministic function of the state,
ue to the stochastic input vk.

The goal of probabilistic inference is to create an estimate of
he system state given all observationsYk = {y0, y1, . . . , yk}. A
requently used estimator is the conditional mean

ˆk = E[xk|Yk] =
∫

Rxk

xkp(xk|Yk) dxk,

here Rxk
is the set comprising the range of possible xk, andE[·]

s the statistical expectation operator. The optimal solution to this
roblem computes the posterior probability density p(xk|Yk) re-
ursively with two steps per iteration [8]. The first step computes
robabilities for predicting xk given all past observations

(xk|Yk−1) =
∫

Rxk−1

p(xk|xk−1)p(xk−1|Yk−1) dxk−1
nd the second step updates the prediction via

(xk|Yk) = p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)

Fig. 1. Sequential probabilistic inference.
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hich is a simple application of Bayes’ rule and the assumption
hat the present observation yk is conditionally independent of
revious measurements given the present state xk. The relevant
robabilities may be computed as

(yk|Yk−1) =
∫

Rxk

p(yk|xk)p(xk|Yk−1) dxk

(xk|xk−1) =
∑

{w:xk=f (xk−1,uk−1,w,k−1)}
p(w)

(yk|xk) =
∑

{v:yk=h(xk,uk,v,k)}
p(v).

Although this is the optimal solution, finding a formula
olving the multi-dimensional integrals in a closed-form is in-
ractable for most real-world systems. For applications that jus-
ify the computational expense, the integrals may be closely ap-
roximated using Monte Carlo methods such as particle filters
9–12,8]. However, for battery packs containing tens or hundreds
f cells, and hence perhaps hundreds or thousands of states, the
resent economics do not make this option feasible.

A simplified solution to these equations may be obtained if
e are willing to make the assumption that all probability den-

ities are Gaussian—this is the basis of the original Kalman
lter, the extended Kalman filter, and the sigma-point Kalman
lters to be discussed. Then, rather than having to propagate the
ntire density function through time, we need only to evaluate
he conditional mean and covariance of the state (and parame-
ers, perhaps) once each sampling interval. It can be shown (cf.
ppendix A) that the recursion becomes:

ˆ+
k = x̂−

k + Lk(yk − ŷk) = x̂−
k + Lkỹk (3)

+
x̃,k = �−

x̃,k − Lk�ỹ,kL
T
k , (4)

here the superscript T is the matrix/vector transpose operator,
nd

ˆ+
k = E[xk|Yk] (5)

ˆ−
k = E[xk|Yk−1] (6)

ˆk = E[yk|Yk−1] (7)

−
x̃,k = E[(xk − x̂−

k )(xk − x̂−
k )T] = E[(x̃−

k )(x̃−
k )T] (8)

x̃,k
+ = E[(xk − x̂+

k )(xk − x̂+
k )T] = E[(x̃+

k )(x̃+
k )T] (9)

ỹ,k = E[(yk − ŷk)(yk − ŷk)T] = E[(ỹk)(ỹk)T] (10)

k = E[(xk − x̂−
k )(yk − ŷk)T]�−1

ỹ,k = �−
x̃ỹ,k�

−1
ỹ,k. (11)

hile this is a linear recursion, we have not directly assumed that
he system model is linear. In the notation we use, the decoration
circumflex” indicates an estimated quantity (e.g., x̂ indicates
n estimate of the true quantity x). A superscript “−” indicates
n a priori estimate (i.e., a prediction of a quantity’s present
alue based on past data) and a superscript “+” indicates an

posteriori estimate (e.g., x̂+

k is the estimate of true quantity
at time index k based on all measurements taken up to and

ncluding time k). The decoration “tilde” indicates the error of
n estimated quantity. The symbol �xy = E[xyT] indicates the
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uto- or cross-correlation of the variables in its subscript. (Note
hat often these variables are zero-mean, so the correlations are
dentical to covariances.) Also, for brevity of notation, we often
se �x to indicate the same quantity as �xx.

In the following sections we will apply Eqs. (3)–(11), and
pproximations thereof, with different sets of assumptions to
erive the Kalman filter, the extended Kalman filter, and sigma-
oint Kalman filters. All members of this family of filters will
omply with a structured sequence of six steps per iteration, as
utlined here.

General step 1: State estimate time update. Each measure-
ent interval, the first step is to compute an updated prediction

f the present value of xk, based on a priori information and the
ystem model. This is done using Eqs. (1) and (6) as

ˆ−
k = E[xk|Yk−1] = E[f (xk−1, uk−1, wk−1, k − 1)|Yk−1].

eneral step 2: Error covariance time update. The second step is
o determine the predicted state-estimate error covariance matrix
−
x̃,k based on a priori information and the system model.
We compute �−

x̃,k = E[(x̃−
k )(x̃−

k )T] using Eq. (8), knowing
hat x̃−

k = xk − x̂−
k .

General step 3: Estimate system output yk. The third step is to
stimate the system’s output using present a priori information
nd Eqs. (2) and (7)

ˆk = E[yk|Yk−1] = E[h(xk, uk, vk, k)|Yk−1.]

General step 4: Estimator gain matrix Lk. The fourth step
s to compute the estimator gain matrix Lk by evaluating Lk =
−
x̃ỹ,k�

−1
ỹ,k.

General step 5: State estimate measurement update. The fifth
tep is to compute the a posteriori state estimate by updating
he a priori estimate using the estimator gain and the output

rediction error yk − ŷk using (3). There is no variation in this
tep in the different Kalman filter methods; implementational
ifferences between Kalman approaches do manifest themselves
n all other steps, however.

able 1
ummary of the general sequential probabilistic inference solution

General state-space model
xk = f (xk−1, uk−1, wk−1, k − 1)
yk = h(xk, uk, vk, k),
where wk and vk are independent, Gaussian noise processes of covariance
matrices �w and �v respectively

Definitions: let
x̃−

k
= xk − x̂−

k
, ỹk = yk − ŷk

Initialization: for k = 0, set
x̂+

0 = E[x0]
�+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T]

Computation: for k = 1, 2, . . . compute
State estimate time update: x̂−

k
= E[f (xk−1, uk−1, wk−1, k − 1)|Yk−1]

Error covariance time update: �−
x̃,k

= E[(x̃−
k

)(x̃−
k

)T]
Output estimate: ŷk = E[h(xk, uk, vk, k)|Yk−1]
Estimator gain matrix: Lk = E[(x̃−

k
)(ỹk)T](E[(ỹk)(ỹk)T])−1

State estimate measurement update: x̂+
k

= x̂−
k

+ Lk(yk − ŷk)
Error covariance measurement update: �+

x̃,k
= �−

x̃,k
− Lk�ỹ,kL

T
k
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y
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General step 6: Error covariance measurement update. The
nal step computes the a posteriori error covariance matrix using
q. (4). The estimator output comprises the state estimate x̂+

k and
rror covariance estimate �+

x̃,k. The estimator then waits until
he next sample interval, updates k, and proceeds to step 1.

The general sequential probabilistic inference solution is
ummarized in Table 1. The following sections describe spe-
ific applications of this general framework. First, we derive the
alman filter, and then the extended Kalman filter. This is done

o give confidence that the sequential probabilistic inference ap-
roach does indeed result in the equations for these standard
lgorithms, to show the assumptions made when performing the
erivations, and to give insight into how we might improve es-
imation for non-linear systems. The reader may wish to skip
head to Section 5 on the first reading of this paper, and then
eturn to Sections 3 and 4 for a greater depth of understanding.

. Optimal application to linear systems: the Kalman
lter

In this section, we take the general results from Section 2
nd apply them to the specific case where the system dynam-
cs are linear. Linear systems have the desirable property that
ll probability distributions do in fact remain Gaussian if the
tochastic inputs are Gaussian, so the assumptions made in de-
iving the filter steps hold exactly. If the system dynamics are
inear, then the Kalman filter (first presented in [13,14]) is the op-
imal minimum-mean-squared-error and maximum-likelihood
stimator. The format of this section is to first introduce the
orm of a linear state-space model, and then to apply the six
teps from Section 2 to this form to derive the linear Kalman
lter equations.

The linear Kalman filter assumes that the system being mod-
led can be represented in the “state-space” form

k = Ak−1xk−1 + Bk−1uk−1 + wk−1

k = Ckxk + Dkuk + vk.

he matrices Ak ∈ Rn×n, Bk ∈ Rn×p, Ck ∈ Rm×n and Dk ∈
m×p describe the dynamics of the system, and are possibly

ime varying. Also, both wk and vk are assumed to be mutually
ncorrelated white Gaussian random processes, with zero mean
nd covariance matrices with known value:

[wnw
T
k ] =

{
�w, n = k;

0, n �= k.
E[vnv

T
k ] =

{
�v, n = k;

0, n �= k.

he assumptions on the noise processes wk and vk and on the
inearity of system dynamics are rarely (never) met in practice,
ut the consensus of the literature and practice is that the method
till works very well.

KF step 1: State estimate time update. Here, we compute

ˆ−
k = E[Ak−1xk−1 + Bk−1uk−1 + wk−1|Yk−1]

+
= Ak−1x̂k−1 + Bk−1uk−1,

y the linearity of expectation, noting that wk−1 is zero-mean.
KF step 2: Error covariance time update. First, we note

hat the estimation error may be found by comparing xk =
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Table 2
Summary of the linear Kalman filter from reference [15]

Linear state-space model
xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

yk = Ckxk + Dkuk + vk ,
where wk and vk are independent, zero-mean, Gaussian noise processes
of covariance matrices �w and �v, respectively

Initialization: for k = 0, set
x̂+

0 = E[x0]
�+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T]

Computation: for k = 1, 2, . . . compute
State estimate time update: x̂−

k
= Ak−1x̂

+
k−1 + Bk−1uk−1

Error covariance time update: �−
x̃,k

= Ak−1�
+
x̃,k−1A

T
k−1 + �w

Output estimate: ŷk = Ckx̂
−
k

+ Dkuk
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Estimator gain matrix: Lk = �−
x̃,k

CT
k

[Ck�
−
x̃,k

CT
k

+ �v]−1

State estimate measurement update: x̂+
k

= x̂−
k

+ Lk(yk − ŷk)
Error covariance measurement update: �+

x̃,k
= (I − LkCk)�−

x̃,k

k−1xk−1 + Bk−1uk−1 + wk−1 with x̂−
k as computed in step 1.

e find that x̃−
k = Ak−1x̃

+
k−1 + wk−1. Therefore,

−
x̃k

= E[(x̃−
k )(x̃−

k )T]

= E[(Ak−1x̃
+
k−1 + wk−1)(Ak−1x̃

+
k−1 + wk−1)T]

= Ak−1�
+
x̃,k−1A

T
k−1 + �w.

he cross terms drop out of the final result since the white state
oise wk−1 is not correlated with the state at time k − 1.

KF step 3: Estimate system output. We estimate the system
utput as

ˆk = E[Ckxk + Dkuk + vk|Yk−1] = Ckx̂
−
k + Dkuk,

ince vk is zero-mean.
KF step 4: Estimator (Kalman) gain matrix. To compute Lk,

e first need to compute several covariance matrices. Since we
now thatyk = Ckxk + Dkuk + vk, it follows that ỹk = Ckx̃

−
k +

k and

ỹ,k = Ck�
−
x̃,kC

T
k + �v.

gain, the cross terms are zero since vk is uncorrelated with the
stimate x̃−

k . Similarly,

[x̃−
k ỹT

k ] = E[x̃−
k (Ckx̃

−
k + vk)T] = �−

x̃,kC
T
k .

ombining,

k = �−
x̃,kC

T
k [Ck�

−
x̃,kC

T
k + �v]−1.

KF step 6: Error covariance measurement update. Finally,
e update the error covariance matrix.

+
x̃,k = �−

x̃,k − LkE[ỹkỹ
T
k ]LT

k

= �−
x̃,k − LkE[ỹkỹ

T
k ](E[ỹkỹ

T
k ])−T

E[x̃−
k ỹT

k ]T

= �−
x̃,k − LkCk�

−
x̃,k = (I − LkCk)�−

x̃,k.

he final Kalman filter for linear systems is summarized in Table
. These are the same equations as presented (without derivation)
n reference [4].

a
t

e

y

ces 161 (2006) 1356–1368

. An approximation for non-linear systems: the
xtended Kalman filter

The extended Kalman filter is one approach to general-
ze the KF results to non-linear systems. At each point in
ime, steps 2 and 4 linearize the non-linear state and output
quations around their present operating point using Taylor-
eries expansions. Steps 1 and 3 approximate the a priori
tate estimate and output estimate using previously computed
erms.

EKF step 1: State estimate time update. The state prediction
tep is approximated as

ˆ−
k = E[f (xk−1, uk−1, wk−1, k − 1)|Yk−1]

≈ f (x̂+
k−1, uk−1, w̄k−1, k − 1),

here w̄k−1 = E[wk−1]. That is, we approximate the expected
alue of the new state by assuming that it is reasonable to sim-
ly propagate x̂+

k−1 and w̄k−1 through the state equation. Often,
¯ k−1 = 0.

EKF step 2: Error covariance time update. The covariance
rediction step is accomplished by first making an approxima-
ion for x̃−

k .

˜−
k = xk − x̂−

k = f (xk−1, uk−1, wk−1, k − 1)

− f (x̂+
k−1, uk−1, w̄k−1, k − 1).

he second term is expanded as a Taylor series around
he prior operating “point” which is the set of values
xk−1, uk−1, wk−1, k − 1}

ˆ−
k ≈ f (xk−1, uk−1, wk−1, k − 1)

+ ∂f (xk−1, uk−1, wk−1, k − 1)

∂xk−1

∣∣∣∣
xk−1=x̂+

k−1︸ ︷︷ ︸
Defined as Âk−1

(x̂+
k−1 − xk−1)

+ ∂f (xk−1, uk−1, wk−1, k − 1)

∂wk−1

∣∣∣∣
wk−1=w̄k−1︸ ︷︷ ︸

Defined as B̂k−1

(w̄k−1 − wk−1).

his gives x̃−
k ≈ Âk−1x̃

+
k−1 + B̂k−1w̃k−1. Substituting this to

nd the predicted covariance:

−
x̃,k = E[(x̃−

k )(x̃−
k )T] ≈ Âk−1�

+
x̃,k−1Â

T
k−1 + B̂k−1�w̃B̂T

k−1.

EKF step 3: Output estimate. The system output is estimated
o be

ˆk = E[h(xk, uk, vk, k)|Yk−1] ≈ h(x̂−
k , uk, v̄k, k),

where v̄k = E[vk]. That is, it is assumed that propagating x̂−
k

nd the mean sensor noise is the best approximation to estimating
he output.
EKF step 4: Estimator gain matrix. The output prediction
rror may then be approximated

˜k = yk − ŷk = h(xk, uk, vk, k) − h(x̂−
k , uk, v̄k, k)
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Table 3
Summary of the non-linear extended Kalman filter from reference [16]

Non-linear state-space model
xk = f (xk−1, uk−1, wk−1, k − 1)
yk = h(xk, uk, vk, k),
where wk and vk are independent, Gaussian noise processes of covariance
matrices �w̃ and �ṽ, respectively

Definitions
Âk = ∂f (xk,uk,wk,k)

∂xk

∣∣
xk=x̂+

k

B̂k = ∂f (xk,uk,wk,k)
∂wk

∣∣
wk=w̄k

Ĉk = ∂h(xk,uk,vk,k)
∂xk

∣∣
xk=x̂−

k

D̂k = ∂h(xk,uk,vk,k)
∂vk

∣∣
vk=v̄k

Initialization: for k = 0, set
x̂+

0 = E[x0]
�+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T]

Computation: For k = 1, 2, . . . compute
State estimate time update: x̂−

k
= f (x̂+

k−1, uk−1, w̄k−1, k − 1)
Error covariance time update: �−

x̃,k
=Âk−1�

+
x̃,k−1Â

T
k−1+B̂k−1�w̃B̂T

k−1
Output estimate: ŷk = h(x̂−

k
, uk, v̄k, k)

Estimator gain matrix: Lk = �−
x̃,k

ĈT
k

[Ĉk�
−
x̃,k

ĈT
k

+ D̂k�ṽD̂
T
k

]−1

+ −

u

y

F

�

T

L

E

�

T
I
p

5

m
n
p
m
t

calculation of the output random variable mean, the other con-
cerns the output random variable covariance.

First, we note that EKF step 1 attempts to determine an output
random-variable mean from the state-transition function f (·)
assuming that the input state is a Gaussian random variable.
EKF step 3 makes a similar calculation for the output function
h(·). The EKF makes the simplification

E[fn(x)] ≈ fn(E[x]),

which is not true in general, and not necessarily even close to
true (depending on “how non-linear” the function fn(·) is). The
SPKF to be described will make an improved approximation to
the means in steps 1 and 3.

Secondly, in EKF steps 2 and 4, a Taylor-series expansion is
performed as part of a calculation designed to find the output-
variable covariance. Non-linear terms are dropped from the ex-
pansion, resulting in a loss of accuracy. The SPKF uses a dif-
ferent method to compute covariances and will improve these
estimates as well.

To give a simple one-dimensional example illustrating these
two effects, consider Fig. 2. The non-linear function is drawn,
and the input random-variable PDF is shown on the horizontal
axis, with mean 1.05. The straight dotted line is the linearized
approximation used by the EKF to find the output mean and
covariance. The output approximate PDF estimated by EKF is
drawn as a dotted line on the vertical axis, where a Gaussian PDF
with the same mean and variance of the true data is shown as
a solid PDF on the same axis. We notice significant differences
between the means and covariances, indicating that EKF is not
producing an accurate estimate of either one.

For a two-dimensional example, consider Fig. 3. Frame (a)
shows a cloud of Gaussian-distributed random points used as
input to this function, and frame (b) shows the transformed set of
output points. The actual 95% confidence interval (indicative of
a contour of the Gaussian PDF describing the output covariance
and mean) is shown as a solid ellipse with the output mean

Fig. 2. EKF vs. SPKF mean and variance approximation. The solid line is the
non-linear function; the dotted straight line is the linear approximation used
State estimate measurement update: x̂
k

= x̂
k

+ Lk(yk − ŷk)
Error covariance measurement update: �+

x̃,k
= (I − LkĈk)�−

x̃,k

sing again a Taylor-series expansion on the second term.

ˆk ≈ h(xk, uk, vk, k) + ∂h(xk, uk, vk, k)

∂xk

∣∣∣∣
xk=x̂−

k︸ ︷︷ ︸
Defined as Ĉk

(x̂−
k − xk)

+ ∂h(xk, uk, vk, k)

∂vk

∣∣∣∣
vk=v̄k︸ ︷︷ ︸

Defined as D̂k

(v̄k − vk).

rom this, we can compute such necessary quantities as

�ỹ,k ≈ Ĉk�
−
x̃,kĈ

T
k + D̂k�ṽD̂

T
k ,

−
x̃ỹ,k ≈ E[(x̃−

k )(Ĉkx̃
−
k + D̂kṽk)T] = �−

x̃,kĈ
T
k .

hese terms may be combined to get the Kalman gain

k = �−
x̃,kĈ

T
k [Ĉk�

−
x̃,kĈ

T
k + D̂k�ṽD̂

T
k ]−1.

KF step 6: Error covariance measurement update.
Finally, the updated covariance is computed as

+
x̃,k = �−

x̃,k − Lk�ỹ,kL
T
k = �−

x̃,k − Lk�ỹ,k(�ỹ,k)−T(�−
x̃ỹ,k)T

= �−
x̃,k − LkĈk�

−
x̃,k = (I − LkĈk)�−

x̃,k.

his completes the derivation of the extended Kalman filter.
t is summarized in Table 3. These are the same equations as
resented (without derivation) in reference [4].

. Problems with the EKF

The extended Kalman filter is probably the best known and
ost widely used non-linear Kalman filter. However, it has a
umber of flaws that can be improved upon fairly easily to im-
rove state estimation. These flaws reside in two assumptions
ade in order to propagate a Gaussian random state vector x

hrough some non-linear function: one assumption concerns the

by EKF in the neighborhood of input variable equal to 1.05. The solid squares
on the axes are the input and output sigma points. The solid-line PDFs are the
Gaussian PDFs matching the input and matching the output mean and variance;
the dashed-line PDF is the output PDF predicted by the sigma-point method,
and the dotted PDF is the output PDF predicted by the EKF method.
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Fig. 3. Two-dimensional Gaussian random data (gray points in (a)) processed by
a non-linear function to become the gray points in (b). The solid ellipses are the
true 95% confidence bounds, the black squares are the input and output sigma
points; the dashed ellipse is the 95% confidence bound produced by the sigma-
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h = 1.2 (which was hand-tuned to give somewhat better results√
oint method, and the dotted ellipse is the 95% confidence bound produced by
he EKF method.

eing at the center of the ellipse. The dotted ellipse shows the
ovariance predicted by EKF, with the EKF mean being at the
enter of that ellipse. Again, EKF is very far from the truth.

In both examples, SPKF greatly outperforms EKF. We dis-
uss why in the next section.

. Sigma-point Kalman filters

We have seen that the EKF approach to generalizing the KF
o non-linear systems is to linearize the equations at each sample
oint using a Taylor-series expansion. This amounts to a first-
rder approximation of the required terms, with the questionable
ssumption being that the second- and higher-order terms are in-
ignificant. Additionally, the EKF does not accurately account
or the uncertainty of the underlying random variable in that the
KF equations are expanded around the a priori mean, with co-
ariance expected to scale according to the slope of the function
t this point only. The true a posteriori spread may be signifi-
antly different if the function being linearized is in fact quite

on-linear in the neighborhood of the a priori mean. These ap-
roximations may result in large losses in estimation accuracy
nd have been observed to result in unstable filters [17,18,12].

t

e

ces 161 (2006) 1356–1368

Sigma-point Kalman filtering (SPKF) is an alternate ap-
roach to generalizing the Kalman filter to state estimation for
on-linear systems. Rather than using Taylor-series expansions
o approximate the required covariance matrices; instead, a num-
er of function evaluations are performed whose results are used
o compute an estimated covariance matrix. This has several ad-
antages: (1) derivatives do not need to be computed (which
s one of the most error-prone steps when implementing EKF),
lso implying (2) the original functions do not need to be differ-
ntiable, and (3) better covariance approximations are usually
chieved, relative to EKF, allowing for better state estimation,
4) all with comparable computational complexity to EKF.

SPKF estimates the mean and covariance of the output of a
on-linear function using a small fixed number of function eval-
ations. A set of points (sigma points) is chosen to be input to
he function so that the (possibly weighted) mean and covari-
nce of the points exactly matches the mean and covariance of
he a priori random variable being modeled. These points are
hen passed through the non-linear function, resulting in a trans-
ormed set of points. The a posteriori mean and covariance that
re sought are then approximated by the mean and covariance of
hese points. Note that the sigma points comprise a fixed small
umber of vectors that are calculated deterministically—not like
he Monte Carlo or particle filter methods.

Specifically, if the input random vector x has dimension L,
ean x̄, and covariance �x̃, then p + 1 = 2L + 1 sigma points

re generated as the set

=
{

x̄, x̄ + γ
√

�x̃, x̄ − γ
√

�x̃

}
,

ith columns of X indexed from 0 to p, and where the matrix
quare rootR = √

� computes a result such that� = RRT. Usu-
lly, the efficient Cholesky decomposition [19,20] is used, result-
ng in lower-triangular R. The reader can verify that the weighted

ean and covariance of X equal the original mean and covari-
nce of random vector x for a specific set of {γ, α(m), α(C)} if we
efine the weighted mean as x̄ = ∑p

i=0 α
(m)
i X i, the weighted

ovariance as �x̃ = ∑p
i=0 α

(c)
i (X i − x̄)(X i − x̄)T,X i as the ith

olumn of X , and both α
(m)
i and α

(c)
i as real scalars with the nec-

ssary (but not sufficient) conditions that
∑p

i=0 α
(m)
i = 1 and

p
i=0 α

(C)
i = 1. The various sigma-point methods differ only

n the choices taken for these weighting constants. Values for
he two most common methods—the Unscented Kalman Filter
UKF) [21–24,18,12] and the Central Difference Kalman Fil-
er (CDKF) [25,26,8]—are summarized in Table 4. The UKF
s derived from the point of view of estimating covariances
ith data rather than Taylor series. The CDKF is derived quite
ifferently—it uses Stirling’s formula to approximate deriva-
ives rather than using Taylor series—but the final method is es-
entially identical. The CDKF has only one “tuning parameter”
, which makes implementation simpler. It also has marginally
igher theoretic accuracy than UKF [26], so we focus on this
ethod in the application sections later. Specifically, we used
han the default value of h = 3), and L = dim{x} = 6.
Before introducing the SPKF algorithm, we reexamine the

xamples of Figs. 2 and 3 using sigma-point methods. In the
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Table 4
Weighting constants for two sigma-point methods

γ α
(m)
0 α

(m)
k

α
(c)
0 α

(c)
k

UKF
√

L + λ λ
L+λ

1
2(L+λ)

λ
L+λ

+ (1 − α2 + β) 1
2(L+λ)

CDKF h h2−L

h2
1

2h2
h2−L

h2
1

2h2

λ 2 −2
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= α (L + κ) − L is a scaling parameter, with (10 ≤ α ≤ 1). Note that this
is different from α(m) and α(c). κ is either 0 or 3 − L. β incorporates prior infor-
ation. For Gaussian RVs, β = 2. h may take any positive value. For Gaussian
Vs, h = √

3.

ne-dimensional example in Fig. 2, three input sigma points
re needed and map to the output three sigma points shown.
he mean and variance of the sigma-point method is shown
s a dashed-line PDF and closely matches the true mean and
ariance. For the two-dimensional example in Fig. 3, five sigma
oints represent the input random-variable PDF, as shown in
rame (a). These five points are transformed to the five output
oints in frame (b). We see that the mean and covariance of the
utput sigma points (dashed ellipse) closely match the true mean
nd covariance and are much better than EKF.

Will the sigma-point method always be so much better? The
nswer depends on the degree of non-linearity of the state and
utput equations—the more non-linear the better SPKF should
e with respect to EKF. Given that our battery model is fairly
inear—the non-linearities arise only in the hysteresis state and
he OCV function—we expect modest improvements. Here, we
roceed to develop the SPKF algorithm so that we can demon-
trate results shortly.

To use SPKF in an estimation problem, we first define an
ugmented random vector xa that combines the randomness of
he state, process noise, and sensor noise. This augmented vector
s used in the estimation process as described below.

SPKF step 1: State estimate time update. Each measure-
ent interval, the state estimate time update is computed by
rst forming the augmented a posteriori state estimate vec-

or for the previous time interval: x̂
a,+
k−1 = [(x̂+

k−1)T, w̄, v̄]T,
nd the augmented a posteriori covariance estimate: �

a,+
x̃,k−1 =

iag(�+
x̃,k−1, �w, �v). These factors are used to generate the

+ 1 sigma points

a,+
k−1 =

{
x̂
a,+
k−1, x̂

a,+
k−1 + γ

√
�

a,+
x̃,k−1, x̂

a,+
k−1 − γ

√
�

a,+
x̃,k−1

}
.

rom the augmented sigma points, the p + 1 vectors comprising
he state portion X x,+

k−1 and the p + 1 vectors comprising the
rocess-noise portion Xw,+

k−1 are extracted. The process equation
s evaluated using all pairs of X x,+

k−1,i and Xw,+
k−1,i (where the

ubscript i denotes that the ith vector is being extracted from the
riginal set), yielding the a priori sigma points X x,−

k,i for time
tep k. That is,
x,−
k,i = f (X x,+

k−1,i, uk−1,Xw,+
k−1,i, k − 1).

inally, the a priori state estimate is computed as

ˆ− = E[f (x , u , w , k − 1)|Y ]
k k−1 k−1 k−1 k−1

≈
p∑

i=0

α
(m)
i f (X x,+

k−1,i, uk−1,Xw,+
k−1,i, k − 1) =

p∑
i=0

α
(m)
i X x,−

k,i .

d
4
1
4
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SPKF step 2: Error covariance time update. Using the a pri-
ri sigma points from step 1, the a priori covariance estimate is
omputed as

−
x̃,k =

p∑
i=0

α
(c)
i (X x,−

k,i − x̂−
k )(X x,−

k,i − x̂x
k,i)

T.

PKF step 3: Estimate system output yk. The system output
s estimated by evaluating the model output equation using the
igma points describing the spread in the state and noise vectors.
irst, we compute the pointsYk,i = h(X x,−

k,i , uk,X v,+
k−1,i, k). The

utput estimate is then

ˆk = E[h(xk, uk, vk, k)|Yk−1]

≈
p∑

i=0

α
(m)
i h(X x,−

k,i , uk,X v,+
k−1,i, k) =

p∑
i=0

α
(m)
i Yk,i.

PKF step 4: Estimator gain matrix Lk. To compute the estima-
or gain matrix, we must first compute the required covariance

atrices.

�ỹ,k =
p∑

i=0

α
(c)
i (Yk,i − ŷk)(Yk,i − ŷk)

−
x̃ỹ,k =

p∑
i=0

α
(c)
i (X x,−

k,i − x̂−
k )(Yk,i − ŷk).

hen, we simply compute Lk = �−
x̃ỹ,k�

−1
ỹ,k.

SPKF step 6: Error covariance measurement update. The
nal step is calculated directly from the optimal formulation:
+
x̃,k = �−

x̃,k − Lk�ỹ,kL
T
k . The SPKF solution is summarized

n Table 5.

. Application to battery management systems

.1. Cell and cell test description

In order to compare the various Kalman filtering methods’
bilities to estimate SOC and SOH, we gathered data from a
rototype LiPB cell. The cell comprises a LiMn2O4 cathode,
n artificial graphite anode, is designed for high-power applica-
ions, has a nominal capacity of 7.5 Ah and a nominal voltage of
.8 V. SOC estimation results using EKF have been previously
eported for this cell, which we call a GEN3 cell [1–6], and may
e used as a benchmark for comparison. Note that the results in
he companion paper [7] are for a newer generation cell, which
e call a G4 cell.
For the tests, we used a Tenney thermal chamber set at 25 ◦C

nd an Arbin BT2000 cell cycler. Each channel of the Arbin
as capable of 20 A current, and 10 channels were connected in
arallel to achieve currents of up to 200 A. The cycler’s voltage
easurement accuracy was ±5 mV and its current measurement

ccuracy was ±200 mA.
The cell test we use here comprised a sequence of 16 “urban
ynamometer driving schedule” (UDDS) cycles, separated by
0 A discharge pulses and 5-min rests, and spread over the 90–
0% SOC range. The SOC as a function of time is plotted in Fig.
(a), and rate as a function of time for one of the UDDS cycles
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Table 5
Summary of the non-linear sigma-point Kalman filter

Non-linear state-space model
xk = f (xk−1, uk−1, wk−1, k − 1)
yk = h(xk, uk, vk, k),
where wk and vk are independent, Gaussian noise processes of covariance matrices �w and �v, respectively

Definitions: let
xa

k
= [xT

k
, wT

k
, vT

k
]T,X a

k
= [(X x

k)T, (X w
k )T, (X v

k)T]T, p = 2 × dim(xa
k
)

Initialization: for k = 0, set
x̂+

0 = E[x0] x̂
a,+
0 = E[xa

0] = [(x̂+
0 )T, w̄, v̄]T

�+
x̃,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T] �

a,+
x̃,0 = E[(xa

0 − x̂
a,+
0 )(xa

0 − x̂
a,+
0 )T]

= diag(�+
x̃,0, �w, �v)

Computation: for k = 1, 2, . . . compute

State estimate time update X a,+
k−1 = {x̂a,+

k−1, x̂
a,+
k−1 + γ

√
�

a,+
x̃,k−1, x̂

a,+
k−1 − γ

√
�

a,+
x̃,k−1}

X x,−
k,i

= f (X x,+
k−1,i

, uk−1,X w,+
k−1,i

, k − 1)

x̂−
k

=
∑p

i=0 α
(m)
i X x,−

k,i

Error covariance time update �−
x̃,k

= ∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(X x,−

k,i
− x̂−

k
)T

Output estimate Yk,i = h(X x,−
k,i

, uk,X v,+
k−1,i

, k)

ŷk =
∑p

i=0 α
(m)
i Yk,i

Estimator gain matrix �ỹ,k =
∑p

i=0 α
(c)
i (Yk,i − ŷk)(Yk,i − ŷk)T

�−
x̃ỹ,k

=
∑p

i=0 α
(c)
i (X x,−

k,i
− x̂−

k
)(Yk,i − ŷk)T

Lk = �−
x̃ỹ,k

�−1
ỹ,k

x̂+
k

= x̂−
k

+ Lk(yk − ŷk)

�+
x̃,k

= �−
x̃,k

− Lk�ỹ,kL
T
k
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State estimate measurement update

Error covariance measurement update

s plotted in Fig. 4(b). We see that SOC increases by about 5%
uring each UDDS cycle, but is brought down about 10% during
ach discharge between cycles. The entire operating range for
hese cells (10% SOC to 90% SOC marked as dashed lines in
ig. 4(a)) is excited during the cell test.

The data was used to identify parameters of the cell models
o be described in the next sections. The goal is to have the
ell model output resemble the cell terminal voltage under load
s closely as possible, at all times, when the cell model input is
qual to the cell current. Model fit was judged by comparing root-
ean-squared (RMS) estimation error (estimation error equals

ell voltage minus model voltage) over the portions of the cell
ests where SOC was between 5% and 95%. Model error outside
hat SOC range was not considered as the HEV pack operation
esign limits are 10% SOC to 90% SOC.

.2. Enhanced self correcting model description

In order to examine and compare performance of different
alman filters, we must first define a discrete-time state-space
odel of the form of (1) and (2) that applies to battery cells. Here,
e briefly review the “Enhanced Self-Correcting” (ESC) cell
odel from references [3,5]. This model includes effects due to

pen-circuit-voltage, internal resistance, voltage time constants,
nd hysteresis.

State-of-charge zk is captured by one state of the model. This

quation is

k = zk−1 −
(

ηi 
T

C

)
ik−1,

Fig. 4. Plots showing SOC vs. time and rate vs. time for UDDS cell tests. SOC
is shown in (a); rate for one UDDS cycle is shown in (b).
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The state equation for the model is formed by combining all of
the individual equations, above.

The output equation that combines the state values to predict
cell voltage is

yk = OCV(zk) + Gfk − Rik + Mhk,

where G ∈ R1×nf is a vector of constants that blend the time-
constant states together in the output, R the cell resistance (dif-
ferent values may be used for dis/charge), and M is the maximum
hysteresis level.

The open-circuit-voltage as a function of state-of-charge for
these cells is plotted in Fig. 5(a). This is an empirical relationship
found by cell testing. For the purpose of computations involving
OCV, the final curve was digitized at 200 points and stored in
a table. Linear interpolation is used to look up values in the
table.

The partial derivative of OCV with respect to SOC, required
by EKF but not SPKF, is plotted in Fig. 5(b). This relationship
was computed by first taking finite differences between points in
the OCV plot in Fig. 5(a) and dividing by the distance between
points (i.e., Euler’s approximation to a derivative). The resulting
data is too noisy to be of practical use, as shown in the gray
line of Fig. 5(b). It was filtered using a zero-phase low-pass
filter, resulting in the black line of Fig. 5(b), which is used in
EKF. This relationship is also digitized at 200 points, and linear
ig. 5. Plots of (a) open-circuit-voltage as a function of state-of-charge, and (b)
erivative of OCV as a function of SOC. In (b), raw, noisy version shown as
ray, filtered derivative shown as black.

here ηi is the cell Coulombic efficiency at current ik−1, 
T

epresents the inter-sample period (in seconds), and C represents
he cell capacity (in As).

The time-constants of the cell voltage response are captured
y several filter states. If we let there be nf time constants, then

k = Af fk−1 + Bf ik−1.

he matrix Af ∈ Rnf ×nf may be a diagonal matrix with real-
alued entries. If so, the system is stable if all entries have mag-
itude less than one. The vector Bf ∈ Rnf ×1 may simply be set
o nf “1”s. The value of nf and the entries in the Af matrix are
hosen as part of the system identification procedure to best fit
he model parameters to measured cell data.

The hysteresis level is captured by a single state

k = exp

(
−

∣∣∣∣ηiik−1γ 
T

C

∣∣∣∣
)

hk−1

+
(

1 − exp

(
−

∣∣∣∣ηiik−1γ 
T

C

∣∣∣∣
))

sgn(ik−1),

here γ is the hysteresis rate constant, again found by system

dentification.

The overall model state is

k = [f T
k , hk, zk]T.

Fig. 6. Voltage prediction using cell model. Gray is true voltage, black is esti-
mated voltage. In (b) a zoom of voltage prediction for one UDDS cycle at around
50% SOC is shown.
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interpolation into the table of values is used when computations
requiring this function are performed.

Other parameters are fit to the cell model using a method
previously described ([5], Section 4). In particular, the model
employs four low-pass filter states (nf = 4), a nominal ca-
pacity of 7.5 Ah, and an inter-sample interval of 
T = 1 s.
Further, Af = diag{0.9624, 0.8509, 0.9981, 0.99999}, Bf =
10−4 × [1, 1, 1, 1]T (chosen to scale all states—including the
hysteresis and SOC state—to roughly the same dynamic range),
G = [−0.5256, −1.3258, −0.1855, 0.0012], γ = 2.2523, η =
1, M = 74.7 mV, the charging resistance was 2.6 m�, and the
discharging resistance was 2.7 m�. These are the same values
used to generate the results in [5]. There is very close agree-
ment between the cell model voltage prediction and the cell true
voltage. This is illustrated in Fig. 6(a). To better illustrate the
model’s fidelity, refer to the zoom on one UDDS cycle in the
50% SOC region, shown in Fig. 6(b).

7.3. Examples of EKF versus SPKF

Using the data fit to the ESC model, we ran an EKF and an
SPKF to predict SOC. Note that the EKF results in this section
are identical to those in [6] and are replicated here for clarity of
comparison with the SPKF results. All “tuning” parameters were
the same between EKF and SPKF; the model and all cell-test
data files used were identical.

Fig. 7. SOC estimation error for: (a) EKF vs. (b) SPKF, when correctly initial-
ized.
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ig. 8. SOC estimation error for: (a) EKF vs. (b) SPKF, when not correctly
nitialized.

SOC estimation error is plotted in Fig. 7 for both technologies
hen the filters are correctly initialized (to initial SOC =100%).
he EKF RMS SOC estimation error is 0.64% while the SPKF
MS SOC estimation error is 0.49%—an improvement of over
3%. The maximum absolute SOC estimation error was 1.10%
or EKF and 0.90% for SPKF—an improvement of 18%. The
ounds correctly encompassed the zero point 95.11% of the time
or SPKF, but only 74.73% of the time for EKF.

In Fig. 8, we compare the results for EKF versus SPKF when
he filters were incorrectly initialized to SOC=80% rather than
he correct 100%. Both filters had equivalent uncertainty matri-
es on the states, so recovery from the initial error took a similar
mount of time. Error bounds for the SPKF method were slightly
ighter, however.

The EKF had an RMS SOC estimation error of 0.75%, while
he SPKF had an RMS SOC estimation error of 0.69%. This is an
% improvement, which at first appears small compared to the
rst trial case. Notice that the RMS error is here dominated by the

nitial convergence of the estimators, which is nearly equivalent
or both technologies. The lower error of SPKF may be attributed
ostly to its convergence closer to the true SOC after the initial
ransient. Also, the SPKF bounds were correct 97.86% of the
ime, while the EKF bounds were correct only 93.86% of the
ime. These numeric results are replicated in Table 6 for easy
omparison. In steady state we observe SPKF to improve RMS
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Table 6
Comparison of EKF vs. SPKF in UDDS test results predicting SOC

Correctly initialized Incorrectly initialized

RMS error (%) Maximum error (%) Bounds error (%) RMS error (%) Bounds error (%)

EKF 0.64 1.10 25.27 0.75 6.14
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We can now proceed to verify Eqs. (3) and (4) by find-
ing E[xk|Yk]. First, we define x̃−

k = xk − x̂−
k where x̂−

k =
E[xk|Yk−1] and ỹk = yk − ŷk where ŷk = E[yk|Yk−1]. By as-
sumption, x̃−

k and ỹk are jointly Gaussian, and by construction
have zero mean. Then, by Theorem 1 we have that E[x̃−

k |ỹk] =
�x̃ỹ,k�

−1
ỹ,kỹk, which we define to be Lkỹk.

Secondly, we must show that E[x̃−
k |Yk−1] = E[x̃−

k ] and
therefore x̃− is uncorrelated with Yk−1 (independent because
SPKF 0.49 0.90
Improvement 23 18

rror by about 20% and to greatly improve prediction of error
ounds because of a better state error covariance estimate.

. Conclusions

This paper has considered several methods for state estima-
ion of a battery cell with application to battery-management sys-
ems of hybrid-electric vehicles. These algorithms are based on
ptimal estimation theory (also known as sequential probabilis-
ic inference) and encompass several members of the Kalman
lter family. In particular, we have shown how the Kalman filter,

he extended Kalman filter and the sigma-point Kalman filters
an be derived and applied to state estimation.

In prior work we have shown how the extended Kalman fil-
er can be used in battery-management systems. Here, we have
hown that the sigma-point Kalman filter may also be used for
iPB-cell state estimation, at an equivalent computational com-
lexity. Data from testing using a third-generation prototype
iPB cell shows that SPKF gives superior results. The RMS
OC estimation error is lower, the maximum SOC estimation
rror is lower, and the error bounds produced on the estimate are
ore accurate.
The state estimate produced by SPKF can also be used to

redict available power [27], or to effect equalization via SOC
6]. Furthermore, the estimate can be made more accurate if the
ell parameters are also estimated in real time to account for any
anufacturing differences between cells, and to track the effects

f aging. Details on how to do this using SPKF are discussed in
he companion to this paper [7].
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ppendix A. Proof of Gaussian recursion

exp

(
−1

2
(x − x̄ − �xy�

−
y

In this appendix, we prove the claims of Eqs. (3) and (4)
sing the definitions of Eqs. (5)–(11). That is, we find E[xk|Yk]
nder the basic assumption that all densities remain Gaussian.

G

E

4.89 0.69 2.14
81 8 65

e first derive a fundamental equation governing Gaussian
stimation, and then apply it to the problem at hand.

heorem. If x and y are jointly Gaussian vectors with means
¯ and ȳ and joint covariance �, then p(x|y) is Gaussian with

ean x̄ + �xy�
−1
yy (y − ȳ) and covariance �xx − �xy�

−1
yy �yx,

nd thus E[x|y] = x̄ + �xy�
−1
yy (y − ȳ).

roof. First, we write,

(x | y) = p(x, y)

p(y)
∝ exp

×
⎛
⎝−1

2

∥∥∥∥∥
[

x

y

]
−

[
x̄

ȳ

]∥∥∥∥∥
2

�−1

+ 1

2
‖y − ȳ‖2

�−1
yy

⎞
⎠ ,

(12)

here � =
[

�xx �xy

�yx �yy

]
is the joint covariance matrix. Then,

ubstitute the transformation

�xx �xy

�yx �yy

]
=

[
I �xy�

−1
yy

0 I

]

×
[

�xx − �xy�
−1
yy �yx 0

0 �yy

] [
I 0

�−1
yy �yx I

]
,

aintaining the inner matrix without expansion. The terms in
he exponent of (12) become

− ȳ))T(�xx − �xy�
−1
yy �yx)−1(x − x̄ − �xy�

−1
yy (y − ȳ))

)
,

erifying the claim.
k

aussian). This is straightforward by substitution:

[x̃−
k |Yk−1] = E[xk − E{xk|Yk−1}|Yk−1] = 0 = E[x̃−

k ].
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herefore, we can write

[x̃−
k |Yk] = E[x̃−

k | Yk−1, ỹk]

= E[x̃−
k |ỹk]︸ ︷︷ ︸

Lk(yk−ŷk)

= E[xk|ỹk]︸ ︷︷ ︸
x̂+
k

−E[x̂−
k |ỹk]︸ ︷︷ ︸
x̂−
k

.

rom this last line, we solve for the a posteriori state estimate
ˆ+
k = x̂−

k + Lk(yk − ŷk), which verifies Eq. (3) �.
The covariance of x̃+

k may be computed using Eq. (3).

+
x̃,k = E[{(xk − x̂−

k ) − Lkỹk}{(xk − x̂−
k ) − Lkỹk}T]

= �−
x̃,k − Lk E[ỹk(x̃−

k )T]︸ ︷︷ ︸
�ỹ,k

LT
k − E[x̃−

k ỹT
k ]︸ ︷︷ ︸

Lk�ỹ,k

LT
k + Lk�ỹ,kL

T
k

= �−
x̃,k − Lk�ỹ,kL

T
k ,

hich verifies Eq. (4).
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