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Abstract 
A battery management system for HEV/BEV application must perform a number of estimation tasks 
in real time.  In previous papers, we have presented methods for cell SOC estimation that use ex-
tended Kalman filters (EKF) as their basis.  In this paper, we show how EKF may also be used to 
estimate power fade, capacity fade, and can keep the SOC estimate accurate throughout the lifetime of 
the cell, even though its dynamics change as it ages.  Results are presented to demonstrate the efficacy 
of the new methods.  Copyright© 2005 EVS21 
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1.  Introduction 
A battery management system for HEV and other applications must perform a number of estimation 
tasks in real time.  In previous papers [1–6], we have presented methods for cell SOC estimation that 
use extended Kalman filters (EKF) as their basis.  EKF requires a precise model of cell dynamics and 
repeatedly performs three steps.  It uses the model to (1) predict cell terminal voltage based on its best 
estimate of the cell’s state and available measurements.  This prediction is (2) compared to measured 
cell voltage.  Any difference between the prediction and measurement may be attributed to either 
measurement error (e.g., sensor noise), modeling error, or an error in the state estimate.  The EKF (3) 
carefully updates the model state, using the prediction error and a weighting function that takes into 
account that state-error is not the only source of prediction error. 

For EKF to give peak performance, the cell model being used must predict true cell behavior as ex-
actly as possible.  However, cells are not created equal, even in mass production, so a single model 
will not give peak performance in a pack comprising many cells.  A further complication is that cell 
dynamics (especially their resistance and total capacity) change as the cells age, both in calendar life 
and accumulated cycles, and that cells do not all age at the same rate.   

Ideally, we would like separate models for each cell, where each is initialized with a nominal version 
of new-cell dynamics and adapts over time to more accurately capture the present cell dynamics.  An 
added benefit of an adaptive cell model is that parameters indicative of the level of cell deterioration, 
such as present resistance and present total capacity, are worth estimating in their own right, as they 
are useful in composing estimates of cell state-of-health (SOH). 

This paper describes methods within the framework of EKF that simultaneously estimate the state 
(including SOC) and parameters (including resistance and total capacity) of a cell model.  We first 
review the EKF method, and then show how it may be extended to estimate both state and parameters.  
To apply to the battery-management-system application, we then review a mathematical cell model 
that may be used.  Since the proposed methods are computationally intensive, they may not be feasi-
ble for every application; so simplified versions are given for monitoring capacity fade and power 
fade.  Results are presented and conclusions made. 

2.  Review of EKF 

The Kalman filter is the optimum state estimator for a linear system under certain assumptions.  If the 
system is nonlinear, then we may use a linearization process at every time step to approximate the 
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nonlinear system with a linear time-varying (LTV) system.  This LTV system is then used in the 
Kalman filter, resulting in an extended Kalman filter (EKF) on the true nonlinear system.  Note that 
although EKF is not necessarily optimal, it often works very well. 

To use an EKF to estimate a system’s state, we must have a “state-space” model of its dynamics: 
 xk+1  = f (xk, uk) + wk (1) 

 yk  = g(xk, uk) + vk, (2) 

where, wk and vk are zero mean white Gaussian stochastic processes with covariance matrices 

! 

"
w

 and 
v

! , respectively, and model state noise and sensor noise.  In (1), f(  ) is a nonlinear transition matrix 
function and in (2), g(  ) is a nonlinear measurement matrix function. 

The EKF, based on these equations, is a recursive algorithm to update an estimate 

! 

ˆ x 
k
 of the present 

state 

! 

xk .  It repeatedly performs a sequence of steps.  First, it predicts the present state given the past 
state estimate and the system input.  Then it predicts the uncertainty of the state estimate 

! 

" ˜ x ,k .  A 
measurement of the system output is made and compared with a prediction of the output based on the 
state estimate.  The state estimate is updated based on the prediction error, the sensitivity of the output 
to various states, and the uncertainty of the states.  The state-estimate uncertainty is also updated.  The 
algorithm is summarized in Table 1, and is described in more detail in references [2–6].  The notation 
uses a superscript “–“ to denote a predicted quantity, a superscript “+” to denote an updated quantity, 
a circumflex “^” to dentote an estimated quantity, a tilde “~” to denote an estimation error, and 

! 

" to 
denote the covariance of an estimated quantity. 

3.  Joint and Dual EKF Methods 
The system state 

! 

x
k
 includes, at least, a minimum amount of information, together with the present 

input and a mathematical model of the cell, needed to predict the present output.  The state might 
include: SOC, polarization voltage levels with respect to different time constants, and hysteresis lev-
els, for example.  Members of the system state vector have the ability to change rapidly with respect 
to time, such as SOC, which might traverse its entire range in a few minutes.  The system parameters 
k

!  are the values that change only slowly with time, in such a way that they may not be directly de-
termined with knowledge of the system measured input and output.  These might include: cell capac-
ity (possibly different values for charge/discharge), resistance(s), polarization voltage time con-
stant(s), polarization voltage blending factor(s), hysteresis blending factor(s), hysteresis rate 
constant(s), efficiency factor(s), and so forth.  Generally, we would like to be able to estimate both the 
cell state and the cell parameters.  

There are two basic approaches to generalizing EKF to simultaneously estimate both state and pa-
rameters.  Joint estimation augments the state vector of the system with the parameters, and uses an 
extended Kalman filter on the augmented system with large matrix operations.  Dual estimation uses 
two cooperating extended Kalman filters where one estimates the state and the other estimates the 
parameters.  These two methods are described in the following sections. 

3.1.  Joint EKF 
We begin our discussion of joint EKF by defining a model for the dynamics of cell parameters:  

 

! 

"k+1 ="k + rk .          (3) 

The equation states that the parameters are essentially constant, but that they may change slowly over 
time, modeled by a fictitious “noise” process denoted, 

k
r .   

Within a joint filter, the dynamics of the state and the dynamics of the parameters are combined to 
make an augmented system:  



 

 3 

! 

xk+1

"k+1
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$ 
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& 
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f (xk ,uk ,"k )
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& 

' 
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wk
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$ 
% 

& 

' 
( 

yk = g(xk ,uk ,"k ) + vk .

 

Note that to simplify notation, we will refer to the vector comprising the present state and present 
parameters as 

! 

" k , and the equation combining the dynamics of the state and the dynamics of the pa-
rameters as   

! 

F .  This allows us to write 

 

  

! 

" k+1 = F (" k ,uk ) +
wk

rk

# 

$ 
% 

& 

' 
( 

yk = g(" k ,uk ) + vk .

 

With the augmented model of the system state dynamics and parameter dynamics defined, we apply 
the EKF method.  Table 2 gives a listing of the steps.  The procedure is initialized by setting the aug-
mented state estimate 

! 

ˆ " 
0
 to the best guess of the true augmented state by setting the top portion to 

! 

E[x0] and the bottom portion to 

! 

E["0] .  The estimation-error covariance matrix 

! 

" ˜ # 
+  is also initial-

ized.  The rest of the steps are similar to the standard EKF, but with larger matrix operations. 

3.2.  Dual EKF 

With dual EKF, separate filters are used to estimate the state and parameters.  The parameter filter 
uses a model of dynamics from Equation (3) and the cell model output equation giving:  

! 

"k+1 ="k + rk

dk = g(xk ,uk ,"k ) +ek .
         (4) 

Again, the first equation states that the parameters are essentially constant, but that they may change 
slowly over time, modeled by a fictitious “noise” process denoted, 

k
r .  The “output” of the optimum 

parameter dynamics is the cell output estimate plus some estimation error 
k
e . 

With models of the system state dynamics and parameter dynamics defined, dual extended Kalman 
filters are employed.  Table 3 is a listing of the full algorithm.  The procedure is initialized by setting 
the parameter estimate 

! 

ˆ "  to the best guess of the true parameters, and by setting the state estimate x̂  
to the best estimate of the cell state.  The estimation-error covariance matrices 

! 

" ˜ x 

+  and 

! 

" ˜ # 
+  are also 

initialized.  For example, an initialization of SOC might be estimated/based on a cell voltage in a 
look-up table, or information that was previously stored when a battery pack/cell was last powered 
down.  Other examples might incorporate the length of time that the battery system had rested since 
power-down and the like.  The remainder of the algorithm steps compute the two extended Kalman 
filters, with appropriate information interchange.  A block diagram of the method is shown in Fig-
ure 1. 

The only subtle point is the calculation of 

! 

Ck
" , which requires a total-differential expansion to be cor-

rect.  To compute 

! 

Ck
" ,  

! 

d g( ˆ x k
"
,uk ,#k )

d#
=
$g( ˆ x k

"
,uk ,#k )

$#
+
$g( ˆ x k

"
,uk ,#k )

$ ˆ x k
"

d ˆ x k
"

d#

d ˆ x k
"

d#
=
$ f ( ˆ x k"1

+
,uk"1,#k

"
)

$#
+
$ f ( ˆ x k"1

+
,uk"1,#k

"
)

$ ˆ x k"1
+

d ˆ x k"1
+

d#

d ˆ x k"1
+

d#
=

d ˆ x k"1
"

d#
" Lk

x d g( ˆ x k"1
"

,uk"1,#k"1)

d#
,
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assuming that 

! 

Lk
x  is not a function of 

! 

"  (it is—weakly—so that it is not worth the extra computation 
to include effects of 

! 

Lk
x  as a function of 

! 

" ).  The three total derivatives are computed recursively, 
with the result stored each iteration.  The partials are computed each time step. 

 

Measurement

Update EKFx

Measurement

Update EKF!

Time Update

EKF!

Time Update

EKFx
+

kx̂

+

k!̂

"

kx̂

"

k!̂

+

"1
ˆ
kx

+

"1
ˆ
k!

ky

 
Figure 1:  Block diagram of dual extended Kalman filtering. 

3.3  Convergence 

The dual/joint extended Kalman filters will adapt 

! 

ˆ x  and 

! 

ˆ "  so that the model input-output relationship 
matches the cell input-output data as closely as possible.  There is no built-in guarantee that the state 
or parameters of the model converge to anything with physical meaning.  We take special steps to 
ensure that this occurs. 

A very crude cell model may be used, combined with the dual/joint EKF, to ensure convergence of 
the SOC state.  Specifically,  

! 

yk " OCV(zk ) #Rik

OCV(zk ) " yk + Rik

ˆ z k = OCV
#1

(vk + Rik ).

 

By measuring the cell voltage under load, the cell current, and having knowledge of 

! 

R, (perhaps 
through 

! 

ˆ "  from the dual/joint EKF), and knowing the inverse OCV function for the cell chemistry, 
one can compute a noisy estimate of SOC, 

! 

ˆ z k . 

To combine this simple model with the dual/joint EKF, the cell model being used for dual estimation 
(e.g., perhaps the ESC model) has its output equation augmented with SOC: 

! 

g(xk ,uk ,") =
OCV(zk ) # Rik + hk +Gfk

zk

$ 

% 
& 

' 

( 
) . 

The dual EKF is run on this modified model, with the “measured” information in the measurement 
update being 

! 

vk

ˆ z k

" 

# 
$ 

% 

& 
' . 

While the “noise” of 

! 

ˆ z k  (short-term bias due to hysteresis effects and polarization filter voltages be-
ing ignored) prohibit it from being used as the primary estimator of SOC, its expected long-term be-
havior in a dynamic environment is accurate, and maintains the accuracy of the SOC state in the dual 
EKF.  
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Table 1: Summary of the extended Kalman filter, adapted from reference [10]. 

State-space model: 

 

! 

xk+1 = f (xk ,uk ) +wk

yk = g(xk ,uk ) + vk
, (4) 

where wk and vk are independent, zero-mean, Gaussian noise processes of covari-
ance matrices 

! 

"
w

 and 

! 

"
v
, respectively. 

Definitions: 

! 

Ak =
"f (xk ,uk )

"x xk = ˆ x k
+

Ck =
"g(xk ,uk )

"x xk = ˆ x k
#

 

Initialization:  For 0=k , set

! 

ˆ x 0
+

= E[x0], " ˜ x ,0
+

= E[(x0 #E[x0])(x0 #E[x0])
T

]. 

Computation:  For   

! 

k =1,2,K, compute: 
Time update: 

! 

ˆ x k
"

= f ( ˆ x k"1
+

,uk"1).

# ˜ x ,k
"

= Ak"1# ˜ x ,k"1
+ Ak"1

T
+ #w .

 

Measurement update: 

! 

Lk = " ˜ x ,k
#

Ck
T

[Ck" ˜ x , k
#

Ck
T

+ "v ]
#1

.

ˆ x k
+

= ˆ x k
#

+ Lk[yk # g( ˆ x k
#

,uk )].

" ˜ x ,k
+

= (I # LkCk )" ˜ x , k
#

.

 

 
 

Table 2:  Joint extended Kalman filter for state and weight update, adapted from [10]. 

State-space models: 

! 

xk+1

"k+1

# 

$ 
% 

& 

' 
( =

f (xk ,uk ,"k )

"k

# 

$ 
% 

& 

' 
( +

wk

rk

# 

$ 
% 

& 

' 
( 

yk = g(xk ,uk ,"k ) + vk .

     or     

  

! 

" k+1 = F (" k ,uk ) +
wk

rk

# 

$ 
% 

& 

' 
( 

yk = g(" k ,uk ) + vk .

 

where 

! 

wk , 

! 

vk , and 

! 

rk  are independent, zero-mean, Gaussian noise processes of covariance 
matrices 

! 

"
w

, 

! 

"
v
, and 

! 

"
r
, respectively. 

Definitions:    
  

! 

Ak"1=
#F ($ k"1,uk"1)

#$ k"1 $k"1 = ˆ $ k"1
+

Ck=
#g($ k ,uk )

#$ k $k = ˆ $ k
"

  

Initialization:  For 0=k , set  

! 

ˆ " 0
+

= E["0], # ˜ " ,0
+

= E[("0 $ ˆ " 0
+
)("0 $ ˆ " 0

+
)
T
]. 

Computation:  For ,,2,1 K=k compute: 

Time update: 

  

! 

ˆ " 
k

#
= F ( ˆ " 

k#1
+ ,u

k#1)

$ ˜ " ,k
#

= A
k#1$ ˜ " ,k#1

+
A
k#1
T

+ diag($
w

,$
r
).

 

Measurement update: 

! 

Lk = " ˜ # ,k
$

(Ck )
T
[Ck" ˜ # ,k

$
(Ck )

T
+ "v ]

$1

ˆ # k
+

= ˆ # k
$

+ Lk[yk $ g( ˆ # k
$
,uk )]

" ˜ # ,k
+

= (I $ LkCk )" ˜ # ,k
$

.
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Table 3: Dual extended Kalman filter for state and weight update, adapted from [10].  

State-space models: 

! 

xk+1 = f (xk ,uk ,"k ) +wk

yk = g(xk ,uk ,"k ) + vk
      and       

! 

"k+1 ="k + rk

dk = g(xk ,uk ,"k ) +ek ,
 

where 

! 

wk , 

! 

vk , 

! 

rk  and 

! 

ek  are independent, zero-mean, Gaussian noise processes of covari-
ance matrices 

! 

"
w

, 

! 

"
v
, 

! 

"
r
 and 

! 

"
e
, respectively. 

Definitions:   

! 

Ak"1=
#f (xk"1,uk"1, ˆ $ k

"
)

#xk"1 xk"1 = ˆ x k"1
+

Ck
x
=
#g(xk ,uk , ˆ $ k

"
)

#xk xk = ˆ x k
"

Ck
$

=
d g( ˆ x k

"
,uk ,$)

d$
$ = ˆ $ k

"

 

Initialization:  For 0=k , set 

 

! 

ˆ " 0
+

= E["0], # ˜ " ,0
+

= E[("0 $
ˆ " 0

+
)("0 $

ˆ " 0
+
)

T
]

ˆ x 0
+

= E[x0], # ˜ x ,0
+

= E[(x0 $ ˆ x 0
+
)(x0 $ ˆ x 0

+
)

T
].

 

Computation:  For   

! 

k =1,2,K,compute: 

 Time update for the weight filter  

 

! 

ˆ " k
#

= ˆ " k#1
+

$ ˜ " ,k
#

= $ ˜ " ,k#1

+
+ $r .

 

 Time update for the state filter 

 

! 

ˆ x k
"

= f ( ˆ x k"1
+

,uk"1, ˆ # k
"
)

$ ˜ x ,k
"

= Ak"1$ ˜ x ,k"1
+ Ak"1

T
+ $w .

 

 Measurement update for the state filter 

 

! 

Lk
x

= " ˜ x ,k
#

(Ck
x
)

T
[Ck

x
" ˜ x ,k
#

(Ck
x
)

T
+ "v ]

#1

ˆ x k
+

= ˆ x k
#

+ Lk
x
[yk # g( ˆ x k

#
,uk , ˆ $ k

#
)]

" ˜ x ,k
+

= (I # Lk
xCk

x
)" ˜ x ,k

#
.

 

 Measurement update for the weight filter 

 

! 

Lk
"

= # ˜ " ,k
$

(Ck
"

)
T
[Ck

"
# ˜ " ,k
$

(Ck
"

)
T

+ #e]
$1

ˆ " k
+

= ˆ " k
$

+ Lk
"

[yk $ g( ˆ x k
$
,uk , ˆ " k

$
)]

# ˜ " ,k
+

= (I $ Lk
"Ck

"
)# ˜ " ,k

$
.
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4.  Simplified Dual EKF Methods 
The full dual/joint EKF methods are computationally intensive.  If precise values for the full set of 
cell model parameters are not necessary, then other methods might be used.  Here, we present meth-
ods to determine cell capacity and resistance using EKF-based methods.  The change in capacity and 
resistance from the nominal “new-cell” values give capacity fade and power fade, which are the most 
commonly employed indicators of cell SOH. 

4.1  Estimating Resistance 
To estimate cell resistance using an EKF mechanism, we formulate a simple model: 

 

! 

Rk+1 = Rk + rk

yk =OCV(zk ) " ikRk +ek
 

where 

! 

Rk  is the cell resistance and is modeled as a constant value with a fictitious noise process 

! 

rk  
allowing adaptation.  

! 

yk  is a crude estimate of the cell’s voltage, 

! 

ik  is the cell current, and 
k
e  models 

estimation error.  If we use an estimate of 

! 

zk  from the state EKF, or from some other source, then we 
simply apply an EKF to this model to estimate cell resistance.  In the standard EKF, we compare the 
model’s prediction of 

! 

yk  with the true measured cell voltage, and use the difference to adapt 

! 

Rk . 

Note that the above model may be extended to handle different values of resistance on charge and 
discharge, different values of resistance at different SOCs, and different values of resistance at differ-
ent temperatures, for example.  The scalar 

k
R  would be changed into a vector comprising all of the 

resistance values being modified, and the appropriate element from the vector would be used each 
time step of the EKF during the calculations. 

4.2  Estimating Capacity 
To estimate cell capacity using an EKF, we again formulate a simple cell model: 

 

! 

Ck+1 =Ck + rk

0 = zk " zk"1 +# iik"1$t /Ck"1 +ek .
 

Again, an EKF is formulated using this model to produce a capacity estimate.  As the EKF runs, the 
computation in the second equation (right-hand-side) is compared to zero, and the difference is used 
to update the capacity estimate.  Note that good estimates of the present and previous states-of-charge 
are required, possibly from an EKF estimating SOC.  Estimated capacity may again be a function of 
temperature (and so forth), if desired, by employing a capacity vector, from which the appropriate 
element is used in each time step of the EKF during calculations. 

5.  The ESC Cell Model 
In order to use these methods, we require an electrical input-output model of the behavior of the elec-
trochemical cells being used; in our case, a Lithium Ion Polymer Battery (LiPB) technology.  The 
cells are treated as nonlinear dynamic systems, represented in a discrete-time state-space form.  We 
assume the form of Equations (1) and (2). 

Many cell models have been proposed in the literature for many purposes.  The specific application 
we have in mind is to model cell dynamics for the purpose of state-of-charge estimation in a hybrid 
electric vehicle (HEV) battery pack.  The HEV application is a very harsh environment with rate re-
quirements up to about ±40C, very dynamic rate profiles, and operating temperatures between –30ºC 
and 50ºC.  This is in contrast to relatively benign portable-electronic applications with constant power 
output and fractional C rates.  Methods for cell modeling and SOC estimation that work well in port-
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able electronic devices often fail in the HEV application.  If precise SOC estimation is required by the 
HEV, then a very accurate cell model is necessary. 

The model that we use in this paper is one that we have called the “enhanced self-correcting” (ESC) 
cell model [3,5]. In order to use the Kalman methods we propose to estimate SOC, the cell model 
must be represented in the discrete-time state-space form of (1) and (2) with the constraint that SOC is 
a member of the state vector.  The difference between the models, then, depends only on the defini-
tions of xk, uk,  f ( ), and g( ). 

The basis for the SOC state-equation is developed as follows:  If 

! 

z(t) =SOC, we know that 

 

! 

z(t) = z(0) "
#(i($ )) i($ )

C0

t

% d$ , (5) 

where C is the nominal capacity of the cell, i(t) is the cell current at time t, and η(i(t)) is the Coulom-
bic efficiency of the cell.  A discrete-time approximate recurrence may then be written as 

 

! 

zk+1 = zk "
#(ik ) ik $t

C
, (6) 

where Δt is the sampling period (in hours).  Equation (6) is used to include SOC in the state vector of 
the cell model as it is in state equation format already, with SOC as the state and ik as the input.   

The dynamics of the change of polarization voltage are also captured by a state equation.  We add 
“filter states” with linear dynamics: 
 

! 

fk+1[ ] = diag(")[ ] fk[ ] + ik . (7) 

The vector !  has N filter “poles”, with 

! 

|" |< 1 for stability, corresponding to time constants of the 
polarization voltage dynamics.  A value of 

! 

N " 4  works well.   

A further phenomenon captured by a state equation is that of hysteresis.  A cell that has recently un-
dergone a charge event will have a higher rest voltage than one that has undergone a discharge event, 
even at the same SOC.  That is, voltage does not decay to OCV, but to OCV plus/minus a factor based 
on the hysteresis of the cell.  We note that hysteresis is not a phenomenon generally associated with 
lithium-ion systems, since most applications have been in the light portable electronics area where 
SOC accuracy is not as critical as in the HEV application and where temperatures are not as extreme.  
It is, however, very pronounced at low temperatures and can lead to SOC errors as large as ±40% if 
the estimate is based simply on OCV (even with full cell relaxation), particularly with Mn/graphite-
based chemistries.  The reason is the spread between the charge and discharge characteristics coupled 
with the flat nature of the curves between 10% and 90% SOC.   

A hysteresis state implementing a linear-time-varying difference equation may be modeled as: 

 

! 

hk+1 = exp "
#(ik )ik$%t

C

& 

' 
( 

) 

* 
+ hk + 1"exp "

#(ik )ik$%t

C

& 

' 
( 

) 

* 
+ 

& 

' 
( 

) 

* 
+ M (z, ˙ z ). (8) 

! 

M (z, ˙ z )  is a static function representing the maximum hysteresis at the present SOC and rate-of-
change of SOC, and 

! 

"  is a hysteresis rate constant  

The three components of the system state are combined, resulting in 

 

! 

xk = fk
T

hk zk[ ]
T

. (9) 

The corresponding equations for 

! 

fk , 

! 

hk , and 

! 

zk  then combine to form the vector function f ( ). 
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The cell terminal voltage is modeled by the output equation g ( ).  With the states of the system as 
defined, the ESC model computes: 

 

! 

yk =OCV(zk ) +C fk[ ] " Rik + hk . (10) 

The voltage is computed as the sum of the open-circuit-voltage at the present SOC, plus a weighted 
sum of the polarization voltage states, minus ohmic losses, plus hysteresis.  A further constraint on 
(10) is that during a constant-current dis/charge, the polarization filter voltages must converge to zero 
so that 

! 

yk "OCV(SOC)# I $ R  (plus hysteresis).  This constraint is satisfied if the filter has zero dc 
gain [5], which may be enforced in the filter design. 

The form of the ESC model is now completely described.  In order to implement the model for a spe-
cific cell electrochemistry, however, we require knowledge of the parameters of the model.  Specifi-
cally, we must determine the OCV versus SOC relationship, the filter time constants 

! 

" , the number 
of filter states N, hysteresis rate factors, and so forth.  In the following sections, we describe how this 
was done for our prototype cells, and some modeling results. 

6.  Cell Description and Cell Tests for Validation 
In this section, we describe cell tests performed to gather cell performance data, and how the data was 
analyzed to arrive at new-cell numeric values for the parameters of the ESC model.  Note that the 
cells used in this paper differ electrochemically from those reported in previous work [1–6].  We refer 
to the older cells as GEN3 cells, and to the newer cells as G4 cells.  The GEN3 cells are high-power 
(>20C capable) 7.5Ah Mn spinel/graphite LiPB, and the G4 cells are very high power (>30C capable) 
5Ah Mn spinel/blended-carbon LiPB, both reported in [7]. 

The data comprised tests at –30, –20, –10, 0, 10, 25, 35 and 45 degrees Celsius where sequences of 
UDDS drive cycles were conducted over the entire SOC range for each test.  Cell modeling over an 
extended temperature range is described in [8].  For simplicity, we consider only the 25ºC test in this 
paper.  The UDDS current versus time profile was generated by NREL’s ADVISOR program [9], 
scaled for a small sedan.  Each cycle resulted in a slight elevation of SOC, so the test script executed 
15A×1.5 min = 0.375 Ah discharges (13% SOC) between cycles so that the overall testing process 
would spread over the operational SOC range.  If any cycle resulted in a voltage outside of the 2.5V 
to 4.2V range, that particular cycle was aborted, and the script continued to the subsequent discharge 
and repeat portion of the sequence.  The procedure that we followed was: 

1. Soak cell at 25ºC for at least 2 hours. 
2. Charge the cell: CC @ 1C (5A) to 4.2V, CV @ 4.2V to 0.01A. 
3. Execute the test profile, comprising 22 UDDS cycles separated by discharges and 5 min rests. 

Data points were collected periodically, including time, current, voltage, Ah discharged and Ah 
charged.  A representative plot of cell terminal voltage as a function of time is plotted for the room-
temperature test in the left frame of Figure 2.  In the right frame, a zoomed-in region is shown to 
magnify detail. 

Initial data fitting for an enhanced self-correcting cell model was performed using an optimization 
procedure and data collected from cells.  The model used three filter states, one hysteresis state, and 
one SOC state, so the set of parameters to be optimized was:  

  

! 

" = #, C, $1L$3, g1Lg2, % , R, M[ ]
T .   

Optimization was initialized by providing a preliminary estimate for 

! 

" .  The ESC model was then run 
(open-loop) using cell-test current data as input, and the model output voltage was recorded.  After an 
entire data set was simulated by the ESC model for a particular 

! 

" , (i.e., all 22 UDDS cycles, dis-
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charges and rests), the root-mean-squared (RMS) difference between simulated model output voltage 
and measured cell output voltage was used as an indicator of the utility of the parameter set 

! 

" .  The 
parameters were modified in a direction to reduce RMS error, and the procedure iterated.  When RMS 
error converged, the optimization was terminated.  Optimization was done using Matlab’s Optimiza-
tion Toolbox, although any appropriate method might have been used. 

  

Figure 2:  Voltage versus time for a representative cell test for dynamic modeling. 

7.  Results of Dual EKF 
We have elsewhere shown examples of convergence of state and parameter estimates using GEN3 
cells [6].  Here, we focus on dual estimation results for G4 cells (joint estimation gives quite similar 
results).  Representative results are shown in Figure 3.  In frame (a), we see that the capacity of the 
cell does not change appreciably over the period of the cell test of nine hours, but in frame (b) we see 
that the resistance of the cell changes noticeably.  The latter is mostly due to the SOC going from 
100% down to about 0% in the cell test, and the fact that the cell’s resistance is larger at extreme val-
ues of SOC than at intermediate values.  The quickly varying nature of the resistance estimates allows 
slightly better SOC (and other state) estimation using dual/joint EKF than standard EKF since the 
standard EKF assumes a fixed value of resistance.  

If the complexity of the dual EKF is not warranted by an application, the simplified filters from Sec-
tion 4 may be used.  Results using these methods are plotted in frames (c) and (d). In frame (c), the 
state of the auxiliary capacity estimation filter was initially set about 20% too high and adaptation was 
allowed to occur.  In frame (d) the states of the auxiliary resistance estimation filter were also given 
erroneous initial values, and adaptation was allowed to occur. In both cases, the estimates converge to 
the correct values.  

The horizontal axis for the plots was determined by noting that a UDDS cycle covers 7.45 miles, and 
that the UDDS test has 18 such (full) cycles in it.  Many repetitions of the UDDS test were required 
for parameter convergence.  Is convergence fast enough?  If we consider that the capacity of an HEV 
cell must degrade less than 20% over a vehicle lifetime (say, 150,000 miles), then the time constant of 
capacity change is in the order of 50,000 miles. For an estimator to track a moving target, its time 
constant must be at least four times faster than that of the moving target (faster is better). Here, we see 
that the capacity filter time constant is in the order of 1000 miles, and the resistance filter time con-
stant is in the order of 500 miles.  Both filters are faster than they need be. Note that this example is 
extreme; in an application the HEV cells would be mass-produced with high quality control and tight 
tolerances on initial capacity and resistance. The filters would then be initialized with accurate values, 
and are fast enough to track changes.  In fact, the filters can be “tuned” by varying the values for 

! 

"
r
 

and 

! 

"
e
 to be either faster or slower than those shown.  Faster filters do converge more quickly, but 
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produce noisier steady-state estimates. Slower filters produce cleaner steady-state estimates. The tun-
ing of the filter must be done to meet design specifications.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3:  Representative results. 

8.  Conclusions 

Battery packs that must retain accurate SOC estimation over long terms of deployment require algorithms that 
can adapt to the aging cell characteristics.  We have shown that dual and joint EKF are two possible methods to 
simultaneously estimate SOC over the lifetime of the pack, as well as accurately estimate parameters.  If the 
complexity of dual/joint EKF is not warranted by an application, then simplified versions may be implemented, 
as discussed.  We have also presented modifications to the standard dual/joint EKF procedure to ensure conver-
gence of the estimated state to the physical state of the battery. 

References 
[1] Plett, G., “LiPB dynamic cell models for Kalman-filter SOC estimation,” in CD-ROM Proceedings of 

the 19th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition 
(EVS19), Busan, Korea, (October 2002). 

[2] Plett, G., “Kalman-Filter SOC Estimation for LiPB HEV Cells,” Proc. 19th International Battery, 
Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition (EVS19), , Busan, Korea, (October 
2002). 

[3] Plett, G.,  “Advances in EKF LiPB SOC Estimation,” in CD-ROM Proceedings of the 20th Electric 
Vehicle Symposium (EVS20), Long Beach CA, (November 2003). 

[4] Plett, G.,  “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery 
Packs―Part 1:  Background,” Journal of Power Sources, Vol. 134, No. 2, August 2004, pp. 252–61. 



 

 12 

[5] Plett, G.,  “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery 
Packs―Part 2:  Modeling and Identification,” Journal of Power Sources, Vol. 134, No. 2, August 
2004, pp. 262–76. 

[6] Plett, G.,  “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery 
Packs―Part 3:  State and Parameter Estimation,” Journal of Power Sources, Vol. 134, No. 2, August 
2004, pp. 277–92.  

[7] Kim, S.W., Yu, J.S. Namgoong, J. Kim, J.H., Kim, M.H., “Progress in Li-ion Polymer Battery and 
Pack System of LG Chem. For Transportation Applications,” in CD-ROM Proceedings of the 20th 
Electric Vehicle Symposium (EVS20), Long Beach CA, (November 2003).  

[8] Plett, G., “Results of Temperature-Dependent LiPB Cell Modeling for HEV SOC Estimation,” Proc. 
21st International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition (EVS21), 
Monaco, (April 2005). 

[9] CTTS Vehicle Systems Analysis Homepage, http://www.ctts.nrel.gov/analysis/, accessed May 2003. 

[10] S. Haykin (Ed.), Kalman Filtering and Neural Networks, (Wiley Inter-Science: New York), 2001. 

Author 
Dr. Gregory L. Plett, Assistant Professor, 
Dept. of Electrical and Computer Engineering, University of Colorado at Colorado Springs, 
1420 Austin Bluffs Parkway, P.O. Box 7150, Colorado Springs, CO 80933–7150 USA 
Tel: +1–719–262–3468, Fax: +1–719–262–3589, E-mail: glp@eas.uccs.edu,  
URL: http://mocha-java.uccs.edu, and consultant to  
Compact Power Inc., 1200 S. Synthes Ave., Monument, CO 80132 USA 
Tel: +1–719–488–1600x134, Fax: +1–719–487–9485, E-mail: gplett@compactpower.com. 
URL: http://www.compactpower.com/.  

 


