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Abstract

Battery management systems in hybrid electric vehicle battery packs must estimate values descriptive of the pack’s present operating
condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism
must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack.

In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on
a lithium ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required
mathematical background, cell modeling and system identification requirements, and the final solution, together with results.

In order to use EKF to estimate the desired quantities, we first require a mathematical model that can accurately capture the dynamics of
a cell. In this paper we “evolve” a suitable model from one that is very primitive to one that is more advanced and works well in practice.
The final model includes terms that describe the dynamic contributions due to open-circuit voltage, ohmic loss, polarization time constants,
electro-chemical hysteresis, and the effects of temperature. We also give a means, based on EKF, whereby the constant model parameters
may be determined from cell test data. Results are presented that demonstrate it is possible to achieve root-mean-squared modeling error
smaller than the level of quantization error expected in an implementation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is the second in a series of three that de-
scribe advanced algorithms for a battery management sys-
tem (BMS) for hybrid electric vehicle (HEV) application.
This BMS is able to estimate battery state of charge (SOC),
power fade, capacity fade and instantaneous available power,
and is able to adapt to changing cell characteristics over time
as the cells in the battery pack age. The algorithms have
been implemented on a lithium-ion polymer battery (LiPB)
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pack, but we expect them to work well for other battery
chemistries.

The method that we use to estimate these parameters is
based on Kalman filter theory. (There have been other re-
ported methods for SOC estimation that use Kalman filter-
ing [1,2], but the method in this series of papers expands on
these results and also differs in some important respects, as
will be outlined later.) Kalman filters are an intelligent—and
sometimes optimal—means for estimating the state of a dy-
namic system. By modeling our battery system to include
the wanted unknown quantities in the “state”, we may use
the Kalman filter to estimate their values. An additional ben-
efit of the Kalman filter is that it automatically provides
dynamic error-bounds on these estimates as well. We ex-
ploit this fact to give aggressive performance from our bat-
tery pack, without fear of causing damage by overcharge or
overdischarge.

0378-7753/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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The first paper[3] is an introduction to the problem. It
describes the HEV environment and the requirement spec-
ifications for a BMS. The remainder of the paper is a brief
tutorial on the Kalman filter theory necessary to grasp the
content of the remaining papers; additionally, a nonlinear
extension called the “extended Kalman filter” (EKF) is
discussed.

This second paper describes some mathematical cell mod-
els that may be used with this method. The HEV application
is a very harsh environment, with rate requirements up to and
exceeding±20C and very dynamic rate profiles. This is in
contrast to relatively benign portable-electronic applications
with constant power output and fractionalC rates. Methods
for estimating SOC that work well in portable-electronic de-
vices may not work well in the HEV application. If precise
SOC estimation is required by the HEV, then a very accurate
cell model is necessary.

Results of lab tests on physical cells are presented and
compared with model prediction. The best modeling results
obtained to date are so precise that the root-mean-squared
(RMS) estimation error is less than the quantization noise
floor expected in our battery management system design.
More importantly, the model allows very precise SOC
estimation, therefore allowing the vehicle controller to con-
fidently use the battery pack’s full operating range without
fear of over- or under-charging cells. This paper also gives
an overview of other modeling methods in the literature
and shows how an EKF may be used to adaptively identify
unknown parameters in a cell model, in real time, given test
data.

The third paper[4] covers the real-time parameter estima-
tion problem; namely, how to dynamically estimate SOC,
power fade, capacity fade, available power and so forth. An
EKF is used in conjunction with the cell model. The cell
model may be fixed, or may itself have adaptable parame-
ters so that the model tracks cell aging effects. Details for a
practical implementation are discussed.

We now proceed by briefly reviewing cell models in the
literature that have been proposed for SOC estimation. We
explain why these do not meet the requirements presented
in [3]. Several models from Refs.[5,6] do meet the require-
ments, and they are described in detail here, together with
some new models and results. A method for identifying
model parameters using an extended Kalman filter is pre-
sented, followed by conclusions.

2. Standard cell-modeling methods for SOC estimation

The literature documents a number of cell-modeling meth-
ods for SOC estimation. An excellent summary, in greater
detail than can be presented here, may be found in refer-
ence[7]. Here, we investigate to see whether any of these
methods meets our needs. Recall that our application is to
model cell dynamics for the purpose of SOC estimation in
an HEV battery pack.

For this application, the cell model must be accurate for all
operating conditions. These include: very high rates (up to
about±20C, far exceeding the low rates considered by many
papers in the literature for portable electronic applications),
temperature variation in the automotive range of−30 to
50◦C, very dynamic rates (unlike the more benign portable
electronic and battery electric vehicle application). Charging
must be accounted for in the model.

We also require non-invasive methods using only readily
available signals. This requirement is imposed by the HEV
environment where the BMS has no direct control over cur-
rent and voltage experienced by the battery pack—these are
in the domain of the vehicle controller and inverter. We must
rely on such measurements as instantaneous cell terminal
voltage, cell current and cell external temperature.

Our cell chemistry also limits the range of approaches we
might consider. Techniques specific to lead-acid chemistries,
for example, are not appropriate for LiPB cells.

2.1. Laboratory and chemistry-dependent methods

Several methods for direct SOC estimation simply cannot
be used in our application:

1. A laboratory method for determining SOC is to
completely discharge a cell, recording discharged
ampere-hours, to determine its present remaining capac-
ity. This is the most accurate SOC measurement tech-
nique, but is impractical in HEV as the battery energy
is wasted by the test, and the test cannot dynamically
estimate SOC.

2. Chemistry-dependent methods for other chemistries,
such as Coup de Fouet measurement, or measurement
of electrolyte physical properties for lead-acid batteries,
are all inappropriate (as our application uses LiPB cells).

3. Open-circuit voltage (OCV) measurements: If the cell is
allowed to rest for a long period, its terminal voltage de-
cays to OCV, and OCV may be used to infer SOC (via
lookup table, for example). However, long periods (some-
times hours) of battery inactivity must occur before the
terminal voltage approaches OCV. This method may not
be used for dynamic SOC estimation. (Other complica-
tions with this method include the dependence of OCV
on temperature, and presence of terminal voltage hys-
teresis, especially at low temperatures.)

2.2. Electro-chemical modeling

One approach to modeling cell electrical dynamics is
to carefully consider, at the molecular level, the various
processes that occur within the cell. Accurate terminal
voltage prediction may be achieved by these models (see
Ref. [8], for example). However, it would be difficult (if
possible) to measure the many required physical param-
eters on a cell-by-cell basis in a high-volume consumer
product. We have not pursued this approach, although
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we employ many of the macroscopic concepts in our
models.

2.3. Impedance spectroscopy

Another broad category of cell modeling involves mea-
suring cell impedances over a wide range of ac frequencies
at different states of charge[9–13]. Values of the model
parameters are found by least-squares fitting to measured
impedance values. SOC may be indirectly inferred by mea-
suring present cell impedance and correlating them with
known impedances at various SOC levels. We must also dis-
count this method for our application, as we have no direct
method to inject signals into cells to measure impedances.
We rely on the vehicle to generate and dissipate all energy
flowing through the battery pack.

2.4. Circuit models

A number of papers present equivalent circuit models of
cells [14–17]. Typically, a high-valued capacitor or voltage
source is used to represent the open-circuit voltage. The re-
mainder of the circuit models the cell’s internal resistance
and more dynamic effects such as terminal voltage relax-
ation. From the OCV estimate, SOC may be inferred via
table lookup. Both linear- and nonlinear-circuit models may
be used. Our model has many similarities to a circuit model,
except that our fundamental “state” is SOC, not OCV.

2.5. Coulomb counting

The final method discussed in the literature involves SOC
estimation directly via Coulomb counting. This may be done
“open-loop”, which is very sensitive to current measurement
error, or “closed-loop” which can be much more accurate.
The feedback mechanism may be empirically designed[18]
or may use a mathematically optimized approach such as
the Kalman filtering method[1,2] to generate the feedback.
All Kalman filtering-based methods by other authors in the
literature (with which we are familiar) use a circuit model of
the cell with voltage sources and capacitor voltages repre-
senting OCV and relaxation effects. OCV may be estimated
and SOC inferred from OCV.

Our approach is also based on the Kalman filtering
method, but the fundamental aspect of our model that sets it
apart from those reported in the literature is that SOC itself
is required to be a state of the system. The direct benefit of
this approach is that the Kalman filter automatically gives
a dynamic estimate of the SOC and its uncertainty (this
is discussed in greater detail in Ref.[4]). That is, instead
of reporting the SOC to the vehicle controller (at some
point in time) to be “about 55%”, the algorithm is able to
report that the SOC is 55± 3%, for example. This allows
the vehicle controller to confidently use the battery pack’s
full operating range without fear of over- or under-charging
cells.

3. An evolution of cell model structures

In order to use Kalman-based methods for a battery
management system, we must first have a cell model in a
discrete-time state-space form. Specifically, we assume the
form

xk+1 = f(xk, uk) + wk, (1)

yk = g(xk, uk) + vk, (2)

wherexk is the system state vector at discrete-time indexk,
where the “state” of a system comprises in summary form
the total effect of past inputs on the system operation so
that the present output may be predicted solely as a function
of the state and present input. Values of past inputs are not
required. The vectoruk is the measured exogenous system
input at timek andwk is unmeasured “process noise” that
affects the system state. The system output isyk andvk is
measurement noise, which does not affect the system state.
Equation (1) is called the “state equation”,(2) is called the
“output equation”, andf(·, ·) andg(·, ·) are (possibly non-
linear) functions, specified by the particular cell model used.
All of the system dynamics are represented in(1). Equation
(2) is a static relationship. In the models to follow,wk is
used to account for current-sensor error and inaccuracy of
the state equation, andvk is used to account for voltage sen-
sor error and inaccuracy of the output equation.

In the case where we wish to model a cell’s dynamics
using(1) and (2), the vectoruk contains the instantaneous
cell currentik. It may also contain the cell temperatureTk,
an estimate of the cell’s capacityC, and/or an estimate of
the cell’s internal resistanceRk, for example. The system
output is typically a scalar but may be vector valued as well.
Here we consider the output to be the cell’s loaded terminal
voltage (not its at-rest OCV). Our method constrains the
state vectorxk to include SOC as one component.

There are many possible candidates for(1) and (2), and for
the choice ofxk anduk. Here, we describe the development
of some modeling equations in an evolutionary sense. That
is, we start with a very simple model, and gradually add
complexity to better represent the true cell dynamics. In
order to justify the changes in the model, we compare model
dynamics to cell dynamics based on data collected from cell
tests. We first describe the cell tests, and then develop the
model structures.

3.1. Cell tests for model fitting

In order to compare the abilities of the proposed models to
capture a cell’s dynamics, we gathered data from a prototype
LiPB cell. The cell comprises a LiMn2O4 cathode, an artifi-
cial graphite anode, is designed for high-power applications,
has a nominal capacity of 7.5 Ah and a nominal voltage of
3.8 V. For the tests, we used a Tenney thermal chamber set at
25◦C and an Arbin BT2000 cell cycler. Each channel of the
Arbin was capable of 20 A current, and ten channels were
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Fig. 1. Plots showing SOC vs. time and rate vs. time for pulsed-current cell tests. Discharge portion of test is shown in (a); charge portion of test is
shown in (b). Dark line is SOC, gray line is current.

connected in parallel to achieve currents of up to 200 A. The
cycler’s voltage measurement accuracy was±5 mV and its
current measurement accuracy was±200 mA.

Two types of cell tests were performed for the work re-
ported in this paper. The first type comprised a sequence of
constant-current discharge pulses and rests followed by a se-
quence of constant-current charge pulses and rests. The cell
started fully charged before the test began. Discharge current
pulses from 150 down to 1 A, and charge pulses from 150
down to 1 A were used. The current and SOC profiles for
this test are shown inFig. 1(a) and (b). Frame (a) shows the
discharge portion of the test and frame (b) shows the charge
portion of the test. Data points (including voltage, current,
ampere-hours discharged and ampere-hours charged) were
collected once per second.

The second test was a sequence of 16 urban dynamome-
ter driving schedule (UDDS) cycles, separated by 40 A dis-
charge pulses and 5 min rests, and spread over the 90–10%
SOC range. The SOC as a function of time is plotted in
Fig. 2(a), and rate as a function of time for one of the UDDS
cycles is plotted inFig. 2(b). We see that SOC increases by
about 5% during each UDDS cycle, but is brought down
about 10% during each discharge between cycles. The en-
tire operating range for these cells (10–90% SOC) is excited
during the cell test.
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Fig. 2. Plots showing SOC vs. time and rate vs. time for UDDS cell tests. SOC is shown in (a); rate for one UDDS cycle is shown in (b).

The data was used to identify parameters of the cell mod-
els to be described in the next sections. The goal is to have
the cell model output resemble the cell terminal voltage un-
der load as closely as possible, at all times, when the cell
model input is equal to the cell current. Model fit was judged
by comparing root-mean-squared estimation error (estima-
tion error equals cell voltage minus model voltage) over the
portions of the cell tests where SOC was between 5 and
95%. Model error outside that SOC range was not consid-
ered as the HEV pack operation design limits are 10–90%
SOC.

3.2. SOC as a state-vector component

The one constant requirement for the cell model is that
we constrain SOC, denoted aszk, to be a member of the
state vectorxk. To be careful, we give a list of definitions
culminating in our understood definition of SOC.

• Definition: A cell is fully chargedwhen its voltage reaches
v = vh after being charged at infinitesimal current levels.
Here, we usevh = 4.2 V at room temperature (25◦C).

• Definition: A cell is fully dischargedwhen its voltage
reachesv = vl after being drained at infinitesimal current
levels. Here, we usevl = 3.0 V at room temperature.



266 G.L. Plett / Journal of Power Sources 134 (2004) 262–276

• Definition: Thecapacityof a cellC is the maximum num-
ber of ampere-hours that can be drawn from the cell be-
fore it is fully discharged, at room temperature, starting
with the cell fully charged.

• Definition: The nominal capacityCn of the cell is the
number of ampere-hours that can be drawn from the cell
at room temperature at theC/30 rate, starting with the cell
fully charged.

• Definition: The SOC of the cell is the ratio of the remain-
ing capacity to the nominal capacity of the cell, where the
remaining capacity is the number of ampere-hours that
can be drawn from the cell at room temperature at the
C/30 rate before it is fully discharged.

With these definitions in place, we can then investigate
some mathematical relations involving SOC. Particularly,

z(t) = z(0) −
∫ t

0

ηii(τ)

Cn
dτ, (3)

wherez(t) is the cell SOC,i(t) is instantaneous cell current
(assumed positive for discharge, negative for charge), and
Cn is the cell nominal capacity. Cell Coulombic efficiency
ηi is ηi = 1 for discharge, andηi = η ≤ 1 for charge.

Using a rectangular approximation for integration and a
“suitably small” sampling period�t, a discrete-time approx-
imate recurrence may then be written as

zk+1 = zk −
(
ηi�t

Cn

)
ik. (4)

Eq. (4) is the basis for including SOC in the state vector of
the cell model as it is in state equation format already, with
SOC as the state andik as the input.

The cell model may be completed by adding additional
states, as necessary, and an output equation. Here, we first
revisit an output equation from an earlier paper[5], and show
how it may be enhanced. Next, we add a state to the model
to account for cell hysteresis. Thirdly, we add dynamics to
the state to model cell terminal voltage relaxation. Finally,
we discuss adding temperature dependence to the models.

3.3. Models with only SOC as a state

The first three model structures that we investigate have
state vectorxk = zk. That is, the only state in the state
equation (1)is SOC. These models can estimate cell terminal
voltage in a limited way, and are improved upon later using
multiple states.

3.3.1. The combined model
With SOC available as part of the model state, terminal

voltage may be predicted in a number of different ways.
Several different forms are adapted from reference[19].

• Shepherd model: yk = E0 − Rik − Ki/zk.
• Unnewehr universal model: yk = E0 − Rik − Kizk.
• Nernst model: yk = E0−Rik+K2 ln(zk)+K3 ln(1−zk).

In these models,yk is the cell terminal voltage,R is the
cell internal resistance (different values may be used for
charge/discharge and at different SOC levels if desired),Ki is
the polarization resistance andK1, K2 andK3 are constants
chosen to make the model fit the data well. All of the terms of
these models may be collected to make a “combined model”
that performs better than any of the individual models alone.
This model is

zk+1 = zk −
(
ηi�t

Cn

)
ik,

yk = K0 − Rik − K1

zk
− K2zk + K3 ln(zk)

+K4 ln(1 − zk).

The unknown quantities in the combined model may be es-
timated using a system identification procedure. This model
has the advantage of being “linear in the parameters”; that is,
the unknowns occur linearly in the output equation. Given
a set ofN cell input–output three-tuples{yk, ik, zk}, the pa-
rameters may be solved for in closed form using a result
from least-squares estimation. This simple off-line (batch)
method is as follows: We first form the vector

Y = [y1, y2, . . . , yN]T,

and the matrix

H = [h1, h2, . . . , hN]T.

The rows ofH are

hT
j =

[
1, i+j , i−j ,

1

zj
, zj, ln(zj), ln(1 − zj)

]
,

wherei+j is equal toij if ij > 0, i−j is equal toij if ij <

0, elsei+j and i−j are zero. Then, we see thatY = Hθ,

where θT = [K0, R
+, R−,K1,K2,K3,K4] is the vector

of unknown parameters. Using a result from least-squares
estimation theory, we solve for the parametersθ using the
known matricesY andH asθ = (HTH)−1HTY .

Results comparing the combined model cell voltage es-
timation with the cell’s true voltage for the pulsed-current
test are shown inFig. 6(a) and (d).Fig. 6(a), shows the com-
parison over discharge pulses, andFig. 6(d) shows the com-
parison over charge pulses. The general shape of the cell
response and the model output is the same, although many
details of the true cell response are missing. These will be
improved with other models. The root-mean-squared model
estimation error over the test shown inFig. 6 is listed in
Table 1. Results comparing the combined model cell voltage
estimation with the cell’s true voltage for one cycle of the
UDDS test is shown inFig. 8(a). Similar comments apply.

3.3.2. The simple model
With parameter values fit to the “combined model”, we

can evaluate its component terms for further insight. The
model output equation may be divided into two additive
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Table 1
Performance of the model structures when predicting cell voltage

Model structure Root-mean-squared (RMS) modeling error

Multi-rate pulse test (mV) Multi-cycle UDDS test (mV)

−30◦C 0◦C 25◦C

Combined model 34.7 50.1 24.1 23.3
Simple model 36.2 165.8 26.9 22.4
Zero-state hysteresis model 21.5 62.2 24.6 22.3
One-state hysteresis model 21.5 48.7 14.1 14.0
Enhanced self-correcting,nf = 2 13.8 39.0 14.5 7.2
Enhanced self-correcting,nf = 4 6.7 35.3 4.3 4.2

The root-mean-squared value of modeling error, calculated as true cell voltage minus model voltage, and judged over the SOC range 5–95%, is tabulated.
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parts: one part depending only on SOC, and another depend-
ing only on ik:

yk = K0 − K1

zk
− K2zk + K3 ln(zk) + K4 ln(1 − zk)︸ ︷︷ ︸

fn(zk)

− Rik︸︷︷︸
fn(ik)

.

The part depending only on SOC bears closer examination.
When values are fit to parameters {K0, . . . , K4}, we plot
the part denoted “ fn(zk)” versus zk (Fig. 3). Overlaid is the
open-circuit voltage curve as a function of SOC.2 We see

2 The open-circuit voltage as a function of state-of-charge for these cells
as plotted in Fig. 3 is an empirical relationship found by cell testing. First,
the cell was fully charged (constant current to 4.2 V, constant voltage
to 200 mA). Then, the cell was discharged at the C/25 rate until fully
discharged (3.0 V). The cell was then charged at the C/25 rate until the
voltage was 4.2 V. The low rates were used to minimize the dynamics
excited in the cells. The cell voltage as a function of state of charge under
discharge and under charge were averaged to compute the OCV. This has
the effect of eliminating to the greatest extent possible the presence of
hysteresis and ohmic resistance in the final function. For the purpose of
computations involving OCV, the final curve was digitized at 200 points
and stored in a table. Linear interpolation is used to look up values in
the table.

OCV yk
R

R

Fig. 4. Equivalent circuit implemented by “simple” model, and approxi-
mated by “combined” model. The diodes are ideal. R+ is the discharge
resistance, and R− is the charge resistance.

that the part of yk that is a function of SOC is attempting
to fit the OCV(zk) curve. So, an easier and more accurate
implementation of the combined model is

zk+1 = zk −
(
ηi�t

Cn

)
ik,

yk = OCV(zk) − Rik. (5)

This output equation is drawn as an equivalent circuit in
Fig. 4, where different charge/discharge resistances may be
used. We call the model comprised of Eqs. (4) and (5) the
“simple model” .

This model type is also linear in the parameters. Off-line
system identification is done as follows: We first form the
vector

Y = [y1 −OCV(z1), y2 − OCV(z2), . . . , yn − OCV(zN)]T,

and the matrix

H = [h1, h2, . . . , hN]T.

The rows of H are

hT
j = [i+j , i−j ].

Again, we see that Y = Hθ, where θT = [R+, R−] is the
vector of unknown parameters. We solve for the parameters
θ using the known matrices Y and H as θ = (HTH)−1HTY .

Results comparing the simple model cell voltage estima-
tion with the cell’ s true voltage for the pulsed-current test
are shown in Fig. 6(b) and (e). Fig. 6(b), shows the com-
parison over discharge pulses, and Fig. 6(e) shows the com-
parison over charge pulses. The RMS cell model estimation
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Fig. 5. Hysteresis curves. Plots of: (a) the discharge/charge curves; (b) the hysteresis level.

error over the test shown in Fig. 6 is listed in Table 1. We
see that the simple model slightly under-performs the com-
bined model in most cases, most likely because the com-
bined model over-fits the data. We prefer the simple model
to the combined model because we feel that it generalizes
better, and because it is less complex to implement. Results
comparing the simple model cell voltage estimation with the
cell’ s true voltage for one cycle of the UDDS test are shown
in Fig. 8(b). Similar comments apply.

3.3.3. The zero-state hysteresis model
Examination of the results in Fig. 6(a) and (b) and (d)

and (e) exposes some flaws in the models. One subtle effect,
which has serious consequences when predicting SOC, may
be seen during rest periods. Following a discharge, the cell
voltage always relaxes to a value less than the true OCV
for that SOC, and following a charge, the cell voltage al-
ways relaxes to a value greater than the true OCV. This is
explained by a hysteresis effect occurring in the cell that is
not modeled in the combined or simple models.3

The term hysteresis is derived from the Greek hustereia
“ to arrive late” . The cell voltage lags the predicted voltage
in some sense. It may also be defined as a characteristic of a
system in which a change in the direction of the independent
variable leads to the dependent variable failing to retrace the
path it passed in the forward direction. (For a good paper
describing electro-chemical hysteresis, see Ref. [20].)

We illustrate this effect by showing the charge/discharge
curves at the C/25 rate and room temperature in Fig. 5(a).
The terminal voltage for discharge is the lower curve; for
charge the upper curve. Two different terminal voltages exist
at each SOC. Half the difference between these voltages is

3 We note in passing that hysteresis is not a phenomenon generally
associated with lithium-ion systems, since most applications have been in
the light portable electronics area where SOC accuracy is not as critical
as in the HEV application and where temperatures are not as extreme. It
is, however, very pronounced at low temperatures and can lead to SOC
errors as large as ±40% if the estimate is based simply on OCV (even
with full cell relaxation). The reason is the spread between the charge
and discharge characteristics coupled with the flat nature of the curves
between 10 and 90% SOC.

the polarization voltage of the cell. Only a small part of the
polarization is due to Rik drop (about 2.5 mV here) and the
remainder is due to hysteresis effects. The hysteresis level,
with Rik subtracted out, is plotted versus SOC in Fig. 5(b).
We have found that cell voltage hysteresis is considerably
larger at low temperatures, and that we must include hys-
teresis in our cell model for good SOC estimation.

These curves comprise the major hysteresis loop, corre-
sponding to full cell charge and discharge. Minor hysteresis
loops are encountered when a partial charge is followed by a
partial discharge, and vice versa. The polarization does not
immediately flip sign upon a current reversal, but slowly de-
cays from one leg of the major hysteresis loop to the other.4

To capture the dynamics of the gradual decay in voltage we
need to add one or more states to the model, which is done
in Section 3.4.1. Here, we explore a simpler version as a
proof-of-concept. This model adds no additional states for
hysteresis, so is named the “zero-state hysteresis model” .

A basic model of hysteresis simply adds a term to the
output equation

zk+1 = zk −
(
ηi�t

Cn

)
ik,

yk = OCV(zk) − skM(zk) − Rik,

where sk represents the sign of the current (with memory
during a rest period). For some ε sufficiently small and pos-
itive,

sk =




1, ik > ε,

−1, ik < −ε,

sk−1, |ik| ≤ ε.

M(zk) is half the difference between the two legs of the
charge/discharge curve, minus the Rik loss, and is plotted in
Fig. 5(b). Here, we use a constant value for M.

4 Successively smaller concentric minor loops may be obtained by
alternating shorter and shorter charge and discharge pulses, eventually
converging on the mean of the two values of Fig. 5(a) at each SOC.
Therefore, we compute OCV as a function of SOC as the mean of the
two legs of the major hysteresis loop.
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This model type is also linear in the parameters. Off-line
system identification is done as follows: We first form the
vector

Y = [y1 −OCV(z1), y2 − OCV(z2), . . . , yn − OCV(zN)]T,

and the matrix

H = [h1, h2, . . . , hN]T.

The rows of H are

hT
j = [i+j , i−j , sj].
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Fig. 6. Results of cell modeling using models with only SOC as a state for the pulsed-current cell tests. Discharge portion of test is shown in (a)–(c);
charge portion of test is shown in (d)–(f). The gray line is the measured cell voltage, and the black line is the model prediction.

Again, we see that Y = Hθ, where θT = [R+, R−,M] is the
vector of unknown parameters. We solve for the parameters
θ using the known matrices Y and H as θ = (HTH)−1HTY .

Results comparing the zero-state hysteresis model cell
voltage estimation with the cell’ s true voltage for the
pulsed-current test are shown in Figs. 6(c) and (f). Fig. 6(c),
shows the comparison over discharge pulses, and Fig. 6(f)
shows the comparison over charge pulses. The RMS cell
model estimation error over the test shown in Fig. 6 is
listed in Table 1. Performance of the zero-state hysteresis
model is consistently better than that of the simple model.
Results comparing the zero-state hysteresis model cell volt-
age estimation with the cell’ s true voltage for one cycle of
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the UDDS test are shown in Fig. 8(c). Similar comments
apply.

3.4. Models with SOC and additional states

In order to better estimate cell voltage effects that are cou-
pled to the history of the cell’ s input current, we must make
modifications to the model state equation (1). We examine
two additions in the following sections.

3.4.1. The one-state hysteresis model
The zero-state hysteresis model is an improvement over

the simple model, but only crudely approximates the under-
lying phenomenon. Whereas the level of hysteresis slowly
changes as the cell is charged or discharged, the model es-
timates hysteresis as immediately flipping between its max-
imum positive and negative values when the sign of current
changes.

The slow transition may be modeled by adding a “hys-
teresis state” to the model state equation (1). The hystere-
sis state is not a differential equation in time, but in SOC
(or, ampere-hours). Let h(z, t) be the hysteresis voltage as a
function of SOC and time, and let ż = dz/dt. Then,

dh(z, t)

dz
= γ sgn(ż)(M(z, ż) − h(z, t)),

where M(z, ż) is a function that gives the maximum po-
larization due to hysteresis as a function of SOC and the
rate-of-change of SOC. Specifically, M(z, ż) is positive for
charge (ż > 0) and is negative for discharge (ż < 0). The
M(z, ż)− h(z, t) term in the differential equation states that
the rate-of-change of hysteresis voltage is proportional to the
distance away from the major hysteresis loop, leading to a
kind of exponential decay of voltage to the major loop. The
term in front of this has a positive constant γ , which tunes
the rate of decay, and sgn(ż), which forces the equation to
be stable for both charge and discharge.

In order to fit the differential equation for h(z, t) into our
model, we must manipulate it to be a differential equation in
time, not in SOC. We accomplish this by multiplying both
sides of the equation by dz/dt

dh(z, t)

dz

dz

dt
= γ sgn(ż)(M(z, ż) − h(z, t))

dz

dt
.

Note that dz/dt = −ηii(t)/Cn, and that ż sgn(ż) = |ż|. Thus,

ḣ(t) = −
∣∣∣∣ηii(t)γCn

∣∣∣∣h(t) +
∣∣∣∣ηii(t)γCn

∣∣∣∣M(z, ż).

This may be converted into a difference equation for our
discrete-time application using standard techniques (assum-
ing that i(t) and M(z, ż) are constant over the sample period):

hk+1 = exp

(
−

∣∣∣∣ηiikγ�t

Cn

∣∣∣∣
)
hk

+
(

1 − exp

(
−

∣∣∣∣ηiikγ�t

Cn

∣∣∣∣
))

M(z, ż).

Note that this is a linear-time-varying system as the factors
multiplying the state and input change with ik and hence
with time. If we define F(ik) = exp(−|ηiikγ�t/Cn|), then
the overall state-space equations for the one-state hysteresis
model are[
hk+1

zk+1

]
=

[
F(ik) 0

0 1

] [
hk

zk

]

+

 0 (1 − F(ik))

−ηi�t

Cn
0


 [

ik

M(z, ż)

]
,

yk = OCV(zk) − Rik + hk.

Results comparing the one-state hysteresis model cell
voltage estimation with the cell’ s true voltage for the
pulsed-current test are shown in Fig. 7(a) and (d). Fig. 7(a),
shows the comparison over discharge pulses, and Fig. 7(d)
shows the comparison over charge pulses. The RMS cell
model estimation error over the test shown in Fig. 7 is
listed in Table 1. Performance of the one-state hysteresis
model is consistently better than the simpler models. Re-
sults comparing the one-state hysteresis model cell voltage
estimation with the cell’ s true voltage for one cycle of the
UDDS test are shown in Fig. 8(d). Similar comments apply.

3.4.2. The enhanced self-correcting (ESC) model
A significant element missing from these models is a de-

scription of time constants during pulsed current events. If
a cell is allowed to rest, it takes some time for the voltage
to completely relax to its rest voltage. If a cell is pulsed
with current, it takes time for the voltage to converge to its
steady-state level. These time constants, which describe the
phenomenon we henceforth refer to as the relaxation effect,
may be implemented as a low-pass filter on ik. Since the
cell model must accurately predict its behavior in a dynamic
HEV environment, we find it is essential to include relax-
ation effects.

Early attempts to model the relaxation effect included
filtering the state-of-charge as well as the input current (cf.
the “fi lter state” cell model [5]). While this model could
fit voltage data reasonably well, it had the unfortunate side
effect that SOC estimation using an EKF was not reliable.
The output equation had the form

yk = OCV(zk) + filt(zk) + filt(ik) − Rik,

where filt(·) is some dynamic operation filtering its operand.
The EKF had problems with this model because the
credit/blame portion of the algorithm could not reliably de-
termine whether model error was due to bad SOC through
the OCV(·) function or through the filt(zk) function, or
due to bad filter states in the filt(ik) function. In particular,
some simple cell tests running the EKF showed a lack of
robustness:
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Fig. 7. Results of cell modeling using models with multiple states for the pulsed-current cell tests. Discharge portion of test is shown in (a)–(c); charge
portion of test is shown in (d)–(f). The gray line is the measured cell voltage, and the black line is the model prediction.

1. A constant-current discharge/charge should make the
SOC ramp down/up at the slope i/Cn (A/Ah). In practice,
the slope using the filter state model was often wrong.

2. During a rest period, cell terminal voltage converges to
OCV (neglecting hysteresis effects) and estimated SOC
should converge to the SOC predicted by OCV. In the
implementation, we observed SOC to drift considerably,
not converging to the correct value.

The model that we will develop in this section, called the
“enhanced self-correcting model” , forces yk to converge to
OCV after a rest period and it forces yk to converge to

OCV−Rik for a constant-current discharge/charge. To meet
these requirements, with hysteresis added, the output equa-
tion needs to have the form

yk = OCV(zk)︸ ︷︷ ︸
fn(zk)

+ hk︸︷︷︸
fn(zk,ik)

+ filt(ik) − Rik︸ ︷︷ ︸
fn(ik)

.

In this equation, SOC and hysteresis contribute the long-term
dc level (bias) to the output and ik and its history contribute
the short-term variation around this level. SOC itself is no
longer filtered as in the “fi lter state model”—it makes no
sense to have a moving bias point.
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Fig. 8. Results of cell modeling for the UDDS cell tests. The gray line is the measured cell voltage, and the black line is the model prediction.

The filter “fi lt(·)” must satisfy two criteria: (1) after a
long rest period its output must be zero so that yk →
OCV + hk; (2) during a constant-current discharge/charge,
its output must converge to zero so that yk → OCV +
hk − Rik. The first criterion is satisfied by a stable linear
filter, and the second is satisfied by a linear filter with zero
dc gain. Both of these may be enforced in the filter de-
sign.

A linear filter may be implemented in a state-space form
as

fk+1 = Affk + Bf ik,

yf
k = Gfk,

where Af is the state-transition matrix of the filter, Bf is the
input matrix of the filter, G is the output matrix of the filter,
and fk is the filter state. The eigenvalues of the Af matrix
are the “poles” of the filter and determine its stability. The
filter is stable if max|eig(Af)| < 1. The location of poles de-
termine the system’s dynamic behavior: poles near +1 have
slowly decaying dynamics, poles near zero decay quickly,
negative poles oscillate. Complex-conjugate poles also oscil-
late, and do not appear to improve performance by their in-
clusion. Therefore, it is sufficient to have an Af matrix of the
form Af = diag(α), where α is a vector comprising the pole
locations. Stability is ensured if all −1 < αj < 1. The Bf
matrix may be chosen arbitrarily so long as no entry is zero.
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Now that we have guaranteed stability, yk → OCV + hk

during rest. By carefully selecting the G matrix, we can
ensure a zero dc-gain of the filter so that yk → OCV+hk −
Rik during constant-current profiles. The gain of the filter is
(where nf is the number of filter states, determined during
system identification to fit cell data):

G(I − A)−1B = 0,

G

[
diag

(
1

1 − αk

)]
B = 0,

nf∑
k=1

gk

1 − αk

= 0.

If we let g1 through gnf−1 be found by a system-identification
procedure and assuming that Bf = [ 1 · · · 1 ]T, then the
zero dc-gain constraint fixes gnf as

gnf = −
nf∑
k=1

gk
(1 − αnf )

(1 − αk)
.

So, the full self-correcting model is
 fk+1

hk+1

zk+1


 =


 diag(α) 0 0

0 F(ik) 0

0 0 1





 fk

hk

zk




+




1 0

0 (1 − F(ik))

−ηi�t

Cn
0




[
ik

M(z, ż)

]
,

yk = OCV(zk) − Rik + hk + Gfk.

Results comparing the ESC model cell voltage estimation
with the cell’ s true voltage for the pulsed-current test are
shown in Figs. 7(b) and (e) for nf = 2 and in Figs. 7(c)
and (f) for nf = 4. Figs. 7(b) and (c), show the comparison
over discharge pulses, and Figs. 7(e) and (f) show the com-
parison over charge pulses. The RMS cell model estimation
error over the tests shown in Fig. 7 are listed in Table 1. Per-
formance is significantly improved by the addition of filter
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Fig. 9. Results when modeling over a temperature range. Frame (a) shows the individual modeling results, and frame (b) compares the average modeling
results.

states. We do not see much improvement by increasing nf be-
yond 4. Results comparing the ESC model cell voltage esti-
mation with the cell’ s true voltage for one cycle of the UDDS
test are shown in Figs. 8(e) for nf = 2 and (f) for nf = 4.

3.5. Adding temperature dependence to the models

Thus far, we have discussed only how to model cell dy-
namics at one specific temperature. We now embark on a
brief discussion on how to incorporate temperature depen-
dence into the models.

A very simple method, and the one we tried first, was to
use a table of different models, where each model had pa-
rameters optimized for a specific temperature. For example,
we used sixteen models over the temperature range −30 to
45 ◦C in increments of 5 ◦C. This worked well so long as
the cell under test had temperature equivalent to one of the
sixteen stored models. If the temperature was between two
stored model values, we linearly interpolated model param-
eters between the parameters of the models in the table. This
did not work well.

We found that two adjacent models in the table did not
necessarily have similar parameters. Individually optimiz-
ing model parameters at specific temperatures resulted in
values that were over-fit to the data and did not generalize
well to cases not previously seen. We remedied the problem
by performing joint optimization over the entire temperature
range, where every parameter was represented by a contin-
uous polynomial of temperature (fourth order). This forced
nearby models to have similar parameter values. Although
joint optimization did not result in modeling errors as low
as when individually optimized, the generalization perfor-
mance was much better.

Fig. 9 shows the results for joint optimization over
the entire temperature range, and Table 1 lists some nu-
meric values corresponding to the plots. The cell data was
collected from UDDS tests similar to those described in
Section 3.1, but performed at 16 controlled temperatures
from −30 to 45 ◦C, in increments of 5◦C. At lower temper-
atures, the magnitude of the current had to be scaled down
so as not to exceed voltage limits (due to increased cell
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resistance at lower temperatures), and hence more UDDS
cycles had to be completed to cover the desired SOC range,
but the tests were otherwise the same. In frame (a), the
RMS modeling errors for the jointly optimized models are
plotted versus temperature for the different cell models.
In frame (b), the average RMS modeling errors over all
temperatures are presented as a bar graph.

We see that the combined model appears to perform well.
However, this is an artifact. The {K0, . . . , K4} points were
found to over-fit the measured data, so that the resulting
curve plotted with their values did not resemble OCV to any
degree of fidelity. While the simple model has worse nu-
meric indicators of performance, it generalized better than
the combined model. By adding the crude model of hystere-
sis, we see a significant performance jump, especially at cold
temperatures where hysteresis is most evident in our cells’
dynamics. Adding the dynamics of a state to the hysteresis
model also improves performance, again with the greatest
gains at low temperatures. Filter states also contribute to per-
formance gains. The final model, enhanced-self-correcting
with nf = 4 gave the best performance in all cases. By
increasing the number of filter states we would expect con-
tinued performance gains, at the cost of greater complexity.
Note that the cold-temperature performance is not improved
as much, in relative terms, by adding filter states, so it is
likely that some cold-temperature phenomena is not yet
being modeled well. Conceivably, a second hysteresis state
could be added to the model to improve performance here.
We have not investigated this possibility as yet.

4. System identification

The first three system models introduced in this paper are
“ linear in the parameters” . This makes identifying the values
of the model parameters straightforward using least-squares
estimation, and has been discussed earlier. When the model
is not linear in the parameters, as in the remaining system
models, this method may not be used. We must turn to more
advanced methods.

Here we look at one method in particular. We know that
a Kalman filter or extended Kalman filter may be used to
estimate the state of a dynamic system given noisy mea-
surements; e.g., to estimate the cell SOC. We may also use
an extended Kalman filter to perform system identification
given clean measurements. To do so, we require a state-space
model describing the dynamics of the parameters θ of the
system model. We will use the Kalman filter as an optimum
observer of these parameter values, creating an estimate θ̂.
In electro-chemical cells, the true parameters will change
only very slowly, so we model them as constant with some
small perturbation:

θk+1 = θk + rk.

The small white noise input rk is fictitious, but models
the slow change in the parameters of the system plus the

Table 2
Summary of the nonlinear extended Kalman filter for system identification
[21]

Nonlinear state-space modela

θk+1 = θk + rk
dk = g(xk, uk, θk) + ek

Definition

Cθ
k = dg(xk, uk, θ)

dθ

∣∣∣∣
θ=θ̂−

k

Initialization
For k = 0, set

θ̂+
0 = E[θ0]

Σ+
θ̃,0

= E[(θ0 − θ̂+
0 )(θ0 − θ̂+

0 )T]

Computation
For k = 1, 2, . . . compute

State estimate time update: θ̂−
k = θ̂+

k−1

Error covariance time update: Σ−
θ̃,k

= Σ+
θ̃,k−1

+ Σr

Kalman gain matrix: Lθ
k = Σ−

θ̃,k
(Cθ

k)
T[Cθ

kΣ
−
θ̃,k

(Cθ
k)

T + Σe]−1

State estimate measurement update:
θ̂+
k = θ̂−

k + Lk[yk − g(xk, uk, θ̂
−
k )]

Error covariance measurement update: Σ+
θ̃,k

= (I − Lθ
kC

θ
k)Σ

−
θ̂,k

a rk and ek are independent, zero-mean, Gaussian noise processes of
covariance matrices Σr and Σe, respectively.

infidelity of the model structure to capture all of the cell
dynamics.

The output equation required for Kalman-filter system
identification must be a measurable function of the system
parameters. We use

dk = g(xk, uk, θk) + ek,

where g(·, ·, ·) is the output equation of the system model
being identified, and ek models the sensor noise and model-
ing error. We compare dk computed using θ̂k to the measured
cell output, and adapt θ̂k to minimize the difference.

We can create an extended Kalman filter using this
state-space model and cell data to estimate the system pa-
rameters as summarized in Table 2. We initialize the state
estimate with our best information re. the state value: θ̂+

0 =
E[θ0], and the state estimation error covariance matrix:
Σ+

θ̃,0
= E[(θ − θ̂+

0 )(θ − θ̂+
0 )T].

The time update propagates the state estimate as θ̂−
k =

θ̂+
k−1 since the parameters are assumed constant, and the

error covariance as Σ−
θ̃,k

= Σ+
θ̃,k−1

+ Σr to account for the

added uncertainty due to the fictitious noise input rk. The
effect of adding Σr is to increase the estimate’ s uncertainty,
and to allow adaptation to θ̂.

The extended Kalman filter gain matrix is computed by
linearizing the state-space model’ s output equation. We com-
pute

Cθ
k = dg(xk, uk, θ)

dθ

∣∣∣∣
θ=θ̂−

k

,

Lθ
k = Σ−

θ̃,k
(Cθ

k)
T[Cθ

kΣ
−
θ̃,k

(Cθ
k)

T + Σe]
−1.
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Next, we measure the true cell output yk and compare it to the
model output g(xk, uk, θ̂

−
k ). To do so, we need to simulate

the model in parallel with the real cell to have an appropriate
value of xk available. The difference between cell output
and model output can be attributed to noises and modeling
error. The extended Kalman filter adapts θ̂ to minimize this
difference

θ̂+
k = θ̂−

k + Lk[yk − g(xk, uk, θ̂
−
k )].

Finally, the measurement update is applied to the state error
covariance matrix

Σ+
θ̃,k

= (I − Lθ
kC

θ
k)Σ

−
θ̃,k

.

This has the effect of decreasing the modeling uncertainty
due to the measurement update. All terms are accounted for,
and the algorithm is complete.

4.1. Extended Kalman-filter system identification for the
one-state hysteresis model

The details for applying this method to any particular cell
model are differentiated by the calculation of Cθ

k . For the
one-state hysteresis model, let the vector of parameters be

θ = [ R+ R− M γ ]T.

R+ is the cell resistance when current is positive, and R−
is the cell resistance when current is negative. M is the
maximum hysteresis voltage, and γ is the hysteresis rate
constant, which is part of F(ik). To calculate Cθ

k we require

dg(xk, uk, θ)

dθ
= ∂g(xk, uk, θ)

∂θ
+ ∂g(xk, uk, θ)

∂xk

dxk
dθ

, (6)

dxk
dθ

= ∂f(xk−1, uk−1, θ)

∂θ
+ ∂f(xk−1, uk−1, θ)

∂xk−1

dxk−1

dθ
. (7)

The derivative calculations are recursive in nature, and
evolve over time as the state evolves. The term dx0/dθ is
initialized to zero unless side information gives a better es-
timate of its value. We see that in order to calculate Cθ

k for
any specific model structure, we require methods to calcu-
late the partial derivatives in (6) and (7). For the one-state
hysteresis model we have

∂g(xk, uk, θ)

∂θ
= [ −i+ −i− 0 0 ],

∂g(xk, uk, θ)

∂xk
=

[
1

∂ OCV(zk)

∂zk

]
,

∂f(xk−1, uk−1, θ)

∂θ
=


 0 0 (1 − Fk−1) sgn(ik−1) (M − hk−1)

∣∣∣∣ηiik−1�t

C

∣∣∣∣Fk−1

0 0 0 0


 ,

∂f(xk−1, uk−1, θ)

∂xk−1
=

[
Fk−1 0

0 1

]
.

Note that the ∂ OCV(zk)/∂zk term is never needed, as it
always multiplies zero. For this particular model, we can
simplify the calculations by removing the multiplies by zero:

dg(xk, uk, θ)

dθ
= [ −i+ −i− 0 0 ] + dhk

dθ
,

dhk

dθ
=

[
0 0 (1 − Fk−1) sgn(ik−1)(M − hk−1)

∣∣∣∣ηiik−1�t

C

∣∣∣∣Fk−1

]
+ Fk−1

dhk−1

dθ
.

4.2. Extended Kalman-filter system identification for the
enhanced self-correcting model

For the enhanced self-correcting model, let the vector of
parameters be

θ= [ R+ R− g1 · · · gnf−1 β1 · · · βnf M γ ]T,

where β = tanh (α) and α is the vector of filter pole lo-
cations. We use the tanh (·) function during system identi-
fication because it forces filter poles to remain within ±1
(i.e., stable) regardless of the value of β. When calculating
the partial derivatives we must remember that since gnf =
− ∑nf−1

i=1 gi(1 − αnf )/(1 − αi), it is not independently iden-
tified but is computed from the g1, . . . , gnf−1 terms. This
also forces the derivatives to be more complicated than a
quick glance would indicate. That is,

∂g(xk, uk, θ)

∂g1
= fk,1 − 1 − αnf

1 − α1
fk,nf ,

and so forth. Also, since αi = tanh (βi), it can never be
unity, so division by zero is impossible in the derivative
computation. With this in mind, the partial derivatives
in (6) and (7) may be computed in a straightforward
way.

5. Conclusions

This paper has proposed five mathematical state-space
structures for the purpose of modeling LiPB HEV cell dy-
namics for their eventual role in HEV BMS algorithms.
Models with a single-state are very simple, but perform the
poorest. Adding hysteresis and filter states to the model aids
performance, at some cost in complexity.

We have also seen how to identify the parameters of the
cell models given cell-test data. Models that are “ linear in the
parameters” may have their parameters fit in a very straight-
forward way using methods from least-squares-estimation
theory. Models with more dynamics than simply SOC re-
quire more sophisticated techniques. One possibility is to

use an extended Kalman filter to identify the cell parameters
in an on-line or off-line manner.
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In the third paper [4], we will employ extended Kalman
filtering from [3], using the cell models developed here, to
implement HEV BMS algorithms. We will see how to use
EKF to estimate SOC and all other model states as the sys-
tem operates. This model state will then allow us to accu-
rately compute a dynamic estimate of available power. We
can additionally employ a technique called dual extended
Kalman filtering to simultaneously estimate cell state and
parameters, allowing tracking of cell power fade and capac-
ity fade, for example. Finally, the parameter data and SOC
estimate may be combined to determine which cells in the
pack must have their charge levels modified in order to bring
the pack into equalization.
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