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Abstract

Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s
present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The
estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime
of the pack.

In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on
a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required
mathematical background, cell modeling and system identification requirements, and the final solution, together with results.

This first paper investigates the estimation requirements for HEV BMS in some detail, in parallel to the requirements for other
battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and
the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful
lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise
is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary
computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is the first in a series of three that describe ad-
vanced algorithms for a battery management system (BMS)
for hybrid-electric-vehicle (HEV) application. This BMS is
able to estimate battery state of charge (SOC), instantaneous
available power, and parameters indicative of the battery
state of health (SOH) such as power fade and capacity fade,
and is able to adapt to changing cell characteristics over
time as the cells in the battery pack age. The algorithms
have been successfully implemented on a lithium-ion poly-
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mer battery (LiPB) pack, and we also expect them to work
well for other battery chemistries.

A hybrid-electric-vehicle is one with both a gasoline (or
diesel) engine and an electric motor. Both may be coupled
directly to the power train—resulting in a “parallel hybrid”
configuration—where the motor provides boost energy to
supplement the engine and acts as a generator when coast-
ing, braking, or when the engine can supply extra power
to charge the battery pack. Alternately, the engine may be
used exclusively to drive a generator that charges the bat-
tery pack; the motor is then coupled directly to the power
train—resulting in a “series hybrid” configuration. The se-
ries configuration promises greater potential efficiency, at
the cost of a larger required battery pack. At the time of the
writing of this paper, the only HEVs on the market in the
US are parallel hybrid systems and require a battery pack of
fairly modest size. Even so, and because of the demanding

0378-7753/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpowsour.2004.02.031



G.L. Plett / Journal of Power Sources 134 (2004) 252–261 253

requirements on a pack of limited capacity, advanced meth-
ods must be used to estimate SOC, SOH, and instantaneous
power in order to safely, efficiently and aggressively exploit
the pack capabilities.

The method we use to estimate these parameters is
based on Kalman filter theory. Kalman filters are an
intelligent—and sometimes optimal—means for estimating
the present value of the time-varying “state” of a dynamic
system. By modeling our battery system to include the
wanted unknown quantities in its state description, we may
use a Kalman filter to estimate their values. An additional
benefit of the Kalman filter is that it automatically pro-
vides dynamic estimation error bounds on these estimates
as well. We exploit this fact to give aggressive performance
from our battery pack, without fear of causing damage by
over-charge or over-discharge. Note that there have been
other reported methods for SOC estimation that use Kalman
filtering [1,2], but the method in this series of papers ex-
pands on these results and also differs in some important
respects, as will be outlined later[3].

This first paper is an introduction to the problem. It de-
scribes the HEV environment and the algorithmic require-
ment specifications for a BMS. The remainder of the pa-
per is a brief tutorial on the Kalman filter theory necessary
to grasp the content of the remaining papers; additionally,
a nonlinear extension called the “extended Kalman filter”
(EKF) is discussed.

The second paper[3] describes some mathematical cell
models that may be used with this method. It also gives
an overview of other modeling methods in the literature
and shows how an EKF may be used to adaptively identify
unknown parameters in a cell model, in real time, given cell
input–output data.

The third paper[4] covers the parameter estimation prob-
lem; namely, how to dynamically estimate SOC, power fade,
capacity fade and so forth. An EKF is used in conjunction
with the cell model. The cell model may be fixed, or may
itself have adaptable parameters so that the model tracks
cell aging effects. Details for a practical implementation are
discussed.

We now proceed by discussing requirements for a BMS
in the HEV environment, and comparing them to require-
ments for other battery-powered systems. The additional
requirements of HEV justify the use of advanced algo-
rithms. We then review essential Kalman filter theory with
the aim being to demystify the steps involved. An ex-
ample of linear Kalman filtering is given to illustrate the
presentation.

Loop once each measurement interval while pack active

Key on:
Initialization

Sample:
Vk , Tk , I

Estimate:
SOC

Update
SOH

Calculate
Power

Equalize
Cells

Key off:
Store data

Fig. 1. Algorithms in an HEV BMS.

2. HEV versus portable electronics BMS environments

In principle, the results of these papers could be ap-
plied to manage the performance of any battery-based sys-
tem, including, for example, hybrid electric vehicles, battery
electric vehicles (BEVs) and consumer portable electron-
ics (PE). The HEV environment, however, is particularly
harsh—imposing many difficult requirements on the battery
cells and BMS—and motivates the use of advanced tech-
niques. In our experience, battery management algorithms
developed for portable electronic applications, for example,
do not work adequately for the HEV application.

The HEV BMS performs many tasks, including communi-
cate with the vehicle controller, measure cell physical quan-
tities of interest (e.g., cell voltage, current and temperature),
and manage cell balancing. Here, we are only interested in
the algorithmic considerations as motivated by the require-
ments imposed by the environment and the vehicle. Fig. 1
shows a simple block diagram for the algorithm function,
and a short description is given below:

• Initialization. When the vehicle is turned on, the algo-
rithms must be initialized. The predominant dynamics of
a cell while at rest is simply “self-discharge” . If the level
of self-discharge is too high, the state of health should be
flagged as a warning or fault condition.

• SOC update. Once in every measurement interval, the
voltages, temperatures and module current are measured.
The cell/pack SOC estimate must be updated based on
these measurements.

• SOH update. Battery capacity and other parameters
change over the lifetime of the pack. These must be con-
tinuously estimated in order to maintain safety and to
obtain maximum performance from the pack.

• Maximum available power. Based on the SOC estimate
and its uncertainty, and a dynamic cell model, the BMS
must be able to estimate the maximum dis/charge power
available at any time that will not cause voltage, SOC, or
other design limits to be violated.

• Equalization. Series strings of cells with unequal capaci-
ties (as all are) will become unbalanced. That is, even if
the SOC of all cells start with the same value, they will
drift slowly apart as the system operates. The BMS must
determine which cells must have their levels of charge al-
tered to keep the pack balanced.

In the next several sections we will explore how the HEV
BMS requirements differ from other battery application re-
quirements in these respects.
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Table 1
Typical characteristics of three battery operating environments

Characteristic HEV BEV PE

Maximum rate ±20C ±5C ±3C
Rate profile Very dynamic Moderate Piecewise constant
SOC estimation Very precise Precise Crude
Predict available power Yes Yes No
Cell balancing Continuous Continuous, or on charge only On charge only
SOH estimation Required Required Not essential
Lifetime 10–15 years 10–15 years <5 years

2.1. Rate characteristics

Three different categories of battery-powered systems and
typical characteristics of their operating environments are
listed in Table 1. We find that the characteristics of the HEV
environment are more demanding on battery cells and bat-
tery management systems than the other two. For example,
HEVs require very high electrical current relative to the ca-
pacity of the cells, with present vehicles demanding up to
±20 times the C-rate. We expect that future systems will
require even higher relative rates. Battery electric vehicles,
on the other hand, generally require peak absolute current
< 5C and PE are designed for low absolute rates < 3C. The
rate profile (current as a function of time) for HEV is also
very dynamic as HEVs are typically designed so that the
battery/motor system handles the instantaneous load tran-
sients and the engine handles the average load [5,6]. BEV
rate profiles are less dynamic, and many PE devices expe-
rience nearly constant power drains. The low power drain
of PE results in cells that are always in a near-equilibrium
state and allows simple battery management algorithms. For
example, SOC may be estimated by measuring the termi-
nal voltage (which, at low C rates, is never much different
from the open-circuit-voltage) and then performing a table
lookup function of open-circuit-voltage versus SOC. In con-
trast, the high rates and dynamic rate profiles of HEV result
in cell electro-chemistry that is rarely in an equilibrium state
while the vehicle operates. Therefore, for example, voltage
sensing without further processing is a poor SOC estimator.

2.2. SOC estimation

Of primary importance is a method to accurately estimate
the SOC of cells in the pack. We will define SOC more
carefully later [3], but what is meant is an indication of the
fraction of charge remaining in each cell, from 0 to 100%,
available to do useful work. To use a vehicular analogy, it
is similar to the dashboard gas gauge that reads “Empty”
(0%) to “Full” (100%). However, while there exist sensors
to accurately measure a gasoline level in a tank, there is
no sensor available to measure SOC. Instead, SOC must be
estimated from physical measurements by some algorithm.
The technique to be developed in these papers is unique in
that it not only provides an accurate estimate of SOC, it also

provides dynamic error bounds on the estimate. This is a
direct consequence of the way we use Kalman filtering.

For PE, an imprecise SOC estimator is often adequate.
However, for peak performance—required in HEV and
BEV—an accurate SOC estimate provides the following
benefits [7]:

• Longevity. If a gasoline tank is over-filled or run empty,
no harm is done to the tank. However, over-charging
or over-discharging a battery cell may cause permanent
damage and result in reduced lifetime. An accurate SOC
estimate may be used to avoid harming cells by not
permitting current to be passed that would cause damage.

• Performance. Without a good SOC estimator, one must
be overly conservative when using the battery pack to
avoid over/undercharge due to trusting the poor estimate.
With a good estimate, especially one with known error
bounds, one can aggressively use the entire pack capacity.

• Reliability. A poor SOC estimator behaves differently for
different driving profiles. A good SOC estimator is con-
stant and dependable, enhancing overall power system
reliability.

• Density. Accurate SOC and battery state information
allows the battery pack to be used aggressively within
the design limits, so the pack does not need to be
over-engineered. This allows smaller, lighter battery
packs.

• Economy. Smaller battery systems cost less. Warranty
service on a reliable system costs less.

We will spend a considerable portion of these papers describ-
ing an accurate method to estimate SOC for these reasons.

2.3. Available power estimation

A second algorithmic BMS requirement is to dynami-
cally estimate the maximum available battery charge and
discharge power (or, maximum charge and discharge cur-
rent). The estimate is computed knowing SOC, temperature
and a model of cell dynamics, and must be reliable over the
whole SOC and temperature operating range. Upon comput-
ing the (charge or) discharge limit, the BMS then guarantees
that the vehicle may safely draw this constant power level
for a pre-defined number of seconds into the future without
exceeding voltage and SOC design limits. We use the EKF
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SOC estimate along with the corresponding error bounds to
conservatively and accurately predict available power while
allowing pack usage to be as aggressive as possible for the
available data.

2.4. Cell balancing

For battery packs to achieve required power levels at
reasonable rates, cells must be configured in series strings.
(The higher voltage of a series string allows lower cur-
rent for the same power level.) Over time, these cells
may become “out of balance” as small differences in their
dynamics—principally, in their Coulombic efficiencies and
capacities—cause their states of charge to drift apart from
each other. The danger is that one or more cells may then
limit the discharge ability of the pack if their SOC is much
lower than that of the others, and one or more cells may
limit the charging capacity of the pack if their SOC is much
higher than that of the others. In an extreme case, the pack
can neither be discharged nor charged if one cell is at the
low SOC limit and another is at the high SOC limit, even
if all other cells are at intermediate values. Packs may be
balanced or equalized by “boosting” (individually adding
charge to) cells with SOC too low and “bucking” (individ-
ually depleting charge from) cells with SOC too high. In
BEV and PE, balancing is often done using voltage-based
methods at the end-of-charge point of the charging process.
For example, the pack might be charged until the highest
cell voltage reaches some defined limit, after which the re-
maining cells are individually boosted until the entire pack
is equalized. This same method may not be used in HEV
since cells are never fully charged or discharged; rather,
equalization must occur continuously. This significantly
complicates the algorithm and hardware requirements. In
particular, equalization should be done on a differential
SOC basis, not on a voltage basis, requiring a good SOC es-
timation algorithm. Additionally, we use SOC error bounds
to create an equalization “dead band” so that balancing halts
if cells are close to equalized to avoid over-stressing cells.

2.5. SOH estimation

For the HEV application, knowledge of battery state of
health is required. SOH is partially described by a vector
of diagnostic flags including simple measurements such as:
“Are there any cells with voltage too high or too low?” , “ Is
the pack current too high?” , and “Are the temperatures of
any cells too high or too low?” . Complete SOH estimation
also requires more complex estimation: “Are there any cells
with SOC above or below design limits?” , “Are there any
cells with self-discharge rate above some acceptable limit?” ,
“Has the capacity of any cell faded below some minimum
acceptable value?” , “Does the internal resistance of any cell
exceed some limit?” , and so forth. This allows a service
technician to identify cells in a pack that need to be replaced
without the need to replace all the cells. SOH information

may also be written to a data log for warranty purposes.
In a portable electronic device, elaborate SOH estimation is
not required: when the user determines that the battery is
no longer giving acceptable performance he or she simply
replaces the whole pack.

2.6. Lifetime

Finally, for commercial success, the lifetime of the HEV
cells must meet or exceed the lifetime of the vehicle. Re-
placing a battery pack every few years is not acceptable.
Cell electro-chemistry and construction plays a dominant
role in longevity, but good BMS algorithms can extend life
as well by prohibiting pack use that over-stresses cells, thus
preventing damage.

The pack’s long life has other ramifications; for example,
we know that the BMS must be able to make accurate pre-
dictions over the entire lifetime of the cells. This implies that
the BMS must estimate or track all relevant cell parameters
as time goes by. By adapting to changing cell characteris-
tics, the BMS can accurately estimate available power over
the entire life of the battery system, and will not allow cur-
rent so high that cells are damaged. We use EKF methods
to do this as well.

3. Linear Kalman filtering

Many of the algorithm requirements just described pre-
scribe estimating parameters of a battery pack that may not
be directly measured. We find that Kalman filtering pro-
vides an elegant and powerful solution. Kalman filtering is
an established technology for dynamic system state estima-
tion that is in common use in many fields including: target
tracking, global positioning, dynamic systems control, nav-
igation, and communication, but is not widely known in the
battery field. The Kalman filter comprises a set of recur-
sive equations that are repeatedly evaluated as the system
operates. We will not directly derive these equations here;
rather, our hope is that the following discussion will aid in-
tuition into the method’s workings. The reader is referred
to Kalman’s original paper and several textbooks [8–12] for
further derivation details.

Very generally, any causal dynamic system—including a
battery cell—generates its outputs as some function of the
past and present inputs. It is often also convenient to think
of the system having a “state” vector (which may not be di-
rectly measurable) where the state summarizes the effect of
all past inputs on the system. Present system output may be
computed with present input and present state only—past
input values need not be stored. We will apply Kalman filter
theory by viewing each cell in the battery pack to be a dy-
namic system whose inputs include the current and tempera-
ture experienced by the cell and whose output is the (loaded)
terminal voltage. The state vector may include SOC, relax-
ation dynamics and hysteresis effects, for example.
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Fig. 2. Diagram of linear discrete-time system in state-space form.

To be efficiently computable by the BMS, we will consider
a discrete-time version of the cell dynamics. Each measure-
ment interval, indexed by integer valued time index k (e.g.,
perhaps once per second) the model updates its state and
output values based on its input. A very general framework
that we may use is a “state-space” model of discrete-time
lumped linear dynamic systems:

xk+1 = Akxk + Bkuk + wk, (1)

yk = Ckxk +Dkuk + vk. (2)

Here, xk ∈ R
n is the system state vector at time index k, and

Eq. (1) is called the “state equation” or “process equation” .
The state equation captures the evolving system dynamics.
System stability, dynamic controllability and sensitivity to
disturbance may all be determined from this equation. The
known/deterministic input to the system is uk ∈ R

p, and
wk ∈ R

n is stochastic “process noise” or “disturbance” that
models some unmeasured input which affects the state of the
system. The output of the system is yk ∈ R

m, computed by
the “output equation” (2) as a linear combination of states
and input plus vk ∈ R

m, which models “sensor noise” that
affects the measurement of the system output in a memory-
less way, but does not affect the system state. The matrices
Ak ∈ R

n×n, Bk ∈ R
n×p, Ck ∈ R

m×n and Dk ∈ R
m×p de-

scribe the dynamics of the system, and are possibly time
varying. This equation is also illustrated in the block dia-
gram of Fig. 2.

Given a model as Eqs. (1) and (2), we may wish to es-
timate the unmeasured state xk of the corresponding phys-
ical system, in real time, in a dynamic environment, given
knowledge of the system’s measured input/output signals.
The Kalman filter is the optimum method to do so under
certain assumptions. By modeling a cell’s dynamics with
the desired unknown quantities (e.g., SOC) as members of
the model state vector, the Kalman filter will automatically
compute the best estimate of their present values.

Some assumptions are made when deriving the filter equa-
tions. First, both wk and vk are assumed to be mutually
uncorrelated white Gaussian random processes, with zero
mean and covariance matrices with known value:

E[wnw
T
k ] =

{
Σw n = k,

0 n �= k,
E[vnv

T
k ] =

{
Σv n = k,

0 n �= k,

where E[·] is the statistical expectation operator and a super-
script T is the matrix/vector transpose. The assumptions on

Table 2
Summary of the linear Kalman filter from [11]

Linear state-space modela

xk+1 = Akxk + Bkuk + wk
yk = Ckxk +Dkuk + vk

Initialization

For k = 0, set

x̂+0 = E[x0]

Σ+
x̃,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T]

Computation

For k = 1, 2, . . . compute

State estimate time update: x̂−k = Ak−1x̂
+
k−1 + Bk−1uk−1

Error covariance time update: Σ−
x̃,k

= Ak−1Σ
+
x̃,k−1A

T
k−1 +Σw

Kalman gain matrix: Lk = Σ−
x̃,k
CT
k [CkΣ

−
x̃,k
CT
k +Σv]−1

State estimate measurement update:

x̂+k = x̂−k + Lk[yk − Ckx̂−k −Dkuk]
Error covariance measurement update: Σ+

x̃,k
= (I − LkCk)Σ−

x̃,k

a wk and vk are independent, zero-mean, Gaussian noise processes of
covariance matrices Σw and Σv, respectively.

the noise processes wk and vk are rarely (never) met in prac-
tice, but the consensus of the literature is that the method
still works very well. Our own results corroborate the ro-
bustness of the Kalman filter.

The Kalman filter problem is then: Use the entire observed
data {u0, u1, . . . , uk} and {y0, y1, . . . , yk} to find the min-
imum mean squared error estimate x̂k of the true state xk.
That is, with the assumptions on wk and vk and a system
modeled as Eqs. (1) and (2), solve2

x̂k = arg min
x̂∈Rn

E[(xk − x̂)T(xk − x̂)|u0, u1, . . . , uk,

y0, y1, . . . , yk].

The solution to this problem is widely known and is pre-
sented in Table 2. (For more details on deriving the equa-
tions, see for example [8–12].) The heart of the solution is a
set of computationally efficient recursive relationships that
involve both an estimate of the state itself, and also the co-
variance matrix Σx̃,k = E[x̃kx̃T

k ] of the state estimate error
x̃k = xk − x̂k. The covariance matrix indicates the uncer-
tainty of the state estimate, and may be used to generate er-
ror bounds. A “ large” Σx̃,k (one with large singular values)
indicates a high level of uncertainty in the state estimate; a
“small” Σx̃,k (one with small singular values) indicates con-
fidence in the estimate.

The discrete-time Kalman filter computes two different
estimates of the state and covariance matrix each sampling
interval. The first estimate, x̂−k , is based on the prior state

2 The system must also be “observable” , a condition implying that it
is in fact possible to estimate the state from the output. The systems we
will explore meet this requirement, so we will not discuss it in detail.
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estimate as computed in the previous iteration, x̂+k−1, prop-
agated forward in time one sample interval using a model
of system dynamics. It is computed before any system mea-
surements are made, and is denoted by superscript “−” . The
second estimate, x̂+k , “ tunes up” the first estimate after mea-
suring the system output yk. It is given the superscript “+” .
The state and covariance estimates x̂+k and Σ+

x̃,k
are then

more accurate than x̂−k and Σ−
x̃,k

as they incorporate knowl-
edge gleaned from the measurement yk, and should be used
by the BMS to report SOC estimates (etc.) to the vehicle.

The Kalman filter is initialized with the best available
information on the state and error covariance:

x̂+0 = E[x0], Σ+
x̃,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T].

Often, these quantities are not precisely known, and initial-
ization must be performed in an ad hoc manner. This is not
a problem as the Kalman filter is known to be very robust
to poor initialization, and will quickly converge to the true
values as it runs.

Following initialization, the Kalman filter repeatedly per-
forms two steps each measurement interval. First, it predicts
the value of the present state, system output, and error co-
variance: x̂−k , ŷk, and Σ−

x̃,k
. Secondly, using a measurement

of the physical system output, it corrects the state estimate
and error covariance to x̂+k and Σ+

x̃,k
.

The prediction step, also known as the time update, com-
putes the expected state value at the next measurement point.
It is accomplished by propagating the system input through
the system model dynamics, assuming the expected process
noise of zero:

x̂−k = Ak−1x̂
+
k−1 + Bk−1uk−1.

The state uncertainty is also updated:

Σ−
x̃,k

= Ak−1Σ
+
x̃,k−1A

T
k−1 +Σw.

If the system is stable, Ak−1Σ
+
x̃,k−1A

T
k−1 is contractive, re-

ducing uncertainty. An undriven stable system state always
decays toward zero, so certainty of the state estimate is im-
proved over time. The process noise Σw term always in-
creases uncertainty, as we cannot measure wk to determine
more accurately how it is affecting the state.

Following the output measurement, the state correction
step, also known as the measurement update is

x̂+k = x̂−k + Lk[yk − (Ckx̂−k +Dkuk)].
That is, the updated state estimate equals the predicted state
estimate plus a weighted correction factor. The term in the
square brackets is equal to the measured cell voltage mi-
nus the predicted cell voltage from the cell model: ŷk =
Ckx̂

−
k +Dkuk. The difference yk − ŷk may be nonzero due

to measurement noise, an incorrect state estimate x̂−k , or an
inaccurate cell model. It represents the “new information”
in the measurement, and so the sequence of differences is
often called the “ innovations process” for this reason. If any

Lk

yk

ŷk
Model

System
uk

xk

x̂k

Fig. 3. Diagram of state update.

innovation is large, the corresponding state update tends to
be large. If an innovation is small, the state update tends to
be small.

Each innovation is weighted by Kalman gain vector Lk
in the state update

Lk = Σ−
x̃,k
CT
k [CkΣ

−
x̃,k
CT
k +Σv]−1.

If the present state estimate is very uncertain,Σ−
x̃,k

is “ large”
and the values in Lk tend to be large, forcing a large update.
If the present state estimate is certain, the values in Lk tend
to be small, and the state-estimate update will be small.
Also, if sensor noise is large, Σv is large, causing Lk to be
small and the update to be small. The Kalman gain may be
thought of as a signal-to-noise (SNR) ratio balancing factor
that has high gain if the innovations signal has relatively
high SNR, and has low gain if the SNR is low. Kalman filter
convergence is faster for high SNR.

The covariance correction step is

Σ+
x̃,k

= (I − LkCk)Σ−
x̃,k
.

The state uncertainty always decreases due to the new in-
formation provided by the measurement.

With this basic understanding, we can view the Kalman
filter macroscopically as depicted in Fig. 3. The true system
has a measured input uk and a measured output yk. It also has
an unmeasured internal state xk. A model of the system runs
in parallel with the true system, simulating its performance.
This model has the same input uk and has output ŷk. It also
has internal state x̂k, which has known value as it is part
of the model simulation. The true system output (a scalar,
in our case) is compared with the model output, and the
difference is an output error, or innovation. This innovation is
converted to a vector value by multiplying with the Kalman
gain Lk, and used to adapt the model state x̂k to more closely
approximate the true system’s state. The state estimate and
uncertainty estimates are updated through computationally
efficient recursive relationships.

In conclusion, the Kalman filter provides a theoretically
elegant and time-proven method to filter measurements
of system input and output to produce an intelligent esti-
mate of a dynamic system’s state. The equations involve
basic matrix operations that are easy to implement on
digital-signal-processing (DSP) chips. A side effect of the
Kalman filter is that the state uncertainty matrix is au-
tomatically produced, giving an indication of the error
bound on the estimate. For the Kalman filter assumptions,
95.4% of the time the true unknown state xk is bounded by
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Fig. 4. Diagram of nonlinear discrete-time system in state-space form.

x̂k ± 2
√

diag(Σx̃,k) or 99.7% of the time xk is bounded by
x̂k ± 3

√
diag(Σx̃,k).

4. Extended Kalman filtering

The Kalman filter is the optimum state estimator for a
linear system with the assumptions as described. If the sys-
tem is nonlinear, then we may use a linearization process at
every time step to approximate the nonlinear system with a
linear time varying (LTV) system. This LTV system is then
used in the Kalman filter, resulting in an extended Kalman
filter (EKF) on the true nonlinear system. Note that although
EKF is not necessarily optimal, it often works very well.

We model the nonlinear system as:

xk+1 = f(xk, uk)+ wk, (3)

yk = g(xk, uk)+ vk. (4)

As before,wk and vk are zero-mean white Gaussian stochas-
tic processes with covariance matrices Σw and Σv, respec-
tively. Now, f(xk, uk) is a nonlinear state transition func-
tion and g(xk, uk) is a nonlinear measurement function. The
nonlinear system is also illustrated in the block diagram of
Fig. 4.

At each time step, f(xk, uk) and g(xk, uk) are linearized
by a first-order Taylor-series expansion. We assume that
f(·, ·) and g(·, ·) are differentiable at all operating points
(xk, uk). Then [13, Theorem 1],

f(xk, uk) ≈ f(x̂k, uk)+ ∂f(xk, uk)

∂xk

∣∣∣∣
xk=x̂k︸ ︷︷ ︸

Defined as Âk

(xk − x̂k), (5)

g(xk, uk) ≈ g(x̂k, uk)+ ∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂k︸ ︷︷ ︸

Defined as Ĉk

(xk − x̂k). (6)

Combining (3) and (4) with (5) and (6), we have the lin-
earized equations describing the true system state as a func-
tion of itself, known inputs comprising uk and x̂k, and un-
measurable noise inputs wk and vk:

xk+1 ≈ Âkxk + f(x̂k, uk)− Âkx̂k︸ ︷︷ ︸
Not a function of xk

+ wk,

yk ≈ Ĉkxk + g(x̂k, uk)− Ĉkx̂k︸ ︷︷ ︸
Not a function of xk

+ vk.

Table 3
Summary of the nonlinear extended Kalman filter from [14]

Nonlinear state-space modela

xk+1 = f(xk, uk)+ wk
yk = g(xk, uk)+ vk

Definitions

Âk = ∂f(xk, uk)

∂xk

∣∣∣∣
xk=x̂+k

, Ĉk = ∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂−k

Initialization

For k = 0, set

x̂+0 = E[x0]

Σ+
x̃,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T]

Computation

For k = 1, 2, . . . compute

State estimate time update: x̂−k = f(x̂+k−1, uk−1)

Error covariance time update: Σ−
x̃,k

= Âk−1Σ
+
x̃,k−1Â

T
k−1 +Σw

Kalman gain matrix: Lk = Σ−
x̃,k
ĈT
k [ĈkΣ

−
x̃,k
ĈT
k +Σv]−1

State estimate measurement update: x̂+k = x̂−k + Lk[yk − g(x̂−k , uk)]
Error covariance measurement update: Σ+

x̃,k
= (I − LkĈk)Σ−

x̃,k

a wk and vk are independent, zero-mean, Gaussian noise processes of
covariance matrices Σw and Σv, respectively.

By using these approximations, the EKF algorithm may be
developed. The terms labeled “Not a function of xk” re-
place the Bkuk and Dkuk known input terms in the standard
Kalman filter. The final algorithm is summarized in Table 3.

In spirit, the EKF is very similar to standard KF. The ini-
tialization step itself is identical. Each iteration, a predic-
tion and a correction step are done. In EKF, the propagation
step to predict the present state uses the nonlinear model
in the same way that KF uses the linear model. The er-
ror covariance propagation and Kalman gain equations are
identical to those of the KF, except that now the linearized
Âk matrix replaces Ak and Ĉk replaces Ck. The state esti-
mate update is identical, except now ŷk = g(x̂−k , uk) and

the error covariance update only differs in using Ĉk rather
than Ck.

Before proceeding, we should note that EKF is not
the only possible nonlinear extension of KF. In par-
ticular, unscented and NPR Kalman filters [15–17] are
alternative methods that may provide even better esti-
mates than EKF without the need to differentiate the
model. To date, we have not explored these methods in
detail.

5. Example of Kalman filtering

In order to illustrate some of the concepts outlined in
this paper, we present a simple example of linear Kalman
filtering. We consider the system defined by the linear circuit
in Fig. 5. We find the continuous-time state-space model of
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C

R1

R2 ut (t)

i(t)

Fig. 5. Simple linear circuit.

this circuit to be:

vc(t) = − 1

R2C
vc(t)− 1

C
i(t)+ 1

C
w(t),

vt(t) = vc(t)− R1i(t)+ v(t),
where vc(t) is the capacitor voltage as a function of time,
i(t) the current exciting the circuit, and vt(t) the terminal
voltage, as indicated in the diagram. This circuit is a crude
linear model of a battery cell if both C and R2 are large
and R1 is small. R2 is the resistor governing self-discharge,
and R1 is the internal resistance of the cell. The signal w(t)
is an uncertain input that affects the system state (capac-
itor voltage) and might model error in the current sensor,
such as a quantization error. According to the Kalman fil-
ter assumptions, w(t) must be white and Gaussian, although
in practice the method still works very well in most cases
where these assumptions are only approximately met. The
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Fig. 6. Kalman filter example: (a) true state, and state estimate are plotted; (b) covariance values are plotted; (c) cell current and current-sensor error are
plotted; (d) voltage sensor error and voltage estimate error are plotted.

signal v(t) might model voltage sensor noise that does not
affect the system state (e.g., quantization noise on the sen-
sor). It is also assumed to be white and Gaussian, but again,
the Kalman filter often works very well even in cases where
these assumptions are only approximately met.

We can convert this model to discrete time using standard
techniques [18]:

vc,k+1 = e−T/(R2C)vc,k − R2(1 − e−T/(R2C))ik + wk,
vt,k = vc,k − R1ik + vk.
Here, vc,k is the capacitor voltage at time index k, ik the cur-
rent measurement (assumed held constant over a measure-
ment interval), and vt,k the terminal voltage measurement.

We run a linear discrete-time Kalman filter on this sys-
tem, with parameters for the simulation given in Table 4.
The input to the system is a white Gaussian process with
variance on each sample equal to Σi. Note that the initial
state estimate was (purposefully) poor, and the initial state
error covariance estimate was initialized too small. Even so,
the filter recovers quickly and gives a good state estimate.

Some of the important signals involved in the filter are
plotted in Fig. 6. In Fig. 6(a), we see actual capacitor voltage
and estimated capacitor voltage plotted as a function of time.
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Table 4
Parameters used in simulation

Variable Value

T (s) 1
R1 (m�) 10
R2 (M�) 10
C (kF) 1
Σi (A2) 1
Σw (A2) 0.01
Σv (V2) 0.1
vc,0 (V) 3.9
v̂+c,0 (V) 2.5
Σ+
ṽc,0

(V2) 0.0

Although we intentionally use a poor estimate of ṽ+c,0 for the
purpose of example, the Kalman filter quickly converges to
a close neighborhood of the true voltage. It never actually
converges to the exact voltage due to the unmeasured noise
wk that is continuously driving the system. The Kalman filter
makes an optimum trade-off between believing the sensor
reading and believing the model to achieve the best possible
state estimate.

In Fig. 6(b) we see the uncertainty matrix of the Kalman
filter evolving over time. Two values are plotted: Σ−

ṽc,k
and

Σ+
ṽc,k

. We see that the former quantity (state uncertainty
before output measurement) is always greater than the lat-
ter (state uncertainty after output measurement). We also
see that, in this case, these two variables settle quickly to
steady-state values. This is common in linear time-fixed sys-
tems, but is not expected in nonlinear or time-varying sys-
tems. Therefore, we cannot use steady-state values for Σ−

x̃,k

and Σ+
x̃,k

in our systems.
In Fig. 6(c) and (d) we illustrate that this example does

not solve a trivial problem. In frame (c), we see the actual
cell current compared to the current-sensor error wk as a
function of iteration. We see that the current-sensor error
is a significant fraction of the actual cell current. In frame
(d), we see that the voltage sensor error vk is also larger
than the voltage estimate error ṽc = vc − v̂c. Even though
both sensors are very noisy, the Kalman filter is able to
compute an optimally clean estimate of the true capacitor
voltage.

6. Conclusions

In this paper we have described the algorithmic require-
ments of the BMS and its operating environment in the
HEV scenario. The particular demands of HEV justify the
use of advanced algorithms. We have also reviewed the
Kalman filter and extended Kalman filter methods, explain-
ing the motive of each computational step. We presented
an example to clarify the discussion. In the following two
papers, we will combine this information in such a way
that we are able to meet the algorithmic requirements of the
BMS.

In order to estimate SOC, we will use a state-space model
of the cell dynamics, with SOC as a member of the model
state vector. An EKF is then able to estimate SOC. It re-
mains to find a good cell model function and to identify the
parameters of this model. When the model is found, the pa-
rameters of the model must be determined using a system
identification procedure. All of this is described in [3].

Once we have a good cell model, we may estimate SOC.
We will also need to estimate SOH, including capacity fade,
power fade, self-discharge, and be able to adjust cell model
parameters to account for cell aging. We must also be able
to compute discharge/charge power. This is discussed in [4].
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