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Abstract 

This paper reports some results relating to a new method of state-of-charge (SOC) estimation for 
battery-based systems.  The particular application in mind is that of a hybrid-electric vehicle (HEV).  
Battery use in HEV is characterized by very high rates (up to ±25C) and very dynamic rate profiles, 
which disqualify some simple SOC estimation methods (based only on Coulomb counting, for 
example). 
 
Kalman filtering methods have been reported for SOC estimation [1–3].  What sets this new method 
apart from previous results is that the SOC must explicitly be a state in the system state vector.  The 
advantage of this approach is that not only is SOC estimated, but also dynamic error bounds on the 
estimate are automatically given—a by-product of the Kalman approach.  That is, instead of reporting 
the SOC to the vehicle controller (at some point in time) to be “about” 55%, the algorithm is able to 
report that the SOC is 55%±7%, for example. 
 
Linear or nonlinear cell models may be used.  We find that linear cell models poorly approximate cell 
dynamics in an HEV application, so we focus on nonlinear models.  (The Kalman filter used to 
estimate SOC is then an “Extended Kalman Filter”).  Several candidate cell models are given in a 
companion paper to be presented at this conference [4]. 
 
The cells in question in this research are lithium-ion polymer battery (LiPB) cells jointly developed by 
LG Chem Ltd. (Daejeon, Korea) and Compact Power Inc. (Colorado, USA), have a nominal capacity 
of about 8Ah, and are optimized for power-needy applications.  
 
The Kalman filter requires a cell model of the general form: 

 xk+1  = f(xk, uk) 
 vk  = g(xk, uk), 

where xk is the system state vector at time k, uk is the system “input” at time k (which may include 
measurements of battery-pack current, temperature and so forth) and vk is the cell’s terminal voltage 
(not OCV).  In the equation, f(  ) and g(  ) are (possibly nonlinear) functions, specified by the 
particular cell model used. 
 
The Kalman filter is initialized with a-priori state estimates when the vehicle is turned on (based on 
OCV readings and a look-up table, plus self-discharge rate data from the cell model and the prior SOC 
when the vehicle was turned off).  The algorithm then repeatedly updates the state estimate and state-
uncertainty (error bound) estimate with each set of new measurements, as the system runs.  Results are 
presented based on lab tests on real cells, which show that excellent SOC estimation with very tight 
error bounds are obtained whether or not the initial SOC estimate is accurate.  Fast recovery is 
demonstrated when the initial SOC estimate is off by as much as 30%.  Copyright© 2002 EVS19 
 
Keywords: Algorithmic, calculation, state of charge, lithium polymer, HEV. 



 

1.  Introduction 
In a battery-powered application it can be critical to know how much capacity remains to perform 
useful work.  This is indicated by the state-of-charge (SOC) of the system.  In a battery-electric 
vehicle, for example, knowing SOC enables the driver to estimate remaining range.  In a hybrid-
electric vehicle, it enables the vehicle controller to make full use of the regenerative and discharge 
capacity of the battery at any point in time, without worry of damaging the cells by over- or under-
voltage.   
 
A cell’s SOC may be compared to the fuel gauge on a gasoline-powered automobile.  However, while 
the fuel level in a gasoline tank may be easily sensed with a flotation device, no simple physical sensor 
has been developed to measure a battery cell SOC.  Instead, we must rely on algorithmic methods 
based on voltage and current measurements, for example.  As all these methods are by nature 
estimates, the level of uncertainty in the estimate (error bounds) must also be known, either implicitly 
or explicitly, so that a cell is not over-charged or over-discharged due to a poor estimate. 
 
This paper presents a method to determine cell SOC using an established technique known as Kalman 
filtering.  Since the cell models we employ are nonlinear, an extended Kalman filter (EKF) must be 
used.  Our method is set apart from other Kalman-based SOC estimators in that SOC is explicitly a 
member of the battery cell “state”, and so the EKF method automatically computes error bounds on 
the SOC.  Both the estimate of SOC and its error bounds are dynamic quantities, updated in real time 
by the algorithm to be developed. 
 
Some alternate methods from the literature for SOC estimation are outlined in a companion paper to 
be presented at this conference [4].  The same paper details the cell modeling approach we used, which 
is also important to this work.  We focus on the HEV application, although we believe that the results 
should generalize to other less strenuous battery uses.  To summarize, important aspects of SOC 
estimation required in an HEV application are:  
• The cell model must be accurate for all operating conditions.  These include: very high rates 

(many papers consider rates up to about ±1C for portable electronic applications; we need to 
consider rates up to about ±25C), temperature variation in the automotive range of –30ºC to 50ºC, 
very dynamic rates (unlike the more benign portable electronic and battery electric vehicle 
application).  Charging (by the engine providing extra power, or by regenerative braking) must be 
accounted for. 

• We require non-invasive methods using only readily available signals.  This requirement is 
imposed by the HEV environment where the battery management system (BMS) has no direct 
control over current and voltage experienced by the battery pack—this is in the domain of the 
vehicle controller and inverter.  This requirement implies that we must rely on such measurements 
as instantaneous cell terminal voltage, cell current and cell external temperature.  

• Our cell chemistry also limits the range of approaches we might consider.  Techniques specific to 
lead-acid chemistries, for example, are not appropriate for LiPB cells. 

We feel that the method proposed in this paper meets these needs better than any other found in the 
literature. 
 
This paper is organized as follows: First, Kalman-filter and extended-Kalman-filter theory is reviewed.  
Next, our cell models are introduced.  Third, some results are presented; and finally, conclusions are 
made. 
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2.  Linear Kalman Filtering 
The SOC estimation approach presented in this paper is based on Kalman filter theory, which was 
introduced in 1960 [5].  To illustrate this theory, consider the linear discrete-time system in Figure 1. 
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Figure 1: Diagram of system in state-variable form. 

 
Ak, Bk, and Ck are (possibly time-varying) matrices, and z 

–1I is the unit-delay operator.  The 
deterministic input to the system is uk, and the output is yk.  There are also two stochastic inputs: 
process noise wk (which influences the state xk) and measurement noise vk (which does not).  As 
inferred, an internal (hidden) signal is xk, the system state. 
 
The concept of state is fundamental to Kalman theory.  The state of a system is the minimum set of 
data that is sufficient to uniquely describe its unforced dynamics.  Put another way, it is the least 
amount of information on past behavior required to predict future behavior.  Typically, the state is 
unknown and may not be directly measured.  To estimate its value we must use observations on yk.   
 
We may mathematically describe the system in Figure 1 with two equations.  The state equation is: 
 xk+1 = Ak xk + Bk uk + wk. (1) 
We assume that wk is additive, white and Gaussian, with zero mean and covariance matrix: 
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The state equation captures the evolving system dynamics.  System stability, dynamic controllability, 
and sensitivity to disturbance may all be determined from this equation, for example. 
 
The second equation describing the system is the measurement equation: 
 yk  = Ck xk + vk. (2) 

The output of the system at discrete-time index k is a linear combination of states, to which is added 
measurement noise.  Again, Kalman filter theory assumes that measurement noise vk is additive, white 
and Gaussian with zero mean and covariance matrix: 
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The Kalman filter problem is then: Use the entire observed data {  and {  to 
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The solution to this problem is widely known, and is presented in Table 1.  The heart of the solution is 
a set of recursive relationships that involve both an estimate of the state itself, and also the covariance 
matrix Σ  of the state estimate error .  The covariance matrix indicates the uncertainty of the 
state estimate, and may be used to generate error bounds on the estimate.  A “large” Σ  (one with 
large singular values) indicates a high level of uncertainty in the state estimate; a “small” Σ  (one 
with small singular values) indicates confidence in the estimate. 

ke, kk xx ˆ−

ke,

ke,

 
Table 1: Summary of the Kalman filter from reference [6]. 

State-space model: 
 xk+1 = Ak xk + Bk uk + wk 
 yk  = Ck xk + vk, 

where wk and vk are independent, zero-mean, Gaussian noise processes of 
covariance matrices Σ  and , respectively. w vΣ

Initialization:  For k , set 0=
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The Kalman filter is initialized with the best available information on the state and error covariance. 
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Often, this initialization must be performed in an ad-hoc manner, but the Kalman filter quickly 
converges on the true values as it runs. 
 
Following initialization, the Kalman filter repeatedly performs two steps.  First, it predicts the value of 
the next state, system output, and error covariance.  Secondly, using a measurement of the system 
output, it corrects the present state estimate.  The predicted state and error covariance estimates at time 
index k, but before the measurement, are denoted x  and , respectively.  The corrected 
estimates following the measurement are denoted  and .   
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The prediction step is accomplished by propagating the system input through the system dynamics: 
  .)(ˆ)(ˆ 1 kkkkk uBxAx ++=−+

The state uncertainty is also updated: 
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If the system is stable, the first term is contractive, reducing uncertainty.  The process noise Σ  term 
always increases uncertainty.  

w

 
The state correction step is: 
  )].(ˆ[)(ˆ)(ˆ −−+−=+ kkkkkk xCyLxx
That is, the new state estimate equals the predicted state estimate plus a weighted correction factor.  
The term in the square brackets is equal to the measured cell voltage minus the predicted cell voltage.  
This term may be non-zero due to measurement noise, an incorrect state estimate x , or an 
inaccurate cell model.  It represents the “new information” in the measurement, and is often called the 
“innovation” process for this reason.  If the innovation is large, the state update tends to be large.  If 
the innovation is small, the state update tends to be small. 
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The innovation is weighted by the Kalman gain Lk. 
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If the present state estimate is very uncertain, Σ  is large and Lke, k is large, forcing a large update.  If 
the present state estimate is certain, Lk is small, and the state-estimate update is small.  Also, if sensor 
noise is large,  is large, causing LvΣ k to be small and the update to be small. 
 
The covariance correction step is: 
 ).()()( ,,, −Σ−−Σ=+Σ kekkkeke CL  
The state uncertainty always decreases due to the new information provided by the measurement. 

3.  Extended Kalman Filtering 
The Kalman filter is the optimum state estimator for a linear system with the assumptions as described.  
If the system is nonlinear, then we may use a linearization process at every time step to approximate 
the nonlinear system with a linear time-varying (LTV) system.  This LTV system is then used in the 
Kalman filter, resulting in an extended Kalman filter (EKF) on the true nonlinear system.  Note that 
although EKF is not necessarily optimal, it often works very well. 
 
The nonlinear system may be modeled as 
 xk+1  = f (xk, uk) + wk (3) 

 yk  = g(xk, uk) + vk. (4) 

As before, wk and vk are zero mean white Gaussian stochastic processes with covariance matrices Σ  
and , respectively.  Now, f(  ) is a nonlinear transition matrix function and g(  ) is a nonlinear 
measurement matrix. 
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At each time step, f(  ) and g(  ) are linearized by a Taylor-series expansion. 
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So, we have the linearized system: 
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Table 2: Summary of the extended Kalman filter from reference [6]. 

State-space model: 
 xk+1  = f (xk, uk) + wk 

 yk  = g(xk, uk) + vk, 
where wk and vk are independent, zero-mean, Gaussian noise processes of 
covariance matrices Σ  and , respectively. w vΣ

Definitions:   
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Initialization:  For , set 0=k
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This leads to the EKF algorithm summarized in Table 2. 

4.  Cell Modeling 
To use Kalman filter methods to estimate battery cell SOC, we must create a mathematical state-space 
model of the cell.  Furthermore, if SOC is explicitly a member of the state vector xk, then both SOC 
and its uncertainty (error bounds) are automatically estimated by the Kalman filter.  To our 
knowledge, this approach is novel.  Other Kalman-filter-based SOC estimation methods [1–3] use 
circuit models of a cell.  A capacitor voltage represents open-circuit voltage (OCV), and SOC is 
indirectly inferred from OCV.  Error bounds are not available.   
 
To include SOC as a model state, we first make some careful definitions:  
Definition: The cell high operational voltage limit is called vh.  Here, we may use vh =4.2V. 
Definition: The cell low operational voltage limit is called vl.  Here, we may use vl =3.0V. 
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Definition: A cell is fully charged when its voltage reaches v=vh after being charged at infinitesimal 
current levels.  

Definition: A cell is fully discharged when its voltage reaches v=vl after being drained at infinitesimal 
current levels. 

Definition: The capacity of a cell is the maximum number of Ampere-hours that can be drawn from 
the cell before it is fully discharged, at room temperature (25oC), starting with the cell 
fully charged. 

Definition: The nominal capacity of the cell is the number of Ampere-hours that can be drawn from 
the cell at room temperature at the C/40 rate, starting with the cell fully charged. 

Definition: The SOC of the cell is the ratio of the remaining capacity to the nominal capacity of the 
cell, where the remaining capacity is the number of amp-hours that can be drawn from the 
cell at room temperature at the C/40 rate. 

 
Then, we may derive a recurrent relationship: 
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SOC is already in a state-space form, with ik the model input, η(ik) the Coulombic efficiency, and ∆t 
the sampling period.  The minimum requirement to make a full state-space form is an output equation.  
Three alternate parameterized forms and methods to identify the parameters are described in 
reference [4].  These are: 
 
Combined one-state model:  Commonalities between the “Shepherd”, “Unnewehr universal”, 
“Nernst” and a modified Nernst model are exploited to derive a “Combined model”.  The resulting 
output equation is: 
 yk = K0 – R ik – K1/SOCk – K2 SOCk+ K3 ln(SOCk)+K4 ln(1–SOCk). (6) 
Here, yk is the cell terminal voltage, R is the cell internal resistance (different values may be used for 
charge/discharge and at different SOC levels if desired), and K0 through K4 are constants chosen to 
make the model fit the data well. The unknown quantities in (6) may be estimated using any system 
identification procedure.  Equation (5) is used as the state equation. 
 
Filter-state model:  The combined model of (5) and (6) may be very quickly identified and 
implemented.  Its serious limitation is that it omits any description of cell relaxation.  Since the cell 
model must accurately predict its behavior in a dynamic HEV environment, we find it is essential to 
include relaxation effects. 
 
In a state-variable model, dynamics are described by the state equation (1) or (3).  Therefore, to 
include relaxation effects, we must augment the state vector with additional filter states.  We choose to 
implement filtered versions of SOC and the input current.  The resulting model is then: 
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where Ik
mod = η(ik) |ik|n ∆t/Cp, n is the Peukert exponent and Cp is the Peukert capacity.  The first state 

of xk (that is, xk,1) is SOC, as before.  The output yk is terminal voltage, as before.  The parameters of 
the model are found by system identification using measured cell data.  We found that the model was 
able to predict cell behavior best when different sets of parameters were used for different levels of 
input current ik. 
 
Radial-Basis-Function (RBF) model:  Adding linear filter states to the model does improve its 
ability to predict a cell’s behavior.  However, as the LiPB cells themselves are nonlinear systems, we 
can improve even further by considering a fully nonlinear cell dynamic model.  For this purpose, we 
will use radial-basis-function (RBF) networks and a black-box system identification procedure.  
 
An RBF network makes a local approximation of the function it models.  It computes its output as a 
weighted sum of (hyper) Gaussian shapes.  Specifically, it computes the function 
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where N is the number of bases, wj is the weight connecting the jth basis function to the output, σj is 
the “standard deviation” or width parameter of the jth basis function, uk is the vector input to the 
network, and tj is the center of the jth basis function.  Here, uk includes the states of the system: e.g., 

 as well as the cell current i[ T
kkk yx SOC,1−= ] k. 

 
In order to use EKF with these three models, we must determine the linearized versions.  For the 
combined one-state model: 
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For the filter-state model, 
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and  comprises the top two rows of . kx∂∂ /RBF kk uy ∂∂ /
 
With all of the derivatives determined, the algorithm is nearly complete.  It remains only to determine 
an appropriate method to initialize the state and uncertainties when the vehicle is started.  That is, we 
need a method to propagate SOC and Σ  across the interval between key-off and key-on.  For this we 
employ the SOC estimate and Σ  value saved when the vehicle was previously turned off, the period 
of time the vehicle was off, and a very simple cell self-discharge model.  Our empirical data indicates 
that SOC decays exponentially, allowing us to create a continuous-time state-space model for self 
discharge.  Let x(t) be the state of charge as a function of self-discharge time.  Then, 
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where α is the rate of SOC decay, f(  ) is OCV as a function of SOC, w is small and v depends on the 
period since key-off.  We can form a discrete-time version of this model.  Let T be the period that the 
vehicle is off.  Then, 
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Applying the EKF to this system estimates SOC and Σ .  SOCe k, SOCk-1, and SOCk-2 are initialized to 
the same value, and their corresponding Σ  entries are initialized to the same value.  Filter states are 
initialized to zero with Σ  and  is initialized to the measured voltage y

e

0=e 1−ky k, with Σ . ve Σ=

5.  Kalman Verification 
In order to compare SOC estimation abilities of the proposed models using a Kalman filtering 
technique, we gathered data from some prototype LiPB cells.  We used a Tenny thermal chamber set 
at 25°C and an Arbin cell cycler.  In all cases, the cells were fully charged before the tests began.  
Pulsed discharge cycles punctuated with rest intervals were followed by pulsed charge cycles, again 
with rest periods.  Data points (including voltage, current Ah discharged and Ah charged) were 
collected once per second. 
 
The data was used to identify parameters of the three cell models.  Then, the models were used with 
the Kalman filter to estimate SOC.  Figures 2–4 show a comparison between measured SOC 
(computed using the Ah discharged and Ah charged reported by the Arbin) and estimated SOC for 
three representative tests: pulsed ±1C rates, pulsed ±2C rates and pulsed ±4C rates.  In all plots, the 
red line is the true SOC, the blue line is the model’s estimate, and the green dotted lines delineate the 
confidence region of the estimate.  Plots are given for the case when the Kalman filter is initialized 
with the true initial SOC (left column) and when the filter is initialized with an incorrect estimate 
(right column). 
 
Figure 2 shows results of the combined one-state model.  Cell relaxation effects are not captured by 
this model, and this translates into poor SOC estimation.  Error bounds (computed under the 
assumption of a perfect cell model) do not accurately describe the SOC estimation error.  However, if 
the initial SOC estimate is inaccurate, the Kalman filter corrects it almost instantly. 
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Figure 2: One-state tracking of SOC for correct initial estimate and incorrect initial estimate. 

Figure 3 shows results of the filter-state model.  SOC is very accurately estimated if the initial estimate 
is accurate.  However, a poor initial guess is not quickly corrected.  Error bounds are accurate only 
when the initial SOC estimate is precise. 
 
Figure 4 shows results using an RBF model.  SOC is very accurately estimated both when the initial 
estimate is accurate and when it is not.  The error bounds are accurate in both cases.  Space does not 
permit a detailed presentation of results for more dynamic tests, but our experience is that the RBF 
model accurately estimates SOC even in these cases. 

6.  Conclusion 

This paper has presented an SOC estimation technique based on extended Kalman filtering.  A key 
feature of the method is that both an estimate of SOC and error bounds of the estimate are predicted.  
This can allow more complete use of the battery pack, without fear of over- or under-charging cells.  

 10 



 

 Initial SOC guess = 1.0 (correct) Initial SOC guess = 0.7 (30% off) 
Pu

ls
ed

 c
ur

re
nt

 a
t ±

1C
 ra

te
s. 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Tracking of system SOC

Time (min.)

A
m

pl
itu

de

 0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Tracking of system SOC

Time (min.)

A
m

pl
itu

de

 

Pu
ls

ed
 c

ur
re

nt
 a

t ±
2C

 ra
te

s. 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Tracking of system SOC

Time (min.)

A
m

pl
itu

de

 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Tracking of system SOC

Time (min.)

A
m

pl
itu

de

 

Pu
ls

ed
 c

ur
re

nt
 a

t ±
4C

 ra
te

s. 

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Tracking of system SOC

Time (min.)

A
m

pl
itu

de

 0 50 100 150
0

0.2

0.4

0.6

0.8

1

Tracking of system SOC

Time (min.)

A
m

pl
itu

de

 

 Figure 3: Filter-state tracking of SOC for correct initial estimate and incorrect initial estimate. 

Some cell models from reference [4] were used as a basis for this prediction.  It is demonstrated that 
very accurate SOC estimation may be achieved, whether or not the initial state estimate is accurate.   
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 Figure 4: RBF tracking of SOC for correct initial estimate and incorrect initial estimate. 
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