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Abstract

The goal of control theory is to make a given dynamical system (the “plant”) behave in a user-
specified manner as accurately as possible. This objective may be broken down into three separate
tasks: stabilization of the plant dynamics; control of plant dynamics; and control of plant distur-
bance. Conventionally, one uses feedback to treat all three problems simultaneously. Compromises
are necessary to achieve good solutions.

Adaptive inverse control is a method to treat the three control tasks separately. First, the plant
is stabilized; secondly, the plant is controlled using a feedforward controller; thirdly, a disturbance
canceller is used to reject plant disturbances. Adaptive filters are used as controller and disturbance
canceller, and algorithms adapt the transfer functions of the filters to achieve excellent control.

Prior work in adaptive inverse control has focused mainly on feedforward control and distur-
bance cancelling for single-input single-output linear plants, and on feedforward control for single-
input single-output nonlinear plants. This dissertation extends the prior work to encompass feedfor-
ward control and disturbance cancelling for single-input single-output or multi-input multi-output,
linear or nonlinear plants.

An important part of this work is the development of a gradient-descent based algorithm for
updating the weights of either the controller or the disturbance cancelling filters. The algorithm
decouples nicely, allowing separate implementation of the adaptive controller, plant model and dis-
turbance canceller; only local information is needed for the weight update. Very general user-
specified constraints on the control effort may be satisfied, and excellent disturbance rejection can
be achieved. Additionally, it is shown how to compensate for the effects of non-ideal sensors.

The added functionality does not come at the expense of algorithmic or structural complexity.
The final control architecture in this dissertation is much simpler than any previously reported.
Simulation results are presented to verify the analysis and synthesis methods. Overall, excellent
results are obtained.
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Chapter 1

Adaptive Inverse Control

Everything should be made as simple as possible, but not simpler.
—Albert Einstein

1.1 Introduction

The goal of control theory is to make a given dynamical system (the “plant”) behave in a user-
specified manner as accurately and robustly as possible. Dynamical systems we might wish to
control exist in great variety; but generally, they may be divided into several categories. First,
any plant is said to be either linear or nonlinear. Linear dynamical systems obey the superposition
principle and nonlinear ones do not [19]. Each plant is also either single-input-single-output (SISO),
or multi-input-multi-output (MIMO)?

Control problems are also classified. For any plant, we may wish to address one (or more) of

three basic control problems. These are:

e Regulator contrglwhich is concerned largely with the transient and steady-state response of
the plant in recovering from disturbances in a timely and robust fashion.

e Servo (or tracking) contrglwhich is concerned with the transient and steady-state response
of the plant in following a given trajectory closely, quickly and smoothly.

e Terminal contro] which is concerned with the ability to move the system output from one
state to anothewyithout concern for the trajectoryTradeoffs are made between optimality in
terms of time or resource use, the magnitude of the control signal, and final-state accuracy.

IMulti-input-single-output (MISO) and single-input-multi-output (SIMO) systems also exist, but are treated here as
special cases of MIMO systems.



2 Chapter 1. Adaptive Inverse Control

In all three cases, constraints are typically imposed on the control signal and must be properly
handled by the controller. Regulator and servo control problems are similar enough that they are
usually considered together. The regulator problem is a degenerate case of the servo control problem
where the goal is to track a constant input signal. Terminal control is sufficiently different to be
treated separately. In this dissertation, only regulator and servo control problems are considered.

In classical and modern analog control systems, precise regulator and servo control is accom-
plished with compensation networks and feedback [7]. Likewise, conventional discrete time control
systems build on this classical material and use similar means to control a plant using a digital
computer [8].

These methods work well when the plant is linear and its dynamics are well understood. How-
ever, plant dynamics are rarely known with precision and may be too nonlinear to control with a
linear controller. Current research in post-modern (!) control design [15, 47] searches for robust
stability and performance for linear systems whose dynamics are not completely understood. There
is much work yet to be done in this field, and indeed it seems that the need to address the control
of nonlinear systems has hardly been touched. As one researcher states: “From a mathematical
point of view, even the control of known nonlinear dynamical systems is a formidable problem.
This becomes substantially more complex when the representation of the system is not completely
known [22].”

In this dissertation, we address the control of linear, nonlinear, SISO and MIMO systems with
adaptive controllers—"a controller with adjustable parameters and a mechanism for adjusting the
parameters [1, p. 1].” The field of adaptive control, unlike the disciplines of classical and state-space
controller design, is still much of an “art.” However, in principle, much is to be gained from using
adaptive control technigues. Among these are:

e The possibility of controlling increasingly complicated dynamic systems,

Incorporation of design constraints in a very practical fashion,

Greater precision of control due to better plant modeling,

Robustness to variation in internal plant parameters (process variations), and,

Resilience to variation in the character of the disturbances.

In this dissertation, we investigate the control problem under the framewaagitive inverse
control [45]. Adaptive signal processing methods are used to control either linear or nonlinear,
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SISO or MIMO plants. As the control of SISO linear and undisturbed SISO nonlinear plants has
already been extensively treated elsewhere [2, 4, 45], the focus here is on the control of disturbed
MIMO and nonlinear plants. The solution is amazingly simple and stunningly powerful.

1.2 Discrete-Time Control Systems

The field of classical control theory concerns itself with the task of servo or regulator control of
linear analog plants. A controller designed according to this discipline will be a linear analog device,
and may be implemented with operational amplifiers, resistors, capacitors and the like. Figure 1.1
shows a schematic diagram of a classical control system.

Dist. w(t)

rt) —— ¢ ut) [Plant +

"Pe [T Y0

Figure 1.1: Classical control system.

The signatl (t) is the reference signal. We would like the plant outp() to track it as closely
as possible. If (t) is constant or piecewise constant, the control problem is a regulator problem. If
r (t) varies more rapidly with time, it is a servo control problem.

To track the reference signal, the controller uses b@thandy(t) to compute the plant control
signalu(t). Feedback of/(t) is used to stabilize the plant, and to ensure that the controller is both
resilient in the face of external disturbances and able to quickly reduce the output error to zero.

Since C(s) is an analog system, and subject to the vagaries of all analog computers (e.g.,
imprecise and drifting component values), care must be taken in its design to allow for deviation
from the “ideal” transfer function. For this reason, the design may be overly conservative.

With the advent of digital computers and of digital signal processing, it became possible to
design a discrete-time controller using digital hardware. Benefits of using a digital controller in-
clude primarily: the ability to implement very complex control laws, high computational precision,
and great flexibility in design as the physical design (hardware) can be separated from the control
algorithm design (software). Such a digital controller may be generated by discretizing the analog
controllerC(s) (a process calledmulatior), but better results are obtained by discretizing the plant
and by directly designing a digital controll€(z) for the discrete-time plant. The “Plant” block
in Fig. 1.1 is discretized by replacing it with a digital-to-analog (D2A) converter, followed by the



4 Chapter 1. Adaptive Inverse Control

original plant, and followed by an analog-to-digital (A2D) converter. The modified block diagram
is shown in Fig. 1.2. From this point on, the components within the dashed box of Fig. 1.2 will be
represented simply by the discretized pldnit,

“Discretized” PlantP(z)

I
| |
| |
——f o - ek Ly,
o | | +
| |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

\

Figure 1.2: Digital control system.

Design methods for discrete-time linear controllers are well understood. Their only drawback
is that they assumpreciseknowledge of the plant dynamics. For this very reason, a great deal of
effort has been expended to create accurate models of “typical” plants—particularly those encoun-
tered in the military and aerospace fields. The control-system designer for industrial applications is
not so fortunate. These plants are not, in general, as well understood. Consequently, post-modern
control techniques concern themselves watbustcontroller design. In some sense, “optimal” per-
formance is sacrificed in order to create a controller which will be stable and give adequate response
to control inputs over &ariety of plants{P}. These concerns are central to the context of adaptive
control.

1.3 The Framework of Adaptive Inverse Control

If precise knowledge of the plant dynamics are available to the control designer, then adaptive
control can be accomplished for the system in Fig. 1.2. This is shown in Chap. 4. The concept
of an adaptive-controller design-process then reduces to a computer-aided-control-system-design
(CACSD) tool to automatically generate a controli@to meet various design specifications. How-
ever, since CACSD tools are already available to provide optimum controllers for known linear
plants, even under a variety of very complex constraints (see for example, reference [3]), adaptive
control in this context is simply a novelty, and is not particularly uséful.

Thus, we may conclude that adaptive control is worthwhile only when the control designer
does nohave accurate information about the plant dynamics, or when those dynamics are (slowly)
time-varying in an unknown way. One of the chief tasks, then, of adaptive control is that of plant

2A possible exception is the control of a nonlinear plant, for which much less theory exists.
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identification. We will see in Chap. 5 that the framework of Fig. 1.2 is not appropriate when on-line
plant identification is being performed in the presence of disturbance.

The appropriate framework for adaptive control may be developed from Fig. 1.2 in two simple
steps. The first step changes tléerof the feedback loop. Instead of feeding-back the disturbed
plant output, we feed back an estimate of the disturbance. This is done following the philosophy of
theinternal model controkcheme, presented in a series of papers [9, 10, 11, 34, 5, 6] by Garcia and
colleagues. Figure 1.3 shows how the design paradigm changes.

Dist. Wk
gk —— i+
k > c - PIIzDant O - Vi
Y Y+
> P >
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Figure 1.3: Internal model control.

A plant modelP is used to estimate the disturbance at the plant output. This estimate is
fed back to the controller input. P is an accurate model of the plant, the control design is now
effectively open-loop! A result of this is th&® must be stable in order for internal model control
to work. If P is originally unstable, it must be stabilized using traditional methods. The nature of
the stabilization is not critical; the controll€? is designed based on whatever the stabilized plant
turns out to be, in order to give acceptable servo behavior. The two design objectives of stability and
performance are now separated and may be handled individually rather than by joint optimization.

The second step required to make the framework suitable for adaptive control is to move the
feedback path. Justification will be presented in Chap. 5. All that is required for now is to note the
resulting block diagram in Fig. 1.3and especially the addition of the new filtéf, Disturbance
cancelling is done by.

The design process is now well defined. The blétis adapted in order to model the plant;
the blockC is adapted to provide servo control; and the blocks adapted to perform disturbance
cancelling and to ensure robustness of the design to errors in the plant model. A great deal of this
dissertation will address how to properly adépand X .

3Some minor modifications to the block diagram will be required. Details will be addressed when the need arises.
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Figure 1.4: Adaptive inverse control.

1.4 Author’s Contributions

The main contributions made by the author to the field of adaptive inverse control include:

1. Constrained control of linear and nonlinear plants: This contribution may be divided into
two main areas.

e Analysis of constrained contrelConstraints on control effort may be required in a
design due to actuator limitations. It is shown that they may also be useful to limit
ringing phenomenon inherent in an inverse-control scheme. A non-adaptive method is
developed to generate a controller which is guaranteed to meet constraints on the control
effort. This controller may be used as an initialization for an adaptive controller design
algorithm. It is also shown that the optimal constrained controller is nonlinear, even if
the plant is linear. It is shown that constraints on the control effort determine a good
estimate of the latency to use when controlling nonminimum phase plants.

e Synthesis of a constrained controlefA gradient descent algorithm is derived to adapt

a controller to minimize the mean-squared system error while meeting constraints on the
control effort. The controller may be a linear FIR filter, a linear IIR filter, a nonlinear
transversal filter implemented with a neural network, or a NARX filter implemented
with a neural network. The algorithm is shown to decouple, so that the structure of the
plant model and the structure of the controller may be chosen independently and still
result in a practical design. Initialization procedures for linear controllers are presented
which greatly decrease the required adaptation time. A possible initialization technique
for nonlinear controllers is also proposed.
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Simulation results are presented to verify the analysis and the synthesis methods. Linear and
nonlinear, minimum-phase and nonminimum-phase, SISO and MIMO plants are simulated.

2. Disturbance cancelling for linear and nonlinear plants: This contribution may also be
divided into two main areas.

¢ Analysis of disturbance cancellirgSimultaneous on-line system identification and dis-
turbance cancelling may come at the expense of degraded performance compared with
a system which performs off-line system identification. It is shown that conventional
disturbance rejection schemes fail when performed with on-line system identification.
A solution, adapted from reference [45], is used to correctly perform on-line system
identification and disturbance cancelling for linear plants. It is shown that the scheme
still causes a degradation in performance if the plant is nonlinear, but the degradation
experienced in simulation seems to be small. The structure of the function performed
by the disturbance canceller is analyzed, leading to the conclusion that it is equal to
a disturbance predictor cascaded with a plant inverse. The optimal predictor may be
nonlinear which leads to the discovery that the disturbance canceller may need to be
implemented with a nonlinear adaptive filter even if the plant is linear.

e Synthesis of a disturbance cancellerhree methods are presented to generate a distur-
bance canceller. The first two methods require minimal or no adaptation to reach their
solution, and are based on the analysis of the function performed by the disturbance
canceller. The third method is based on the algorithm developed to perform constrained
control, and provides the best performance, in general.

Simulation results are presented to verify the analysis and the synthesis methods. Linear and
nonlinear, minimum-phase and nonminimum-phase, SISO and MIMO plants are simulated.

3. Compensation for sensor dynamics and sensor nois€revious work in adaptive inverse
control has assumed that the sensors used to measure the plant output are ideal. If the sensors
are not ideal, performance may be severely degraded. A method is proposed to compensate for
the non-ideal sensors, and a sensitivity analysis shows that the method works well. It is found
that the sensor noise and sensor dynamics affect the feedforward control and disturbance
cancelling circuits differently, and the effects are analyzed. Simulation results are presented
to verify the analysis.
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4. Simplification of control architecture: In this dissertation, emphasis is put orsystems
level approacho controller design. This translates into separable block diagrams where the
structure of each block may be independently selected to optimize its task. The blocks are not
coupled in any strange way.

The prior state-of-the-art is presented in reference [45, p. 322], where five adaptive filters,
twelve digital copies of the adaptive filters and six fixed digital filters are required to im-
plement the nonlinear MIMO control scheme. The comparable method presented here (see
p. 101) requires three adaptive filters, one digital copy of an adaptive filter, and one fixed dig-
ital filter. This simplification is not done at the expense of performance or higher algorithmic
complexity.

1.5 OQutline

This dissertation is divided into seven chapters and two appendices. Chapter 2 is a review of the
adaptive filter theory required to proceed further in this work. Adaptive system identification is
used as an example of how the theory is applied. Chapter 3 introduces the plants used as ex-
amples throughout the remainder of the text. Examples of linear and nonlinear, minimum-phase
and nonminimum-phase, SISO and MIMO plants are included. Chapter 4 shows how to perform
adaptive inverse control with constraints on the control effort. Analysis of constrained control is
presented, and an algorithm to adaptively synthesize a controller is introduced. Simulations show
that the scheme works very well. Chapter 5 shows how to perform disturbance cancelling with
adaptive inverse control. Analysis is done to show why conventional disturbance rejection schemes
do not work. More analysis demonstrates a scheme which does work, and methods are presented to
adaptively synthesize a disturbance canceller. Simulations show that the methods work very well.
Chapter 6 shows how to perform adaptive inverse control with imperfect sensors. Finally, chapter 7
presents conclusions and suggests future work. Appendix A introduces some analysis on stability
of the LMS and backpropagation algorithms which gives a very practical method for selecting the
learning rate. Appendix B presents further results of simulations for SISO nonlinear plants.



Chapter 2

Adaptive
(Linear and Nonlinear)
Digital Filters

There is nothing permanent except change.
—Heraclitus (c.540—-c.480 B.C.)

2.1 Introduction

Adaptive inverse control is built upon the foundational theory of linear and nonlinear adaptive fil-
tering. This chapter introduces the applicable concepts. Nothing here is new, but a few obscure
attributes of these systems are reviewed as they are frequently used in later chapters.

An adaptive filter is illustrated in Fig. 2.1. It has an input, an output, and a “special input”
called the desired response. The desired respdnsgecifies the output we wish the filter to have.
It is used to calculate an error sigreal which in turn is used to modify the internal parameters of
the filter in such a way that the filter “learns” to perform a certain function.

bl
Input Adaptive] _ Output
Xk Filter T Yk
X
Errore, 1F+

Desired Responsd

Figure 2.1: Symbolic representation of an adaptive filter.
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At first, it may seem strange to have a desired response. If such a signal is available, why do
we need the filter in the first place? We could just replace the filter with its desired response! For
now, this question will be left unanswered. We will see later on that there are indeed various ways
that such a filter may be configured such that it serves a useful purpose.

In this chapter, we will first consider linear adaptive filters—their structure, adaptation algo-
rithm and analytic solution. Then, we look at the same characteristics for nonlinear adaptive filters.
The chapter closes with an example of how to use adaptive filters to perform system identification.

2.2 Linear Adaptive Filters
2.2.1 Structure of Linear Adaptive Filters

The structure of a linear filter is illustrated in Fig. 2.2. It consists of a tapped delay line connected
to the input and, possibly, a tapped delay line connected to the output. The output of the filter is
calculated to be a weighted sum of the delayed inputs and outputs. The coefficients of the forward
and reverse filters are termed theightsof the overall filter. If the weight values are fixed, the filter
realizes a linear constant coefficient difference equation of the form

Ny Nt
Y= D wriVkei = ) weiXe i (2.1)
i=1 i=0

Linear adaptive filters come in two basic flavofgite impulse responsg-IR), andinfinite
impulse responséIR). When an FIR filter is excited by an impulse at its input, the response of
the filter is non-zero for a finite period of time. An IIR filter, on the other hand, may respond with
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Figure 2.2: Structure of a linear filter.
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non-zero values for an infinite period of time. Using the notation of Eq. (2.1), an FIR filter is one
for which all the feedback weights, ; are zero. An IIR filter may have non-zeug ;.

It is well known that any stable linear system may be approximated by a “sufficiently long”
FIR filter. Therefore we concentrate on this type of filter in this dissertation. All results presented in
upcoming chapters apply equally well to lIR filters, but their use was avoided due to the possibility
of instability! FIR filters with finite weights are always stable. IR filters are not.

Linear MIMO filters are created via a simple extension to these ideas. A tapped delay line is
connected to each input and, possibly, each output. Every output is then computed to be a weighted
sum of the totality of delayed inputs and outputs.

2.2.2 Adapting Linear Adaptive Filters

Here we consider how to adapt the weights of a linear filter. At each time instant, a desired response
signaldy is applied to the filter. The true outpyt is compared to this desired response, and the
error is computed to bex = dk — yk. After the filter has run for some time, we wish to modify

the weights of the filter in order to minimize the accumulated squared error. That is, we wish to
minimize the cost functiod,, where

k
=" led?
j=0

The filter is run fork time steps, the total squared erdpris computed, and the weights are modified
by a gradient-descent optimization procedure—they are adapted in the direction of the negative
gradient of the cost function with respect to the weights

W= W — uViy J. (2.2)

The parameten is called thdearning rate and controls the step size in the direction of the negative
gradient, andV is the vector of filter weights.

In order to calculate the gradients, we use a mathematical tool caliieded partial deriva-
tives a1 (-)/dxk, as opposed to the ordinary partial derivati&#e)/dxx. The ordered partial deriva-
tives were introduced by Werbos in [41], and are very well explained in [31]. They are useful for
easily finding derivatives of complex dynamical systems.

A normal partial derivative of-) with respect taxy “refers to thedirect causal impact ok
on (-), while the ordered derivative refers to ttaal causal impact, including direct and indirect

1The use of IIR filters may be advantageous in some situations. They require fewer parameters than the equivalent
FIR filter to be able to model the same system, and thus can learn with fewer data samples.
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effects, both [42].” The ordered partial derivative easily calculates derivatives of equations which
are evaluatedh a specific time order An alternate method to that of ordered partial derivatives
is to substitute all intermediate equations into the final equation, and to then take ordinary total
derivatives. Using ordered partial derivatives, the desired result may be found without expanding
the final equation.

The primary usefulness of the ordered derivative is that complex dynamical systems may be
differentiated using a simple chain rule expansion. Suppose, for example, we have a function

yk = f<Xka Xk*l? LRI Xk*l’]? W)7

then,
Yk Ok |\~ 0¥k 0TXk
OW AW T gaxej W
Armed with this tool, we now consider adapting an FIR (possibly MIMO) filter. The forward
equation for the filter is
Yk = WX,

whereW is the weight matrix of the filtef,and Xy is a composite vector comprising all of the

delayed inputs
X =[x g X 1T

We also define the weight vectdv, in terms of the weight matriyV to be
_ T
W =[WoWq... W],

where, for exampléyV is the first row ofw.
Therefore, we can compute the gradient of the cost function with respect to the weights as
follows

0t J iawej 112

ow . ow
j=0
k
= Z—Ze-T—Eﬁyj
— I aw’
j=0

2Note thatw andW differ. Both contain identical information, but arranged differently. The foriérjs amatrix,
arranged in such a way that multiplication wiy will produce yx. The later,W, is avector, and contains the elements
of W in an implementation-dependent arrangement. The distinction is maintained for mathematical correctness.
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where,

N
Yk Yk | o OYk X

W AW | axe; OW
= diag{xk,xk,...xlj}

Xy o .. 0

o X ... o0

0o 0 .. X}

The summation disappeared singes not a function ofV. Continuing,

a+Jk Xk: 2¢f diag{x]. XJ.... xT |

The way this algorithm has been presented, one would run the systérirfar steps, then compute
07 J/9W and update the weights using Eq. (2.2). However, if the learning rate is small, and thus
each weight change is small, the adaptation may be done at each time step. Then,

Wis1 = Wi + 2ue] diag{ X{, X{, ... X( } .
Equivalently, in our implementation-dependent, but easy-to-use format
Wig1 = Wi + 2uecXy -

This stochasticupdate rule for FIR filters is commonly known as the LMS algorithm. 1t is well
described in several textbooks [17, 44].

2.2.3 Optimal Solution for Linear Adaptive Filters

One property of linear systems is that the mean squared error (MSE) of the system output is
qguadratic in the weights. This implies that there is one and only one minimum (optimal) solu-
tion when the cost function used is MSE, and that gradient descent methods will converge to the
solution? Another nice property is that the solution is mathematically tractable if certain statistical
information about the input and desired response is available. This solution is known/dgiee
solution

3Provided that the learning rate,is “small enough.” See App. A for proper ranges.of
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The details are presented in [45]. Here, we state certain properties without proof. If we let
(¢24)n be the crosscorrelation function between the infpuand the desired respongde and(¢ .. )n
be the input autocorrelation function, then the unconstrained solW&®? (z), is

W (©epPd (2) = [(D,;d (Z)] [CI)M (Z)]_l’

where ®,,4(z) and ®,,(z) are the z-transform ofp,q)n and (¢, )n, respectively. Note that this
solution allows for the filteV©PY to be non-causal. Th8hannon-Bodsolution for the optimal
causal filters is

Wb = [[@ @115, @171, [04@] 7,

where,®,,(z) = @7 (2)®,,(2) and @}, (2) has all the poles and zeros ®f,, (z) which are inside

the unit circle in the z-plane. Furthermore, the operafar fneans “take the time series generated

by the inverse-z-transform of the operand, retain only the causal section (set the non-causal entries
to zero), and take the z-transform of the result.” Mathematical analysis of a system constrained to
be causal is not simple, but in certain specific cases, useful results may be obtained.

2.3 Nonlinear Adaptive Filters
2.3.1 Structure of Nonlinear Adaptive Filters

The structure of a nonlinear filter is illustrated in Fig. 2.3. It consists of a tapped delay line connected
to the input and, possibly, a tapped delay line connected to the output. The output of the filter is
computed to be a nonlinear function of these delayed inputs and outputs. The nonlinear function
may be implemented in any way, but here we use a neural network (depicted within the dotted
rectangular box).

A neural network is an interconnected set of very simple processing elements called neurons.
Each neuron computes an internal sum which is equal to a constant plus the weighted sum of its
inputs. The neuron outputs a nonlinear “activation” function of this sum. In this work, the activation
function is chosen to be the tafihfunction

#inputs

neuron output= tanh| constant Z wj - input
i=1
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— — X2

— Yk

Figure 2.3:  Structure of a nonlinear filter.

The constant may be easily incorporated into the summation by augmenting the input vector with a
zeroth entry which is always equal to one, and by augmenting the weight vector with a zeroth entry
equal to the particular desired constant. Note that in this work, all output neurons have the nonlinear
function removed. This is done to give them unrestricted range.

Neural networks may be constructed from individual neurons connected in very general ways.
However, it is sufficient to haviyersof neurons, where the inputs to each neuron on a layer are
identical, and equal to the collection of outputs from the previous layer (plus the augmented value
“1"). The final layer of the network is called treutput layer and all other layers of neurons are
calledhidden layers A layered network is a feedforward (non-recurrent) structure which computes
a static nonlinear function. Dynamics are introduced via the tapped delay lines at the input to the
network.

This layered structure also makes it easy to compactly describe the topology of a nonlinear
filter. The following notation is usedN(a,b)u:6.... This means: “The filter input is comprised
of a tapped delay line with ‘a’ delayed copies of the exogenous input vegtand ‘b’ delayed
copies of the output vectok. Furthermore, there are” neurons in the neural network’s first layer
of neurons, B’ neurons in the second layer, and so on.” For example, the filter in Fig. 2.3 would
be represented a&z’(z,z);g;g;l. Occasionally, filters are encountered with more than one exogenous
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input? In that case, the ‘a’ parameter is a row vector describing how many delayed copies of
each input are used in the input vector to the network. For example, cougjges,| b):«w:s. ...
where ‘a’ and ‘a’ are the numbers of the tapped delay line copies of the exogenous inputs, and
‘b’ is the number of feedback tapped delay line copiesyf To avoid confusion, any strictly
feedforward nonlinear filter is denoted explicitly with a zero in that part of its description. For
exampleN(2,0):3:3:

The above structure is called\®RX(Nonlinear AutoRegressive eXogeneous input) filter. It
is general enough to approximate any nonlinear dynamical system [36]. Therefore, it is widely used
in this work. Nonlinear MIMO filters are easily constructed by allowixgand yx to be vectors,
and by augmenting the output layer with the correct number of additional neurons.

2.3.2 Adapting Nonlinear Adaptive Filters

The weights of an adaptive nonlinear filter can be adapted using gradient descent. The methods
used to adapt a feedforward network (without self-feedback) and an externally recurrent network
(with feedback of the network output) differ in the details, so will be discussed separately.

Adapting a Feedforward Neural Network: A feedforward neural network may be adapted using
the populambackpropagation algorithindiscovered independently by several researchers [41, 29],
and popularized by Rumelhart, Hinton and Williams [35]. It is a method for recursively calculating
the weight update for all weights in the network (for output neurons as well as hidden neurons),
based on an error at the output of the network. The notation which will be used throughout this

0} 0]

development iss ™ is the internal sum value of neurorn layerl, anda;” is the output (activation

value) of neuroni in layerl. For notational convenience, we denote the inputs to the network as

the output of a fictitious zeroth layer of neurors” = a® £ x;. Furthermore, the output of the

network is equal to the output of theh layer of neuronsy; 2 ai(") = qm.

The network computes a function of its inputs and its weight vector
yk = f(ka Xk—lv ey Xk—n’ W)

The difference between the actual output and the desired output is the error, and the sum of squared
errors is a typical cost function to be minimized by adapting the weight vector. As we did with a

4An example is the disturbance cancelling filééin Chap. 5. It may have exogeneous inpuitsaind @y, as well as a
feedback input of its own outpuii.
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linear filter, we adapt the weights in the direction of the negative gradient of the cost function with
respect to the weights.

The derivation proceeds by selecting an arbitrary weight in the netwdH,&the one which
connects neuronin layerl — 1 with neuronj in layerl—and computing the derivative of the error
squared with respect to that weighOnce all such derivatives are calculated, Eq. (2.2) is used to
update the weights. Proceeding with the chain rule

+cM

atlel?  ole|?d"s
O 0] 0]
Bwi:j 8Sj 8wi:j

(OIS

where we define )
M a el

T e

The values ofai(') are known from the forward pass through the network. All that remains is to
calculate thes{".

Since the output layer of the neural network has no activation fungfies,a’™ = s, and
8" = —2g. In the hidden layers, no specific error signal exists. We must use the chain rule

expansion to determine an equivalent sensitivity of the output with respect to that weight
a dllel?
ag(')
|
(+Daé”

_ZMW%J
- (+1) ) ()
7 0 da’ 0s

= )Y, T=12.L-1
J

5"

i7j

Thus,ai(I> is calculated by propagating values &ﬂ‘“) backwards through the network. If the
tanh(.) activation function is used, thef(s’) = 1— (ai('))z, which is a particularly efficient form
to compute.
The backpropagation algorithm has now been derived. In operation, a network experiences
two phases: a forward phase and a reverse phase. In the forward phase, the input is propagated to

SA similar notation is often used in the neural network literature, but with the colon replaced by a comma. However,
if one considers all of the weights in a layer to form a matrix which multiplies the inputs to that layer, the correct notation
(by mathematical convention) isoj('}. That is, tha and j are reversed in the neural network literature. To help clarify
this unfortunate discrepancy, a colon is used in this dissertation to distinguish the two notations.
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the output to computg. In the backward phase, the error is applied at the output, changed into the
appropriates’- form, and thes!" are propagated backward through the network. The weights are
then adapted usingf” anda"
Aw I(I} _ M(SJ(I)ai(Ifl)'
Calculating Jacobians of Neural Networks: Situations arise, as will be seen in the next section,
where it is necessary to calculate the Jacobian of the function implemented by a neural network.
Since the network is a function of its inputs and its weights, two Jacobians may be calculated. Let
the composite input vector to the network Xethen,y = f (X, W), and the two Jacobians are
%, and %
They may be calculated very efficiently. The derivation is almost exactly the same as that used
to determine the backpropagation algorithm. The only change is to redefine

h A o7 ay
6 PROK

9§
wherev is an arbitrary vector. For example, instead of setfitig = —2e, we se™) = v. Then, we
use the backpropagation algorithm to propagate these redérgatckward through the network.
If we proceed one more step, and propagateliie the inputsand define

© AT dy
J PROK

9§

then we have just computed

Yk
[59. 5“”] VT (2.3)

(1)
Furthermore, smceq—) ai('*l), then we have also computed, in the same step,
i

[. L 80a! Y ] - UT%, (2.4)
where the terms in" dyx/dW are ordered according to the same implementation-dependent order-
ing of W =1... I(Ij) AT
Comblnlng these two results, we can propagsijeunit vectorsv = § backward through
the network to build up both Jacobian matrices, one row at a time. Werbos called this ability of the
backpropagation algorithm the “dual-subroutine.” The primary subroutine is the feedforward aspect

of the network. The dual subroutine is the recursive calculation of the Jacobians with the network.
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Adapting an Externally-Recurrent Neural Network:  Now that we have seen how to adapt a
feedforward neural network and how to compute Jacobians of a neural network, it is a simple matter
to extend the backpropagation algorithm to adapt externally recurrent neural networks. This was
first done by Williams and Zipser [46] and called “real time recurrent learning” (RTRL). A similar
presentation follows.

An externally recurrent neural network computes a function of the following form

yk - f(ka Xk—l’ ceey Xk—n’ yk—l’ yk—27 ceey yk—m, W)

To adapt using the familiar “sum of squared error” cost function, we need to be able to calculate

O llel® _ om0 Yk

ow ow

ot 9 D0o0Vk 0 Xei - OYk 01V
yk:ﬂJrZ Yk k|+z Ye 07 Wi

ow oW =0 OXk_i oW =1 OYk—i oW

The first term,dyx/0W, is the direct effect of a change in the weights yyy and is one of the
Jacobians calculated by the dual-subroutine of the backpropagation algorithm. The second term is
zero, sinced ™ x,/0W is zero for allk. The final term may be broken up into two parts. The first,
dYk/0Yk_i, is a component of the matrbky /9 X, as delayed versions gf are part of the network’s
input vector X. The dual-subroutine algorithm may be used to compute this. The second part,
0T yk_i/OW, is simply a previously calculated and stored valu@ bfi/dW. When the system is
“turned on,”d"y; /dW are set to zero for=0, —1, —2, ..., and the rest of the terms are calculated
recursively from that point on.

Note that the dual-subroutine procedure naturally calculates the Jacobians in such a way that
the weight update is done with simple matrix multiplication. Let

T
Aoy 2 <3+Yk—1>T (3+Yk—z>T_‘_ (a+yk—m>T
Wk =1\ Tow aW AW !
Yk Yk dYk
a2 [(57) ()~ ()
@k 0Yk—1/ \ 0Yk—2 0Yk—m

The latter is simply the columns @fyx/0 X corresponding to the feedback inputs to the network,

and is directly calculated by the dual-subroutine. Then, the weight update is calculated efficiently
as

T | 9V T
AW = (2u€1< [m n <dxy>k<dwy>kD .
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One final comment: The reader is invited to notice that, since (in this work) the output layer of
neurons is linear, a single-layer neural network is the same as a linear adaptive filter (if the bias
weights are zero). The adaptation rule for a feedforward neural network, in this case, reduces to the
familiar LMS rule used to adapt an FIR linear filter. The adaptation rule for an externally recurrent
neural network may be used to adapt an IR linear filter.

2.3.3 Optimal Solution for Nonlinear Adaptive Filters

In principle, a neural network can emulate a very general nonlinear function. It has been shown that
any “smooth” static nonlinear function may be approximated by a two-layer neural network with a
“sufficient” number of neurons in its hidden layer [21]. Furthermore, a NARX filter can compute
any dynamical finite-state-machine (It can emulate any computer with finite memory) [36].

In practice a neural network seldom achieves its full potential. Gradient-descent based train-
ing algorithms converge to a local minimum in the solution space, and not to the global minimum.
However, it is instructive to exactly determine the optimal performance that could be expected from
any nonlinear system, and then to use it as a lower bound on the MSE of a trained neural network.
Generally, a neural network will get quite close to this bound.

The following theorem of the optimal solution is from reference [13, Theorem 4.2.1]. If the
input vector to the adaptive filter Xy, the output isyk, and the desired responsedis then the
optimal filter performs the function

Yk = E[di| Xk ]

This is proven by supposing thgt is the claimed optimal estimate, and tjatis some other

estimate. We will show thaj, must yield an MSE no smaller than dogs To see this, consider,

MSE(9i) = E[lldk — 9’|

= E[lldk — Yk + Yk — %klI?]

= E[lld« — YllI’] +E[llvk — $icll?] + 2B [k — ¥ " (Y& — 9]
MSE(yk) + 2E [(dk — Vi) " (Y — 9]

We will show that the rightmost term is zero and hence that WRE> MSE(yk), proving the
theorem. Recall thaf = E[d«| X ] and hence

v

E[(dk — yi)IXk] = 0.
Sinceyk — Yk is a deterministic function oK,

E[(dk — yi0" (Y — $)1Xk] = 0.
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Then, by iterated expectation, we have

E[(dk — Y10 (Yk — 90]
= 0’

E{E[(ck — Yo" (k= 900 | Xu]}

as claimed, which proves the theorem.

2.4 Example: Linear and Nonlinear System Identification

As an example of adaptive filtering, we now look at how to determine a plant model. The model
should capture the dynamics of the plant well enough that a controller designed to control the plant
model will also control the plant very well.

Such a model might be derived from physics by carefully analyzing the system and deter-
mining a set of partial-differential equations which explain its dynamics. Alternately, the model
might be a “black box” implementing some sort of universal transfer function. This function may
be tuned by the adjustment of its internal parameters to capture the dynamics of the system. Often,
even a physically modeled system will have some adjustable parameters, so that both methods will
require tuning based on observed input-output data. In the literature, this process isystiésd
identification Any method of system identification must address two major concerns:

1. We cannot have all possible “data cases” in the observed data. If we did, then system identi-
fication would be reduced to a table lookup exercise. Therefore, we must have some sort of
interpolation and/or extrapolation rule.

2. We need to make some sort of assumptions about the disturbaesxperienced by the
system we are identifying. The disturbance isummodeled inputo the system. If we make
no assumptions about its behavior, then there is no information in the output of the plant
concerning its dynamical relationship with the input.

Identification of Linear Systems: Let us first consider the identification of a linear system. We
address the first concern—the interpolation/extrapolation rule—by the structure of the model. For
a physically modeled system, it is readily apparent what parameters need to be identified, and how
the model is structured. If we are identifying a “black box” model, its structure may be chosen

to be either: a state-space implementation adjusted by subspace methods [40]; an auto-regressive
ARMA IR filter adjusted by recursive least-squares methods [24]; or an FIR model adjusted by an
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algorithm such as LMS [44]. Each of these methods has its advantages. The state-space method
can be made numerically very robust. The ARMA model may have many fewer parameters than
FIR, and hence may learn more quickly. The FIR model is very simple and unbiased by zero-mean
disturbances if they are uncorrelated with the system input. The intent of this dissertation is not to
address the issue of model structure selection—the reader may choose any model structure he or
she may prefer. However, for the sake of brevity, adaptive FIR models are used to identify all linear
systems in this text. Even if such a model is not used, the FIR impulse response of any plant model
may easily be calculated by filtering an impulse and truncating the response.

We address the second concern—the character of disturbances—by assumption. For this work
we assume that plant disturbances are stationary, zero-mean and uncorrelated with the plant input.
This allows us to find models of the plant which are unbiased by the disturbance.

Black-box adaptive system identification is performed as shown in Fig. 2.4. The plant is
excited with the signal, and the disturbed outpyf is measured. The plant modBlis also
excited withuy, and its outputj, is computed. The plant modeling error is the difference between
the model output and the measured plant outgi."ﬁ‘?“’ = Yk — Yk. This modeling error is then used
by the adaptation algorithm to update the weight values of the adaptive filter.

Dist. Wk
+
Uy »| Plant e Vi
P +
XL t o

P "

Yk

¥

Figure 2.4: System identification.

The desired response of the filter is set toyjpeThe input to the filter iglk. This information
can be used with the techniques of Sec. 2.2.3 to compute the Wiener solution for the optimal plant
model.

(@uyn = E[UkYkrn]
= E[Uk(Pksn * Ukn + Wien) |
= E[Uk(Prsn * Ukn) | + E[Uwisn]
= Pn* (Guw)n + (Puw)n,
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wherepy is the impulse response of the plant. If the disturbance is zero-mean and uncorrelated with
the plant input, then

(¢uy)n = pn*(¢uu)n
uny(Z) = P(Z)cbuu(z)
Dy (2)
D44 (2)
P2 = P@.

’I5(Opt) (2) =

So, the adaptive plant model converges to the plant.

Identification of Nonlinear Systems: Nonlinear systems are much more complicated to model.
Physical modeling is still possible, but in practice this method is not as useful as “black box” mod-
eling. For nonlinear systems, a NARX model of sufficient order is a universal dynamic system
approximater. Hence, we restrict ourselves in this work to NARX neural network plant models.
Neural networks have some excellent features which turn out to be very important in finding con-
trollers; for example, the Jacobian matrices of the plant may be very simply computed. We will see
that this is necessary when adapting the controller in Chap. 4.

NARX models have implicit feedback of delayed versions of their output to the input of the
model (see Fig. 2.3). This feedback is assumed in all block diagrams, and is not drawn explicitly,
except in Fig. 2.5. The purpose of Fig. 2.5 is to show that this feedback, when training an adaptive
plant model, may be connected to either the model outpat the plant outpuyk. The first method
is called aparallel connection for system identification, and the second method is caledes-
parallel method for system identification. Networks configured in the series-parallel mode may be
trained using the standard backpropagation algorithm. Networks configured in the parallel mode
must be trained with either real-time-recurrent-learning (RTRL) or backpropagation-through-time
(BPTT). The first configuration is simple, but is biased by disturbance. The second configuration
is more complex to train, but is unbiased by disturbance. In this work, nonlinear system identifica-
tion is first performed using the series-parallel configuration to initialize weight values of the plant
model. When the weight values converge, the plant model is re-configured in the parallel configura-
tion and training is allowed to continue. This procedure allows speedy training of the network, but
is not compromised by disturbance.

Again, we address the second concern—the character of disturbances—by assumption. We
assume that plant disturbances are stationary, zero-mean and statistically independent of the plant
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Figure 2.5: Nonlinear system identification.

input. This allows us to find models of the plant which are unbiased by the disturbance. The
mathematics showing that the nonlinear system identification scheme converges to the correct result
are given in Sec. 5.2.1.

2.5 Summary

This chapter has discussed linear and nonlinear adaptive digital filters. The structure, adaptation
algorithm and optimal solution are given for both classes of filter. Further results concerning the
stability of the adaptive algorithms may be found in App. A. An example was presented showing
how to use an adaptive filter to perform adaptive system identification. The structure of the iden-
tification system was given, with proof of convergence to the correct solution provided that any
disturbance is stationary zero-mean and independent of the plant input signal.



Chapter 3

Plants Used as Examples

Few things are harder to put up with than the annoyance of a good example.
—Mark Twain

3.1 Introduction

This chapter introduces the plants used throughout this dissertation as examples of their respective
control categories. Representative linear and nonlinear, SISO and MIMO systems are included. The
examples were chosen because they are typical of actual control problems, but simple enough to be
thoroughly understood. In the following pages, the dynamics of each plant are outlined, reference
signals that the plants’ outputs are required to track are specified, and the characteristics of expected
disturbances are presented.

3.2 Linear Plants

The dynamics of linear continuous-time systems may be expressed mathematically in a number of
ways. One of these is by linear constant coefficasfierential equations, and another is by a state-
space form. In this work, the first example is defined by a differential equation, and the second by a
state space form.

Continuous-time plants are discretized by realizing that the plant input is held constant for
seconds (wher& is the sampling period), and the plant output is sampled eVesgconds. The
transfer function of the plant in thetransform domain may then be readily calculated from the
transfer function in the (Laplacs)plane. Notationally, we say

H(z):(l—z—l)z{@},

25
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where the operatcE {-} means “take the inverse Laplace transforng-pfsample the resulting time
sequence at/II samples per second, and return tigansform of the sampled sequence.”

The resulting transfer functioil (z), along with its region of convergence in tlzeplane,
uniquely defines a linear time invariant discrete-time system. Important properties of the system
may be quickly deduced frorl (z). Assuming thatH (z) is in rational polynomial form, the roots
of its denominator polynomial are callgadles and the roots of its numerator polynomial are called
zeros If all of the poles are within the unit circle in theplane, the system is stable and causal.

If any pole is outside the unit circle, the system must be either unstable or non-causal. If all of the

zeros are inside the unit circle, the system is caflédimum phaseand a stable, causal inverse of

the system exists. This makes controlling the system relatively easy. If any zero is outside the unit
circle, the system is calletbnminimum phasend a stable, causal inverse does not exist. However,

a delayed, causal, approximate inverse does exist, and works very well for controlling such systems.

Two linear plants were chosen to demonstrate aspects of adaptive inverse control in this dis-
sertation. They are described in the following sections.

3.2.1 Linear SISO Plant

The linear SISO example was selected from reference [7, pp. 659-61]. The goal is to control the
temperature of a tank of water. The flow-rate of water into the tank is constant and equal to the flow-
rate of water out of the tank. The temperature of the incoming water is controlled by a mixing valve
that adjusts the relative amounts of hot and cold supplies of the water (see Fig. 3.1). A length of
pipe, assumed to have negligible heat loss, separates the mixing valve from the tank. This distance
causes a time delay between the application of a change in the mixing valve and the discharge of
the flow with the changed temperature into the tank. If our goal were to design an analog controller
for this plant, this time delay significantly complicates the task. No exact analysis techniques are
available to handle pure delays, and approximations, such as teeaPpbximation must be used
to design the controller. Discrete-time design for this plant can also be complicated. Depending
on the length of the delay, the transfer function of the plant may have a finite zero outside the unit
circle. Such a zero makes the plant nonminimum-phase and must be considered carefully. We will
see this as we proceed.

Assuming that the mixing in the tank is instantaneous, and that negligible heat is lost in the
pipe connecting the valve to the tank, the differential equation governing the tank temperature is

T+ O = D
t® + S T® = 2Tt — ),
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Figure 3.1: Tank temperature control.

where

T, = temperature of water immediately after the control

valve and directly controllable by the valve,

=
|

tank temperature,

3
Il

mass flow rat&m;, = Mgy,
M = water mass contained in the tank,

174 = delay time of water between valve and tank.

When transformed, letting = m/M, the transfer function front, to T; becomes
—TdS
T (s/a) +1

The equivalent-transform of the discretized plant may be computed as follows

H(s)
H(z)=<1—z—1)z{@}.

To compute this result, we break up the delay titgento integer plus fractional multiples of the
sampling timeT . Thatis,tg =6T — ¢ T, 0<4vy < 1. Then,

e—esTewsT
Hiz) = 1-zY 2{7}
s[(s/a) + 1]
_ (A-e Tz Sres
o pid z—eaT

It is interesting to consider the location of the zerodHafz). There are zeros located at infinity;
alternately, we may consider there todeoles at the origin. These zeros (or poles) correspond to
the built-in time delay of the system. Because of them, a non-delayed inverse cannot be constructed.
However, a perfect stable and causal inverse with delay of atddase stepsnay berealizable.
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The remaining (finite) zero dfl (z) will be either inside or outside the unit circle, depending
on the value of/. If the zero is inside the unit circle, the system is generalized minimum phase. A
perfect stable and causal delayed inverse may be constructed. If the zero is outside the unit circle,
the system is nonminimum phase. Even if the zero is outside the unit circle, a very accurate delayed
stable and causalpproximateinverse may still be obtained. Simulations were performed for both
cases to verify the efficacy of the proposed control algorithms. For these simulations, the following
values were chosen for the variables

m = 2 kg/s

M = 10 kg
T=15s

0 = 2time steps

The value fory was chosen to be either 0.55 (finite zero inside unit circle) or 0.35 (finite zero
outside unit circle) time steps. With all the variables substituted, the transfer functions become:

z+0.7402
(@) = 0109 o g1z
z+1.6813
H(2) = 0.0676———————
2(2) = 0.0676 37— e a7

whereH;(z) has its finite zero inside the unit circle, ahtd(z) does not. These transfer functions
are realized through the following difference equations, respectively:

yk = 0.818R)_1 + 0.1042uy_» + 0.0771ui_3, (3.1)

and,
Yk = 0.818Ak_1 + 0.0676u,_» + 0.113 7, _3. (3.2

For reference, the impulse responses and pole-zero plots of these transfer functions are presented
in Fig. 3.2. Hy(2) is referred to as the minimum-phase plant, dtglz) is referred to as the
nonminimum-phase plant.

Range of Operation: Water exists in a liquid phase (at atmospheric pressure) for temperatures
between 0C and 100C. To remain within the middle of this range, we would like to operate
the mixer at temperatures roughly betweefiG@@nd 60C. Therefore, the reference signal the
plant will be required to track when performing simulations is generated by filtering i.i.d. uniformly
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Figure 3.2: Discrete-time impulse responses and pole-zero plots for the linear SISO plants.

distributed random numbers (betweeri@and 55C) using a one-pole digital filter, where the pole
is located az = 0.7. This is a first-order Markov process.

When constraints on the control effort are considered, they will be as follows: The control
effort is allowed to be in the rang€6 to 95°C. This ensures a practical implementation as water is
still in its liquid phase over this range of temperatures. Physically, this means that the hot resevoir
is a 95C hot water source, and that the cold resevoir iS@ 6old water source.

Disturbances: There are several possible sources of disturbance for this particular plant. There
could be heat loss in the pipe between the valve and the tank, heat loss in the tank itself, non-
instantaneous mixing in the tank, or poorly regulated hot and cold reservoirs. It is quite reasonable
to assume that the pipes and tank are very well insulated, and so heat loss is not considered to be
significant. Furthermore, the relatively slow 1 Hz sampling rate allows for good mixing between
samples. Therefore, we focus on the regulation of the hot and cold sources, which provides a very

interesting problem.
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The controller output selects a desired valve temperature. The nominal hot reservoir tempera-
ture isT,, = 95°C, and the nominal cold reservoir temperaturdds= 5°C. Therefore, the valve is
set based on the control signa}, to bel

Uk—5 95—Uk
T, = T Te, 5<ug <95
v < 90 ) h+< 90 ) c S Uk =<

Now, let us assume that the hot source is poorly regulated. It heats up and cools down in a

periodic fashion. Let
Th = 954 5sin(27t/60+ ¢),

where¢ is random variable, uniformly distributed between, 7], and independent afy.
Then,

-5
T, = uk+(ukT)sin(2nk/60+¢)

disg = (uklg 5) sin(27k/60+ ¢) * px,

where the disturbance is measured at the output of the plant, so is shown convolved with the plant
impulse responsgx. This disturbance is interesting for two main reasons: (1) It is nonlinear, and
(2) It is statistically dependent arx. Note, however, that it isncorrelatedwith uy.

3.2.2 Linear MIMO Plant

The Boeing 747 aircraft is one of the most capable transport jets ever built (see Fig. 3.3). It can carry
approximately 420 passengers and has a range of more than 8,000 miles. Because of its extensive
range (resulting in pilot fatigue), and a desire to minimize the crew requirements, a capable “auto-
pilot” controller is required in the aircraft design. With this motivation, two aspects of flight control
were selected to demonstrate linear, MIMO confrol.

As the reader might imagine, the control equations for an airplane are actually quite nonlinear;
however, they may be adequately approximated by a linear model around an equilibrium point. In
the case at hand, the equilibrium “point” is: level flight at 40,000 ft and a nominal forward speed of
Mach 0.8 (774 ft/sec). The resulting linearized equations of motion are eighth-order, but they may
be separated into two fourth-order sets representing the perturbations in longitudinal and lateral
motion.

1Even should the control signal go outside of bounds, this relationship is used to preserve the linearity of the problem.

2The primary reference for this section is [7, pp. 684-93]. The author in turn references the seminal but elusive
source [18]. The augmented equations for MIMO control were obtained from [14, pp. 23-35].
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Figure 3.3: Aircraft yaw-rate and bank-angle control.

The longitudinal motion consists of axiat)( vertical ) and pitching €, q) motion, while
the lateral motion consists of rolling ( p), yawing @, r) and lateral §¥) movement. Additionally,
we define the side-slip angfeto be the angle between the forward velocity vector and the nose-
direction of the airplane. The elevator control surfaces and the throttle control the longitudinal
motion, and the aileron and rudder primarily affect lateral motion. The coupling between lateral
and longitudinal motion is minimal and is usually ignored when designing controllers. Here, we
wish to control the aircraft’s yaw-rate \and bank-angleg).

The dynamics of the system are most compactly represented in state-space form. Define
[ Sideslip angleg(t), in radians
Yaw rater (t), in radians/second

Roll rate, p(t), in radians/second
| Bank angleg(t), in radians

X)) =

yt) =

[ Yaw rate,r (t), in radians/second
| Bank angleg(t), in radians

and,
u(t) = Rudder angle in degree
~ | Aileron angle in degreeq’

Then,

X(t) = AX(t) + Bu(t)
yt) = Cx(),
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The set of continuous-time impulse responses corresponding to this set of equations is plotted
in Fig. 3.4. As can be seen, the decay rate of these impulse responses is very slow, with some effect
even after 500 seconds. In order to improve this we use output feedback to increase the damping
on the very lightly-damped modes of the system. The very simple feedback structure is shown in
Fig. 3.5. As will be shown shortly, the response time is greatly improved, and a simpler digital

controller {.e., one with fewer taps) may be realized.
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Figure 3.5: Simple feedback system to increase the damping of one of the lateral modes.

The process of converting this system from continuous-time to discrete-time is simple yet

tedious. Fortunately, théontrol Systems Toolbox for Matlgb4] comes to our rescue and gives us

the following set of equations (foF = 0.5 seconds)

Sideslip anglef, in radians
Yaw rate,ry, in radians/second

Xk =

Roll rate, p, in radians/second|’

Bank anglegy, in radians

|

Yaw rate,ry, in radians/second
Bank anglegy, in radians

and,
Rudder angle in degree
U = . . .
Aileron angle in degree
Then,
Xk+1 = AdXk + BgUk
Yk = CaXk,
where,
0.8876 —0.3081 00415 00198 0.4806 —0.0013
Ay = 0.2020 03973 —-0.0046 00024 B —15809 03887
| —1.2515 05106 Q7617 -0.0139 |’ d= 0.0599 48390 |’
| —0.3313 01510 04407 Q9976 0.0390 12585
[0 1 00
“=lo0o0 0 1]'

The corresponding discrete-time impulse responses are shown in Fig. 3.6. Note in particular that

the output feedback has reduced the length of the impulse responses to about 25 seconds.
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Figure 3.6: Compensated, discrete-time jet impulse responses.

Range of Operation: Proper ranges for the input and output signals of this plant are unknown, so
the following limits were arbitrarily chosen. The reference signal for the yaw-rate to track varied
between+0.1 radians per second. The bank angle to be tracked varied beti@dnradians.
This corresponds roughly to yaw-rates betwees? per second, and bank angles betweeiB’.
The reference command to be tracked was generated independently for each output. The reference
command for the desired yaw-rate was a first-order Markov process generated by filtering i.i.d.
uniform random variables with maximum value 0.03 using a one-pole filter whose pole was at
z = 0.9. The reference command for the desired bank angle was a first-order Markov process
generated by filtering i.i.d. uniform random variables with maximum value 0.12 with a one-pole
filter whose pole wag = 0.9.

Constraints on the control effort were considered to be slew-rate constraints. The slew-rate
of the rudder angle was constrained to be betwe818° per second. The slew-rate of the aileron
angle was constrained to be betweeh5° per second.
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Disturbances: The primary disturbance experienced by the dynamics of the airplane are those
induced by bursts of wind. It is assumed here that the nominal wind values are incorporated into the
dynamic model of flight, and that gusts around that nominal value are the disturbances. The state
of the airplanexy, is affected directly by the wind. So, the full discrete-time model of the airplane
dynamics, with disturbance, is

Xk+1 = Ad[Xk + dist] + Bquk
Yk = CaXk, (3.3)

Furthermore, it is assumed that the wind gusts occur as planar fronts and thus do not affect the yaw-
rate, roll-rate or bank-angle directly. Instead, the sideslip angle is directly affected by the wind,
and the other state-variables are affected indirectly through the dynamical relationship between
themselves and the sideslip angle. If we model the wind in the lateral direction, then the sideslip

tan-? wind speed
airplane speed’

angle is perturbed by

The model for generating a wind speed time series was derived based on the data presented
in [20]. An approximation was made to the autocorrelation function of the cited paper. The power
spectral density of wind velocity was calculated from the autocorrelation function, and was found

to be
3950

1+ (20 f)2°
An FIR filter was designed using a weighted least-squares optimization algorithm to produce this

O(f) =

power spectral density given an input stream of i.i.d. uniform random numbers with maximum
magnitude 1. The filter impulse response and the power spectral density of wind disturbances is
shown in Fig. 3.7. The maximum absolute wind speed is in the neighborhood of 20 feet per second,
so the maximum perturbation gy is around 0.03 radians.

3.3 Nonlinear Plants

Unlike linear systems, nonlinear systems do not satisfy the superposition principle. Therefore, they
cannot be described in terms of impulse responses or transfer functions. They must be described in
the time domain. Continuous time systems may be described by systems of nodilifezantial
equations, and discrete time systems may be described with sets of nodlffexanceequations.
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It is not always possible to analytically discretize a set of nonlinear differential equations.
In many cases it is hecessary to discretize the plant by simulating (hnumerically integrating) the
differential equations over the sampling period. At times, dozens of integration steps need to be
taken to advance the system from its current state to its state after a sampling period.

Some work has already been done in the area of nonlinear adaptive inverse control [2, 4].
This work focused on seven nonlinear SISO plants, all defined by difference equations. Successful
feedforward control was achieved for most, but not all, of the plants. In this work, these seven
plants are considered in App. B to demonstrate that the methods presented in later chapters are able
to control all seven plants, and that disturbance cancelling may also be achieved for them.

Here, however, we consider two more difficult nonlinear control problems with greater prac-
tical motivation. Much more insight may be gathered from studying them since we already have
an expectation of what their limits of performance might be. Their dynamics are computed by
simulating the continuous-time differential equations since they cannot be analytically discretized.
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3.3.1 Nonlinear SISO Plant

Autopilots for ships are often designed to keep the ship’s heading (yaw angle) in a desired direction
(see Fig. 3.8). There are some applications, such as course changing and turning, however, where
it is desirable to be able to track a time-varying reference direction. This scenario was selected as
an example of a very nonlinear control problem. The primary reference is [39] but [30] was also
consulted for additional insight into the meanings of some of the parameters involved.

Figure 3.8: lllustration of heading (yaw) angle;(t). Not drawn to scale!
The SISO maneuvering model of a ship may be expressed as
¥ +kd(y) = ks,

where (t) is the yaw angle of the ship, is the rudder angle andi(y/) is a damping term of the
form

d() = dayr® + dpyr® + 1y + do.

Because of symmetry, most ships have the propertycthatdy = 0.

Not only does the ship itself exhibit a nonlinear dynamical relationship between its heading
and rudder angle, but so too does the rudder angle with respect to the (steering) wheel position; that
is, the rudder angl& does not follow the wheel angg, exactly. The rudder is rate-limited té fer
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second untilé,, — & | < 3° after which the rudder operates in the linear range of its characteristic.
One final restriction is that the rudder angle may not exceédrB8ither direction. Keeping all
these things in mind, the ship dynamics may be represented as shown in Fig. 3.9.

Disturbance
Rudder angle Rudder rate
limiter limiter .
+ d¢ & +Y+ 1//
S > V|l o » /A 1 D) »| L 1 W
S p S = : . L :

)

Figure 3.9: Block diagram of ship yaw dynamics from wheel an§jJeto heading angle .

To summarize, the system dynamics are controlled by the coupled pair of differential equations

Y (t) = K[ (t) + disturbanceét) — d (v ()]

3ssat(%) — 5, (t)

where,
-1, x<-1;

saix) = { X, —-1l<x<1;
1, otherwise,
and constants have been added to convert from degrees to radians and to allow the use of the nor-
malized saturation function sa. The sampling rate used in the discrete time controller was 2Hz.
All remaining parameters were taken from reference [39].

k = 0.0107, dp =9.42 d; = 2.24,

and correspond to the dynamics of a Royal Navy warship traveling at sixteen knots.

Stabilizing the Dynamics: The dynamics of the ship are unstable. This may easily be seen by
applying a step function to the control input. The plant output for a collection of step inputs ranging
in magnitude from 10to 180 is shown in Fig. 3.10(a). A bounded input does not produce a
bounded output, and hence the dynamics are unstable.

A very simple feedback circuit can stabilize the dynamics. The modification to the ship
block diagram is shown in Fig. 3.11. The step responses for the stabilized dynamics are shown
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in Fig. 3.10(b). Now, bounded inputs produce bounded outputs. In fact, the feedback loop makes
a pretty good control system all by itself. A step inputyot will asymptotically produce a step
output ofy°. The nonlinear controller will enhance the dynamic response where it can (when the
rudder rate and angle limits are not saturated).

Step response to different step sizes. Step response to different step sizes.
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Figure 3.10: Step response of ship to input step commands of magnitutd® B0 in increments
of 10°. (a) Unstable ship dynamics; (b) Stabilized ship dynamics.
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Figure 3.11: Block diagram of stabilized ship.

Range of Operation: Since the nonlinear controller can not improve performance when the rud-
der dynamics are in their saturation region, only relatively small perturbations around a fixed head-
ing need to be considered. A default “steady” heading’af/@s used, with perturbations limited to
+30° around that heading. More specifically, the reference command to be tracked was a first-order
Markov process, generated by filtering i.i.d. uniform random numbers with maximum magnitude
0.05° using a one-pole filter with the pole at= 0.99.
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Disturbances: The disturbances experienced in the dynamics of the ship are caused almost ex-
clusively by the action of sea waves acting on the rudder angle, and by wind acting on the super-
structure. Here, we consider only the effects of waves, as is done in reference [39]. The power
spectral density of wave height as a function of wave frequency is

_ad? g *
() = (2n)4f5exp|:_'8 {27‘[U195f} }

where,

f = wave frequency (Hz)
o = Phillips constant (& x 103)
B = dimensionless constant (0.74)
Uigs = wind velocity 19.5m above sea level (knots)

g = acceleration due to gravity

The nominal wind velocityJi9s was taken to be 20 knots. This power spectral density (scaled as
will be described later) is plotted as the solid line in Fig. 3.12(a).

In order to generate wave disturbances, i.i.d. uniformly distributed random numbers with max-
imum magnitude 1 are passed through a filter having the same power spectral &hsity his
filter, shown in Fig. 3.12(b), was designed fr@qf ) using a least-squares filter design method. As
is done in reference [39], the filter is scaled so that peak-to-peak yaw rates of approximately O
per second occurred when there was no rudder input. The scaling factor was 3. Using the random
uniform input and this filter, a sample wave time series is plotted in Fig. 3.12(c).

3.3.2 Nonlinear MIMO Plant

The plant chosen to illustrate nonlinear MIMO control is a two-link planar robot arm. This is a stan-
dard example from the robotics literature; the equations of motion are taken from reference [25] and
the specific parameter values are taken from reference [38]. The model includes all joint coupling
terms (centripetal and Coriolis torques, variable effective moments of inertia, etc.).

The manipulator is depicted in Fig. 3.13. Both links are capable of 8@&@ation. As the
emphasis of this dissertation is not on robotic control, we do not present a detailed tutorial on the
subject. However, a few details and definitions will be mentioned to aid the discussion.

There are two major aspects to robotic control. The first ikthematicsof the manipulator.
These specify the relationship between the angles of the joints and yhication of the end
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Figure 3.13: Two-link robot arm.

effector. The so-callethverse kinematicproblem concerns itself with finding an appropriate set

of joint angles to achieve some desired end-effector position. There may be no solution at all to a
specific inverse kinematics problem, but in general there are multiple solutions. Neural networks
have been used to solve the inverse kinematics problem in a slightly different application [27, 12].
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The second aspect to robotic control concernsdyr@amicsof the manipulator. These are
concerned with computing the forces required to achieve a certain movement of the robot. Inertial,
Coriolis, centrifugal, and gravitational forces are considered. Some advanced models also account
for frictional forces and for the flexibility of the manipulator, which is usually considered a rigid
body when the physics are developed. The standard Lagrangian model of manipulator dynamics is
given by

T = A@®)0 + B(©) [66] +C©6) [6%] + G(6),

where,

A(®) isthen x n kinetic energy matrix,
B(#) isthen x n(n—1)/2 matrix of Coriolis torques,
C(6) isthen x n matrix of centrifugal torques,
G(9) isthen-vector of gravity torques,
6 is then-vector of joint-angle accelerations,
6 is then-vector of joint-angle velocities,
0 is then-vector of joint angles,

T is the joint-force vector.

Also, the symbol$66 | and[6?] are notation for the(n — 1) /2-vector of velocity products and the
n-vector of squared velocities. They are defined as

[00] = [6102,6103...016n, 0203, 0204 . .On_26n, 6n_16n]
[67] = [62.62...62]" .
As can be seen, the matricds B, C andg are all dependent on the configuration of the manipulator

0.
These equations have been expanded and simplified for this particular manipulator

u] _[a+28c s+ [ 61 n —BS02 —BS2(01+62) |[ 61
T d+ Bcy 1) ) BS201 0 6 |

wherec, = co96»), S, = sin(6») and
o = la+lg+mrf+m?+rd)

B = molir,

5 = I22+m2r§,
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and: I, is the z-component of the inertial tensor of thgh link around its center of mass (relative
to a frame attached at the center of mass of the link and aligned with the principle axes of the bar),
m¢,, are the link masses, is the distance from the joint to the center of mass of the link,|gnid
the length of the link.
The values of the parameters are:

m; = 1kg
my; = 2 kg
|1 =1m
|2 =12m
ri = 05m
ro — |2 0.5m3I2 m
27 2  myrmg
l,1 = 0.12 kg n?
Mol 2 15\ 2
lp = %+mz<rz—§2> +mg(r2—12)% kgn?.

The third massmg, is a point-mass load at the end of the second link. It is considered to have a
value of 0 kg under normal circumstances. A more involved discussion follows, under the section
of disturbances. The sampling rate for discrete-time control was 100 Hz.

Stabilizing the Dynamics: The dynamics of the robot are not globally stable. The dynamics were
stabilized by creating a PD controller.

%k = —Kp(Yk — Uk) — Kg Yk

where,K, =2000 andKy = 1001 . This is shown in Fig. 3.14.
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Figure 3.14: Stabilized robot.
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Range of Operation: The two links of the arm are required to follow independent reference com-
mands. Both commands are generated by filtering i.i.d. uniform random variables with maximum
magnitude (L5t using a one-pole filter whose pole waszat 0.95. Slew-rate constraints on the
control input required that; be betweent15N - m/10ms, andz, be betweent5N - m /10ms.

Disturbances: The “disturbance” experienced by the robotic arm is due to a time-varyingigad
attached to the end of the manipulator. The load is allowed to vary between 0 kg and 10 kg, with its
value chosen in discrete increments of 0.1 kg. As a function of time, the load is piecewise constant.
The duration that a specific load is attached to the end of the manipulator is a geometric random
variable with average 100 samples (1 second).

3.4 Summary

This chapter introduces four specific plants to be used throughout this dissertation as representative
of their specific control classes. There is a linear SISO plant, a linear MIMO plant, a nonlinear
SISO plant and a nonlinear MIMO plant. Additionally, the linear SISO plant may be selected to
be minimum phase or nonminimum phase by changing one of its parameters. All simulations done
in this dissertation (with the exception of those done for further examples presented in App. B) are
performed to demonstrate control of these plants.

In each case, the plant dynamics are discussed, the reference signals they are required to track
are specified and the disturbances experienced by the plant are characterized. The reader who wishes
to duplicate any result in this dissertation should have enough information at hand to do so!



Chapter 4

Constrained Adaptive
Feedforward Control

Who controls the past controls the future.
Who controls the present controls the past.
—George Orwell inl984

4.1 Introduction

To perform adaptive inverse control, we need to be able to adapt the three filters of Fig. 1.4. the
plant modelP, the controllerC, and the disturbance cancellst One of these tasks has already
been addressed—we saw in Sec. 2.4 how to aBapt make a plant model. For the time being

we set aside consideration of the disturbance cancelling Kitand concentrate on the design of

the feedforward controlle€. This chapter presents an algorithm which can be used to @dm
perform constrained model-reference based control of a linear or nonlinear, SISO or MIMO plant.
This algorithm has a number of nice properties and works very well. Along the way, some new
analytical results relating to constrained adaptive inverse control of linear plants are presented, and
some insight into choosing the delay for the control of a nonminimum-phase plant is discovered.

From time to time, results obtained from simulation are presented to corroborate and illuminate
certain analytical results before the algorithm used in the simulation is developed. The reader is
asked to accept the fact that the algorithm will be developed later in the chapter.

This chapter is organized into three parts. The first part deals with analytical results pertaining
to constrained control, particularly for linear MIMO (and hence also linear SISO) plants. The second
part develops an algorithm to train a controller to perform constrained control, and discusses an
efficient implementation. The third part presents results from simulations for the plants of Chap. 3.

45
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4.2 Analysis of Constrained Linear Control
4.2.1 A Working Linear MIMO Control Architecture

The notion of the “optimal controller” is very important in this chapter. Various degrees of opti-
mality are considered. Without any constraints, the optimal controller is the one which minimizes
the mean-squared system errE{:(dk — Vi) T (d — yk)]. A controller may not achieve this level of
performance due to constraints on its architecture. For example, we might restrict the controller to
be a linear system, or to be causal. In that context, we still talk about the “optimal controller” as
being the one which minimizes the mean-squared system error while satisfying the architecture con-
straints. We know from Chap. 2 that the optimal solution for a linear system is the Wiener solution,
and that the optimal solution for a causal linear system is the Shannon-Bode solution.

In addition to imposing constraints on the architecture of the controller, we might impose
constraints on the output of the controller; that is, on the control efforDetermining the con-
troller weights for a linear controller with control-effort constraints is a convex optimization prob-
lem and closed-form solutions for the transfer function of the controller are not available. This
chapter presents a simple analytic method to determine the weights of the controller to meet the
control-effort constraints—but not necessarily minimize the mean-squared system error—and an
algorithm which adapts a controller to find the optimal constrained solution wduelsminimize
mean-squared system error. Before exploring the adaptive algorithm, it is worthwhile to consider
the analytic solution for the linear causal controller with and without constraints on the control
effort.

Linear SISO and MIMO plants may be controlled using linear SISO or MIMO controllers.
Here, we look at a method for adapting the weights of a linear causal controller. This controller
satisfies architecture constraints but does not consider constraints on the control effort—a different
algorithm is developed later on for that purpose. The controller which satisfies only architecture
constraints will be called the “optimal causal controller” and den@gll-.(2).

The optimal causal linear MIMO controller is adapted using a simplification of a method from
reference [45, Chap. 10]. This method is diagrammed in Fig. 4.1. An on-line feedforward part
controls the plant, and two off-line processes are used to adapt the controller. The off-line process
on the left makes a left-inversé(z) of the plant modeTD(z), and the process on the right uses this
left-inverse to make a model-reference based right-invér&g of 75(2). A copy of C(2) is then
used as the system controller.ﬁ(z) is equal toP(z), andV (2) is a good left-inverse 07'(5(2), then
the resulting controller minimizes the mean-squared system error.
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Figure 4.1: MIMO controller design.

The off-line process on the left mak®qz), a left-inverse oﬂ3(z). If the plant is minimum-
phase, then the delay may be set to zero. If the plant is nonminimum-phase, then the delay is set
long enough to make an excellent delayed invers@(aﬁ. This delay is removed when adapting
the controller, so it does not affect the latency of the final control system. There is no penalty for
selecting a large delay if it is necessary to create a good inverse.

Since we assuma to be sufficiently large, the transfer function of the adaptive fit€r)
will approach its unconstrained Wiener solution. This may be calculated using the techniques of
Chap. 2.

M@ = (2721 (Poor(z ™) @ (2)

(ca
M (2) = (Peorr(@) (Peor(ZH) @in (2)
VO (2) = (0,4(2)(Pea(@)

(Z )(PCOPY(Z))il

The off-line process on the right of the figure uses a copy @ to adapt the controlleiC(z).
The delayA is the same as in the off-line process used to genérére. The reference model
M (z) specifies the desired transfer function of the controlled system, including any delay required
to make a good inverse of a nonminimum-phase plant. The user chooses this delay to strike a
compromise between system latency and precision of control. We must use the Shannon-Bode
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approach to compute the optimal causal solution@¢z) (since the plant may be nonminimum-
phase, the Wiener solution may be noncausal).
9@ = (Z21VM@)D,.(2)
= (Peor(2) "M@ ®1(2)
> (2) = @0 (2)
Comal?) = |(®2@)(@,2) ] (0L@)7"

= [(/'lscop\r(z))ill\/’(Z)(I);rr(z)]+ ((D;rr(z))il (4.1)

If the plant is minimum-phase, then this simplifies to:

clop (2) = (ﬁcopv(z))ilM(Z)-

causa

The analysis in the following sections computes a controller which satisfies constraints on the con-

(opY

trol effort. This analysis useS .,

(2) as a starting point.
4.2.2 Constraint on the Control Effort

The preceding section sketches a method to adapt a controller to perform model-reference based
control while minimizing mean-squared system error. In general, however, we would also like to be
able to incorporate actuator constraints in the design process. Reasons include, (summarizing [3, p.
190)):

e Saturation. Exceeding absolute limits on actuator signals may damage an actuator, or cause
the plant modeP to be a poor model of the system being controlled. This may be avoided by
constraining the peak magnitudewgf

e Actuator heatingPersistently large actuator signals may cause excessive heating and damage
the system. This may be avoided by constraining the RMS norug.of

e Power, fuel, or resource usearge actuator signals may be associated with excessive resource
use. This may be avoided by constraining the average-absolute naym of

e Mechanical wear. Excessively rapid changes in the actuator signal may cause undesired
stresses or excessive wear. This may be avoided by constraining the slewuiate of

One further reason we might like to constrain the control effort is more subtle. We are perform-
ing discrete-timecontrol of continuous-timeplants. If pure inverse control is performed, then the
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plant output will match the desired output very watithe sampling timedHowever, the plant output

may behave very poorly during the inter-sample interval. Figure 4.2 shows an example. An inverse
controller was trained for the minimum-phase tank example of Sec. 3.2.1, with the reference model
M (z) = z 2. The step response of the controlled system is shown in Fig. 4.2(a). The discrete-time
response of the system is shown as dots, and the continuous-time response of the system is shown
as a solid line. The desired response is shown as a gray line. We see that the discrete-time response
precisely tracks the desired response. However, due to very high control effort, the continuous-time
response “rings” wildly about the desired response. A second controller was trained with exactly
the same desired response, but which incorporated constraints on the peak magnitude of the control
signaluk. The step-response of the controlled system is shown in Fig. 4.2(b). Although the rise
time is longer, the settling time is shorter, and a much smoother continuous-time step response is
achieved. Further details of this simulation may be found in Sec. 4.4.1.
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Figure 4.2: Step response of controlled minimum-phase tank. In (a), the control effort is uncon-
strained. In (b), the control effort is constrained to be betwedh &and 98C. The dots are the
discrete-time response; the solid line is the continuous-time response; and the gray line is the desired
response. (The control effort is plotted in Fig. 4.18(b) and Fig. 4.18(f).)

4.2.3 An Approximate Solution for the Constrained Controller

Constraints on the control effort are most naturally expressed in the time-domain. On the other
hand, the Wiener and Shannon-Bode methods for determining optimal solutions for controllers use
the frequency-domain. As such, it is not clear how the constraints on control effort will change the
solution for the controller itself.

This section presents some analysis which translates constraints oontin@ signaluy in
the time domain into constraints on thentroller C in the frequency domain. The controller and
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plant are assumed to be linear—possibly MIMO—systems. The result is a “recipe” for turning
an unconstrained controller into one whiclgisaranteedto satisfy the constraints. The design is
conservative, but an example is presented which demonstrates that the solution is quite good. First,
we examine constraints on the peak magnitude of the control signahd then extend the analysis

to encompass constraints on the peak slew rate.

Constraints on the Peak Control Effort

Here, we consider designing a controller such that its peak output over all time is bounded by some
user-specified constaruf(pea". If the controller has more than one output, then we restrict the peak
of each individual output to be belouf(pea'é. Mathematically, we express the peak output over all
time using the infinity-norm of the control signal

A
lUklloo = SEpmiaXIUk,i l,
whereuy is the vector control signal at timle anduy ; is theith component of that control signal.

Then, the constraint on the control effort becomes

K
lulloo < U™

We convert this time-domain specification into a frequency-domain specification using some
simple results relating time-domain bounds to frequency-domain bounds. Each inequality is “tight”
in the sense that equality is achievable with some set of input signals.

Iuklleo < UE) ]l
2 sup UE):2
we[—m,7] - -
= sup [[CE*)RE?)|:?
we[—m,7] - -
< [sup]6[C(e’“’)]IIR(eJ‘”)||z.
we —7T,7T

The last line replaces the norm 6fe!®) with its maximum singular valug;[ C(e!®)], found using

(peak

a singular-value decomposition. Since we wigitl|o < U, , this means

(peak

= jw joy A Uy
o[CE“)] <y = TRE, Vo. (4.2)
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Any controller which satisfies this constraint will have acceptable control effort. Any controller
which does not satisfy this constraint may or may not have acceptable control effort.

Equation (4.2) may be used to design a controller whictuisranteedto satisfy the time-
domain restrictions omg. To do this, we modify the unconstrained control ausagz) designed
in Sec. 4.2.1.

The controllerCff;ﬂZa(z) may not reduce the system error to zero. Any residual error will be
called theirreducible error. If we were to use a different controller, by definition sub-optimal, then
there will be additional error at the system output. This will be calledréldeicible error When
we design a controller to meet constraints on the control effort, we need to satisfy Eq. (4.2) while
minimizing the added reducible error.

If y(Opt>

turbed) system output using the sub-optimal controller, then the square-reducible error, summed

is the (undisturbed) system output using the optimal controller,ygqrisl the (undis-

over time, is
- ducible\ T ducibl = t Jt
Z(el((re uci e) (q(<re uci e)) _ Z (oph y(OP) yk)
k=0 k=0
- % Tr[(Y(Opt)(eJ“’) Y(eiw))*(Y<°Pt>(eiw)—Y<eiw))]dw
= ;T ||Y<°Pt>(elw) CRIRT

where the second line is Parseval's relationship for MIMO systems, and the third line is due to the
fact that the trace of a scalar is just that scalar. This function may be minimized by independently
minimizing its value at each frequency. Note that

Y(Opt) (ejw) — P<eja)) C(Opt) eja)) R<eja))

causal

Y(€?) = Pe”)C(el”)R(Ee)

Let

CLO (€19) = u(e*) = (el“)v*(e?)

wherev(el®), T(e!®), andv(e!®) form the singular-value decomposition ()‘ﬁaﬂza(ejw). Then,
also let

C(el®) = v(el®)A(el?)v*(el?)
whereu(el®) andv(el®) are the same, and(e!®) is used to desigi€. The design goal is now to
minimize
|PE“)uE) {ZE®) — AE“)} v (Ee)RE?)|?
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while satisfying the constraint of Eq. (4.2). Af(e!®) is chosen to be diagonal with positive entries,
then this is very easy to do. Each diagonal entrh¢é!) is a singular value o€ (el®). ltis very
easy to see then if Eq. (4.2) is satisfied. The entries @) are chosen as follows:
- i (el?), if Ti(el?) < y(el®):
Aiel®) = |(_ ) i ( .)_V( ) 4.3)
y(e!®), otherwise.

We now have a “recipe” for designing a controller which will minimize the system mean-
squared error while satisfying a constraint on the maximum control effort. It is summarized in
Fig. 4.3.

begin {Generate constrainedC}

DetermineR(ei®) and then find/ (e1*) using Eq. (4.2).

Design the optimal unconstrained controll&> (z) using the method in
Sec. 4.2.1.

At each frequency, perform the singular-value decompositio@éﬁﬂ‘ga(z) to find
v(el®), T (ei*) andv(el®).

DetermineA (el®) from X (el“) andy (e/*) using Eq. (4.3).
ComputeC(el®) = v(el®) A(el®)v* (e®).

The impulse response for implementi@ymay be found by taking the invers
FFT of C(el®).

[¢]

end {Generate constrainedC }

Figure 4.3: An algorithm for synthesizing a linear MIMO controller to satisfy constraints on the
control effort.

Constraints on the Peak Slew Rate

The slew ratesc of the system is computed &g = ux — Ux_1. This is the same as passing the
control signaluy through the fiIter(l— z—l)l . This filter has a gain of two. Therefore, to construct

a controller which satisfies constraints on the slew rate, we use the exact same analysis as above,
except that Eq. (4.2) becomes

(peak

G[CE)] < y(€*) £ m

because of this extra factor of two. This new value/¢&'“) may be used to design a controller
using the algorithm of Fig. 4.3 to satisfy the slew-rate constraints.
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Example of Constraints on Peak Control Effort

At this point it is profitable to see an example of constrained control. A simulation was performed,
using the algorithm to be developed later in this chapter, to find the unconstrained inverse of the
minimum-phase tank of Sec. 3.2.1. A simulation was also performed to find the linear constrained
inverse when the control effort was restricted to be betweéhdnd 95C. The input source was
equal to the constant 3G plus a first-order Markov process with polezat 0.7 and driven by i.i.d.
uniform random variables with zero mean and maximum magnitd@e &or the purposes of the
analysis here, since the system is linear, the input and output are shifted dowhyo5€hange

the constraints such thiitik ||, < 45°C.

The results of these simulations are shown in Fig. 4.4. This figure plots the magnitude response
of the unconstrained inverse as a solid line, the magnitude response of the constrained inverse as
a dashed line, ang(e!®) as a gray line. The design procedure for finding a controller which is
guaranteed to meet the constraints is to set the magnitude response of the controller equal to the
minimum of the unconstrained magnitude responsejafed®) at each frequency. The adaptive
algorithm has done something very similar, but not exactly this. Since the design procedure of
Fig. 4.3 is conservative, the adaptive controller is able to do somewhat better.

Magnitude Response of Controllers
40 T T T T T T T T

Magnitude (dB)

=
o
T

0 0.05 01 0.15 0.2 025 03 035 04 045 0.5
Frequency (Hz)

Figure 4.4: Magnitude response of unconstrained (solid line) and constrained controllers (dashed
line), plotted withy (el®) (gray line).
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The Optimal Constrained Controller is Nonlinear

Before concluding this section, it should be mentioned that all of the analysis has been for a linear
controller controlling a linear plant. This may work relatively well but, in general, optimal con-
strained control is performed by a nonlinear system. This may be proven by (1) assuming that the
optimum controller is linear, and (2) providing a counter-example.

Suppose that the plant has trivial dynanfg) = 1, and that the reference modeMgz) = 1.
Let the input signalrk, be equal to 0.1 with probabilityp, and equal to 10 with probability % p.

Constrain the control effort such thity ||, < 1.

(opt)

The optimal unconstrained controller & .,

(z) = 1. The optimal linear constrained con-
troller is C(z) = 1/10. The optimal nonlinear constrained controlleujs= sairy), where sat) is

the saturation function. In this case, the unconstrained controller has mean-squared error of zero.
The linear controller has mean-squared erropei0.0081) + (1 — p) - (81). The nonlinear con-

troller has mean-squared errdr— p) - (81). The nonlinear controller is always better than the linear
controller, and becomes relatively more soms> 1. A general rule of thumb is that if the input
signal is very regular, then the linear controller does well. If the input signal has infrequent “spikes,”
then the nonlinear controller may be much better. Figure 4.7 shows an example of the nonlinear con-
troller giving better performance than the linear controller when controlling the nonminimum-phase
tank from Sec. 3.2.1. The simulations themselves are described in a future section. Another simu-
lation was done for the minimum-phase tank from Sec. 3.2.1. Histograms of the control effort were
computed when using a linear controller and when using a nonlinear controller. These histograms
are shown in Fig. 4.5. It is easily seen that the nonlinear controller makes better use of the available
control effort. The nonlinear controller also had significantly better mean-squared system error.

4.2.4 Control Effort and Controlling Nonminimum-Phase Plants

If the plant to be controlled is nonminimum-phase, then a stable and causal inverse does not exist.
A delayed inverse must be used as the controller. The longer the delay, the lower the system error
(as will be shown). The designer is then left with the question of how to pick the “best” delay. The
application itself may determine this factor by specifying a certain maximum latency; however, we
can not assume that this is always the case.

When there is a constraint on the control effort, the designer has some help choosing the system
latency. There exists a value of delay beyond which the control ceases to provide better performance.
This value of delay can be thought of as the “best” delay if there are no other guidelines. We now
proceed to show this mathematically.
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Control Effort with Linear Controller

Control Effort with Nonlinear Controller
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Figure 4.5: Histograms of control effort (for the same command input) when the controller is either
linear FIR or nonlinear. The control effort was constrained to be betw&@asd 95C. The nonlinear

controller is better able to take advantage of the full range of allowed control effort. The nonlinear MSE
was about 0.67 and the linear MSE was about 1.0.

o

First, a simple logical argument based on Eg. (4.1) will show that increasing delay will result in
decreasing mean-squared system error. If the delay is equaktthen the output of the controller
will be zero. This is the worst-case output. If the delay-iso, then the controller will be a delayed
version of the Wiener solution, which is the best-case output. For intermediate delays, consider
what happens when the delay goes fram- 1 to A. One solution for the controller is that all the
weights fromC»~ be copied toC'®), but shifted over one time step. If this is done, the output
error will be identical. Therefore, by increasing the delay, we caatdeast as welbs before, but
possibly better. Therefore, the mean-squared system error is a non-increasing function of the delay.

Secondly, we need to show that the control effort is an increasing function of the delay. We
do this by considering the gain of the controller on thesignal. Figure 4.6 shows a comparison
of two optimal linear causal controllers (with no constraint on the control effort). One has been
designed for a delay ok — 1, and the other has been designed for a delay.ofhey share part of
their transfer function up until the node marked From that point on, the transfer functions differ.
Therefore, in considering the relative gain of the two controllers, we need only look at the gain from
the node marked! to the two outputs.

The gain of a linear MIMO system, relating maximum input to maximum output, is equal
to [47]

[ e

9(C) = sup = max > > |cijl,

Ik 1Mk ll oo ie[l’Ni]k=0j=1
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Figure 4.6: Two Shannon-Bode optimal controllers: One for a delay\ef 1, one for a delay oA.

where, N; is the number of outputs from the controller (inputs to the plaNt)is the number of
inputs to the controller (outputs from the plant), and; is thekth value of the impulse response
relating thejth input to theith output. In other words, the gain from the input vector to one output
is the absolute sum of the impulse responses from all components of the input vector to that output.
The maximum of all of these gains is equal to the gain of the system.

The gain of a controller designed to give a system delax ef1 is compared to the gain of a
controller designed for a system delay/of

gcev) 9|74 (Ron(@) M@9L D) )
9(C) o[z 4 (Rerid) M@ )]
2% (Peor(2) M@0}, )

24 (Ror(2) "M@9%2)] )

«Q

«Q

A
e

The inequality in the second line is due to the fact that the impulse responses for the shorter delay
are identical to the impulse responses for the larger delay, except shifted over one time step and with
some taps set to zero due to the causality restriction. Since some taps are set to zero, the absolute
sum of the impulses will be lower, and the gain will be lower.

Therefore, we have seen that increasing delay causes decreasing system mean-squared error,
but increasing control effort. If control effort is limited, then the controller will no longer give
the optimal mean-squared error, and increasing delay causes no further decrease in system mean-
squared error.

This is demonstrated using simulations of the nonminimum-phase tank of Sec. 3.2.1. A suite
of simulations were performed to find the optimal controller for delays of two through fifteen. A
further suite of simulations were performed to find the optimal constrained linear controller for the
same delays. A final suite was performed to find the optimal constrained nonlinear controller for the
same delays. The unconstrained solution shows progressively lower mean-squared error as the delay



4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 57

increases. However, after a delay of four, the linear constrained solution stops improving. After a
delay of six, the nonlinear constrained solution stops improving. Therefore, we might consider
using a delay of four if we are satisfied with the linear controller, or a delay of six if we prefer the
nonlinear controller.

Nonminimum Phase Plant

10log,,(Steady-state MSE)

2 4 6 8 10 12 14 16
Delay (s)

Figure 4.7: Steady-state system mean-squared error versus the system delay. The solid line shows
that the steady-state mean-squared error decreases logarithmically if the control effort is unconstrained.
The dashed line shows that if the control effort is constrained such tBak5i < 95°C, and the
controller is linear, then the steady-state mean-squared error decreases to a constant value. The dash-
dot line is similarly constrained but the controller is nonlinear.

4.3 Synthesis of the Constrained Controller via the BPTM Algorithm

We now begin the second part of this chapter. We have seen some analytic results pertaining to the
design of a constrained controller, and are ready to present an algorithm which trains a controller to
perform constrained model-reference based control of a linear or nonlinear, SISO or MIMO plant.
A key hurdle which must be overcome by the algorithm is to find a mechanism for converting the
system error to an adaptation signal used to adugtor the most general MIMO nonlinear case,
we need some functional block which uses the system error and some form of plant state information
to compute the controller error. This block is denoted as “?” in Fig. 4.8.

This functional block must describe an algorithm which also satisfies the following design
criteria:

e The algorithm must work with SISO and MIMO, linear and nonlinear plants.

e The algorithm must not be biased by disturbances.



58 Chapter 4. Constrained Adaptive Feedforward Control
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Figure 4.8: Conceptual block diagram of a system used to train the contiGller

e The algorithm must work for autoregressive implementatiorfé ahdC.
e The algorithm must minimize some cost functional of the system ardthe control effort.

The algorithm is now developed.

A related method was introduced in reference [2] where it was referred to as a type of real-
time recurrent learning (RTRL) [46]. Here, it is extended in a number of important ways: (1) It is
generalized from the SISO case to the MIMO case, where it able to attribute different performance
objectives to each plant output; (2) It has been extended from the nonlinear-only case to also incor-
porate control of linear systems, and (3) It now handles very general (differentiable) constraints on
the control signalik. We will also see in Chap. 5 that this algorithm can be used to adapt a filter to
perform disturbance cancelling.

\ DISt Wk
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\
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Figure 4.9: Structure diagram illustrating the BPTM method.

Figure 4.9 shows the general framework to be used. Rather than manipulating the block di-
agram to generate an indirect error signal with which to adapthe system error signal is used
directly. It is back-propagatedhrough the plant model, and there used to adapt the controller. For
this reason, the algorithm is named “BackProp Through (Plant) Model” (BPTM).
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The algorithm is derived as follows. We wish to train the contrallén minimize the squared
system error over a certain trajectory and to simultaneously minimize some function of the control
effort. To do so, the system is run f&r time steps. At the end of thi€ time steps, the following
sum is computed

K

(sy9 T ~ A5y
JK:Z{ej Qe +h(Uj,Uj_1,...,Uj_r)}.

j=0
The differentiable functiom(-) defines the cost function associated directly with the control signal
Uk, and is used to penalize excessive control effort, slew rate and so forth. The system error is the
signale™®
performance objectives to each plant output. To minimize the system error over a trajectory of length

= dk — Yk, and the symmetric matrif is a weighting matrix which assigns different

K and simultaneously minimize a function of the control effort, we must minimize the fundgion

It is possible to compute the required equations to minindizeising gradient descent (in fact,
they do not differ very much from what follows). One problem with this approach is that it does not
adapt the controller weights in real time. Time is divided into epoch$ time samples in length,
and adaptation of the controller weights is performed once at the end of each epoch. For this work,
a real-time approach was preferred. Therefore, the same trick is employed as used in [46]. The cost
metric Jk is stochastically approximated at each time step as

T
k= {el(fys Qel((sys + h(uy, Uk_1, ..., uk_r)}.

The gradients of the approximate cost functidynare not the same as the gradients found for the
true cost functionJx. Therefore, adaptation is a “noisy” process. In practice, however, it works
well.

Continuing, if we letg(-) be the function implemented by the controlier and f (-) be the
function implemented by the plant mod@] we can state without loss of generality

U = g(Uk—1, Uk—2, - -+, Uk—m. M, Tk—1, - - - Tk—gqs W)

yk = f (ykfla ykfzv LERE YKfm Uk, Uk—1, ..., Uk— p)! (44)

whereW are the adjustable parameters (weights) of the controller.
As is typical for LMS and backpropagation-like learning methods, the controller weights are
updated in the direction of the negative gradient of the cost functional

T a+
AWk = —M,a—W Jk

0" [ (59T ~u(sv8
_“M{GK Qe, "‘h(Uk,Uk_l,...,uk_r)},
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wherep is the adaptive learning rate. Continuing,

AWl;r T 07 Yk L /ah(Uy, ..., Uk_r) T 8+Uk_j
p JW(W)‘[Z( I ) ( w )| (4.5)

i=0

Using Eq. (4.4) and the chain rule for ordered derivatives, two further substitutions may be made at

this time
aTuk AUk N[ Auk ) [0 Uk
= - 4.6
ow 8W+;(8ukj>( ow ) ( )
3T Yic NV Uy N\ RAYERTS
= . 4.7
IW ;<3Uk1>( oW >+;<8ykj>( oW ) @D

A quick note should be made regarding the dimensions of each term in Egs. (4.5), (4.6),
and (4.7)—if theplant hasN; inputs andN, outputs, and the controller hé&&y weights

5 e, [, 5]
IW' N Nw OW' | Ny x Ny OYk—j I ngx Ny

oy Lo o L)
OUk—j In x1 OUk—j Ingxny  LOUK—j Jpg

[ Q] NoxNo [&]Nox1 [UkIn; 1 [Vi] Ny [W]nwx1 -

Also,

4.3.1 Linear FIR Plant Model, Linear FIR Controller

The equations for the weight update in their general form, as presented so far, are equally applicable
to linear or nonlinear systems. From this point on, the derivations diverge in order to specialize
to two different architectures. Here, we look at the example where both the plant model and the
controller are linear systems.

Any stable linear plant and linear controller may be approximated with arbitrary precision by
FIR filters. Moreover, the feedback termsfig-) andg(-) are unnecessary and can be dangerous as
they invite instability! Therefore, we assume that both the the plant model and the controller are
FIR.

The input to the controller filter is a tapped-delay-lineqef 1 vectors, each of lengtN,. We

define this composite vector, at tirketo be

T
AL T, T T
R = [rk Me—1 =~ rqu]-

1Even if the plant model, for example, is not implemented as an FIR filter, an FIR impulse response can be generated
by using the plant model to filter an impulse signal. Therefore, the results of this section are more general than they
appear.
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The plant has\; inputs. Therefore, the controller will havd different linear filters operating on
R« to produce the control signak. We IethT be the first such fiIter\/VZT be the second, and so on.
We may organize these filters intaraatrix W, such that

We = [Wo W - Wiy ]T

Then,
ux = W:R«. (4.8)

This definition is useful for actually computing,. However, for the purpose of adapting all the
weight values of the controller it is also useful to definet¢bkimn vectoof weights to be

W= [W] W - Wy ].T (4.9)
Note thatW, is a matrix whileW is a vector; both contain identical information in different arrange-
ments. One is a digital copy and rearrangement of the other. We wish to adapt the vaMiés in
optimize J.
The input to the plant model is analogous to the input to the controller—it is a tapped-delay-
line of p+ 1 vectors, each of lengtN;. We define this composite vector, at titketo be

T
AT, T, T T
Uk = [Uk Ug g - Uk—p]'

In further likeness to the controller, the plant model has weight méfrixvhich acts the same way
as the controller weight matriw/.. So,

Yk = Wp\ Uk.

With these definitions, we may solve Eg. (4.5) to find the weight update. We need to find three
quantities:ah(-) /duk—_j, 3T ux/dW andd*yix/dW.

First, we note thavh(-)/dux_; depends on the user-specified functiop). It can be cal-
culated giverh(-). Later, we will see that it is useful to arrange the result in a composite vector,

defined at timek to be
T
T T T
8Uk auk,]_ 3Uk,r

Secondly, we consideruyx/dW as expanded in Eq. (4.6). Since the controller is assumed to

be FIR, this simplifies
8+Uk . dUk
oW AW’
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From the definition oluy in Eq. (4.8), and the ordering & in Eq. (4.9), we seduy/0W is a
block-diagonal matrix containingdy; copies ofRiI

R 0 .. 0
0 . ... 0
s = dag(RL R Rl = )
0 0 .. Rl

Thirdly, we consideb ™ yi/dW, as expanded in Eq. (4.7). Since the plant model is assumed to
be FIR, we may re-write the expression as

Ve N[ OV ) (9T Uk
AW _Z<aukj>( dW ) (4.11)

j=0

The first term in this summationyy/duk—_j, is equal to theN; columns ofW 5 associated with the
inputuk_j. The second term i8*ux/dW, as calculated for this time-step and the previpusne
steps. We have seen how to calculate this. We can put all of this together by defining

T
A Uk T oUk_1 T dUk—p T
() (25 (2] o

Then Eq. (4.11) can be computed to be

" Yk
=Wy dUy.
W p Uk
Finally, we combine all the above to get
U T T
AW = u([2q< QW5 — dH ] dUk). (4.13)

The curious reader may wish to verify the result of Eq. (4.13) by considering it in its simplest
form. Suppose that the plant is SISO and has no dynamécsW = [1]). Furthermore, suppose
thath(-) = 0 and thalQ = 1. Then, the adaptation rule reduces to the regular LMS rule for adapting
a filter. If, however, the plant has some dynamics,

p
AW = 216y (Zwﬁ.j Rkj>7
=0
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which is the LMS rule weighted by the impulse response of the plant. Since the plant is assumed
stable W, ; — 0 asj gets large, and the current inputs are weighted more strongly than past inputs.

The bottom line: Figure 4.10 shows a summary of BPTM for linear SISO or MIMO plants.
Ultimately, the weight update is calculated using Eq. (4.13). Prior known quantitieg aagd Q.

The errorel™®

is an input to the weight-update process, and the weights of the plant Waslate

also known. Thus, it remains to computHy, anddUy. The dHy vector is a function of the vector

Uk, which is known as it is the input to the plant model. Similady/x is a function ofdUy_1

and the vectoRy, which is known as it is the input to the controller. Notice that the algorithm is
extremely simple. No computations other than matrix multiplies are necessary. The algorithm may

be implemented in one line dfatlab code, for example.

begin {Adapt C (linear) }
Initialize dU to 0.
ComputedHy as a function ofJy.
Shift dUx down N; rows, and shift inN; copies ofR.
Compute weight update according to Eq. (4.13).

end {Adapt C (linear)}

Figure 4.10: An algorithm for adaptingC when the controller and plant model are linear. The first
step is performed once, and the other steps are performed in sequence, iteratively as time progresses.

4.3.2 Nonlinear NARX Plant Model, Nonlinear NARX Controller

Given the background material in Chap. 2, the derivation of BPTM for a nonlinear plant and non-

linear controller is actually somewhat more compact than for the linear case. This is true even
though autoregressive plant models and controllers are generally required for nonlinear control.
The dynamical behavior of most nonlinear systems may not be well approximated by a nonlinear
transversal model.

Whereas for the linear plant we had some freedom to choose the structure of the plant model,
here we need to restrict ourselves to a single paradigm. This is because there is no equivalent in the
nonlinear domain to an “impulse response.” The BPTM algorithm, for a linear plant, was able to
compute the impulse response of the plant model, regardless of the structure of the model, and use
that to update the controller. Here, we assume that NARX neural network filters are used for both
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the plant model and the controller. Such filters are universal function approximators and are capable
of controlling any (controllable) nonlinear system with acceptable accuracy.
To restate the problem at hand, we desire to compute the weight-upifdteof Eq. (4.5).
The only terms which differ from the linear derivation are those of Egs. (4.6) and (4.7), which are
repeated here for convenience
atu Ik [ du AT Uk |
awk - a_V\I;J“;(aukkj)( awj> (4.6)

T yk P/ awk A U | S O Yk
W Z<8Uk1>( oW >+Z<3ij>( oW ) *.7)

j=0 i=1

A quick examination of these equations will be adequate to see that the terms which need to
be computed at each iteration are
au au 0 0
Tk k. ko oand D
oW 8Uk,j 8Uk,j 8yk,j
The first term is the direct effect of the controller weights on the controller output, and the other

terms are the effects of the inputs of the controller and plant model to their respective outputs.
They are all Jacobian matrices and are very simple to calculate for any neural network, using the
backpropagation algorithm (as described in Sec. 2.3.2). Armed with this information, we may
readily compute the required terms of Egs. (4.6) and (4.7). All that is required is a little careful
bookkeeping.

The 0Tux/dW term of Eq. (4.6) is computed by determining the valuesiaf/oW and
duk/duk—j. These are found by back-propagating unit vectossé through the controller neural
network and using Egs. (2.3) and (2.4) as appropriate.

The 9%y/0W term of Eq. (4.7) is then computed. To do so, we need to kB ou_ |
andadyx/0yk—j, which are found by back-propagating unit vectors: § through the plant-model
neural network and using Eq. (2.3).

A practical implementation is realized by compacting the notation into a collection of ma-
trices as before. The definitions @y and dHy remain unchanged from Egs. (4.12) and (4.10).
Furthermore, we define

T
a | (01" (avk2)" Yic—n'\ "
dYyx =
ow ow oW
NVEAYE RN ayk \'
oY = | (22X
oUg oUk—_1 aukfp
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begin {Adapt C (nonlinear)}

Updated "uy /o W:

e Shift dU, down N; rows.

e Backpropagaté\; unit vectors througlt to form ayUy andduy/dW. Each back-
propagation produces one row of both matrices.

e Compute top\; rows of d Uy to beduy/dW + (dyUx) (dUy).
Updated*yy/dW:

e Backpropagaté\, unit vectors througlﬁto formay Y andayYy. Each backprop-
agation produces one row of both matrices.

o Computedy Yy = (duYk) (dUx) + (3yY) (dY).

e Shift Yy down N, rows and savelYy in the topN, rows.
ComputedHy.
Update Weights:

o ComputeAW, = 2ue] Q(dwYy) — n(dH)(dU).

¢ Adapt, enumerating weights in the same order as when compaidg

end {Adapt C (nonlinear)}

Figure 4.11: Algorithm to adapt a NARX controller for a NARX plant model.

The bottom line: The algorithm to adapt a NARX controller for a NARX plant model is sum-
marized in Fig. 4.11. Any programming language supporting matrix mathematics can very easily
implement this algorithm. It works well.

4.3.3 Separability for Efficient Implementation

The preceding discussion introduced an algorithm to train an adaptive controller to control a plant.
Two specific examples were derived in detail: (1) A linear FIR controller for a linear FIR plant
model; (2) A NARX neural network controller for a NARX neural-network plant model. But, what
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if we want to adapt a NARX controller for a linear plant? (see, for example, Sec. 4.4.1) What if we
want a nonlinear transversal filter plant model or controller? (see, for example, Sec. 4.4.5) It would
seem that if there ardl possible options for the structure of either the adaptive controller or the
adaptive plant model, then our suite of algorithms must hé&subroutines to be able to handle all
combinations. Each time we add a new structure to our repetoire, we moveNrionN + 1 types
and need to add\2 + 1 algorithms to our collectiog!

Fortunately, this is not the case. A quick examination of Egs. (4.6) and (4.7) verifies this fact.
We see thabtu,/0W depends only on information local to the controller. The terhy,/dW
depends only on information local to the plant model as well as the valoéwf/oW. This data-
flow relationship is depicted in Fig. 4.12.

Figure 4.12: Data-flow diagram illustrating the algorithmic independence of BPTM on the structures
of C andP.

Therefore, each type of structure needs only two subroutines. One subroutine computes
dTuk/dW and the other computes™yi/dW given T ux/dW ande™. If we haveN candidate
structures, our control suite needs only algorithms. Adding a new structure means that we
need to add only two subroutines. This is a very important feature of the algorithm which makes it
feasible as a control technology.

4.3.4 Initialization of Linear Controllers

The BPTM learning method, when used to control linear plants, will train a controller regardless of
the initial weights of the controller. If the plant model is initialized to some non-zero function, the
weights of the controller may even start at zero.

The size of the controller is chosen by the designer to balance the trade-off between training
time and performance. In a low-cost-of-control scenario, the humber of weights required by the

2For example, in this dissertation, structures used for the plant model were: linear FIR, linear IIR (connected in
parallel), linear IIR (connected in series-parallel), nonlinear transversal filters, NARX filters (connected in parallel) and
NARX filters (connected in series-parallel). Structures used for the controller and disturbance canceller were: linear
FIR, linear IIR (connected in parallel), nonlinear transversal filters, and NARX filters (connected in parallel). Instead of
needing 7x 4 = 28 algorithms, only A4 =11 were needed.
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controller may be quite large. This, however, greatly increases the training time of the system.
What is desired is a clever way to initialize the weights so that they are very nearly optimal before
the training commences. This section outlines a method to do this for a linear controller. It is an
extension of the system-identification method called “empirical transfer function estimate.”

If there are no constraints on the control effort, the weights of the controller are initialized to
an estimate of the Wiener solution

Ce”) = (PE*) " (M@E®)). (4.14)

This is computed by taking the FFT of the reference model impulse response and the plant model
impulse response and dividing them at each frequency. After initialization, the controller is adapted
using the BPTM algorithm to improve the solution. Further adaptation is required for a number of

reasons

e Equation (4.14) is the Wiener solution for an unconstrained controller. We really desire the
Shannon-Bode solution. This may be computed instead of Eq. (4.14) but requires knowledge
of the statistics of the input signal, and factoring of its spectrum. Using the Wiener solution
is fine for a minimum-phase plant, and is pretty good for a nonminimum-phase plant if the
delay inM (z) is large enough.

e The expression being used is the Wiener solution for an IIR controller. Our controllers are
FIR. Simply truncating the response does not give the Wiener solution for an FIR controller.

e The implementation is done using the FFT algorithm. Hence, each frequency is not being
matched, as the equation would suggest, but only discrete frequencies within the band of
interest. This problem may be largely mitigated by zero-padding the time-domain signals
before taking the FFT (A good rule of thumb seems to be to zero-pad the signals to eight
times their original length).

e The expressior( P(ej‘“))_l(l\/l(ej“’)) is not being implemented; rather, we use the plant
model and computéP(el®)) *(M (el®)). If the plant model is significantly different from
the plant, or if the model is corrupted by noise, the solution will be poor. Some sort of
Wiener-inspired filtering can be performed Bxel) to try to eliminate the effects of noise.
For example?

M (el®) |[P(ei®)||2 + k2

C(el®) = = el
€ =Few  1Pe

3This is similar in form to the Wiener-optimal filter which would filter out the effects of white noise.
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If there are constraints on the control effort, then Eq. (4.14) may be used to es(ﬂﬁﬁfgzg@z),
which is then used in the algorithm of Fig. 4.3 to compute an initial guess for the controller.

Regular Jet Learning Curve Initialized Jet Learning Curve
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Figure 4.13: Comparison of learning curves when training a controller for the Boeing 747 example
of Sec. 3.2.2. (a) Controller initialized to zero; (b) Controller initialized using Eq. (4.14). In both cases
the plant model was pre-trained.

Figure 4.13 shows a comparison of the learning curves (for the example of Sec. 3.2.2) when the
controller was and was not initialized using Eg. (4.14). When the controller was initialized to zero,
training took more than 18 10 iterations. When the controller was pre-initialized using Eq. (4.14),

a better solution was obtained almost immediately, and the process converged after approximately
1 x 10* iterations. An improvement of over three orders of magnitude can be realized!

4.3.5 Initialization of Nonlinear Controllers

Initialization of a nonlinear controller is much more difficult than for a linear controller. No known
analytical solutions are available beyond the expressions in Chap. 2. These equations are not use-
ful for initializing the weights of a nonlinear neural-network filter since they specify the optimal
function and not the optimum weights.

To initialize a nonlinear controller we need some prior knowledge of how that contsbiterd
function. If we have this prior information, we can create a fixed controller which coarsely controls
the plant. An adaptive controller is placed in parallel with the fixed controller and is adapted to
fine-tune the output of the fixed controller. This control methodology is shown in Fig. 4.14.

This merger of engineering know-how and adaptive fine-tuning presents a practical marriage
between the technologies of fuzzy control and adaptive neural control. Fuzzy logic can compactly
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Figure 4.14: Diagram showing a possible method of initializing a nonlinear controller.

represent prior knowledge, and neural networks can fine-tune the result. Much future work needs to
be done researching this possibility. No results are available at this time.

4.4 Simulation Examples

We have now seen some analytic results pertaining to constrained control, and an algorithm for
adapting a controller to perform constrained control. This final section presents a number of simu-
lation examples to demonstrate the algorithm just developed.

4.4.1 Minimum-Phase Linear SISO Plant

The first examples are for the minimum-phase tank of Sec. 3.2.1. Equation (3.1) is the difference
equation specifying the dynamics of the plant. For all simulations, the input source was equal to the
constant 50C plus a first-order Markov process with polezat 0.7 and driven by i.i.d. uniform
random variables with zero mean and maximum magniti@: %Vhen constraints on the control
effort were considered, the control signal was restricted to be betweefiG and 95C. The
controller was a twenty-tap FIR filter.

Figure 4.15 shows the penalty functidnuy), used when adapting a constrained controller.
The penalty is zero for control effort betweerb8C and 945°C. For control effort outside this
range, a parabolic function was used to compute the penalty. In Fig. 4.15(a), the overall penalty
function is plotted. It apears to be a hard limit on the control signal. However, in Fig. 4.15(b),
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a region of Fig. 4.15(a) is magnified to show the parabolic nature of the constraint. The actual
equation governing the penalty function is:

2
“k’5‘5) ., if ug <5.5;

5-55
h(uk) = | (u—945)2 (4.15)
K—94, . . .
(5542)". if uc> 945,
0, otherwise.
Penalty function fouy Magnified Penalty function fauy
4 T T T T T 4 T T T T T T T
3.5 35
3 3
2 25F 250
© c
c 2 c 2
(O] (0]
o 15 o 15
1 1
0.5 0.5
OO 1‘0 26 Bb 4‘0 50 66 76 50 9‘0 100 91.5 4t6 4?7 4?8 4t9 é 5?1 5?2 5t3 5.4 55
Control effort,uy Control effort,uy

(@) (b)

Figure 4.15: Penalty function used on the magnitude of the control effort.

The reference-model was a simple delay of two sample periddg) = z—2. This is required
for precise control of this plant since it is a generalized minimum-phase plant, and may be perfectly
controlled only for delays greater than or equal to two samples. Simulations were performed to
determine the controller with and without constraints on the control effort. Figure 4.16 shows the
impulse response of both controllers. It is easy to see that the gain (absolute sum of the impulses)
of the unconstrained controller is much larger.

Figure 4.17 shows the tracking performance of the unconstrained and constrained controllers
for identical first-order Markov reference signals. Two constrained controllers were trained. The
first was a linear controller, implemented as an FIR filter with 20 taps. The second was a nonlinear
controller, implemented byA/'(4‘1);20;1neuraI controller. In Figs. 4.17(a), (c), and (e), the tracking
performance of these three controllers are compared. The solid line shows the continuous-time
output of the plant, computed by simulating the continuous-time differential equations governing
the plant output. The dotted line shows the discrete-time output of the plant, and the gray stair-step
line shows the desired response of the plant output. The desired response exists only at the sampling
intervals, but is shown as a continuous stair-step line to make reading the figure easier.

We see that the unconstrained controller (nearly) exactly controls the discrete-time output of
the plant. That is, the output of the plant is nearly the same as the desired regpibregssampling
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Figure 4.16: Impulse responses of the unconstrained and constrained controllers for the minimum-
phase tank.

instants The constrained controllers are not able to match this performance at the sampling instants.
However, the inter-sample responses of the constrained controllers are much more reasonable than
the response of the unconstrained controller.

Figures 4.17(b), (c) and (f) show the control effort required by the three controllers for the
same input signal. We see that the unconstrained controller produces control signals outside the
allowed range of 8C < ux < 95°C. Both of the constrained controllers produce acceptable control
signals. We can compare the figures visually and see many similarities. The nonlinear constrained
controller makes the best advantage of its allowed range and performs the best, overall. Figure 4.5
also shows that the nonlinear controller is better able to use the allowed range of control effort.

Figure 4.18 is similar to Fig. 4.17, but plots the step response of the system rather than the
tracking response. In Fig. 4.18(a), we can very easily see the ringing between samples caused by
the excessive control effort demanded by the unconstrained controller. The step responses of the
linear and nonlinear controllers are much more reasonable, with the step response of the nonlinear
controller being the smoothest, and having the fastest settling time.

4.4.2 Nonminimum-Phase Linear SISO Plant

The second set of examples are for the nonminimum-phase tank of Sec. 3.2.1. Equation (3.2)
specifies the dynamics of the plant. The input source was equal to the const@npla® a first-

order Markov process with pole at= 0.7 and driven by i.i.d. uniform random variables with zero
mean and maximum magnitude@ When constraints on the control effort were considered, the
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Figure 4.17: Tracking performance of three controllers for the minimum-phase tank example. In
(), (c), and (e), the tracking performance is shown. The solid line is the continuous-time output of the
plant. The dotted line is the plant output at the sample instants. The gray line is the desired response at
the sample instants. In (b), (d), and (f), the control effort required is shown.
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Figure 4.18: Step response of three controllers for the minimum-phase tank example. In (a), (c), and

(e), the step response is shown. The solid line is the continuous-time output of the plant. The dotted
line is the plant output at the sample instants. The gray line is the desired step. In (b), (d), and (f), the
control effort required is shown.
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control signaly was restricted to be between®Gand 95C. Figure 4.15 shows the penalty function
h(uk) used when adapting the constrained contrc(l@e also Eq. (4.193)

The reference-model was a variable delay which took on values between two to fifteen sample
periods:M (z) = z 2, A € [2...15]. The different delays caused different levels of performance,
as shown in Fig. 4.7. The longer the delay, the smaller the steady-state mean-squared system error.
Simulations were performed to determine the controller with and without constraints on the
control effort. Figure 4.20 shows the impulse responses of several abtiteollers when there
were no constraints. It also shows thgstemmpulse response. It is easy to see that as the delay
increases, the system impulse response approaches a delayed impulse, as it should. Figure 4.19
shows the impulse response for a constrained linear controller, and the resulting system impulse
response. Clearly, performance using the constrained controller is worse than if the controller is
unconstrained.

Constrained Controller Impulse Response, Delay= System Impulse Response, Delay=10
8 T T T T T T 1 8 T T T T T T T A

6

IS
o
2]

Magnitude
Magnitude

0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 40
Time (s) Time (s)

@) (b)

Figure 4.19: Impulse response of the constrained controller for the nonminimum-phase tank.

Tracking performance and step responses were similar to those shown in Figs. 4.17 and 4.18,
so are not shown. As with the minimum-phase tank example, Fig. 4.7 shows that a nonlinear
controller (V(20,1):20:0 can provide much better performance for constrained control than a linear
controller.

4.4.3 Linear MIMO Plant

The third set of simulations demonstrate multi-input multi-output linear control. The problem is to
control the lateral motion of a Boeing 747 airliner (from Sec. 3.2.2), linearized around the operating
“point” of Mach 0.8 velocity and 40,000 ft. altitude. The inputs to the plant are the rudder and
aileron angles (in degrees) and the output of the plant is the yaw rate (in radians/second) and the
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Impulse responses of constrained controllers for the nonminimum-phase tank. System

delays of 5, 10, and 15 samples are shown. The system impulse response becomes closer to a delayed
impulse as the delay increases.
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bank angle (in radians). The inputs to the controller are thus the desired yaw rates and bank angles.
The desired yaw rate was modeled as a first-order Markov process, with a pole@® and an

input stream of i.i.d. uniform random variables with zero mean and maximum magnitude 0.03. The
desired bank angle was also modeled as a first-order Markov process (independent of the desired
yaw rate), with a pole at = 0.9 and an input stream of i.i.d. uniform random variables with zero
mean and maximum magnitude 0.12. The plant is minimum-phase so the reference model was a

unit delay.
Desired yaw rate> Rudder angle
0.2 T T T T T T
0.1
O T
QO -0.1}f ()
S -0.2 5
T 2
< -0.4 <
-0.5
-0.6
07 21) z{o e}J éo 160 120 40 o io 4{0 eb f;O 1(30 120 140
Time (0.5s) Time (0.5s)
Desired yaw rate-> Aileron angle Desired bank angle> Aileron angle
0.8 T T T T T T 3 T T T T T T
0.6 !
0.4
2 g
’°’“HHH sl
£ I =z, 1AITTT
g— o l“”Illlllllllllllvlvl._._.. g— “““llllln
"
—0.4 -2
08 20 20 60 80 100 20 140 = 20 20 0 80 100 20 140
Time (0.5s) Time (0.5s)

Figure 4.21: The four impulse responses comprising the Boeing 747 controller. The controller had
no constraints on the control effort.

Since there are two inputs and two outputs, four transfer functions are used to specify the
input-output behavior, and these can be represented as four impulse responses. Figure 4.21 shows
the impulse-response matrix for the converged controller. As can be seen, the architecture of the
controller was four FIR filters of length 128.

The tracking response and control effort for a characteristic input signal are plotted in Fig. 4.22.

In this figure, the desired response is a gray line, the actual discrete-time response is plotted as
dots at each sample instant, and the continuous-time resonse is plotted as a solid line. Like the
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Figure 4.22: Tracking performance and control effort for the Boeing 747 controller. In (a) and

(b), the tracking performance is shown. The desired response is a gray line, the actual discrete-time
response is plotted as dots at each sample instant, and the continuous-time response is plotted as a solid
line. In (c) and (d), the corresponding control effort is plotted. The controller had no constraints on the

control effort.

minimum-phase tank example, there is some ringing in the continuous-time response so control-
effort constraints may be desired to remove the ringing. Constraints on the control effort might also

be considered for all of the other reasons discussed earlier.

A slew-rate constraint was placed on the control effort. The constraints are limits on the

control effort such that-0.15 < (slew-rate of rudder anglex 0.15, and—0.75 < (slew-rate of

aileron angle)< 0.75. The constraints were implemented using the following penalty functions:

2
(ueder_yreder) 10,1485
—0.15+0.1485

0.15-0.1485
0, otherwise,

h(U(krUddED) o ( (uﬁrUddeDfuﬁgdeD)70.1485 2

) . if ulM9%® - _0.1485;

. if ulM9%® - 0.1485;
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Unconstrained Slew Rate, Rudder Angle
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Figure 4.23: Histograms of constrained and unconstrained Boeing 747 slew rate.
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— ' . 2
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(( k 07;-017425 . if u@en - 0,7425;

0, otherwise.

Figure 4.23 shows histograms of slew rate for unconstrained and constrained control. As can be
seen, the constraints are satisfied by the converged controller.

4.4.4 Nonlinear SISO Plant

A fourth set of simulation experiments was performed to demonstrate control of a SISO nonlinear
system. The goal was to control the heading angle of a large oceangoing ship (Sec. 3.3.1), with
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Figure 4.24: Tracking performance of ship controller. The reference model is a delay of 12 samples
(6 seconds).

constraints on the maximum rudder angle and the rate-of-change of the rudder angle. This example
is unigue among all the examples chosen in that the constraints were built into the dynamics of the
ship, and thus no external penalty function was used to adapt the controller to perform constrained
control. This method worked very well, and guaranteed that the constraints would be met, regardless
of the control input signal. It is not recommended for linear plants because it implicitly causes the
plant dynamics to become nonlinear, and thus a linear plant model is no longer feasible and a linear
controller will no longer work well.

The ship was commanded to track a first-order Markov process which generated the desired
heading angle. The Markov process had a pole-at0.99 and was fed by i.i.d. uniform random
numbers with maximum magnitude03. A N(22,1):50:1controller was trained to control the ship,
with a command latency of 12 time samples. Figure 4.24(a) shows the tracking performance for
a typical input signal. The gray line is the desired heading angle, and the solid line is the actual
heading angle as a function of time. We see that the built-in constraints on the control effort do not
allow the ship to follow all of the high-frequency peaks in the desired response signal, but tracking
of the moving average is very good.

This plant is nonminimum-phase. The meaning of “nonminimum-phase” in the context of
nonlinear control is that a stable, causal inverse does not exist. We must use a delay in the refer-
ence model in order to provide good control. Figure 4.25 plots steady-state mean-squared system
error versus system latency. Different nonlinear controllers, with aI’ChiteC,M'(rﬁﬁ.A,l);5o;1, were
trained for desired response delays of five through sixteen. The steady-state mean-squared system
error was measured for each controller, and the results plotted. We can see that the error drops until
the delay is about 14 time samples (7 seconds). After that point, the error remains constant. This
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Figure 4.25: Steady-state system mean-squared error versus the system delay. The steady-state
mean-squared error decreases to a constant value.

result is in accord with the analytical result proven for constrained linear controllers—the mean-
squared system error cannot improve past a certain point because the constraints on the control
effort prohibit it. In this example, a delay of 12 time samples (6 seconds) seemed a good compro-
mise between latency and system error, so was used in the simulation of Fig. 4.24.

4.45 Nonlinear MIMO Plant

The final example is for constrained control of a nonlinear MIMO plant. This plant is the two-
link robotic arm of Sec. 3.3.2. The arm is commanded to track a given time trajectory of desired
arm angles. A higher-level controller is assumed to compute the inverse kinematics to provide
the desired arm angles. The adaptive inverse controller computes control signals to make the arm
dynamically track this desired trajectory.

Both joints were commanded to follow desired trajectories which were independent first-order
Markov processes. Both processes were generated with a pele@®5 and fed with i.i.d. uniform
random variables with zero mean and maximum magnitude Robots are required to perform
very high-speed accurate control, so are minimum-phase systems by design. Thus, the reference
model was a unit delay.

A Mll,l);zo;zcontroller was trained to control the arm. The tracking response and control
effort for a characteristic input signal are plotted in Fig. 4.26. In (a) and (b), the desired response is
a gray line, the actual response is a solid line. Very precise control is achieved, but at the expense
of high control effort, and in particular, high slew rate.
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Figure 4.26: Tracking performance and control effort for the robot controller. In (a) and (b), the
tracking performance is shown. The desired response is a gray line, the actual response is plotted as a
solid line. In (c) and (d), the corresponding control effort is plotted. The controller had no constraints
on the control effort.

A controller was adapted where the slew rate was limited. The goal was to limit the slew rate of
the first angle tat15N - m/10ms, and to limit the slew rate of the second angleHaN - m /10ms.
The penalty function is similar to the ones used in previous examples:
(ul((1>,uf<1)l)+14.85 2 e (1)
(w . |f Uk < —1485,

h(ul((l)) = ((1> @
ul—ud,)-1485 T .
<W , ifw” > 1485

0, otherwise,
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Figure 4.27: Tracking performance and control effort for the constrained robot controller. In (a) and
(b), the tracking performance is shown. The desired response is a gray line, the actual response is
plotted as a solid line. In (c) and (d), the corresponding control effort is plotted. The controller had
slew-rate constraints on the control effort.

2
@ @
<—(“k ““)“'95), if u? < —4.95;

—5+4.95
h(ul((z)) = (U 2
u?-u?,)-4.95 @) _
<W) , if Uk > 495,
0, otherwise.

The tracking response of the constrained controller is plotted in Fig. 4.27. We see that the re-
sponse is not as accurate as the unconstrained response of Fig. 4.26, but still tracks reasonably well.
Histograms of slew-rate for the control signals of the constrained and unconstrained controllers are
shown in Fig. 4.28, and we see that the constrained controller satisfies the constraints.
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Figure 4.28: Histograms of slew rate using constrained and unconstrained controllers for the robot
example.

4.5 Summary

This chapter has three main divisions. The first is an analytic discussion of constrained control; the
second derives an algorithm to perform constrained control in the adaptive inverse control paradigm;
and the third demonstrates this algorithm with a wide variety of examples.

It was shown analytically, and verified with simulations, that precision of control comes at the
cost of high control effort. If very precise control is desired, the actuator signals are very large.
Problems with large control effort include (1) The actuator may not be able to respond to the control
command due to its physical design, thus causing degradation in the control which is not accounted
for in the design; and (2) The actuator or the system being controlled may be damaged by excessive
control effort. Since this is a significant problem, a method is devised to perform adaptive inverse
control with constraints on the control effort. The controller is adapted such that the mean-squared
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system error is minimized under the constraint that the peak control effort and/or the peak slew rate
be lower than a user-specified amount. Simulations have shown that this works very well.

If the plant is nonminimum-phase, its inverse does not exist. However, if a delay in the control
action is acceptable, then a “delayed inverse” does exist, and very precise control can be performed.
Choosing the correct delay is a significant design issue. This chapter gives a very simple method of
choosing this latency if there are constraints on the control effort. Analytical results and simulations
agree that there is a value of latency beyond which control precision does not improve. We choose
this delay as the optimal compromise between precision of control and control latency. Finally,
Table. 4.1 tabulates the architectures of the plant models and controllers used in simulations in this
chapter. The overall conclusion is that very good feedforward control may be achieved.

TABLE 4.1 FILTER ARCHITECTURES USED IN THIS CHAPTER.

Linear Nonlinear
Plant Feedforward Feedforward

System ModelP Controller,C Controller,C
Linear SISO

Unconstrained Minimum Phase FIR,0):1 FIR(20,0):1 —

Constrained Minimum Phase RiR,0):1 FIR(20,0):1 Ma4,1):20:1

Unconstrained Nonminimum Phase AR 0):1 FIR(15,0):1 —

Constrained Nonminimum Phase F4B 0):1 FIR(15,0):1 M20,1):20:1
Linear MIMO

Unconstrained FIR0,0):2 FIR(128,0):2 —

Constrained FIf%0,0):2 FIR(128,0):2 —
Nonlinear SISO

Constrained Dynamics /\/(20,1):8:1 — /\/(10+ A,1):50:1
Nonlinear MIMO

Unconstrained N(20,0):10:2 — Mu11,1):20:2

Constrained N(20,0):10:2 — Mu11,1):20:2




Chapter 5

Closing the Loop:
Disturbance Cancelling

Sometimes the news is in the noise, and sometimes the news is in the silence.
—Thomas L. Friedman ilNew York Times

5.1 Introduction

It has now been established that a disturbance-free dynamical system may be controlled with a
feedforward adaptive controller. The plant output tracks the desired output as closely as possible in
a mean-squared-error sense. It remains to determine what can be done to mitigate plant disturbance
should it be present. One basic method has been used in the past for disturbance cancelling with
linear plants [45]. This method is simplified and enhanced in the following pages. Three methods
have been attempted in the past to cancel disturbances with nonlinear plants. The first [45], based on
a derivative plant model, suffers from high complexity; the second [45], based on the filtered-epsilon
method, has been demonstrated to fail [4]; and the third [2], basedeynal model contro[9, 10,

11, 34, 5, 6] is shown in Sec. 5.2.2 to be incorrect if on-line plant modeling is performed. These
three approaches are abandoned here in favor of extending the disturbance cancelling method used
for linear plants to encompass nonlinear plants as well.

When considering how to cancel disturbances, the first idea which may come to mind is to
simply “close the loop.” Two methods commonly used to do this are discussed in Sec. 5.2.2. Unfor-
tunately, neither of these methods is appropriate if an adaptive controller is being designed. Closing
the loop will cause the controller to adapt to a “biased” solution. It is shown here that the extent of
the bias is dependent on the plant dynamics, the spectrum of the disturbance, and the spectrum of

85
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the plant’s control signal. Since these combine in a fairly complicated way, simulation examples are
presented as an attempt to show the significance of the problem.

There is no need to fear! A method is developed which improves upon previous “optimal”
results for disturbance cancelling with linear plants. It is highly effective for nonlinear systems as
well. In this chapter, some analysis is first performed to demonstrate that conventional disturbance
rejection methods fail when simultaneous on-line system identification and disturbance rejection
is performed. Analysis is done on an alternate technique, which is optimal for linear systems,
but slightly sub-optimal for nonlinear systems. Methods for adapting the disturbance canceller are
introduced, and simulations are presented to verify the analysis and the synthesis methods.

5.2 Analysis of Disturbance Cancelling
5.2.1 Correctness of Feedforward Design in the Presence of Disturbance

Until this point, disturbance has been ignored. We have not done anything to remove it and we
have not even checked to see if the design presented thus far “works” if there is disturbance. In this
section we present a proof to show that the controller adapted according to Chap. 4 causes the plant
output to converge to the desired output plus the disturbance. That is, the design is correct but does
nothing to mitigate disturbance.

Dist. wy

Uk | Plant i*

N4

Mk C Yk

\
\

0
+vY

(N
LA

P

¥
Figure 5.1: Plant modeling in the context of feedforward control. The circuitry for adapfirttas

been omitted for clarity.

We re-examine the system identification problem as depicted in Fig. 5.1. To be most general
in our analysis, we assume that the plant is nonlinear MIMO and that the adaptive controller and
adaptive plant model are also nonlinear MIMO systems. We first confirm that the adaptive plant
modelP converges t@&. From Sec. 2.3.3 we know that the optimal solution s

PP (@) = E[yk | k]
= E[P(lik) + wx | Tk]
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= E[P(lik) | U] + E[wk | ]
= P(ly) —HE[wk]
= P(li),

wherel is an infinite vector containing past values of the control sigRallk_1, ..., and where

two assumptions were made: (1) In the fourth line we assume that the disturbance is statistically

independent of the command input signgland (2) In the final line we assume that the disturbance

is zero-meart. Under these two assumptions, the plant model converges to the plant despite the

presence of disturbance. Similarly, it can be shown (using a method similar to the one in Sec. 5.2.2)
that the controller adapts to the correct solution, unbiased by the disturbance. The conclusion is that
the plant output converges to the sum of the desired optpsthe disturbance. We now investigate

how to reduce disturbance.

5.2.2 Conventional Disturbance Rejection Methods Fail

The block diagram for a feedforward control system is shown in Fig. 5.1. To complete the control
design, and reject the disturbance, the conventional approach is to “close the loop.” Two approaches
commonly seen in the literature are shown in Fig.%.Ry closing the loop we either feed back

the disturbed plant outpuk, as in Fig. 5.2(a), or we feed back an estimate of the disturbaipce

as in Fig. 5.2(b). The approach shown in Fig. 5.2(a) is more conventional, but is difficult to use
with adaptive inverse control since the transfer function of the closed-loop system is dramatically
different from the transfer function of the open-loop system. Different methods than those presented
in this dissertation are required to adapt The approach shown in Fig. 5.2(b) is callietiernal

model control[9, 10, 11, 34, 5, 6]. The benefit of using this scheme is that the transfer function of
the closed-loop system is equal to the transfer function of the open-loop system if the plant model is
identical to the plant. Therefore, the methods found to adapt the controller for feedforward control
may be used directly.

Unfortunately, closing the loop usirgjither method in Fig. 5.2 will caus® to adapt to an
incorrect solution. In the following analysis the case of a linear SISO plant controlled with internal
model control is considered. A similar analysis may be performed for the conventional feedback
system in Fig. 5.2(a), with the same conclusion.

1Alternately, we could make the single assumption that the disturbance is conditionally zero-mean given the command
input signal; however, this does not make much physical sense.

2The purpose of the~* block will be explained in Sec. 5.2.4.
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Figure 5.2: Two methods to close the loop: (a) The output,is fed back to the controller; (b) An
estimate of the disturbanc@y, is fed back to the controller. The circuitry for adapti@ghas been
omitted for clarity.

Shannon-Bode Solution forP:  When the loop is closed as in Fig. 5.2(b), the estimated distur-
bance termuy is subtracted from the reference ingut The resulting composite signal is filtered
by the controllerC and becomes the plant input signat. In the analysis done so far, we have
assumed thaiy is independent ofvk, but that assumption is no longer valid. We need to revisit the
analysis performed for system identification to see if the plant mBcill converges taP.

The direct approach to the problem is to calculate the least mean-squared-error solufon for
and see if it is equal t®. However, due to the feedback loop involved, it is not possible to obtain a
closed form solution foP. An indirect approach is taken here. We do not need to know exactly what
P converges to—we only need to know whether or not it convergdd tdhe following indirect
procedure is used a number of times in this chapter:
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Figure 5.3: An intermediate step when analyzing the convergené% of

1. First, remove the feedback path (open the loop) and perform on-line plant modeling and
controller adaptation as shown in Fig. 5.1. When convergence is reached, we know from
Sec. 5.2.1 thaP — P.

2. Atthis time,75 ~ P, and the disturbance estimaig is very good. We assume tha = w.
This assumption allows us to construct a feedforward-only system which is equivalent to the
internal model control feedback system by substitutipgor wy. This is drawn in Fig. 5.3.

3. Lastly, analyze the system, substituting for wy. If the least mean-squared-error solution
for P still converges taP, then the assumption made in the second step remains valid, and
the plant is being modeled correctly. Bfdiverges fromP with the assumption made in step
2, then it can not converge @ even if the assumption is not made and an exact analysis is
done. We conclude that the assumption is justified for the purpose of checking for proper
convergence oP.

We now apply this procedure to analyze the system of Fig. 5.2(b). We first open the loop and allow
the plant model to converge to the plant. Secondly, we assum@ihatwy. Finally, we compute

the least mean-squared-error solution Rorlf causality is enforced, this solution is the Shannon-
Bode solution from Sec. 2.2.3. To calculate it, we first determine the correlation tegpig) and

Dy (2).

(uy)n = E[UkYksn]
= E[uk - (Pkn * Uksn + wkin) |

= Pn* (Puuln + E[ukwk-i-n],

where px is the impulse response of the plant. To proceed, noteupat ¢ * (rk — wk_1) =
Ck * (r'k — wk * dk1), Wheredy is the unit impulse function. So,

(Puy)n = Pn* (Puu)n + E[Cic* (Ne — Wi * Skr1) - Wicn |
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= Pn* (Puu)n — C-n *5—_n-1* (Pww)n
Duy(2) = P@Pw(2) — 2 CEZ HPyu(2).
Similarly, we computeb,,, (2).
(duw)n = E[UkUksn]
= E[ck* ("'k — wk—1) - Ckn * (Nkgn — Wien—1) |
= C_n*Cn* ((@rr)n + (Puww)n)
D (2) = C@OCEZ H (P (2) + Puw (D).

The Shannon-Bode solution fﬁmay now be calculated (assuming in the third line that the plant
is causal)

~(opb) 1 Dy (2)
Feasel? = 47 ) [%@L
1 P(2)® ., (2) — 271 C(ZH) Py (2)
a %(z)[ Py (2) L
1 -1
_ Pz +1 [z+ C(z_ )d)ww(z)]
®4u(2) @4 (2) "
= P(2) — Ap(2).

Assumptions concerning the nature of theandwy signals are needed to simplify this further. For
example, ifry andwy are both white, then the plant model converges to the plant. Under almost
all other conditions, however, the plant model converges to something else. We conclude that in
general, an adaptive plant model made using the internal model control scheme will be biased by
disturbance. We next show that the entire control system will then be biased.

Wiener Solution for C:  The method used to trai@ backpropagates the system error through the
plant modelP in order to create an error signal to ad&ptWe can therefore consider the process of
adaptingC as that of adapting the casca@@C) to matchM, whereP is a fixed filter, unchanged
by the adaptation of.

The input toC is: 1, = rg — wi * 8k+1. The desired response of the system is equairiok
(rk — wk * 8k11). We find that the Wiener solution is
Dr14(2)
D (2)
_ M(2) [q)rr (2) + Z—lcpww(z)]
B [qur (2) + Zflq)ww(z)]
= M(2).

PO (@) =
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Therefore,C is adapted such th&P C)(z) = M(z). This means thaE©" (z) = M (z)/P(z), or

M (2) M (2)

(opt) _
= A PO

The controller and the entire system dynamics are biased by the disturbance.

The bottom line: If the loop is closed, and the plant model is allowed to continue adapting after
the loop is closed, the overall control system will become biased by the disturbance. One solution
is to “freeze” the weights of the plant model just before the loop is closed. This solution will
work, but does not allow the control system to respond to time variations in the plant dynamics.
Another solution, applicable to linear plants, is to perform plant modeling with dither signals rather
than with the command input signa} [45, schemes B,C]. However, this will increase the output
noise level. A better solution is presented next, in which the plant model is allowed to continue
adaptation. There is no extra disturbance at the output. The plant disturbances will be handled by
a separate circuit from the one handling the task of dynamic response. This results in an overall
control problem which is partitioned in a very nice way.

5.2.3 A Solution Allowing On-Line Adaptation of P

The only means at our disposal to cancel disturbance is through the plant inputgighiis signal
must be computed in such a way that the plant output negates (as much as possible) the disturbance.
Therefore, the plant input signal must be statistically dependent on the disturbance. However, we
have just seen that the input signal to the plant mdtlelnnot contain terms correlated with the
disturbance or the plant model will be biased. This conundrum was first solved by Widrow [45] and
his solution is shown (slightly modified) in Fig. 5.4.

By studying the figure, we see that the control scheme is very similar to internal model control.
The main difference is that the feedback loop is “moved” in such a way that the disturbance dynam-
ics do not appear at the input to the adaptive plant model, but do appear at the input to the plant.
That is, the controller outpuiy is used as input to the adaptive plant moBebn the other hand,
the input to the plant is equal tg + Gy, wherely is the output of a special disturbance-cancelling
circuit, X. P is not used directly to estimate the disturbance; rather, a filter whose weights are a
digital copy of those i is used to estimate the disturbance. This filter is cafeg.

In later sections we will see how to adaytand how to modify the diagram if the plant is
nonlinear. Now, we proceed to show that the design is correct if the plant is linear.
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Figure 5.4: Correct on-line adaptive plant modeling in conjunction with disturbance cancelling for
linear plants. The circuitry for adaptin@ has been omitted for clarity.

Linear Plant Model Unbiased by Disturbance

Here, we show that the scheme of Fig. 5.4, when used with a linear plant, causes the plant model to
adapt to the correct solution. As before, we follow the three-step procedure. First, we open the loop
and allowP to adapt until it converges tB. Secondly, we assume thak ~ wy. Lastly, we check
to see whether or nd® remains converged tB.
The input to the plant model ig. The signal used as the desired output when adaﬁi'mag
the disturbed plant output
Yk = (Uk + k) * Pk + wk,

where py is the impulse response of the plant, aidis the output of the disturbance cancelling
filter X. This latter term is computed to be

Ok = Xk * w * dkq1,

wherexy is the impulse response of the disturbance cancelling #teanddy 1 is a unit impulse
at timek = —1, representing a unit delay. We compute the Shannon-Bode solution for the adaptive
plant model by first computing,,, (2).

(duy)n = E[Uk Uksn * Pcn + Okn * Pirn + Wieen) |
= Pn * (Dyu)n
@4y (2) = P(@Puw(2),
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assuming thatly andwy are uncorrelated. The Shannon-Bode solution is

P ? = [ (P@®w@)(®5,@) "] (@h@) ™
= P(2),

assuming that the plant is causal. So, the plant model converges to the plant regardless of the
disturbance (if it is zero-mean and uncorrelated withand regardless of.

Nonlinear Plant Model Still Biased

We now examine the least mean-squared-error solution for the plant model if the plant is a nonlinear
dynamical system. Again, we use the three-step procedure. We first open the loop an@ alow
adapt until it converges t®. Secondly, we substitut@x ~ wg. Finally we check to see P still
converges td>, using the techniques from Sec. 2.3.3. As before, we assumethaindependent

of uk, and is zero-mean.

PP = E

wherely is an infinite vector containing past values of the control sigpalik_1, ..., and ﬁk is
an infinite vector containing past values of the disturbance canceller oGipdf,_1,... Using a
Taylor series expansion of the system dynamics at each time step around the fpoirt’get

ak]

= P(li) +E| Gf P' (i) + 0.5 Pl (G G + ‘ G

PO G = E[p(l‘jk) + 0] P (Tik) 4 0.50 Py (TG + . .-

Sincewy is assumed to be independentuf thenﬁk is independent ofi. We also assume thﬁr(
is zero-mean.
P @) = P(li) + E[G] | P (i) + E[0.50] Pydix | Gc]+H.0.T. (5.1)

—
=0

= P(ly) +H.O.T.
P(ty),

&



94 Chapter 5. Closing the Loop: Disturbance Cancelling

where “H.O.T.” means “higher-order terms.” The first order term is zero. The higher-order terms go
to zero since, by assumption, the plant is stable and its Taylor series expansion exists and is finite.
The higher-order terms may not go to zero quickly unless the plant is approximately linear, in which
case they disappear and the plant model approximates the true plant. If the plant is very nonlinear,
however, the plant model may be quite different from the plant.

So, we conclude that this system is not as good as desired if the plant is nonlinear. It may not be
possible to perform on-line adaptive plant modeling while performing disturbance cancelling while
retaining an unbiased plant model. One solution might involve freezing the weights of the plant
model for long periods of time, and scheduling shorter periods for adaptive plant modeling with the
disturbance canceller turned off when requirements for output quality are not as stringent. Another
solution suggests itself from Eq. (5.1). If tlig terms are kept small, the bias will disappear. We
will see in Sec. 5.3 thaX may be adapted using the BPTM algorithm. We can enforce constraints
on the output ofX using our knowledge from Chap. 4 and ensure thakemains small.

5.2.4 Structure of the Disturbance Canceller

This final section of analysis concerns itself with the mathematical function that the disturbance
cancelling circuit must compute. A little careful thought in this direction leads to a great deal of
insight, and some surprising conclusions are reached. First, we must consider some issues of timing
which arise since we are performing discrete-time control. Then, we are ready to investigate the
function of the disturbance canceller.

Issues of Timing

The type of adaptive inverse control examined in this dissertation is implemented by a discrete-time
digital controller. Due to the discrete-time nature of the control scheme, a subtle issue arises which
is not present in continuous-time control systems. Consider the timing diagram in Fig. 5.5.

Yk-1 Yk Y1

N I
]

axis

Uk—1 Uk Ui+

Figure 5.5: Input-output timing of a discrete-time control system.

If the sampling rate of the system is equal toT1samples per second, then the discrete-
time/continuous-time correspondence tis= KT seconds, whereis the physical time in seconds
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andk is the discrete-time index. Theh command to the plani takes place at= kT, and thekth
plant outputyy is sampled in the neighborhood tof= kT seconds. More precisely, supposing that
the plant might not be strictly propeyy must be measured at timie= (kT)™ seconds.

The command input to the plang takes finite time to compute, 3@ must be supplied at
t = (kT)~ seconds to be able to compute the disturbance-cancelling signaltime. We must
also be able to compuig slightly before timet = kT. This brings us to the important poinif
we want to cancel disturbance, we must have an estimaig oﬁfhe disturbance actually present
attimet = (kT)+) at timet = (kT)~ to be able to compute a commagto cancel it. We do not
sampley in time to computewy from it, so we must usgy_1 to estimate the disturbance at time
t = kT. To make this inherent delay more explicit, we incorporate‘ablock in the feedback path.
The delay is unavoidable in any discrete-time control system.

Heuristically Determined Structure of X

This section is a heuristic investigation of the function performed by the disturbance canceller
The analysis is precise if the plant is minimum phase (that is, if it has a stable, causal inverse),
but is merely qualitative if the plant is nonminimum phase. The goal of this analysis is not to be
guantitative, but rather to develop an understanding of the function perform¥d by

A useful way of considering the overall system is drawn in Fig. 5.6. Using operator notation,
we restate that the control goal is f¥rto produce an output so thgt = M (). We can express
Yk as

Yk = wk + P <C(Fk) + X (W1, Uk)) .

Note that the dashed line in the figure shows #idatikes the optional signak. This signal is used
when controlling nonlinear plants as it allows the disturbance canceller some knowledge of the plant
state. We will see shortly that it is not required if the plant is linear.

Dist. Wk

+
Plant Vi

[k —» C

L —p]

Wk—-1

Figure 5.6: A useful way of looking at the feedforward system dynamics.
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Next, we substitutgy = M (k) and rearrange to solve for the desired responsé.ofVe see
that

XOPY (g, Tk) = P~H(M (Fy) — k) — C(Fw)
= P (P (lix) — wk) — Uk,

assuming that the controller has adapted urdily) ~ M (fx). The function ofX is a deterministic
combination of known (by adaptation) elemefsand P~1, but also of the unknown signaiy.
Because of the inherent delay in discrete-time systems, we only kpowat any time, savk must
be estimated from previous samplesu@f 1, wx_»,... Assuming that the adaptive plant model is
perfect, and that the controller has been adapted to convergence, the internal struktusetedn
shown in Fig. 5.7. Thevk signal is computed by estimating its value from previous sampla of
These are combined and passed through the plant inverse to compute the desirdg signal

(S
x
kN
y

E[wy | wk-1] =<‘

e !

Figure 5.7: Internal structure oX.

Thus, we see that the disturbance canceller contains two parts. The first part is an estimator
part which depends on the dynamics of the disturbance source. The second part is the canceller part
which depends on the dynamics of the plant. The diagram simplifies for a linear plant since some
of the circuitry cancels. Figure 5.8 shows the structurX dér a linear plant.

—E[ Wk | Wk _1] >

=
R
A
)
\
Sl

Figure 5.8: Internal structure ok if the plant is linear.

One very important point to notice is that the disturbance canceller still depends on both the
disturbance dynamics and the plant dynamics. If the process generating the disturbance is not
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generated by filtering white noise using a linear filter, then the estimator required will in general be
a nonlinear function. The conclusion is that the disturbance canceller should be implemented as a
nonlinear filtereven if the plant is a linear dynamical syste8imulations in Sec. 5.4 demonstrate

this result.

If the plant is generalized minimum phase (minimum phase with a constant delay, as with the
first example of Sec. 3.2.1), then this solution must be modified slightly. The plant inverse must be
a delayed plant inverse, with the delay equal to the delay inherent in the plant. The estimator must
estimate the disturbance one time step into the future plus the delay of the plant. For example, if
the plant is strictly proper, there will be at least one delay in the plant’s impulse response, and the
estimator must predict the disturbance at least two time steps into the future.

It was stated earlier that these results are heuristic and do not directly apply if the plant is
nonminimum phase. We can see this easily now, since a plant inverse does not exist. However,
the results still hold qualitatively since a delayed inverse exists; the solutioX fisimilar to the
one for a generalized minimum phase plant. The structur€ obnsists of a part depending on
the dynamics of the system which amounts to a delayed plant inverse, and a part which depends on
the dynamics of the disturbance generating source, which must now predict farther into the future
than a single time step. Unlike the case of the generalized minimum phase plant, however, these
two parts do not necessarily separate. Thakismplements some combination of predictors and
delayed inverses which compute the least mean-squared-error solution.

5.3 Synthesis of the Disturbance Canceller via the BPTM Algorithm

We have seen how a disturbance cancelling filter can be inserted into the control-system design in
such a way that it will not bias the controller for a linear plant, and will minimally bias a controller

for a nonlinear plant. This, the second part of our discussion on disturbance cancelling, describes
methods to adapt the disturbance cancelling filter. The development of the algorithm is done in three
stages. The final stage is the most general, but occasions have been found where one of the earlier
(simpler) methods work just as well and adapt more quickly.

5.3.1 Controller Feedback

We first consider cancelling disturbance for a linear plant. Based on our heuristic discussion of
the dle of the disturbance canceller, we recognize that its function is that of an estimator coupled
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with a plant inverse. Supposing that we are performing straightforward inverse control (not model-
reference based inverse control), we have already trained the controller to be the plant inverse.
Therefore we can seX = —Ccopy. If the disturbance generating process is a Martingale process
then this method quickly and easily determines the optimal disturbance cancelling filter. Figure 5.9
depicts this method.
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Figure 5.9: Disturbance cancelling via controller feedback.

5.3.2 Estimator Plus Controller Feedback

Still supposing that the plant is a linear system, but that the disturbance is not a Martingale process,
an estimate of the disturbance is required in order to optimally cancel disturbance. Such an estimator
may be implemented using an adaptive linear or nonlinear filter and is very easily trained as shown
in Fig. 5.10. As has been described, the optimal estimator may be a nonlinear filter even if the plant
is a linear system. This second method separates the function of the disturbance canceller very
nicely so that the linear part (the plant inverse) is done by a linear filter, and the nonlinear part (the
predictor) is done by a nonlinear filter.

The predictorE trains rapidly using the circuitry at the bottom of the figure since a direct
error signal is available. The input to the predictor is a delayed version of the measured disturbance,
wk_». The desired response for the predictor is the measured disturligngeThe predictor learns

3A Martingale process is a special case of Markov process where the expected value of the current sample given the
past is equal to the most recent past sample.
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Figure 5.10: Disturbance cancelling via estimator plus controller feedback.

to predict the disturbance one time step into the future. Assuming that the disturbance is a stationary
random process, a digital copyy Of the predictolE is used to predicik from wy_1.

If the plant is nonminimum phase, then a delayed inverse is us€dasd the estimator must
be trained to estimate disturbance the correct number of samples into the future.

5.3.3 Training X In-Place

If the plant is nonlinear, the above methods cannot be used. The third and most general method is
to adaptX in-place. The method works on the following basis. We know that the system error is
composed of three parts:

e One part of the system error is dependent on the input command vgato€. This part of
the system error is reduced by adaptitg

e Another part of the system error is dependent on the estimated disturbanceigatoX .
This part of the system error is reduced by adap#hg
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e The minimum-mean-squared-error. This part of the system error is independent of both the
input command vector i€ and the estimate disturbance vectoin It is either irreducible
(if the system dynamics prohibit improvement), or may be reduced by making the tapped-
delay lines at the input t& or C larger. In any case, adaptation of the weightXinr C will
not reduce the minimum-mean-squared-error.

e The fourth possible part of the system error is the part which is dependent on both the in-
put command vector and the disturbance vector. However, by assumptiand wy are
independent, so this part of the system error is zero.

Using the BPTM algorithm to reduce the system error by adagings discussed in Chap. 4,
will reduce the component of the system error dependent on the ipp@ince the disturbance
and minimum-mean-squared-error are independeny, dfieir presence will not bias the solution of
C. The controller will learn to control the feedforward dynamics of the system, but not to cancel
disturbance.

If we were to use the BPTM algorithm and backpropagate the system error through the plant
model, using it to adapX as well, the disturbance canceller would learn to reduce the component of
the system error dependent on the estimated disturbance signal. The component of the system error
due to unconverge@ and minimum-mean-squared-error will not bias the disturbance canceller.

This method is illustrated in Fig. 5.11 where a complete integrated MIMO nonlinear control
system is drawn. The plant model is adapted directly, as before. The controller is adapted by back-
propagating the system error through the plant model and using the BPTM algorithm of Chap. 4.
The disturbance canceller is adapted by backpropagating the system error throogpytbiethe
plant model and using the BPTM algorithm as well. So we see that the BPTM algorithm serves two
functions: it is able to adapt both and X .

Using BPTM to adapX works well for either linear or nonlinear systems. If the disturbance
is not Martingale, if the plant is nonlinear or nonminimum phase, or if the controller is trained to
perform model-reference control (where the reference is not a simple delay) then the “controller
feedback” solution is not optimal. If the plant is nonminimum phase and a large delay is used in the
controller or if the controller is trained to perform model-reference control then the “estimator plus
controller feedback” solution is not optimal either. The BPTM algorithm produces the best results
of the three methods outlined. Since it adapts slowly, however, it can be useful to ini¥aliseng
one of the other two methods.
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Figure 5.11: An integrated nonlinear MIMO system.

5.4 Simulation Examples

We have seen some analytical results relating to disturbance cancelling, and several methods to
perform disturbance cancelling in the context of adaptive inverse control. It is now time to present
some simulation results for the plants of Chap. 3 to verify the analytical results of this chapter and
to demonstrate the viability of the disturbance cancelling methods.

5.4.1 Minimum-Phase Linear SISO Plant

The first examples we look at are for the minimum-phase tank of Sec. 3.2.1. We have already
seen (cf. Chap. 4) simulation results showing that this plant may be very effectively controlled in
a feedforward sense using either a linear FIR or nonlinear NARX filter as a controller. Controllers
were adapted to perform either unconstrained control, or control where the control effort was limited
to be between®C and 95C. We now look at the problem of disturbance cancelling.

The disturbance experienced by this plant was specified to be a periodic fluctuation in the
temperature of the hot source. A portion of this fluctuation is coupled into the plant input, with the
amount depending on the controller outpyt As such, the disturbance is statistically dependent
on the control signal. However, it can be shown that the disturbance is not correlatad watid
so the plant model will adapt to an unbiased solution, despite the disturbance.
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Figure 5.12: Plots showing the difference between different disturbance-cancelling schemes for the
unconstrained minimum-phase linear SISO system. The disturbance canceller was turned on at time
1000.
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Figure 5.13: Plots showing the difference between different disturbance-cancelling schemes for the
constrained minimum-phase linear SISO system. The disturbance canceller was turned on at time
1000.



104 Chapter 5. Closing the Loop: Disturbance Cancelling

Another interesting feature of this disturbance is that it is a nonlinear random process. That
is, the least mean-squared-error predictor of the current disturbance value given all previous distur-
bance values is a nonlinear function. We will find that the disturbance cancellingXiltehich
gives the best performance is therefore a nonlinear NARX filter.

Simulations were performed to adapt disturbance cancelling ffeskvarious types for this
plant, and some results are shown in Fig. 5.12. For these simulations there were no constraints
on the control effort. In the plots the system was run for 1000 seconds with the disturbance can-
celler turned off. Then, the disturbance canceller was turned on and the system was allowed to run
for an additional 1000 seconds (the disturbance cancelling fikelad already adapted to con-
vergence before these experiments were performed). The squared system error is plotted versus
time. In Fig. 5.12(a), we see results for the internal-model-control disturbance-cancelling scheme
of Fig. 5.2(b). As expected from the analysis, this system does not cancel disturbance well. The
plant model, shown in Fig. 5.14(a), is biased by the disturbance. The entire system becomes biased,
and the mean-squared system error is very high.

Figure 5.12(b) shows how the result improves when the system of Fig. 5.9 is used instead.
This system is identical to the one in Fig. 5.2(b) if the plant model is not allowed to adapt on-line,
but is the correct extension to the internal model control scheme if the plant model is allowed to
adapt on-line. We see that better performance is achieved when the disturbance canceller is turned
on.

Neither of these two schemes attempts to predict future disturbance values while performing
disturbance cancelling. We obtain much better results in Fig. 5.12(c) when the BPTM-adapted
system of Fig. 5.11 is used to perform disturbance cancelling. The disturbance cancelling filter
X was a sixty-tap FIR filter whose input was the estimate of the disturbanpce. It adapts to
the solution shown in Fig. 5.18(a). The solution comprises a three-step-ahead estimator (due to the
inherent two-step delay in the plant, and the one-step delay in the disturbance measurement process)
convolved with a delayed plant inverse. We also see in Fig. 5.14(b) that the plant model adapted
on-line using this scheme adapts to the correct solution.

The results in Fig. 5.12(d) are better yet! For these simulations, a NARX neural network filter
was used as the disturbance cancelling filter. Since the disturbance process is a nonlinear process,
the neural network is better able to predict future disturbance values in order to cancel them. The
filter used bothuy and wx_; as input. Figure 5.12(e) compares the results using the linear and
nonlinear filters. For the first 1000 seconds, the linear filter is used to cancel disturbance; for the
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Figure 5.14: Plots showing that the plant model may be biased by disturbance cancelling if on-line
plant modeling is performed. (:fa after adaptation for the internal model control system;Rlafter
adaptation for the “BPTM” system.

remaining 1000 seconds, the nonlinear filter is used to cancel disturbance. The nonlinear filter does
much better.

Finally, we see in Fig. 5.12(f) that the nonlinear filter still does not cancel all of the distur-
bance. The system was run with disturbance and the nonlinear disturbance-cancelling filter for
1000 seconds; the disturbance (and disturbance-cancelling filter) was turned off for the remaining
1000 seconds. Not all of the disturbance can be estimated and removed.

Returning to the issue of biased plant models, Fig. 5.15 plots the mean-squared system error
versus time for three different disturbance cancelling schemes. The system was allowed to run for
1 x 10P seconds without disturbance cancelling, and then the disturbance canceller was turned on.
The light-gray line in Fig. 5.15 shows the mean-squared system error versus time for the internal
model control system of Fig. 5.2(b). When the loop is closed, the system initially performs very
well. However, as the plant model is allowed to continue adapting, it becomes biased by the distur-
bance. In trying to invert the plant model, the controller also becomes biased. Over time, the system
error becomes worse—although still better than with no disturbance cancelling at all.

The dark-gray line shows same result for the “controller-feedback” system of Fig. 5.9. When
the loop is closed, the performance is immediately better, and remains the same over time. Con-
tinued adaptation of the plant model does not degrade system performance. However, since the
disturbance is not Martingale, we can do better by using the system of Fig. 5.11. The results for
this system are drawn as the black line. After this disturbance canceller (whose impulse response
was initialized to all zeros) was turned on, the system performance became steadily better until
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Figure 5.15: Plots showing various aspects of disturbance cancelling for the minimum-phase tank
system Learning curves for the internal model control system (light gray), “controller-feedback” sys-
tem (dark gray), and BPTM system (black).

the disturbance canceller had adapted to convergence. Even better results were obtained when the
disturbance canceller was allowed to be nonlinear, but the learning was slower.

Very similar simulations were performed for this plant when there were constraints on the
control effort. Figure 5.13 displays the results of these simulations. We see that the squared system
error is always fairly high. This is because the constraints on the control effort do not allow us to
precisely control the plant. There is always a residual error due to the constraint, in addition to any
disturbance which may be present.

The internal model control system results shown in Fig. 5.13(a) and the “controller-feedback”
system results shown in Fig. 5.13(b) are both fairly poor. When a linear filter is used to cancel
disturbance using the method of Fig. 5.11 then somewhat better results are achieved, as shown in
Fig. 5.13(c).Muchbetter results are achieved by using a nonlinear disturbance canceller, as shown
in Fig. 5.13(d), and are compared with the system error when there is no disturbance in Fig. 5.13(f).
We see that the system error with disturbance, a nonlinear disturbance canceller, and constraints
on the control effort at the output @ is lower than the system error without disturbance but with
constraints on the control effort at the output@f The nonlinear disturbance cancelling filter is
using theuk signal to cancel disturbance and provide better tracking at the same time. This is
actually cheating—the control effort at the output@fhas been constrained, but the total control
effort, ux + 0k has not been constrained. This simulation shows that the system designer must use the
constrained BPTM algorithm to adapt bathand X ; otherwise, the total control effort constraints
may be violated.
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5.4.2 Nonminimum-Phase Linear SISO Plant

Very similar simulations were performed for the nonminimum-phase tank. Since it has been deter-
mined that the internal model control system and the “controller-feedback” system do not give good
performance, they were not simulated. Instead, the BPTM algorithm was used with the system of
Fig. 5.11 to adapt both a linear and a nonlinear disturbance cancelling filter.

System error for linear BPTM system System error for nonlinear BPTM system

10 10
9 9
% 8 % 8
g 7 g 7
0 6 %2} 6
g | g
2 | }o2.
2 I B
< | | <
I I
00 20 400 600 800 1000 120 1400 1600 1800 2000 00 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s) Time (s)
@ (b)
Linear BPTM versus nonlinear BPTM system Nonlinear BPTM versus no disturbance
1.2 T T T T T T T T T 0.1 T T T T T T T T T
0.09}
% ! %0.08
cjroa» gom
] 0 006
§ 0.6 § 0.05f
= £ oo04af
Q o4t Q.
E 0.4 E 003
< 02 < 0.02
0.01
00 200 400 600 800 1000 1200 1400 1600 1800 2060 00 200 400 600 800 1000 12‘00 14‘00 16b0 1500 2000
Time (s) Time (s)
(© (d)

Figure 5.16: Plots showing the difference between different disturbance-cancelling schemes for the
unconstrained nonminimum-phase linear SISO system. The disturbance canceller was turned on at
time 1000.

The results using the linear disturbance-cancelling filter are shown in Fig. 5.16(a). We see that
it does a very credible job of removing the disturbance. However, much more disturbance remains
in the system error than with the same disturbance source and the minimum-phase tank. The linear
disturbance canceller is not able to predict the disturbance far enough into the future to cancel as
much of the disturbance. The nonlinear disturbance canceller, on the other hand, is able to predict
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the future with much more accuracy. The final performance with a nonlinear disturbance canceller
for the minimum phase tank and the nonminimum phase tank are very comparable.

Simulation results are plotted in Fig. 5.17 when there were constraints on the control effort.
The same general comments apply as for the corresponding simulations for the minimum phase
tank. Some care needs to be taken to penalize the additional control effort due to the oxtput of
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Figure 5.17: Plots showing the difference between different disturbance-cancelling schemes for the
constrained nonminimum-phase linear SISO system. The disturbance canceller was turned on at time
1000.

Finally, in Fig. 5.18, the impulse responses of the linear disturbance cancelling filters for the
minimum-phase and nonminimum-phase tank examples are plotted. Unlike the contioltaes
disturbance cancelling filters are fairly similar for these plants.
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Figure 5.18: Disturbance cancelling filteX. (a) For the minimum-phase tank; and (b) For the
nonminimum-phase tank.

5.4.3 Linear MIMO Plant

The next example we look at is the Boeing 747 linear MIMO plant of Sec. 3.2.2. This plant may
also be very effectively controlled in a feedforward sense. Controllers were adapted to perform
either unconstrained control, or control where the slew-rate of the control effort was limited. We
now look at the problem of disturbance cancelling, and consider only the case where control effort
is not constrained.

The disturbance experienced by this plant was specified to be due to gusts of wind operating
directly on the sideslip-angle—an internal state variable in the state-space representation of the
system. Raw wind disturbance was simulated by passing white noise through a linear filter whose
spectrum was the same as the spectrum of wind speeds. The resulting wind speed was divided by the
forward speed of the airplane, and the arc-tangent of the quotient was added to the sideslip-angle.
Hence, the disturbance source was a nonlinear random process. In all practicality, however, the
disturbance was small enough that the arc-tangent operator was approximately linear. We will see
that a linear disturbance canceller is able to do almost as well as a nonlinear disturbance canceller.

Figure 5.19 plots the results of disturbance cancelling. Since the plant is minimum-phase,
the estimator-feedback system of Fig. 5.10 was used to cancel disturbance. This proved to train
much more rapidly than the system of Fig. 5.11, and gave just as good results. Both the linear
and nonlinear disturbance cancelling systems are able to remove almost all of the disturbance, as
can be seen in Fig. 5.19(a) and (b). When the two are compared in Fig. 5.19(c), we can not detect
any difference visually (although the results in Table. 5.1 show that the nonlinear system is able to
do somewhat better). Finally, when the nonlinear disturbance-cancelling results are compared to
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feedforward control without disturbance in Fig. 5.19(d), we see that almost all of the disturbance
has been removed.
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Figure 5.19: Plots showing the difference between different disturbance-cancelling schemes. The
disturbance canceller was turned on at time 1000.

5.4.4 Nonlinear Plants

Simulations were also performed to demonstrate disturbance cancelling for the nonlinear plants of
Chap. 3. The reader may recall that the nonlinear SISO plant was selected to be a large ocean-going
ship for which we would like to control the heading angle. The nonlinear MIMO plant was a two-
link robot arm for which we would like to control the joint angles. Both of these plants were initially
unstable, and were stabilized using feedback. Simple unity feedback was used to stabilize the ship,
and a PD controller was used to stabilize the robot.
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This feedback has two effects. Most importantly, it stabilizes the system dynamics. Secondly,
however, it also performs some disturbance rejection. The feedback works in such a way that the
input command is modified to cancel any error in the output, and this error can include disturbance.

Therefore, we find that the results for disturbance cancelling for the nonlinear plants are not
as spectacular as the results for the linear plants. The reason for this is that the system error with
disturbance and without disturbance are not very different. The disturbance canceller improves upon
the system error with disturbance, but the difference is so small that the disturbance canceller may
be considered unnecessary for these plants. Results in Table. 5.1 show that the disturbance canceller
does improve performance slightly.

Disturbance can not always be ignored with nonlinear plants! Simulations for nonlinear SISO
plants in App. B show that the methods developed for nonlinear disturbance cancelling can work
very well. The reader is referred to that appendix for further details.

5.5 Summary

This chapter discusses disturbance cancelling for linear and nonlinear, SISO and MIMO plants.
It is organized into three main divisions. The first division explores some analysis of disturbance
cancelling; the second division presents methods to adapt a disturbance canceller; and the third
division presents results to verify the analysis and the disturbance cancelling algorithms.

The analytic section first shows that the feedforward control system of Chap. 4 still works if
the plant is disturbed, but that nothing is done to reject the disturbance. That is, the output of the
plant will converge to the sum of the desired outplutsthe disturbance. The conventional method
to remove disturbance is to “close the loop.” It is shown that if the loop is closed, on-line plant
modeling will not converge to the right solution. This biases the controller as well, so the entire
system performs in a sub-optimal way.

A method is adapted from reference [45] which performs disturbance cancelling in a more
clever way. It is shown that a linear plant model will not be biased by this proposed scheme, but
that a nonlinear plant model will still be somewhat biased. Since the plant is assumed to be stable,
this bias is small, and simulations later show that the bias is acceptable.

Further analysis explores the function performed by the disturbance canceller. It is discovered
that the disturbance cancelling filt&r performs two duties: (1) It predicts the disturbance at the
plant output one time step into the future; and (2) It computes the control signal required to eliminate
that disturbance. The first duty is a function of the statistics of the disturbance signal, and the



TABLE 5.1 STEADY-STATE MEAN SQUARED SYSTEM ERROR FOR ALL PLANTS SIMULATED.

Svst Feedforward Int. Model Controller Linear Nonlinear No
stem
4 Control Control Feedback Canceller Canceller Disturbance
Linear SISO
Unconstrained Minimum Phase 2.475262 0.678148 0.362881 0.032043 0.005100 0.000020
Constrained Minimum Phase 3.231202 1.697775 1.581939 1.032886 0.331095 0.757910
Unconstrained Nonminimum Phase 2.474227 — — 0.029332 0.004689 0.000002
Constrained Nonminimum Phase 3.026145 — — 0.587182 0.126064 0.551610
Linear MIMO
Unconstrained 0.077286 — — 0.000068 0.000054 0.000011
Nonlinear SISO
Constrained Dynamics 0.001326 — — — 0.001302 0.001248
Nonlinear MIMO
Unconstrained 0.006061 — — — 0.005221 0.003594

AN

buiieaure) aaueqinisig :dooq ayj buisojn g Jaideyd



5.5. Summary 113

second duty is a function of the plant dynamics. In general, an estimator to predict future values
of disturbance is a nonlinear function, so the disturbance canceller is best realized by a nonlinear
adaptive filter, even if the plant dynamics are linear!

In the synthesis section of this chapter, three methods are proposed to perform disturbance
cancelling. The simplest methods only work for linear plants. The first simply uses a copy of
the controller as the disturbance canceller. It is optimal if the disturbance is a Martingale process
and the reference model for the controller is the identity functigi{z) = | . The second method
cascades a disturbance-predicting filter with the plant inverse and is optimal if the disturbance is not
Martingale, but the reference model for the controller is still the identity function. The third method
works for linear and nonlinear plants, and uses the BPTM algorithm developed in Chap. 4 to adapt
the disturbance canceller weights.

The third division of the chapter presented simulations to verify the analytical results and the
disturbance cancelling algorithms. Simulations were performed to test disturbance cancelling for
all of the plants introduced in Chap. 3, with the conclusion that better performance was always
obtained using the disturbance canceller.

The internal model control scheme was simulated in conjunction with on-line plant model-
ing. It was shown to fail, just as theory predicts. All three of the “correct” disturbance cancelling
schemes presented in the synthesis division of this chapter were simulated as well. In general, it was
found that the BPTM-adapted disturbance canceller of Fig. 5.11 worked best. A surprising result of
the analysis which is verified in the simulations is that the optimum disturbance canceller may be a
nonlinear system even if the plant is linear. Numerical results from the simulations are tabulated in
Table. 5.1. All values are steady-state system mean-squared error, averages dgérsimulated
time steps, computed after the plant model, controller and disturbance canceller had converged.
Finally, Table. 5.2 tabulates the architectures of the plant models, controllers and disturbance can-
cellers used in simulations in this chapter. The overall conclusion is that extremely good disturbance
cancelling may be achieved.
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TABLE 5.2 FILTER ARCHITECTURES USED IN THIS CHAPTER.

Linear Nonlinear
Plant Feedforward Disturbance Disturbance
System ModelP Controller,C CancellerX CancellerX
Linear SISO
Unconstrained Minimum Phase F(H-%,O):l F|R(20’0):1 F|R(60’0):1 -/\/([60,60],0):30:1
Constrained Minimum Phase RiR,0:1  FIR20,0):1 FIR(60,0):1 -A/([60,60],0):1021
Unconstrained Nonminimum Phase  FdRo):1  FIR(15,0):1 FIRe0,001  N(60,60],0):30:1
Constrained Nonminimum Phase f4B,0):1  FIR@5,0):1 FIRe0,001  V(60,60],0):30:1
Linear MIMO
Unconstrained I1ky,3):2 lIR(4,4):2 lIR(12,8):2 /\/’(12’2):5:2
Nonlinear SISO
Constrained Dynamics Meo,1:8:1  N@22,1):50:1 — MN([20,20],1):10:1
Nonlinear MIMO
Unconstrained M20,0:10:2 N11,1):20:2 — M(4,5],1):20:2




Chapter 6

Imperfect Sensors

If I had any humility 1 would be perfect.
—Ted Turner

6.1 Introduction

All work done in adaptive inverse control to this time has made the assumption that the sensors used
to measure the plant output are ideal. This may often be a realistic assumption; however, for many
applications an ideal sensor would either be prohibitively expensive or altogether impossible. This
chapter proposes simple modifications to the existing adaptive inverse control structure to properly
compensate for non-ideal sensors.

An ideal sensor measures the exact value of a system variable or output at some point in time.
An imperfect sensor adds dynamics, distortion and/or noise to the measurement process. We may
consider an imperfect sensor to comprise an ideal sensor, cascaded with some added dynamics
and corrupted by sensor noisg, This is shown in Fig. 6.1. The true value of the variable being
sensed igk. The output of the sensor i&. The operatolS may be linear or nonlinear, and may
include dynamics. The sensor noiggis considered to be any zero-mean and bounded random
process, statistically independentyqf

| Sensor |

| Noise, v, |

| 4>é—,—>

‘ Ideal Yk o + ! -
Y —7"| sensor g + Ye

Figure 6.1: A non-ideal sensor.

115
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In the rest of this chapter, the effect of the imperfect sensor on plant modeling, feedforward
control, and disturbance cancelling are discussed. Additionally, ways are proposed to compensate
for imperfect sensors, and to restore full functionality to the control system. Simulation results are
presented to verify the new analysis and design.

6.2 Analysis of Adaptive Inverse Control with an Imperfect Sensor
and Synthesis of a New Design

6.2.1 Effect ofS on Plant Modeling

With an imperfect sensor, we must modify our perception of the plant modeling process. If an
adaptive model is made in the same way as before, it now has a different meaning. We see this by
examining Fig. 6.2. The sensor is explicitly included in the diagram. The “plant model” now models
the dynamics of both the plant and the sensor and may include some effects due to the disturbance. If
we assume that the sensor is linear (the plant may either be a linear or nonlinear dynamical system),
the least mean-squared-error solution for the function performed by the adaptive block i§Beled

SP™ @0 = E[y] ]
= E[S(P(Ti) + wx) + vk | U] (6.1)
= E[S(P(i )| k] +E[Swy) | ] (6.2)
= B[S(P(@) | t].

If, in addition to the sensor being linear, the plant is also linear, the adaptive element converges to
S(z)P(z). Note that if the sensor is nonlinear, then Eq. (6.2) does not follow from Eg. (6.1), and
the disturbance termvy may bias the solution for the adaptive block to include effects due to the
disturbance. Zero-mean sensor noise never biases the solution as long as it is independent of the
input signaluy.

So, the adaptive plant model includes the dynamics of both the plant and the sensor. Therefore,
a change in terminology is appropriate. Whereas before we considered a plantﬁ’nmlehow
consider a system mod&P. If the sensor is ideal§ = 1), then the two are equivalent. Otherwise,
we must carefully consider the effects of the sensor on the control system operation.

Note that it is not wise to try to invert the sensor dynamics in order to isolate the plant dy-
namics for plant identification. The sensor may be nonlinear or nonminimum phase and not have an
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Sensor
Dist. wy Noise, vy
+ i+ -
Uk > Plgnt S > > Vi
+ +
Y +
D)
SP

Figure 6.2: The system model is an adaptive model of the combined dynam&snél P.

inverse. The inversion process also magnifies sensor noise. Therefore, we prefer to adapt a system
model including both the sensor and plant dynamics, and modify the rest of the control scheme to
compensate.

The bottom line: If the sensor noise is zero-mean, then it has no effect on plant modeling. How-
ever, the sensor dynamics do become part of the adaptive plant model. Therefore, the adaptive
model is really a system modep, including the combined dynamics of the plant and sensor.

6.2.2 Effect of S on Feedforward Control

When used in an adaptive inverse control system, an imperfect sensor has different effects on feed-
forward control and on disturbance cancelling. Here, we look at the effect of the sensor on feed-
forward control, and how to correctly control a plant even when the sensor is not ideal. With no
compensation for the imperfect sensor, a diagram of the control system is shown in Fig. 6.3.

The true output of the system y&. The measured output i&. In this figure, the measured

~(SY9

system errog " is calculated as the difference between the desired output of the system and the

measured outputg

= dk — Vk. This error is backpropagated through the system model via
the BPTM algorithm and is used to adapt the controller. Nothing has changed in this diagram
(compared with Fig. 4.9) except for the interpretation of the measured sjgraid the ole of
the system model. Previouslyy was equal toy, and P was modeled. Nowyk includes sensor
dynamics and sensor noise, aBBmodels the combined sensor and plant dynamics.

This system adapt€ such that the mean squareéﬁ?ys) is minimized. Thus, the measured
output § matches the desired outptit as closely as possible, in a mean-square sense. Unfortu-
nately, we do not wanjk to matchdy; rather, we want the true outpyt to match the desired output

d.
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Sensor
N Dist. wy Noise, vy
> Uk iwL iwL -
Ik C > Plant > > S (D > Yk
_ P + + I
\ N
\ _
\\ ________ | éb ____________ _(157 él(<sys)
/ A+
d
> M K

Figure 6.3: Uncompensated feedforward control.

To compensate for the imperfect sensor we must first note that the sensor noise does not affect
the control as long as it is zero mean and uncorrelated with the plant imp(@ithdependence is
required in a nonlinear control system). Under these conditions, we have seen that the system
model will converge to an unbiased solutid®— SP. The controller will also converge, albeit to
the wrong solution:C — [SP|~1M, rather than the correct solutiof, — [P]~M. The problem
with performing adaptive (feedforward) inverse control with an imperfect sensor is not due to the
sensor noise, but due to the sensor dynamics.

As one approach to solving this problem, we might try to find a way to adaptively nSoaied
P separately, and to use the mod8landP to adapt a controlle€. However, this is fundamentally
impossible. The measured system outgit,consists of two components. One component is the
part of § which is correlated with the control inpuk. The other component is uncorrelated with
Ux. The system model adapts to explain the parfiofvhich is correlated withuy; the rest is a
combination of disturbance and sensor noise. The correlated part is a function of two dynamical
systems connected in cascade with a single vector iapaind vector outpugy. Without prior
information onS or P, we cannot separate them using this information alone.

We are forced to consider other solutions which require that eRloerS (or both) be knowra
priori. The approach taken here is to assume that the sensor dyraareg&nown, or approximated
asS. This is felt to be realistic as manufacturers usually supply this information with their sensors.
If the sensor dynamics are not known, they must be identified by some system identification method.

Our model of the sensor dynamics is cal®dThese are incorporated into the control system
as shown in Fig. 6.4. The reference motikis now cascaded with the approximate sensor dynamics
S, and the desired response signals are re-labeled. The output of the reference model @ called
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Figure 6.4: Compensated feedforward control.

and the output of the sensor model is callkd A “measured system error” is calculated to be

A(5Y9
&

we minimize the mean square of the unmeasurable systemé%r: dk — Yk. Using operator

= di — V. If we assumeS = S and minimize the mean square of this measured system error,

notation and the method from Sec. 5.2.2 we see that actual plant output converges to the correct
plant output if the sensor is invertible.

SPC—> SM
PC —» S'SM
= S S+As|M
= M+[S'Ag]M
= (PO +[s7tAg]M, (6.3)

whereS = S+ As. So, if S= S, then the system is properly controlled.§f;é S, then the sensi-
tivity to errors inSis equal toS*AgM. If M is made to be “small” where there are uncertainties
in the transfer function of the sensor, the overall sensitivity to error will be small.

The bottom line:  In order to compensate for sensor dynamics and noise in the feedforward control
process, we needlpriori knowledge of either the plant model or sensor model. The approach taken
here is to assume an approximate sensor m'édeUsing this sensor model, a small change is
made to the control system to compensate for the sensor dynamics. Sensor noise does not degrade
feedforward control in any way if it is zero-meaand uncorrelated with the sensor input.

1The mean of the sensor noise may be subtracted from the output of a sensor with a non-zero-mean sensor noise to
accomplish the same level of performance for any general sensor-noise signal.
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6.2.3 Effect ofS on Disturbance Cancelling

Thirdly, we consider the effect of a non-ideal sensor on disturbance cancelling. First, we look at the
effect of sensor dynamics; secondly, we look at the effects of sensor noise.

Effect of Sensor Dynamics on Disturbance Cancelling: The feedforward dynamics of the sys-

tem were compensated by cascadivigwith S. Let us see what effect this has on disturbance
cancelling. First, we assume that the sensor noise is zero. In Chap. 5 we saw that the disturbance
cancellerX was adapted so that

M (Fie) = P(ik + X (Ui, k—1)) + wk.
If we include the sensor and sensor model, then this becomes
§(M (Fk)) =S <I3(Uk + X(l._jk, I/Ekfl)) + If)k)

So, X is adapted so that the mean-squared-measured error is minimized. We want the mean-squared
true error to be minimized. I§ = S, then we have achieved the desired result. Evé’r;&f S, this

is the best we can do. Note that$is nonminimum phase, the disturbance cancelling will be
poorer than if the sensor were ideal, since sensor dynamics must be implicitly inverted to cancel
disturbance.

Effect of Sensor Noise on Disturbance Cancelling: We saw in Sec. 6.2.2 that sensor noise does
not affect the feedforward dynamics of the system. We will see that it does affect the feedback
dynamics. The circuitry of Fig. 5.11 for disturbance cancellation may be too aggressive if there is
sensor noise. Let us consider the effects of the two uncertainty sources in the system:

e wy: Plant disturbance is physical and affects the true output of the system. We want to cancel
as much of it as possible.

e vk Sensor noise is not physical—it is an artifact of the measurement process and is not part
of the true output of the system. We dotwant to cancel it.

If we use the disturbance cancelling system we have developed so far, then our estimate of the plant
disturbancewy ~ S(wy) + vk. If we cancel all ofwy then the true plant output will be perturbed
from the desired output by the amourS~1(%y). This is bad!



6.2. Analysis and Synthesis of Adaptive Inverse Control with an Imperfect Sensor 121

We can look at this more formally. We wish to minimize the true mean-squared system error.
The best that we can do is to ad#@pand X such that

t - /_(
Y = E[dk | Fi, Wk—1]-
We do not have access to the true error signal, so we must find another way t@€aatapX . If we
minimize the mean-squared measured error, we find the following:

él((sys = dk— %
= S(dy) — <3()7k) + Uk)

= (S(60 - w) - S0
If we minimize the mean square of this error, we get
S(TP°) = E[ S(d) | Fi, wk-1] — Evk | Fi wk-1].

We see that there is an extra term in this squtietE[vk | M, ﬁk,l]. Thus, the sensor noise biases
the disturbance canceller. Under general conditions, minimizing the mean-squared measured error
does not minimize the true mean-squared system error.

To achieve the correct solution, we definmadifiederror gy

&k

0k — Vi + Ok
S(dy) — (5()7k) + Uk) + Uk
= (8(@0 — v+ i) - SG0.

If we minimize the mean square of this error, we get
SOP)\ _ mra gy |7 R B e 2
S(yk ) - E[ S(dk) | Mk, wk—l] E[Uk Uk | Nk, wk_l].
If we definedy = E[ vy | Tk, z’f?k_l], then
S(Y™) = E[ S | Fi, #r-1].

If Sis linear andS = S, then
Y = E[dk | Fic, k1],
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which is the correct solution. Errors Biwill bias this solution somewhat. Noninvertible nonlinear-
ities cause the true system error to be unobservable, so are also a problem (as they would be for any
control system). In general, however, by minimizing the mean squafig @fe minimize the true
mean squared system error.

To computesy, we need to knowik. Again, we are faced with the lack-of-information prob-
lem. We knowwy_; ~ S(wk_1) + vk_1, but need to separate it into its two components. We need
external information to be able to do this. This is unfortunate, but unavoidable. So, using this
external information, we design a filteF":

IT)k,l ~ S(J)k,l) —+ Vg1 —> F ——> ﬁk

So, if we filterwg_1, then we geti. The filter F is designed using standard digital filtering design
methods to implement the functidE{vk | Tk, ﬁk_l]. Synthetic sequences 8{(wy) andvx may be
generated in a computer simulation, and a neural network or adaptive linear filter may be trained as
shown in Fig. 6.5.

Sensor
Dist. wyg Noise, vk
- ~ iwL — r"+ +
Uk + Uk > P id/ > S j\ D
Y+ W
> z1 F
> SP ¥
(a)
A
~ +
wek —> S >— 71 F
A+

Uk

(b)
Figure 6.5: Generating. If the sensor is nonlinear, the system in (a) must be used. If the sensor is

linear, the system in (b) may be used.

If we know certain autocorrelation functions, we can also compute the Shannon-Bode solution
for F if the sensor is linear:

(Pav)n = E[(S(Wk-1) + vk—1) vkn]
= E[S(Wk-1)vksn] + E[vk—10k4n]
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= E[Sk+1 % vk - Vin ]
= 8—k—l * (¢vv)n
P50(2) = Z+1(Dm)(z)-

Similarly,

P55(2) = S@DSEZ Py (2) + Py (2)
Fomd?) = | (7100 @)(05,@) 7|, (05:) 7"

This analytical result can be used to design the filter directly, or the spectrum may be used to derive a
filter via the common digital filter design tools of least-square fitting and the Remez algorithm [28].

White Sensor Noise: An important special case is when the sensor ngiss white. We quickly

F(Opt)

see tha (2z) = 0. Sensor noise may be assumed to be white if the only errors are quantization

causal
noise, and a sufficient number of bits are used in the quantizer [23]. If the only sensor imperfection

is quantization noise, then the structure of Fig. 5.11 works well without changes!

Function of X with an Imperfect Sensor. One more observation should be made before moving

on to some simulation examples. Regardless of whether or not the sensor noise is correlated, proper
adaptation of the disturbance canceMewill result in the internal structure shown in Fig. 6.6. Itis
identical in form to the structure in Fig. 5.7, except that the estimator performs a different function.
Before, the estimator tried to estimate the current disturbance value given past estimates of the
disturbance. Now, the estimator tries to estimate the current disturbance given past estimates of the
disturbanceplussensor noise. Unless the estimator is able to perfectly separate the disturbance and
sensor noise, it will not perform as well as previously. The gain of the disturbance canceller must be
lower in order to eliminate as much disturbance as possible without trying to remove sensor noise.

S
T
KN

A

E[wy | Wi-1] =(‘

e !

Figure 6.6: Internal structure oX if there is sensor noise. Note that_; ~ S(Wk_1) + Vk_1.
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The bottom line:  This final change in our block diagram is shown in Fig. 6.7. The overall control
design has been complicated by the imperfect sensor, but each new task is easy to accomplish. The
system is still very simple given the powerfully precise control which may be achieved.

6.3 Simulation Examples

We have seen some analysis demonstrating the effects of imperfect sensors on adaptive inverse
control. A modified structure has been presented to compensate for the effects of the sensors. This
section presents some simulation results to verify the main points of this chapter. For all of the
simulations, the minimum-phase tank example from Sec. 4.4.1 was controlled. The simulations
differ only in the sensor used to measure the plant output.

6.3.1 The Sensors

The sensors used in the simulations were divided into three basic categories. The first category
contained a family of minimum-phase low-pass filters; the second contained a single nonminimum-
phase low-pass filter; the third contained a nonlinear filter. Sensor noise was added to the output of
the linear sensors.

The minimum-phase low-pass sensor was nominally a second-order digital Butterworth filter
with cutoff frequency of 0.4 Hz. For a number of simulations, it was assumed that the actual filter
was not precisely known. For these simulations, a family of eleven filters were used. They were all
second-order digital Butterworth filters with cutoff frequencies between 0.35 Hz and 0.45 Hz, incre-
mented by 0.01 Hz. The transfer functions of these filters are listed in Table. 6.1. The magnitude
and phase response of these filters are plotted in Fig. 6.8(a) and (b). The solid line represents the
nominal sensor dynamics with cutoff at 0.4 Hz. The dashed lines represent the other family mem-
bers. In Fig. 6.8(c), the pole-zero plot of the family of filters is depicted. We see that all the filters
are minimum-phase, with their poles safely within the unit circle, and the two zeros right on the unit
circle atz=—1.

The nonminimum-phase low-pass sensor had the same poles as the nominal minimum-phase
sensor, but had zeros at= —1.05 andz = —0.95. Finally, the nonlinear sensor computed the
function ¥, = 100tantiyk/c), wherec was either 90, 100, or 110.
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6.3.2 Linear Sensor; No Sensor Noise

The first set of simulations used the minimum-phase low-pass sensor dynamics, with no additional
sensor noise. The sensor mo8akas chosen to be equal to the nominal sensor. For the first run, the
actual sensof was equal t&5. The system modeSPwas allowed to adapt to model the combined
effect of the plant and sensor dynamics. Figure 6.9 compares the impulse response of the plant
and the impulse response of the entire system. Careful examination shows that there are significant
differences. We can not assume that the control systems of Chap. 5 will adequately control the
system. We need the modified approach derived in this chapter.

In order to test the sensitivity of the control system to the accuracy of the sensor S)ael
suite of simulations were run wheBwas given the nominal sensor dynamics, and the actual sensor
varied in cutoff frequency from 0.35Hz to 0.45Hz. For each of the eleven cases, the simulation
was run until convergence was achieved, and the steady-state mean squared (true) system error
was recorded. Note that in practice we do not have access to the true error, but because we are
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TABLE 6.1 TRANSFER FUNCTIONS OF THE MINIMUM-PHASE SENSORS. THE SUBSCRIPT
DENOTES THE CUTOFF FREQUENCY OF THE FILTER IN HERTZ.
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Figure 6.9: Impulse response of plant compared with impulse response of system.

simulating the system, we know the true error. The results of the simulation are plotted as the solid

line in Fig. 6.10.

We see that the system error is minimum where the sensor rﬁdd@lqual to the true sensor
S. As S becomes more and more different frdnthe mean squared system error increases. We
can also see this in Fig. 6.11. In Fig. 6.11(a) and (b) we see the tracking performance of the system
when the sensor has cutoff frequency at 0.35Hz and 0.45 Hz, respectively. The tracking is good. In
Fig. 6.11(c) we see tracking when the sensor model is exact. The tracking is excellent.
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Sensitivity of System to Uncertain Sensor
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Figure 6.10: Sensitivity of system error to sensor uncertainty. The horizontal axis is the cutoff
frequency of the true sensor; the vertical axis is the steady-state mean-squared system error. The solid
line shows error when the reference-model is a delay of two seconds; the dashed line shows when the
the reference-modelis a delay of two seconds followed by a low-pass filter with cutoff of 0.25 Hz.

In order to decrease the sensitivity of the control system to the sensor, we consider Eq. (6.3).
We see that the reference model should have low gain where the sensor has uncertainty. In order
to test this, model-reference control was performed where the reference model was an fourth-order
digital Butterworth filter with cutoff frequency of 0.25 Hz
0.0940+ 0.375% 1 + 0.563% 2 + 0.375% 3 + 0.094Q~*
1+ 0.486Q 2+ 0.0177z4 ’
The simulations were redone, and the steady-state mean-squared (true) system error is plotted as the

M(2) =

dashed line in Fig. 6.10. As we can see, the sensitivity of the control system to sensor uncertainty
is much lower. In Fig. 6.12(a) and (b) we see the tracking performance of the system when the
true sensor had cutoff frequency of 0.35 Hz and 0.45 Hz, respectively. The tracking is very good. In
Fig. 6.12(c) we see the tracking when the sensor model is exact. There is not much visual difference.
Further simulations were done where there was disturbance and a disturbance-cancelling filter
X was adapted. The actual sengwas equal to the sensor modgl Table. 6.2 lists the steady-
state system mean-squared error after adaptation. Comparing the results with those of Table. 5.1,
we see that equivalent performance is achieved. The sensor dynamics do not affect performance.
Simulations were also done for the nonminimum-phase sensor where the sensor model was
equal to the sensor. Table. 6.2 lists the steady-state system mean squared error for these simulations.
Equivalent performance was achieved, compared with the case of the minimum-phase sensor. Note
that it is important that the sensor model zeros and sensor zeros are identical, or an unstable inversion
will implicitly take place. Since most sensors are not nonminimum-phase, this should rarely be a
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Tracking: S has Cutoff at 0.45 Hz
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Tracking: S has Cutoff at 0.4 Hz

Figure 6.11: Tracking performance dfue sys-

tem outputyk (black) versuslk (gray) whenS was
uncertain. The system reference model was a de-
lay of two seconds. In all plots, the sensor model
S was a second-order Butterworth low-pass filter
with cutoff at 0.4 Hz. In (a), the true sensBihad
cutoff at 0.35Hz; in (b), the true sensSthad cut-

off at 0.45Hz; and in (c) the sensor was equal to
the sensor modes.

TABLE 6.2 STEADY-STATE MEAN SQUARED SYSTEM ERROR FOR DISTURBANCE CANCELLING.

Minimum-Phase Low-Pass Nonminimum-Phase Low-Pass
Sensor LinearX NonlinearX LinearX NonlinearX
Ideal (Chapter 5) 0.032043 0.005100 0.032043 0.005100
No Sensor Noise 0.030434 0.005321 0.029315 0.005094
White Noise 0.174887 0.110836 0.136364 0.111265
Correlated Noise, N& 0.172897 — 0.170283 —
Correlated Noise, Usds 0.057709 — 0.057171 —

problem. A sensor might be nonminimum-phase due to a pure delay term, but this is easy to measure
and cancel out exactly in the sensor model.
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Tracking: S has Cutoff at 0.35 Hz Tracking: S has Cutoff at 0.45 Hz
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Figure 6.12: Tracking performance dfue sys-
tem outputyi (black) versusdy (gray) whenS
was uncertain. The system reference model was
a delay of two seconds followed by an fourth-
order Butterworth low-pass filter with cutoff at
0.25Hz. In the three plots, the sensor mdSlelas

a second-order Butterworth low-pass filter with
cutoff at 0.4 Hz. In (a), the true sens8tad cut-

| off at 0.35Hz; in (b), the true sens6rhad cutoff

o 5 10 15 2 2 0 3 4« 4 s at0.45Hz; andin (c) the sensor was equal to the

Time (s) sensor modes.

6.3.3 Linear Sensor; White Sensor Noise

Simulations were also done to test disturbance cancelling when the sensor was either the nominal
minimum-phase sensor or the nonminimum-phase sensor, but when there was an addition of white
sensor noise. To each measurement, a uniformly distributed random value bet3d@% was
added. This roughly corresponds to the quantization error which would be experienced if the system
used a four-bit uniform quantizer when measunfpg As we saw eatrlier, the filtef is not needed
when the sensor noise is white.

Results are listed in Table. 6.2. As expected, the performance is worse than if there was no
sensor noise. However, the system still works well. The gain of the disturbance caxcel@not
be as high because we don’'t have as accurate an estimate of the true disturbance.
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6.3.4 Linear Sensor; Correlated Sensor Noise

Thirdly, simulations were done to test disturbance cancelling when the sensor noise was correlated.
The sensor noise was generated by passing uniformly distributed i.i.d. random variables with max-
imum magnitude 0.1 through a first-order Markov filter whose pole was=a0.95. Because the
sensor noise is highly correlated, much of it can be removed, and the disturbance cancellation is
better. FiltersF were adapted for the minimum-phase and nonminimum-phase sensor using the
system of Fig. 6.5(b).

Table. 6.2 lists two entries where there is correlated sensor noise. The first entry shows what
happens when the correlation in the sensor noise is ignored and thé& figtaot used. The steady-
state system mean-squared error is high. The second entry shows the steady-state mean-squared
system error if the filteF is used in the adaptation &f. The error is much lower, verifying the
earlier analysis.

6.3.5 Nonlinear Sensor

Finally, simulations were done with the nonlinear sensor. The sensor Bodes set to the nominal
senso@(yk) = 100tanifyy/c), with c = 100. The actual sensor was of the same form, with

90, 100 or 110. Tracking performance for these three cases is shown in Fig. 6.13. The tracking is
very good in all three plots.

6.4 Summary

This chapter discusses the effect of non-ideal sensors on the adaptive inverse control scheme. It is
organized into two main divisions. The first division analyzes the problem of non-ideal sensors and
proposes a solution. The second division presents simulation results to validate this new scheme.

A non-ideal sensor was first defined. An ideal sensor measures the exact value of a system
variable or output at some point in time. An imperfect sensor adds dynamics, distortion and/or
noise. It was shown that non-ideal sensors have different effects on plant modeling, feedforward
control and disturbance cancelling.

With an ideal sensor, an adaptive plant model converges to the undisturbed dynamics of the
plant. With a non-ideal sensor, the adaptive model converges to the combined dynamics of the
plant and the sensor, and may include a bias based on the disturbance if the sensor is nonlinear.
Therefore, we no longer consider an adaptive plant mBgdelt now consider an adaptive system
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Tracking: S = 100tanhyy/90) Tracking: S = 100tanhiyy/110

Figure 6.13: Tracking performance dfue sys-
tem outputy (black) versusdy (gray) whenS
was nonlinear. The system reference model was
a delay of two seconds. In (a), the true sen-
sor computed 100 taiit /90); in (b), the sensor
computed 100tan(lyx/110), and in (c), the sensor
computed 100 tarlyk/100), which was equal to
the sensor modeS.

model SPwhich contains the dynamics of both the plant and the sensor. Sensor noise does not bias
the adaptive system model if it is zero-mean and independent of the true signal being sensed.

If the feedforward-control-system architecture of Fig. 6.3 were used with a non-ideal sen-
sor, the controller would converge to the wrong solution. The measured oitpduld track the
desired outputl very well, but the true system outpyt would not. The control system architec-
ture must be revised to compensate for the sensor dynamics. The revised architecture is shown in
Fig. 6.4. The reference-mod#f is now cascaded with an estimate of the sensor dynaﬁlidé
S=Sthen minimizing the mean-squared measured system error also minimizes the mean-squared
true system error. I8 =# S, then the system exhibits some sensitivity to the uncertain@. imhis
can be minimized by making the gain of the reference-maddow in the frequency band of un-
certainty. Once again, the effect of a non-ideal sensor on feedforward control is entirely due to the
sensor dynamics—zero-mean sensor noise (independent of the true signal being sensed) does not
bias the solution.
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Unlike system modeling and feedforward control, disturbance cancelling is not affected by
the sensor dynamics. It may be affected by sensor noise. The disturbance-cancelling scheme of
Chap. 5 may be too aggressive. It attempts to remove all of the measured disturbance, which now
includes sensor noise. The sensor noise is not a real plant disturbance, but rather an artifact of the
measurement process. We do not wish to cancel it from the plant output. If the sensor noise is
correlated, then a special filtermust be included in the design to properly generate the signal used
to adapt the disturbance cancelkér(cf. Fig. 6.7). If the sensor noise is white, then this filter is not
needed, and then the system architecture presented in Fig. 5.11 will work (if augment@aﬂéh
the reference model). In either case, the disturbance canceller adapts to a solution which depends
on the sensor noise. Since it is not able to separate the disturbance and sensor noise completely, it
must have a lower gain than if the sensor were ideal. Disturbance cancelling cannot be as good as
before.

The second division of the chapter presented simulations to verify the analysis of the chapter.
Tests were done to show the sensitivity of the control system to uncertainties in the plant model.
The sensitivity was reasonable, and was shown to decrease when a referencé/nzaelused
which had low gain where there were uncertainties in the sensor transfer function.

Tests were also done with a nonlinear sensor and it was shown that the compensated system
performed very well, and was highly insensitive to uncertainty in the nonlinearity.

Tests were done without sensor noise to show that the compensated system architecture pro-
vides equivalent performance to a system where the sensor was ideal. Tests were done with sensor
noise to show that system performance degrades gracefully. If the sensor noise is correlated and the
filter F is not used to adapt the disturbance cancelling fiethen performance was shown to be
worse than ifF is used, as theory predicted.

Finally, Table. 6.3 lists the architectures of the adaptive and non-adaptive filters used in the
simulations of this chapter. The overall conclusion is that it is possible to effectively compensate
for an imperfect sensor. Very good performance may be achieved.



134

Chapter 6.

Imperfect Sensors

TABLE 6.3 FILTER ARCHITECTURES USED IN THIS CHAPTER.
Adaptive
Filter Architecture
M lIR(5,4):1
S IR(3,2):1
F FIR(50,0):1
SP FIR(40,0):1
C FIR(20,0):1
X (linear) FIR60,0):1

X (nonlinear)

M60,60):30:1




Chapter 7

Conclusions and Future Work

| hate quotations.
— Ralph Waldo Emerson

7.1 Summary

The problem of controlling a plant may be broken down into three separate tasks: stabilization of
the plant dynamics; control of plant dynamics; and control of plant disturbance. Using conventional
control techniques, one uses feedback to treat all three problems simultaneously. Compromises are
necessary to achieve good solutions.

Adaptive inverse control is a method to treat the three control tasks separately. First, the plant
is stabilized; secondly, the plant is controlled using a feedforward controller; thirdly, a disturbance
canceller is used to reject plant disturbances. Adaptive filters are used as controller and disturbance
canceller, and algorithms adapt the transfer functions of the filter to achieve excellent control.

Prior work in adaptive inverse control has focused primarily on feedforward control and dis-
turbance cancelling for SISO linear plants, and on feedforward control for SISO nonlinear plants.
This dissertation extends the prior work to encompass constrained feedforward control and distur-
bance cancelling for SISO or MIMO, linear or nonlinear plants, where the sensors used to measure
the plant output are possible non-ideal.

7.1.1 Constrained Adaptive Feedforward Control
We assume that the plant is stable. If it is not stable, we must first stabilize it using feedback.

Adaptive inverse control is used to control the stabilized plant.

135
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Our next task is to make an adaptive plant model. This process was briefly outlined in Chap. 2.
We assume that the adaptive plant modeling task continues while the plant is operating, so that any
time-variations in the plant dynamics are learned, and so that the controller learns to control the
plant as it varies.

Thirdly, we need to train a feedforward controller for the plant. This task is well understood
for SISO linear plants [45] and has been studied for SISO nonlinear plants [2]. In this dissertation,
we see how to extend adaptive inverse control to be able to control MIMO linear and nonlinear
plants, and to satisfy constraints on the control effort.

Precision of control comes at the cost of high control effort. If very precise control is desired,
the actuator signals are very large. Problems with large control effort include (1) The actuator may
not be able to respond to the control command due to its physical design, thus causing degradation
in the control which is not accounted for in the design; and (2) The actuator or the system being
controlled may be damaged by excessive control effort. Since this is a significant problem, a method
is devised to perform adaptive inverse control with constraints on the control effort.

A gradient-descent based algorithm was developed to update the weights of the controller. The
algorithm decouples nicely, allowing separate implementation of the adaptive controller and plant
model; only local information is needed for the weight update. Very general user-specified con-
straints on the control effort may be satisfied. Simulation results show that very good performance
may be achieved.

If the plant is nonminimum-phase, its inverse does not exist. However, if a delay in the control
action is acceptable, then a “delayed inverse” does exist, and very precise control can be performed.
Choosing the correct delay, with no constraints on the control effort, is a significant problem. As
the delay increases, the quality of control also increases; however, system latency is undesirable so
we must compromise between precision and latency. If there are constraints on the control effort,
choosing the delay is simple. There is a value of latency beyond which control precision does not
improve. We choose this delay as the optimal compromise between precision of control and control
latency.

7.1.2 Disturbance Cancelling

With the design completed to this point, the plant output will track the desired output if there is no
disturbance. If there is disturbance, then the plant output will track a signal which is equal to the
desired output plus the disturbance. For this reason, a disturbance rejection method is required.
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Commonly, output feedback is used to perform disturbance rejection. An alternate method
used by internal model control is to feed back an estimate of the disturbance. Neither method works
for adaptive inverse control if the plant model is allowed to adapt on-line. The disturbance biases
the solution of the plant model, and causes the entire system to adapt to an incorrect solution.

Instead of closing the loop directly, an adaptive filter is trained to perform disturbance can-
celling. This method does not bias the plant model if the plant is linear, but does bias the model
somewhat if the plant is nonlinear. Simulations seem to indicate that the bias is tolerable.

The function performed by this disturbance-cancelling filter has two parts. The first part esti-
mates the current disturbance value given past disturbances; the second computes a signal to cancel
the disturbance. Since the least mean-squared-error estimator of the disturbance may be nonlinear,
a nonlinear disturbance cancelling filter is always recommended, even if the plant is linear.

The algorithm developed to adapt a feedforward controller can also be used to adapt the dis-
turbance canceller. This is a great boon to the system designer—only one algorithm needs to be
coded! Simulation results show that disturbance cancelling works very well for linear, nonlinear,
SISO and MIMO plants.

7.1.3 Imperfect Sensors

One assumption which has been implicit in the above discussion is that the sensors used to measure
the plant output are ideal. An ideal sensor measures the exact value of a system variable or output
at some point in time. An imperfect sensor adds dynamics, distortion and/or noise. It was shown
that non-ideal sensors have different effects on plant modeling, feedforward control and disturbance
cancelling. If the sensors are not ideal, performance may be severely degraded.

A method is proposed to compensate for the non-ideal sensors. Simulations were done without
sensor noise to show that the compensated system architecture provides equivalent performance
to a system where the sensor was ideal. Tests were done with sensor noise to show that system
performance degrades gracefully. An imperfect sensor may be effectively compensated, and very
good performance may be achieved.

7.2 Future Work

Self-Stabilization of Unknown, Unstable Plants: To make use of inverse control, the plant must
be stable or it must be stabilized. At the moment, this is the only step in the adaptive inverse control
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design process which is not done automatically. Real-time stabilization of an unknown, unstable
and possibly nonlinear plant is a difficult problem, and must be investigated.

Fault Tolerance (to Catastrophic Failure): The biggest problem with catastrophic failure is
plant stabilization. Combinations of the available parameters must be tried rapidly in order to deter-
mine if stabilization is possible, as above.

As one further step toward fault tolerance, banks of controllers might be pre-trained. There
will be a controller for each of a number of possible pre-specified failure modes. In the event of
a true and unexpected failure, combinations of these controllers may be used to generate a control
signal which will allow continued operation even when there is catastrophic damage to the plant.

Multi-Rate Control: It was seen in Chap. 4 that a discrete-time control system experiences arti-
facts due to the sampling circuit on the A2D converter. Ringing in the continuous-time plant output
is not sensed. The controller adapts to minimize the measured mean-squared system error, and is
unaware of the fact that oscillation is occurring in the plant output.

Multi-rate control might be attempted to help compensate for discretizing the control system.
The plant would be controlled at a faster rate than control signals enter the controller. By supplying
multiple “desired-responses” for each control input, the output of the plant may be smoothly brought
from one value to another.

Integration with Higher-Level Control:  This dissertation considers regulator and servo control,

but does not consider terminal control. The concepts may be applied to terminal control as follows:
A plant controlled by an adaptive inverse controller would become an “equivalent new plant” to be
controlled by an adaptive terminal controller. The high-level systems would supply the command
input to the inverse controller, which would do the low-level detailed control of the plant. The
inverse control system makes the equivalent plant simpler than the actual plant, and does an optimal
job of cancelling disturbance. This facilitates the high-level control process.

Faster Learning Algorithms:  Training of the controller and disturbance canceller is often a very
slow process. Methods of initializing a linear controller (cf. Chap. 4) speed this process up sig-
nificantly. Methods still need to be developed to speed up learning for nonlinear controllers. One
possible solution might be to investigate Kalman-style learning algorithms [37, 32, 33]. These al-
gorithms have proven to be very memory intensive, so methods must be found to simplify them.
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7.3 Final Comments

As a researcher, it has been very rewarding to work on this dissertation. Although careful thought
brought understanding, many of the simulation and analytical results were puzzling at first and
caused much curiosity. For example, a nonlinear controller and disturbance canceller may be needed
for constrained control even if the plant is linear; if the only sensor imperfection is due to quanti-
zation, then we don'’t need to worry about it—the scheme of Fig. 5.11 works well; if the plant is
nonminimum-phase, the control latency may be chosen by eye off a simple plot.

Some of the results are still puzzling and invite further work. The accurate generalization of
the controllers in App. B to follow untrained reference signals is amazing. Much further research
needs to be done, and some of it is outlined above. However, it is time to wrap up this part of the

work before proceeding to the rest.

It is the glory of God to conceal a matter;
to search out a matter is the glory of kings.
—Proverbs 25:2

It has been fun playing king.
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Appendix A

Stability Analysis of the
LMS and Backpropagation
Algorithms

Remember that there is nothing stable in human affairs; therefore avoid
undue elation in prosperity, or undue depression in adversity.
—Socrates

A.1 Introduction

It is a major concern for adaptive control that the adaptive process converges and is stable. This
appendix reviews the LMS and backpropagation algorithms, and derives approximate stability cri-
terion for the adaptive process by imposing limits on their adaptation rates. For the adaptive linear
filter, it is shown that this stability criterion results in an algorithm similar to alpha-LMS. A cor-
respondingly normalized version of the backpropagation algorithm is derived for neural networks.
Special thanks to Raymond Shen and Daniel Carbonell who helped work out some of the details.

A.2 Linear Filters and the LMS Algorithm

An adaptive FIR linear filter is shown in Fig. A.1. The input to the filter is the sigrahnd a vector
of the present and thl — 1 most recent input samples is stored{p. The output of the filter is
computed to bgy = le Wk, whereW is a vector of weight values (filter coefficients).

The adaptation algorithm for this filter is the ubiquitous LMS algorithm, pioneered by Widrow
and Hoff [17, 44]. LMS was chosen over other adaptive algorithms such as Recursive Least Squares
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Figure A.1: Finite-impulse-response (FIR) linear filter.

(RLS), since it is more robust [16]. The weights of the filter are adapted by performing a stochastic
gradient descent on the error surface of the output squared error. At any lnsfaeutput cost

function is 1
Jk = E%a
where
& = Ok — Yk.
The corresponding gradient is:
dJ d Yk
AWk & Wi
= —eXk.

Therefore, the weight update rule for LMS is:
Wi1 = Wk + ne Xy,

whereu is the adaptation rate. The choicewofvill determine whether or not the adaptation process
is stable, so we are motivated to determine its stable range. There are many ways to go about doing
this, but the method chosen here generalizes well to the backpropagation case to follow.

A.2.1 Stability of the LMS Algorithm

One very powerful approach to determine stability and convergence is to use the Lyapunov method.
If a time function is positive and decreasing, then it converges and is stable. There are two com-
monly chosen candidates for convergence—one of them is convergence of the weight vector, and
the other is convergence of the output error. Convergence of the weight vector is most important
for applications such as LPC speech coding which make explicit use of the weights. We are more
concerned here with convergence of the output error. Therefore, the Lyapunov fuvcison

v—12
k—2Q<-
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If Vk can be shown to be positive and decreasing when the filter is adapted via the LMS algorithm,
then we conclude that the output error converges and the adpative process is stable. By construction,
Vi is positive. We now proceed to find conditions which ensureWhas decreasing.

The difference in the Lyapunov function from time stefpo time stepk + 1 is:

Ay = Vg1 — Yk = % [e§+1 - eﬁ] .
The error difference due to the learning can be represented by
&1 = & + Ag.
Assuming that the input and desired responses remain the same from tirkdtep 1,

&+1 = Ok — Yk+1

= Ok — Wiy1 Xk
& = Ok — Yk
= d — W Xk

Ag, = &1 — &
= — (W — W) X«
= —ATWka

= —peXy Xk,

whereAy, is determined by the LMS weight update equation. Therefore,

1
Ay, = E (ZQ(AQ( + Aé()

1
= Aa< (a<+§Aa<)

2 1 2
= —pe|[ Xl @—Euekllxkll

1
= —ueﬁ||xk||2<1—§u||xkn2).

For Vi to be decreasingyy, must be negative. We find that

2

O<pu<-——.
Il Xk lI?
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It is interesting to note that jf is allowed to vary with the input, and (more specifically) is set
to o /|| Xk||%, then the above condition specifies that @ < 2. This is the well-known algorithm
and stability condition for alpha-LMS! It is at first surprising that we came up with this nice answer
given the questionable assumption made in the derivation. However, the result helps explain the
analysis being performed here.

Rather than being a steepest descent adaptation rule, alpha-LMS is known to be an error cor-
rection rule [43]. By choosing = 0, no part of the error is being corrected by this weight adapta-
tion. Furthermore, by choosing = 1, all of the current error is being corrected, and by choosing
a = 2, we are exactly over-correcting the error.alt> 2 then we have over-corrected the weight
vector to the extent that the error increases over what it currently is. Since exactly cortbiging
error can cause other input patterns to have higher error than before (and hence cause high missad-
justment in the adapted process)is usually chosen to be between 0.1 and 1.

By relating alpha-LMS to the above result we see that the “proof” given does not explicitly
promise convergence of the output but rather gives us is a sensible range Wée can use it to
dynamically change, as in alpha-LMS:

o

Kk = T 50
Il X lI?

or, we can make: constant over time by choosing:

pw=_inf —s,
0<j<oo || Xjll2

or, we can use the minimugpa computed to this point in time:

k= min ——.
o<j<k || XjlI?

The adaptive learning rate of the later method is the one used in this work. It ensures that we are
never over-correcting the error. Furthermore, the initial high learning rate allows faster convergence.

A.3 Neural Networks and the Backpropagation Algorithm

Neural networks are interconnected structures of simple processing elements which crudely model
the function of a biological neuron. Each artificial neuron (hereafter referred to simply as neu-
ron) has the composition shown in Fig. A.2. Internally, the scalar product of the input vegtor

1The input vector is augmented by adding a zeroth element, always equal to 1.
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and a weight vectok\ is computed, and the output is a nonlinear function of this scalar prod-
uct: yx = f(leWk). In this work, the nonlinear function is chosen to be the sigmoidal function:
f () = tanh(-). Modifications to the value of the weight vector allow different output functions to
be realized.

Figure A.2: Artificial neuron.

By combining many of these simple neurons into a layered network, where the input vector of

a given neuron is comprised of all the outputs of the neurons in the previous layer, a very powerful
computational tool is achieved. The layer of neurons connected to the output of the network is called
the output layer, and all other layers are called hidden layers. This structure is shown in Fig. A.3,
configured as a nonlinear transversal filter. It has been shown by Kolmogorov [21] that such a
network with a single hidden layer and a sufficient number of neurons is capable of computing

(with some set of weight vectors) any continuous nonlinear function of the inputs to any degree of
accuracy.

Neuron

Figure A.3: Nonlinear transversal filter.
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The most popular learning algorithm, due mostly to its simplicity and its robustness, is the
“Error Backpropagation” algorithm. This algorithm was originally discovered by Werbos [41] but
was independently developed and popularized by Rumelhart, Hinton and Williams in 1986 [35].
The backpropagation algorithm, like LMS, is a stochastic gradient descent algorithm for weight
update.

To derrive the backpropagation algorithm, we consider the neurons to be numbered, such that
X is the input vector to théth neuron, andV,, s, andy; are the weight vector, internal sum and
output of that neuron, respectively. Again, we use the mean squared error cost function, so at any
point in time,k, the output cost function is

1
Jk = Eeﬁ,

where
& = Ok — Yk.
For a neuron in the output layer, the corresponding gradient is:
3 I dJ Sk
Wik 050 Wik
= —a k(5K Xik

To compute the gradient of the error for neurons in the hidden layers, the chain rule must be used:

d Jk d Jxk 8S,k
o Wi k 05,k 9 Wik
93 Y
dYik 0S k
0 Jx

= — /(5. Xk
9 Yik

0k 0Sjk |,
= —— | (s, Xk
[XJ: 0Sj .k aYi,k:|
= |:Z5j,kwi:j,ki| /(5,10 Xk

j

= f’(S,k)XkZSj,kwi:j,k-
j

The summation ovey in the fourth line is the summation over all neurons to which the ougput
of neuroni is connected.§; k then, is the derivative of squared error with respecs;tp and is
recursively computed backwards through the network.
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To summarize, the weights of the network are changed as follows:
Wi k1 = Wik — udi k Xi ks

whereW, y is the value of the weight vector in théh neuron after th&th learning step.
u is the learning rate.
X .k Is the input to theth neuron, including the bias input of 1.
i is the derivative of the squared error for that neuron.

For an output layer neuron,
Sik=—-axf'(sk,

wheres y is the result of the scalar product in the neuron. For any other neuron,
Sik= f'(sk Z(Sjwi:j,k,
j

wherew;.j k is the weight connecting the output of thi&d neuron to the input of thgth neuron.
The summation is over all neurons fed by the output of neuron

A.3.1 Stability of the Backpropagation Algorithm

Stability for a Single Adaline

Before addressing the issue of stability for a neural network whose weights are adapted by the
backpropagation algorithm, we first consider the simpler case of a single neuron. Such a neuron, or
Adaline, is shown in Fig. A.2.

We proceed to analyze it in a similar fashion to the adaptive linear filter. The Lyapunov
function is again chosen to be:

The difference in the Lyapunov function from time stefo time stegk + 1 is:
1
Bv = Vi1 = Ve = 5 [y — €]
The error difference due to the learning can be represented by

a<+1=a<+Aef<-
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Again, assuming that the input and desired responses remain the same

&1 = Ok — Ykt1
= ok — F (W1 Xk)
& = Ok — Yk
= dx — (W Xg)
Ag, = &41— &
= — (F W1 X0 — (W X))
= — (W X+ Ay X0 — £ O] X))

of
X ymwTx ¢

= — /(W Xi) Ay, Xk

%

where f (x) is the sigmoidal function used by the neuron, and the approximation is used by expand-
ing the Taylor series and discarding all terms of second order and higher. To proceed, we define
& = WkT Xk, and replace\y, by the backpropagation weight update equation:

Aec ~ —ul f/(801%aXy Xk.

Therefore,
1

Avk = > (23<A9K + Aé()

1
= Aa< (@ + EAQ(>
1
= —u[ f/(s0)%el XklI? <eK = Sul f/<sK>]2eK||xk||2)
1
= —u[f/(&)]2e§||xk||2<1— Eﬂ[f/(S()]ZHXkHz)-

For Ay, to be negative, we need that:

2

O<pu<—"—-5——.
[ /(80121 Xkl
Stability for an Entire Neural Network

In order to extend the above analysis to a network of neurons, with possibly many outputs, the
mathematical steps can become very complicated [4]. Happily, there is an easier solution. Rather
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than retaining the cost functio¥ = (1/2)ef, we use a vector cost functiovk = (1/2) EJ Ex,
where the vectoE has one entry for each neuron in the network, and contains the errors of each
neuron. Vi, then, is equal to the sum of the squares of the errors at the output of each neuron. A
sufficient condition forVi to be decreasing is for each of the errors to be decreasing. Furthermore,
we allow each neuron to have its own learning rat@. Therefore, for all output neurons, we have
already solved the stability criteria and have discovered the acceptable range of learning rate. It only
remains to determine the range of learning rate for hidden neurons.

A hidden neuron has no explicit desired response, and hence no measure of error. However,
we can construct an error “by analogy” with an output layer neuron, and state:

&k = ik
’ f/(sk)
Therefore,

Aay = i T/(S.08 kl Xikli2
AVi.k = Aa,k (Q,k - Ae.k)

= ui (5.0 Xi k%8 Ok + }Mi f7(s.1081 k| ik |I?

’ ’ "\ s 2 Y ’
1 , 2
= maﬁknxi,knz(—H i (f'(5.0) ||xi,k||2).

From the last line, we can conclude that the conditiompfor stability is the same for hidden layer
neurons as for output neurons! Therefore, we conclude:

2
/(50120 Xi k1%

0<puj <

for each neurom in the network.
As with the linear filter, there are a number of ways to use this result. The method used in this

work is to choose: L

= min .
o<j<k [ /(51211 Xi k2

Mik

A.4 Summary

This appendix proposes methods to adaptively control the learning rate when using the LMS or
backpropagation algorithms. The analysis is based on an approximate Lyapanov method, and at-
tempts to find the maximum learning rate which will ensure convergence. A rigorous theoretical
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treatment of the convergence properties of the algorithms is difficult and has yet to appear. How-
ever, these approximate analyses give very useful insight into the stable range for each of these
algorithms. In all cases, checks with computer simulation indicate that the analytical results pre-
sented here are sufficiently accurate for design purposes.

The adaptive learning rates were used with all simulations reported in this dissertation. While
the results were not derived for the case of recurrent neural networks and linear filters, it was found
in practice that they worked just as well when “blindly” applied even in those cases. Much frustra-
tion was saved by having the adaptive system find the right “ballpark” learning rate automatically.



Appendix B

More Nonlinear
SISO Examples

Example is not the main thing in influencing others. It is the only thing.
—Albert Schweitzer

B.1 Introduction

In the main text, a few practically motivated control tasks were chosen to illustrate the principal
results of this dissertation. Here, rather than burden the previous discussion, we consider seven more
SISO nonlinear plants. These have been proposed by other researchers investigating adaptive inverse
control for nonlinear SISO systems [2, 4]. This appendix will show that the methods developed in
this dissertation are able to control these seven systems. The plants are defined, system identification
is performed (in the presence and absence of disturbance), feedforward control is accomplished, and
disturbance cancelling is demonstrated.

B.2 System Identification

This section describes the seven different nonlinear SISO plants, and demonstrates system iden-
tification for each of them. First, the systems are identified inabsenceof disturbance, and a
summary plot of the system identification process is presented in Fig. B.8. Secondly, system iden-
tification is performed, starting again with random weight values, inpitesenceof disturbance,

and a summary plot is presented in Fig. B.9. For the cases where a recurrent plant model was used,
it was trained using a series-parallel method first to accomplish coarse training. Final training was
always in a parallel connection to ensure unbiased results. The RTRL algorithm was used.

151
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A variety of plants are considered. The collection includes nonlinear FIR and nonlinear 1IR
plants; plants described in state-space, plants described with nonlinear difference equations (and
combinations of the two); and both minimum-phase and nonminimum-phase plants. Similarly, a
variety of ways to inject disturbance are considered. Since the plants are not motivated by any
particular ‘real’ dynamical system, the command signal and disturbance sources are artificial as
well. In each case, command signal is uniform i.i.d., which was chosen since it is the most difficult
to follow. The raw disturbance source is a first-order Markov process. In some cases the Markov
process is driven by i.i.d. uniform random variables, and in other cases by i.i.d. Gaussian random
variables. The disturbance is added to either the input of the system, to the output of the system, to
a specific state in the plant’s state-space representation or to an intermediate stage of the processing
performed by the plant.

System 1: The first plant we consider was initially proposed in [26]. The plant’s block diagram is
shown in Fig. B.1, and the difference equations defining its dynamics are:

-1
S = 2 +U§71
1+s,
Yk = Sk + disk.

Plant identification in the absence of disturbance was performed usWg 8:s:1 network,
with the plant input signalik being i.i.d. uniformly distributed betweenr-R, 2]. Results of system
identification are shown in Fig. B.8.

dist,

+
O z*l Yk

Y+

U ——> ()8

“)
1+()2

Figure B.1: Block diagram of system 1.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-
cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range
[—0.5,0.5]. The filter used to generate the first-order Markov process was a one-pole filter with the
pole atz = 0.99. The resulting disturbance was added directly to the output of the system. Note
that the disturbance is addatter the nonlinear filter, and hence it does not affect the internal state
of the system.



B.2. System Identification 153

Plant identification in the presence of disturbance was performed using theAégngs:1
network, with the plant input signal, being i.i.d. uniformly distributed between-p, 2]. Results
of system identification are shown in Fig. B.9. The plant model very closely approximates the
undisturbeddynamics of the system (which is the goal).

System 2: The second nonlinear SISO system is a generalization of the first. The plant’'s block
diagram is shown in Fig. B.2 and the difference equations defining its plant’s dynamics are:

S = —<L 4 sin(uc )
1+
Yk = S +disk.

Plant identification was performed in the absence of disturbance uﬁiff@ggg;l network, with the
plant input signali, being i.i.d. uniformly distributed between-[L, 1]. Results of system identifi-
cation are shown in Fig. B.8.

dist,

Y+

+

Uy —» sin(") 71 Yi

Q)
1+0)?

Figure B.2: Block diagram of system 2.

Disturbance was a first-order Markov process, generated by filtering a primary random process
of i.i.d. random variables. The i.i.d. random variables were distributed according to a Gaussian
distribution with zero mean and standard deviatioh. OThe filter used to generate the first-order
Markov process was a one-pole filter with the pole at0.99. The resulting disturbance was added
directly to the output of the system, as with system 1, and does not affect the internal state of the
system. Plant identification was performed in the presence of disturbance using th&/gaime
network, with the plant input signal, being i.i.d. uniformly distributed between-[L, 1]. Results
of system identification are shown in Fig. B.9.

System 3: The third plant is a nonlinear transversal system, defined by:

yi = tan* (ug_1 — 0.5uy_» + distc_1) .
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Its block diagram is shown in Fig. B.3. Plant identification was performed in the absence of dis-
turbance using &/(3,0):2:1 network, with the plant input signak being i.i.d. uniformly distributed
between {2, 2]. Results of system identification are shown in Fig. B.8.

dist;

+
Uk Abé—b 71— %Z’z

+

\

tamri() F— Y

Figure B.3: Block diagram of system 3.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-
cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range
[—0.05,0.05]. The filter used to generate the first-order Markov process was a one-pole filter with
the pole az = 0.99. The resulting disturbance was added to the input of the system. Plant identifica-
tion was performed in the presence of disturbance using the 8481§:2:1 network, with the plant
input signaluy being i.i.d. uniformly distributed betweenr-R, 2]. Results of system identification
are shown in Fig. B.9.

System 4: The fourth plant is also a nonlinear transversal system. Unlike system 3, however, it is
also nonminimum-phase. The difference equation defining its dynamics is:

Yk = expUk—1 — 2ux_2 + dist_1) — 1.

Its block diagram is shown in Fig. B.4. Plant identification was performed usNg;@);g;l net-
work, with the plant input signaly being i.i.d. uniformly distributed betweenr-D.5, 0.5]. Results
of system identification are shown in Fig. B.8.

dist

4>é+—>
Uy z1-2772

+

\

exp(-) —1 b—» Yk

Figure B.4: Block diagram of system 4.

Disturbance was a first-order Markov process, generated by filtering a primary random process
of i.i.d. random variables. The i.i.d. random variables were distributed according to a Gaussian
distribution with zero mean and standard deviatiod30 The filter used to generate the first-order
Markov process was a one-pole filter with the pole at0.99. The resulting disturbance was added
to the input of the system, as with system 3. Plant identification was performed in the presence of
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disturbance using the sam§gs,o):3:1 network, with the plant input signaix being i.i.d. uniformly
distributed between{0.5, 0.5]. Results of system identification are shown in Fig. B.9.

System 5: The fifth system is a nonlinear plant expressed in state-space form. An equivalent
transfer-function form is shown in Fig. B.5. The system consists of a linear filter followed by a
squaring device. The difference equations defining this plant’s dynamics are:

0o 1 0.2 17
X = [ 02 02 ]xk1+[ 1 ]uk1+[ 0 :|d|3tk1

& = [ 1 Z]Xk
vk = 0.3(s02.

Plant identification was performed using\@lo,g;);g;lnetwork, with the plant input signai, being
i.i.d. uniformly distributed betweern{1, 1]. Results of system identification are shown in Fig. B.8.

0.3z4+0.18
72-0.2z+0.2

disty —»

0.66z+ 0.264
72-0.2z+0.2

+

Y ‘)2
Py » 3 ——> Yk

(D

U —»

+Y
w

Figure B.5: Block diagram of system 5.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-
cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range
[-0.5,0.5]. The filter used to generate the first-order Markov process was a one-pole filter with
the pole atz = 0.99. The resulting disturbance was added directly to the first state of the system.
Plant identification was performed in the presence of disturbance using the\§ap).g:1 net-
work, with the plant input signalk being i.i.d. uniformly distributed between-[L, 1]. Results of

system identification are shown in Fig. B.9.

System 6: The sixth system was first suggested in reference [45]. It comprises a linear filter
followed by a nonlinear squashing function, and followed in turn by another linear filter. Its block
diagram is shown in Fig. B.6. The difference equations defining this plant’s dynamics are:

S = 0.4s¢_1+ 0.5u

Yk = 0.8yk—_1 + tanh(sc) + disty.
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Plant identification was performed using\@\:,,l);lo;lnetwork, with the plant input signai, being
i.i.d. uniformly distributed betweernH1, 1]. Results of system identification are shown in Fig. B.8.

tanh()

0.5z L
Uy ———» > (1 > —
k z_04 A e Z-08 W

dist;
! +

Figure B.6: Block diagram of system 6.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-
cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range
[—0.05,0.05]. The filter used to generate the first-order Markov process was a one-pole filter with
the pole az = 0.95. The resulting disturbance was added to an intermediate point in the system, just
before the output filter. Note that the disturbance affects the gtaiethe system. Plant identifica-
tion was performed in the presence of disturbance using the 44gn8:10:1network, with the plant
input signalux being i.i.d. uniformly distributed betweenr-[L, 1]. Results of system identification
are shown in Fig. B.9.

System 7: The final system is a generalization of the sixth system. The nonlinearity in the sixth
system is static—it has no memory. In the seventh system, this static nonlinearity is replaced by one
having memory or “phase.” It is a type of hysteresis device. This device makes the system have two
equilibrium states as opposed to the previous plants which all had a single equilibrium state. The
system is shown in Fig. B.7 and the difference equations defining its dynamics are:

S = 0.4s(_1 + 0.5uk
) 0.8yx_1 +0.8tanhsc — 2), if s > s_1;
Yk = disk +{ .
0.8yk_1+ 0.8tanh(sc +2), if ¢ < s_1.
Plant identification was performed using\:0,10):30:1network, with the plant input signa being
i.i.d. uniformly distributed betweernH1, 1]. Results of system identification are shown in Fig. B.8.

. disg
Hysteresis
0.5z i+
A4

u > 1 (1 >
KT 2204 - + z—-08 )

Figure B.7: Block diagram of system 7.

Disturbance was a first-order Markov process, generated by filtering a primary random process
of i.i.d. random variables. The i.i.d. random variables were distributed according to a Gaussian
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distribution with zero mean and standard deviatiobl0 The filter used to generate the first-order
Markov process was a one-pole filter with the polezat 0.95. The resulting disturbance was
added to an intermediate point in the system, just before the output filter, as with system 6. Plant
identification was performed in the presence of disturbance using the 8a980):30:1network,

with the plant input signalik being i.i.d. uniformly distributed betweenr-[L, 1]. Results of system
identification are shown in Fig. B.9.

Summary of System Identification: In all cases, a neural network was found which satisfactorily
identified the system. Each system was driven with an i.i.d. uniform control signal. This was not
characteristic of the control signal generated by the trained controller in the next section, but was a
starting point and worked quite well to initialize the plant model for use in training the controller.
Each plant produced its own very characteristic output for the same input, as seen in Fig. B.8, but it
was shown that neural networks could be trained to identify each system nearly perfectly.

When disturbance is added, it is useful to think of the “disturbed plant dynamics” and the
“nominal plant dynamics.” In each case, the system identification process matched the nominal
dynamics of the plant, which is what theory predicts, and what we would like.

B.3 Feedforward Control

After system identification was done, the controller was trained to perform feedforward control of
each system. The control input signal was always uniform i.i.d. random input. Since the plants
themselves are artificial, this artificial control signal was chosen. In general, it is the hardest con-
trol signal to follow. The plants were undisturbed. Disturbance cancelling for disturbed plants is
considered in the next section.

Note that the control signal generated by the trained controller is not an i.i.d. uniform signal.
Therefore, the system identification performed in the previous section is not sufficient to properly
train the controller. It provides a very good initial set of values for the weights of the controller,
however, and system identification continues on-line as the controller is trained with the BPTM
algorithm.

First, the controller was trained with an i.i.d. uniform command input. The reference model, in
all cases (except for system 4), was a unit delay. When the weights had converged, the values of the
network weights were frozen, and the controller was tested with an i.i.d. uniform, a sinusoidal and
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Figure B.8: Plots showing system identification of
seven nonlinear SISO plantsthe absense of distur-
bance The gray line (when visible) is the true plant
output, and the solid line is the output of the plant
model. In all cases, the input to the plant was uni-
formly distributed white noise (although, the ampli-
tudes used to drive the various plants differed. See
text for details).Note the very different responses to
similar inputs
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Figure B.9: Plots showing system identification of
seven nonlinear SISO plaritsthe presence of distur-
bance The dashed black line is the disturbed plant
output, and the solid black line is the output of the
plant model. The gray solid line (when visible) shows

D o5

S o what the plant output would have been if the distur-
E——o.s bance were absent. This signal is normally unavail-
< = able, but is shown here to demonstrate that the adap-

tive plant model captures the dynamics of the true

plant very well. The input to each plant was uni-

wosw 4O|ter5;tior610 °of %% formly distributed white noise, with different ampli-
tude ranges for each plant.
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a square wave to show the performance and generalization of the system. The results are presented
in Figs. B.11to B.17.

Generally (specific variations will be addressed below) the tracking of the uniform i.i.d. signal
was nearly perfect, and the tracking of the sinusoidal and square waves was excellent as well. We
see that the control signals generated by the controller are quite different for the different desired
trajectories, so the controller can generalize well. When tracking a sinusoid, the control signal for
a linear plant is also sinusoidal. Here, the control signal is never sinusoidal, indicating in a way the

degree of nonlinearity in the plants.

Notes on System 4. System 4 is a nonminimum-phase plant. This can be easily verified by notic-
ing that its linear-filter part has a zero at= 2. This plant cannot follow a unit-delay reference
model. Therefore, reference models of different delays were tried, for delays of zero time samples
up to 15 time samples. In each case, the controller was fully trained, and the steady-state mean-
squared-system error was measured. A plot of the results is shown in Fig. B.10. Since both low
MSE and low delay is desirable, a reference model for this work was chosen to be a delay of ten
time samplesM (z) = z10.

Mean-square system error as a function of control system delay
0 T T T T T T T T T T T T T T

I
o1
T

10log,q(mean-squared system error)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Delay (samples)

Figure B.10: Logarithm of mean-squared system error plotted versus control system delay.

Notes on System 5: The output of system 5 is constrained to be positive due to the squaring
device in its representation. Therefore it is interesting to see how well this system generalizes when
asked to track a zero-mean sinusoidal signal. As shown in Fig. B.15, the result is something like a
full-wave rectified version of the desired result. This is neither good nor bad—just curious.
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Figure B.11: Feedforward control of system 1. The controll&{p 1).6:1, was trained to track uni-

formly distributed (white) random input, between [-8,8]. Plot (a) depicts the desired plant output (gray
line) and the true plant output (solid line), at the end of training, when the training signal was used to
drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at their
trained values, the next four plots show the generalization ability of the controller. Plots (c) and (e)
show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding plant
input signals.
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Figure B.12: Feedforward control of system 2. The controll&fs 1y:10:1, Was trained to track
uniformly distributed (white) random input, between [-0.5,0.5]. Plot (a) depicts the desired plant output
(gray line) and the true plant output (solid line), at the end of training, when the training signal was
used to drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at
their trained values, the next four plots show the generalization ability of the controller. Plots (c) and
(e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.
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Figure B.13: Feedforward control of system 3. The controll&fs 1):20:1, Was trained to track
uniformly distributed (white) random input, between [-1.25,1.25]. Plot (a) depicts the desired plant
output (gray line) and the true plant output (solid line), at the end of training, when the training signal
was used to drive the controller. Plot (b) shows the controller output for this case. With the weights
fixed at their trained values, the next four plots show the generalization ability of the controller. Plots (c)
and (e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.
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Figure B.14: Feedforward control of system 4. The controller, Net(20,1):20:1, was trained to track
uniformly distributed (white) random input, between [-0.75,2.5]. Plot (a) depicts the desired plant
output (gray line) and the true plant output (solid line), at the end of training, when the training signal
was used to drive the controller. Plot (b) shows the controller output for this case. With the weights
fixed at their trained values, the next four plots show the generalization ability of the controller. Plots (c)
and (e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.
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Figure B.15: Feedforward control of system 5. The controll&{p g).g:1, was trained to track uni-

formly distributed (white) random input, between [0,3]. Plot (a) depicts the desired plant output (gray
line) and the true plant output (solid line), at the end of training, when the training signal was used to
drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at their
trained values, the next four plots show the generalization ability of the controller. Plots (c) and (e)
show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding plant

input signals.
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Figure B.16: Feedforward control of system 6. The controll&fy o 1):10:3 Was trained to track

uniformly distributed (white) random input, between [-0.5,0.5]. Plot (a) depicts the desired plant output
(gray line) and the true plant output (solid line), at the end of training, when the training signal was
used to drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at
their trained values, the next four plots show the generalization ability of the controller. Plots (c) and
(e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding

plant input signals.
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Figure B.17: Feedforward control of system 7. The controll&fy o 1):30:3 Was trained to track
uniformly distributed (white) random input, between [-0.1,0.1]. Plot (a) depicts the desired plant output
(gray line) and the true plant output (solid line), at the end of training, when the training signal was
used to drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at
their trained values, the next four plots show the generalization ability of the controller. Plots (c) and
(e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signalsNotice that the control signals are almost identical for these three very different
inputs!
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Simulations were also done to see what would happen if the systemtra@red to follow
this kind of command input. In that case, the plant output looks like a half-wave rectified version of
the input. Indeed, that is the result which minimizes MSE—the training algorithm works!

Notes on System 7: As can be seen from Fig. B.17, the control signal required to control this
plant is extremely harsh. The hysteresis in the plant requires a type of modulated bang-bang control.
Notice that the control signals for the three different inputs are almost identical. The plant is very
sensitive to its input, yet can be controlled very well by a neural network trained with the BPTM

algorithm.

B.4 Disturbance Cancelling

With system identification and feedforward control accomplished, disturbance cancellation was per-
formed. The input to the disturbance cancelling fikewas chosen to be tap-delayed copies of the
ux andwy signals. The architecture of the filter chosen for each system is listed in Table. B.1.

The BPTM algorithm was used to train the disturbance cancellers. After training, the per-
formance of the cancellers was tested and the results are shown in Fig. B.18. In this figure, each
system was run with the disturbance canceller turned off for 500 time samples, and then turned on
for the next 500 time samples. The squared system error is plotted. The disturbance cancellers do a
fantastic job of removing the disturbance from the systems.

TABLE B.1 FILTER ARCHITECTURES USED IN THIS APPENDIX.

System Plant R Feedforward Disturbance
Model, P Controller,C CancelerX
1 Ne,1):8:1 M2, 1):6:1 M(5,51,2):10:1
2 NMe,1):3:1 M2,1):10:1 M(4,3],4):10:1
3 N3,0):2:1 N2,1):20:1 N(5,5),1):10:1
4 N3,0):3:1 N(20,1):20:1 N(5,5),1):10:1
5 Mu10,5):8:1 N2,8):8:1 M(5,5],4):10:1
6 Ms5,1):10:1 Mu10,1):10:1 M(20,10],2):20:1
7 Ma10,10):30:1 Mu10,1):30:1 M(5,5],1):30:1
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B.5 Summary

This appendix furnishes several more examples of adaptive inverse control applied to nonlinear
SISO plants. In total, seven new plants were defined. First, adaptive system identification (in the
absence and presence of disturbance) was performed using a white drivingugignadll cases, a
neural network plant model was able to capture the dynamics of the system very well.

Secondly, feedforward controlleG were trained. The desire was to train a controller such
that the output of the system would track an i.i.d. uniform random process. This is an unrealisti-
cally difficult goal; yet, the neural-network controllers learned to do it with very high precision. It
should be mentioned that no previous success at controlling one of the systems (system 7) has been
reported—this is the first time that it has been achieved.

The output of the trained controller is certainly not similar to the white driving signal used to
train the plant model, so simultaneous adaptation of the controller and plant model are necessary.
This worked well, as long as the plant model was allowed to adapt somewhat more quickly than the
controller. The ability of the plant model to generalize also ensured that the initial weight values
yeilded a good model regardless of the input signal.

Training of the controllers was temporarily stopped and the weight values were frozen. The
system was then tested to see how well it would track input signals which were very different from
those used when training the controllers. Surprisingly good tracking was achieved, showing that the
neural-network controllers generalize well.

Finally, disturbance cancelling filtet¥ were adapted. The disturbance sources corrupted
either the input, output, or internal state of each system. In all cases, the disturbance canceller
adapted to eliminate almost all of the disturbance. The overall conclusion of this appendix is that
the methods presented in this dissertation control these seven plants very well.
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