
ADAPTIVE INVERSE CONTROL

OF PLANTS WITH DISTURBANCES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Gregory L. Plett

May 1998

c
 Copyright 1998 by Gregory L. Plett

All Rights Reserved

ii

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree

of Doctor of Philosophy.

Bernard Widrow
(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree

of Doctor of Philosophy.

Gene F. Franklin

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree

of Doctor of Philosophy.

Fouad A. Tobagi

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

iii

iv

Abstract

The goal of control theory is to make a given dynamical system (the “plant”) behave in a user-

specified manner as accurately as possible. This objective may be broken down into three separate

tasks: stabilization of the plant dynamics; control of plant dynamics; and control of plant distur-

bance. Conventionally, one uses feedback to treat all three problems simultaneously. Compromises

are necessary to achieve good solutions.

Adaptive inverse control is a method to treat the three control tasks separately. First, the plant

is stabilized; secondly, the plant is controlled using a feedforward controller; thirdly, a disturbance

canceller is used to reject plant disturbances. Adaptive filters are used as controller and disturbance

canceller, and algorithms adapt the transfer functions of the filters to achieve excellent control.

Prior work in adaptive inverse control has focused mainly on feedforward control and distur-

bance cancelling for single-input single-output linear plants, and on feedforward control for single-

input single-output nonlinear plants. This dissertation extends the prior work to encompass feedfor-

ward control and disturbance cancelling for single-input single-output or multi-input multi-output,

linear or nonlinear plants.

An important part of this work is the development of a gradient-descent based algorithm for

updating the weights of either the controller or the disturbance cancelling filters. The algorithm

decouples nicely, allowing separate implementation of the adaptive controller, plant model and dis-

turbance canceller; only local information is needed for the weight update. Very general user-

specified constraints on the control effort may be satisfied, and excellent disturbance rejection can

be achieved. Additionally, it is shown how to compensate for the effects of non-ideal sensors.

The added functionality does not come at the expense of algorithmic or structural complexity.

The final control architecture in this dissertation is much simpler than any previously reported.

Simulation results are presented to verify the analysis and synthesis methods. Overall, excellent

results are obtained.

v

vi

Acknowledgments

Plans fail for lack of counsel, c
�
eq oi 	̀ ��a z

�
ea �

�
y��g �n x 	t �d

but with many advisers they succeed. m �e �w ��z mi �v��{
�
ei a

�
x �a �e

—Proverbs 15:22 22eh ilyn--

I would like to express my gratitude to my principle advisor Dr. Bernard Widrow. I am deeply

indebted to him for many reasons: he has provided encouragement and technical support; he has

opened up many academic opportunities of which I would not have otherwise dreamed; and he has

enthusiastically championed my cause.

I would also like to thank Dr. Gene Franklin for generously coming out of retirement to serve

on my reading committee. In addition, I am grateful to Dr. Fouad Tobagi for being a reader. I

have worked with Dr. Tobagi on a number of occasions, and I have been encouraged to greater and

greater professionalism by his unwavering example.

Throughout my life, I have been influenced by many rˆole-models. I would like to especially

acknowledge my parents. They have encouraged me to pursue my interests, and have been both

accepting and supportive of my decisions. They gracefully bore the horror of watching their first-

born go off on his own to this, the opposite side of the continent. I am indebted to them for many

things, but most importantly for their example of what it means to be a person of faith. Dad, Mom,

Jonathan: I love you very much.

My engineering history began at Carleton University. This excellent school prepared me very

well for my subsequent studies here at Stanford. The camaraderie and friendly competition among

fellow students played an important rˆole in stimulating interest in my studies then, and in the possi-

bility of an academic career. A special thanks to Dr. Jeff Carruthers who has been a constant friend

and who was instrumental in my decision to study at Stanford.

While sojourning here, I have met many interesting people and have made some good friends.

Joice DeBolt makes things run smoothly around here, and quietly tolerates my frequent interrup-

tions. Without her, nothing would get done by this group. Thanks also to all the past and present

vii

members of “the Zoo” including: Dr. Franc¸oise Beaufays, Dr. Michel Bilello, Daniel Carbonell,

Takeshi “Keish” Doi, Dr. Mike Lehr, Dr. Ming-Chang Liu, the elusive James McNames, Chang-

Yun Seong and Dr. Raymond Shen. Raymond deserves a special thanks for patiently suffering

through many technical discussions with me, but also for the times of Bible study, and for being

someone to talk with about deeper issues. Raymond: I consider you a friend for life.

Of all the people I have met at Stanford, my greatest friendship has been forged with the

woman who is now my wife, Linda-Rocio Garcia Plett. Linda has become my best friend and

confidante, and has provided more love, respect, encouragement and acceptance than I could have

ever hoped for. I am a very fortunate man. Linda: I love you with all my heart.

Although many people have influenced the person who I am, by far my biggest debt of grat-

itude is to my God and Savior Jesus Christ. Through his word, the Bible, I am learning how to

become a man of faith and a man of character. As part of this life-journey, he brought me to Stan-

ford and has helped me through some difficult times. He has also brought me many, many joys, and

I look forward to see how he shapes the future. I dedicate this work to him.

Oh, the depth of the riches of the wisdom and knowledge of God!

How unsearchable his judgments, and his paths beyond tracing out!

“Who has known the mind of the Lord?

Or who has been his counselor?”

“Who has ever given to God, that God should repay him?”

For from him and through him and to him are all things.

To him be the glory forever! Amen.

—Romans 11:33–36.

A “1967 scholarship” from the Natural Sciences and Engineering Research Council of Canada supported me

for four years. Combined with the “Anderson Fellowship,” it allowed me to study at this, the premier univer-

sity in the world (Jeff may disagree©··̂). This work was also supported in part by the following organizations:

the U. S. Army Belvoir R D & E Center under contract DAAK70–92–K–0003; the National Science Foun-

dation under contract ECS–9522085; and the Electric Power Research Institute under contract WO8016–17.

Any opinions, findings, or conclusions contained herein are those of the author, and do not necessarily reflect

the views of the sponsoring agencies.

viii

Contents

Abstract v

Acknowledgments vii

1 Adaptive Inverse Control 1

1.1 Introduction . 1

1.2 Discrete-Time Control Systems . 3

1.3 The Framework of Adaptive Inverse Control . 4

1.4 Author’s Contributions 6

1.5 Outline . 8

2 Adaptive (Linear and Nonlinear) Digital Filters 9

2.1 Introduction . 9

2.2 Linear Adaptive Filters 10

2.2.1 Structure of Linear Adaptive Filters 10

2.2.2 Adapting Linear Adaptive Filters. 11

2.2.3 Optimal Solution for Linear Adaptive Filters. 13

2.3 Nonlinear Adaptive Filters .. 14

2.3.1 Structure of Nonlinear Adaptive Filters 14

2.3.2 Adapting Nonlinear Adaptive Filters 16

2.3.3 Optimal Solution for Nonlinear Adaptive Filters 20

2.4 Example: Linear and Nonlinear System Identification 21

2.5 Summary . 24

ix

3 Plants Used as Examples 25

3.1 Introduction . 25

3.2 Linear Plants . 25

3.2.1 Linear SISO Plant . 26

3.2.2 Linear MIMO Plant . 30

3.3 Nonlinear Plants . 35

3.3.1 Nonlinear SISO Plant . 37

3.3.2 Nonlinear MIMO Plant . 40

3.4 Summary . 44

4 Constrained Adaptive Feedforward Control 45

4.1 Introduction . 45

4.2 Analysis of Constrained Linear Control . 46

4.2.1 A Working Linear MIMO Control Architecture 46

4.2.2 Constraint on the Control Effort . 48

4.2.3 An Approximate Solution for the Constrained Controller 49

4.2.4 Control Effort and Controlling Nonminimum-Phase Plants 54

4.3 Synthesis of the Constrained Controller via the BPTM Algorithm. 57

4.3.1 Linear FIR Plant Model, Linear FIR Controller 60

4.3.2 Nonlinear NARX Plant Model, Nonlinear NARX Controller 63

4.3.3 Separability for Efficient Implementation. 65

4.3.4 Initialization of Linear Controllers. 66

4.3.5 Initialization of Nonlinear Controllers 68

4.4 Simulation Examples . 69

4.4.1 Minimum-Phase Linear SISO Plant . 69

4.4.2 Nonminimum-Phase Linear SISO Plant 71

4.4.3 Linear MIMO Plant . 74

4.4.4 Nonlinear SISO Plant . 78

4.4.5 Nonlinear MIMO Plant . 80

4.5 Summary . 83

5 Closing the Loop: Disturbance Cancelling 85

5.1 Introduction . 85

5.2 Analysis of Disturbance Cancelling . .. 86

x

5.2.1 Correctness of Feedforward Design in the Presence of Disturbance 86

5.2.2 Conventional Disturbance Rejection Methods Fail 87

5.2.3 A Solution Allowing On-Line Adaptation of̂P 91

5.2.4 Structure of the Disturbance Canceller . 94

5.3 Synthesis of the Disturbance Canceller via the BPTM Algorithm. 97

5.3.1 Controller Feedback . 97

5.3.2 Estimator Plus Controller Feedback . 98

5.3.3 TrainingX In-Place . 99

5.4 Simulation Examples . 101

5.4.1 Minimum-Phase Linear SISO Plant . 101

5.4.2 Nonminimum-Phase Linear SISO Plant 107

5.4.3 Linear MIMO Plant . 109

5.4.4 Nonlinear Plants . 110

5.5 Summary . 111

6 Imperfect Sensors 115

6.1 Introduction . 115

6.2 Analysis and Synthesis of Adaptive Inverse Control with an Imperfect Sensor . . . 116

6.2.1 Effect ofS on Plant Modeling . 116

6.2.2 Effect ofS on Feedforward Control . 117

6.2.3 Effect ofS on Disturbance Cancelling 120

6.3 Simulation Examples . 124

6.3.1 The Sensors . 124

6.3.2 Linear Sensor; No Sensor Noise . 126

6.3.3 Linear Sensor; White Sensor Noise . 130

6.3.4 Linear Sensor; Correlated Sensor Noise 131

6.3.5 Nonlinear Sensor . 131

6.4 Summary . 131

7 Conclusions and Future Work 135

7.1 Summary . 135

7.1.1 Constrained Adaptive Feedforward Control 135

7.1.2 Disturbance Cancelling. 136

7.1.3 Imperfect Sensors . 137

xi

7.2 Future Work . 137

7.3 Final Comments . 139

A Stability Analysis of the LMS and Backpropagation Algorithms 141

A.1 Introduction . 141

A.2 Linear Filters and the LMS Algorithm .. 141

A.2.1 Stability of the LMS Algorithm . 142

A.3 Neural Networks and the Backpropagation Algorithm. 144

A.3.1 Stability of the Backpropagation Algorithm. 147

A.4 Summary . 149

B More Nonlinear SISO Examples 151

B.1 Introduction . 151

B.2 System Identification . 151

B.3 Feedforward Control . 157

B.4 Disturbance Cancelling 168

B.5 Summary . 170

Bibliography 171

xii

List of Tables

4.1 Filter architectures used in this chapter .. 84

5.1 Steady-state mean squared system error for all plants simulated 112

5.2 Filter architectures used in this chapter .. 114

6.1 Transfer functions of the minimum-phase sensors 127

6.2 Steady-state mean squared system error for disturbance cancelling 129

6.3 Filter architectures used in this chapter .. 134

B.1 Filter architectures used in this appendix. 168

xiii

xiv

List of Figures

1.1 Classical control system . 3

1.2 Digital control system . 4

1.3 Internal model control . 5

1.4 Adaptive inverse control . 6

2.1 Symbolic representation of an adaptive filter . 9

2.2 Structure of a linear filter . 10

2.3 Structure of a nonlinear filter . 15

2.4 System identification . 22

2.5 Nonlinear system identification . 24

3.1 Tank temperature control . 27

3.2 Discrete-time impulse responses and pole-zero plots for the linear SISO plants . . . 29

3.3 Aircraft yaw-rate and bank-angle control . 31

3.4 Uncompensated jet impulse responses .. 32

3.5 Simple feedback system to increase the damping of one of the lateral modes 33

3.6 Compensated, discrete-time jet impulse responses. 34

3.7 Simulating wind disturbances . 36

3.8 Illustration of heading (yaw) angle,ψ(t) . 37

3.9 Block diagram of ship yaw dynamics from wheel angleδw to heading angleψ . . . 38

3.10 Step responses of stabilized and unstabilized ship. 39

3.11 Block diagram of stabilized ship . 39

3.12 Simulating sea disturbances . 41

3.13 Two-link robot arm. 41

xv

3.14 Stabilized robot . .. 43

4.1 MIMO controller design . 47

4.2 Step response of controlled minimum-phase tank. 49

4.3 An algorithm for synthesizing a constrained linear MIMO controller 52

4.4 Comparing magnitude responses of theoretical and adapted controllers 53

4.5 Histograms of control effort . 55

4.6 Two Shannon-Bode optimal controllers. 56

4.7 Steady-state system MSE versus system delay . 57

4.8 Conceptual block diagram of a system used to train the controllerC 58

4.9 Structure diagram illustrating the BPTM method. 58

4.10 Algorithm to adapt an FIR controller for an FIR plant model. 63

4.11 Algorithm to adapt a NARX controller for a NARX plant model. 65

4.12 Algorithmic independence of BPTM on the structures ofC andP̂ 66

4.13 Learning curves for fast and slow learning . 68

4.14 Diagram showing a possible method of initializing a nonlinear controller. 69

4.15 Penalty function used on the magnitude of the control effort 70

4.16 Impulse responses of controllers for the minimum-phase tank. 71

4.17 Tracking performance of three controllers for the minimum-phase tank example . . 72

4.18 Step response of three controllers for the minimum-phase tank example. 73

4.19 Impulse response of the constrained controller for the nonminimum-phase tank . . 74

4.20 Impulse responses of constrained controllers for the nonminimum-phase tank . . . 75

4.21 The four impulse responses comprising the Boeing 747 controller 76

4.22 Tracking performance and control effort for the Boeing 747 controller 77

4.23 Histograms of slew rate for the Boeing 747 example 78

4.24 Tracking performance of ship controller . 79

4.25 Steady-state system mean-squared error versus the system delay 80

4.26 Tracking performance and control effort for the robot controller. 81

4.27 Tracking performance and control effort for the constrained robot controller 82

4.28 Histograms of slew rate of controllers for the robot example. 83

5.1 Plant modeling in the context of feedforward control 86

5.2 Two methods to close the loop. 88

5.3 An intermediate step when analyzing the convergence ofP̂ 89

xvi

5.4 Correct on-line plant modeling and disturbance cancelling 92

5.5 Input-output timing of a discrete-time control system. 94

5.6 A useful way of looking at the feedforward system dynamics. 95

5.7 Internal structure ofX . 96

5.8 Internal structure ofX if the plant is linear . 96

5.9 Disturbance cancelling via controller feedback 98

5.10 Disturbance cancelling via estimator plus controller feedback. 99

5.11 An integrated nonlinear MIMO system . 101

5.12 Disturbance-cancelling for unconstrained minimum-phase linear SISO system . . . 102

5.13 Disturbance-cancelling for constrained minimum-phase linear SISO system 103

5.14 Biased and unbiased plant models 105

5.15 Various aspects of disturbance cancelling for the minimum-phase tank system . . . 106

5.16 Disturbance-cancelling for unconstrained nonminimum-phase linear SISO system . 107

5.17 Disturbance-cancelling for constrained nonminimum-phase linear SISO system . . 108

5.18 Disturbance cancelling filterX . 109

5.19 Disturbance-cancelling for linear MIMO system 110

6.1 A non-ideal sensor . 115

6.2 The system model is an adaptive model of the combined dynamics ofS andP . . . 117

6.3 Uncompensated feedforward control . 118

6.4 Compensated feedforward control . 119

6.5 GeneratingF . 122

6.6 Internal structure ofX if there is sensor noise . 123

6.7 Integrated, compensated control system . 125

6.8 True sensor dynamics. 126

6.9 Impulse responses of plant and system .. 127

6.10 Sensitivity of system error to sensor uncertainty 128

6.11 Tracking with uncertain sensor . 129

6.12 Tracking with reference model and uncertain sensor 130

6.13 Tracking with nonlinear sensor . 132

A.1 Finite-impulse-response (FIR) linear filter. 142

A.2 Artificial neuron . 145

A.3 Nonlinear transversal filter . 145

xvii

B.1 Block diagram of system 1 . 152

B.2 Block diagram of system 2 . 153

B.3 Block diagram of system 3 . 154

B.4 Block diagram of system 4 . 154

B.5 Block diagram of system 5 . 155

B.6 Block diagram of system 6 . 156

B.7 Block diagram of system 7 . 156

B.8 System identification in the absense of disturbance 158

B.9 System identification in the presence of disturbance 159

B.10 Logarithm of mean-squared system error plotted versus control system delay . . . 160

B.11 Feedforward control of system 1 . 161

B.12 Feedforward control of system 2 . 162

B.13 Feedforward control of system 3 . 163

B.14 Feedforward control of system 4 . 164

B.15 Feedforward control of system 5 . 165

B.16 Feedforward control of system 6 . 166

B.17 Feedforward control of system 7 . 167

B.18 Plots showing disturbance cancelation . 169

xviii

List of Notation

Mathematical Operators

E
[·] Returns the expected value of(·).[·]+ Takes the inverse z-transform of(·), sets the non-causal part to zero, and returns the

z-transform of the remaining causal part.(·)+(z) The minimum-phase part of the spectral factorization of
(·)(z), such that

(·)(z) =(·)+(z) (·)−(z).(·)−(z) The nonminimum-phase part of the spectral factorization of
(·)(z), such that(·)(z)= (·)+(z) (·)−(z).

Z
{·} Returns the z-transform. When(·) is a Laplace transform, this operator takes the

inverse Laplace transform of its operand, samples the result, and returns the z-

transform of the sampled signal.

∂ A/∂ B Returns the ordinary partial derivative ofA with respect toB.

∂+A/∂ B Returns the ordered partial derivative ofA with respect toB. The ordered deriva-

tive is equal to the total derivative for ordered systems. An ordered system is a

mathematical system of equations which is evaluated in a specific sequence.

Adaptive Filter Architectures

FIR(a,0):b An FIR filter with a tapped delays on each input, andb outputs.

IIR(a,b):c An IIR filter with a tapped delays on each exogeneous input,b tapped delays on

each feedback input, andc outputs.

N(a,b):c:d... A neural-network based NARX filter with one stream of exogeneous input. There

area tapped delays on each input,b tapped delays on each output;c neurons in the

first layer,d neurons in the second layer, and so forth.

xix

N([a1,a2],b):c:d...A neural-network based NARX filter with two streams of exogeneous input. There

area1 tapped delays on each input from the first stream,a2 tapped delays on each

input from the second stream,b tapped delays on each output;c neurons in the first

layer,d neurons in the second layer, and so forth.

General Acronyms

ARMA AutoRegressive Moving Average: An infinite impulse response filter.

FIR Finite impulse response.

i.i.d. Independent and identically distributed (random variables).

IIR Infinite impulse response.

MSE Mean Squared Error.

NARX Nonlinear AutoRegressive filter with eXogeneous input.

Algorithm Names and Acronyms

Backprop Adapts feedforward neural networks (also known as “Backpropagation”).

BPTT BackPropagation Through Time: Adapts recurrent neural networks.

BPTM BackPropagation Through (Plant) Model: Algorithm developed in this dissertation

to adapt the controller and disturbance canceller.

LMS Least Mean Square: Adapts FIR linear filters.

RTRL Real Time Recurrent Learning: Adapts recurrent neural networks in real time.

Symbols for Adaptive Elements

C The adaptive controller.

CCOPY A filter whose weights are a digital copy of those in the adaptive controllerC.

E An adaptive estimator used to predict future disturbance values.

ECOPY A filter whose weights are a digital copy of those in the adaptive estimatorE.

F A filter used to predict the current sensor noise given the past values of estimated

disturbance.

M The reference model.

P The plant.

P̂ The adaptive plant model.

P̂COPY A filter whose weights are a digital copy of those in the adaptive plant modelP̂.

S The dynamics of the sensor.

xx

Ŝ The model of the estimated sensor dynamics.

SP The combined dynamics of the plant and sensor.

ŜP The adaptive system model.

ŜPCOPY A filter whose weights are a digital copy of those in the adaptive system modelŜP.

X The adaptive disturbance canceller.

Common Signals

ck Impulse response of linear controller.

dk Desired response for system output.

Edk The infinite vector containingdk , dk−1 . . .

d̃k Desired response for sensor output.

e(mod)
k Plant modeling error.

e(sys)
k System error.

ẽ(sys)
k Measured system error.

ε̃k Modified system error.

pk Impulse response of linear plant model.

rk Reference input.

Erk The infinite vector containingrk , rk−1 . . .

uk Controller output.

Euk The infinite vector containinguk , uk−1 . . .

ũk Disturbance canceller output.

Ẽuk The infinite vector containing̃uk , ũk−1 . . .

vk Sensor noise.

Evk The infinite vector containingvk , vk−1 . . .

v̂k Estimate of sensor noise.

wk Disturbance at plant output.

Ewk The infinite vector containingwk , wk−1 . . .

ŵk Estimate of disturbance at plant output.

Êwk The infinite vector containinĝwk , ŵk−1 . . .

xk Impulse response of linear disturbance canceller.

yk Plant output (including disturbance).

Eyk The infinite vector containingyk, yk−1 . . .

ỹk Measured plant output (including sensor dynamics and noise).

xxi

ŷk Plant model output.

Block Diagram Elements

Plant
P The plant.

Linear or nonlinear non-adaptive filter.

Linear or nonlinear adaptive filter.

xxii

Chapter 1

Adaptive Inverse Control

Everything should be made as simple as possible, but not simpler.

—Albert Einstein

1.1 Introduction

The goal of control theory is to make a given dynamical system (the “plant”) behave in a user-

specified manner as accurately and robustly as possible. Dynamical systems we might wish to

control exist in great variety; but generally, they may be divided into several categories. First,

any plant is said to be either linear or nonlinear. Linear dynamical systems obey the superposition

principle and nonlinear ones do not [19]. Each plant is also either single-input-single-output (SISO),

or multi-input-multi-output (MIMO).1

Control problems are also classified. For any plant, we may wish to address one (or more) of

three basic control problems. These are:

� Regulator control, which is concerned largely with the transient and steady-state response of

the plant in recovering from disturbances in a timely and robust fashion.

� Servo (or tracking) control, which is concerned with the transient and steady-state response

of the plant in following a given trajectory closely, quickly and smoothly.

� Terminal control, which is concerned with the ability to move the system output from one

state to another,without concern for the trajectory. Tradeoffs are made between optimality in

terms of time or resource use, the magnitude of the control signal, and final-state accuracy.

1Multi-input-single-output (MISO) and single-input-multi-output (SIMO) systems also exist, but are treated here as
special cases of MIMO systems.

1

2 Chapter 1. Adaptive Inverse Control

In all three cases, constraints are typically imposed on the control signal and must be properly

handled by the controller. Regulator and servo control problems are similar enough that they are

usually considered together. The regulator problem is a degenerate case of the servo control problem

where the goal is to track a constant input signal. Terminal control is sufficiently different to be

treated separately. In this dissertation, only regulator and servo control problems are considered.

In classical and modern analog control systems, precise regulator and servo control is accom-

plished with compensation networks and feedback [7]. Likewise, conventional discrete time control

systems build on this classical material and use similar means to control a plant using a digital

computer [8].

These methods work well when the plant is linear and its dynamics are well understood. How-

ever, plant dynamics are rarely known with precision and may be too nonlinear to control with a

linear controller. Current research in post-modern (!) control design [15, 47] searches for robust

stability and performance for linear systems whose dynamics are not completely understood. There

is much work yet to be done in this field, and indeed it seems that the need to address the control

of nonlinear systems has hardly been touched. As one researcher states: “From a mathematical

point of view, even the control of known nonlinear dynamical systems is a formidable problem.

This becomes substantially more complex when the representation of the system is not completely

known [22].”

In this dissertation, we address the control of linear, nonlinear, SISO and MIMO systems with

adaptive controllers—“a controller with adjustable parameters and a mechanism for adjusting the

parameters [1, p. 1].” The field of adaptive control, unlike the disciplines of classical and state-space

controller design, is still much of an “art.” However, in principle, much is to be gained from using

adaptive control techniques. Among these are:

� The possibility of controlling increasingly complicated dynamic systems,

� Incorporation of design constraints in a very practical fashion,

� Greater precision of control due to better plant modeling,

� Robustness to variation in internal plant parameters (process variations), and,

� Resilience to variation in the character of the disturbances.

In this dissertation, we investigate the control problem under the framework ofadaptive inverse

control [45]. Adaptive signal processing methods are used to control either linear or nonlinear,

1.2. Discrete-Time Control Systems 3

SISO or MIMO plants. As the control of SISO linear and undisturbed SISO nonlinear plants has

already been extensively treated elsewhere [2, 4, 45], the focus here is on the control of disturbed

MIMO and nonlinear plants. The solution is amazingly simple and stunningly powerful.

1.2 Discrete-Time Control Systems

The field of classical control theory concerns itself with the task of servo or regulator control of

linear analog plants. A controller designed according to this discipline will be a linear analog device,

and may be implemented with operational amplifiers, resistors, capacitors and the like. Figure 1.1

shows a schematic diagram of a classical control system.

Dist. w(t)

r(t) y(t)
u(t)

C(s) Plant
P(s)

Figure 1.1: Classical control system.

The signalr(t) is the reference signal. We would like the plant outputy(t) to track it as closely

as possible. Ifr(t) is constant or piecewise constant, the control problem is a regulator problem. If

r(t) varies more rapidly with time, it is a servo control problem.

To track the reference signal, the controller uses bothr(t) andy(t) to compute the plant control

signalu(t). Feedback ofy(t) is used to stabilize the plant, and to ensure that the controller is both

resilient in the face of external disturbances and able to quickly reduce the output error to zero.

SinceC(s) is an analog system, and subject to the vagaries of all analog computers (e.g.,

imprecise and drifting component values), care must be taken in its design to allow for deviation

from the “ideal” transfer function. For this reason, the design may be overly conservative.

With the advent of digital computers and of digital signal processing, it became possible to

design a discrete-time controller using digital hardware. Benefits of using a digital controller in-

clude primarily: the ability to implement very complex control laws, high computational precision,

and great flexibility in design as the physical design (hardware) can be separated from the control

algorithm design (software). Such a digital controller may be generated by discretizing the analog

controllerC(s) (a process calledemulation), but better results are obtained by discretizing the plant

and by directly designing a digital controllerC(z) for the discrete-time plant. The “Plant” block

in Fig. 1.1 is discretized by replacing it with a digital-to-analog (D2A) converter, followed by the

4 Chapter 1. Adaptive Inverse Control

original plant, and followed by an analog-to-digital (A2D) converter. The modified block diagram

is shown in Fig. 1.2. From this point on, the components within the dashed box of Fig. 1.2 will be

represented simply by the discretized plant,P.

Dist. wk

rk ykC(z) QPlant
P(s)

zoh

A2DD2A

“Discretized” PlantP(z)

Figure 1.2: Digital control system.

Design methods for discrete-time linear controllers are well understood. Their only drawback

is that they assumepreciseknowledge of the plant dynamics. For this very reason, a great deal of

effort has been expended to create accurate models of “typical” plants—particularly those encoun-

tered in the military and aerospace fields. The control-system designer for industrial applications is

not so fortunate. These plants are not, in general, as well understood. Consequently, post-modern

control techniques concern themselves withrobustcontroller design. In some sense, “optimal” per-

formance is sacrificed in order to create a controller which will be stable and give adequate response

to control inputs over avarietyof plants{P}. These concerns are central to the context of adaptive

control.

1.3 The Framework of Adaptive Inverse Control

If precise knowledge of the plant dynamics are available to the control designer, then adaptive

control can be accomplished for the system in Fig. 1.2. This is shown in Chap. 4. The concept

of an adaptive-controller design-process then reduces to a computer-aided-control-system-design

(CACSD) tool to automatically generate a controllerC to meet various design specifications. How-

ever, since CACSD tools are already available to provide optimum controllers for known linear

plants, even under a variety of very complex constraints (see for example, reference [3]), adaptive

control in this context is simply a novelty, and is not particularly useful.2

Thus, we may conclude that adaptive control is worthwhile only when the control designer

does nothave accurate information about the plant dynamics, or when those dynamics are (slowly)

time-varying in an unknown way. One of the chief tasks, then, of adaptive control is that of plant

2A possible exception is the control of a nonlinear plant, for which much less theory exists.

1.3. The Framework of Adaptive Inverse Control 5

identification. We will see in Chap. 5 that the framework of Fig. 1.2 is not appropriate when on-line

plant identification is being performed in the presence of disturbance.

The appropriate framework for adaptive control may be developed from Fig. 1.2 in two simple

steps. The first step changes the rˆole of the feedback loop. Instead of feeding-back the disturbed

plant output, we feed back an estimate of the disturbance. This is done following the philosophy of

theinternal model controlscheme, presented in a series of papers [9, 10, 11, 34, 5, 6] by Garcia and

colleagues. Figure 1.3 shows how the design paradigm changes.

Plant
PC

P̂

Dist. wk

ŵk

rk yk

Figure 1.3: Internal model control.

A plant modelP̂ is used to estimate the disturbance at the plant output. This estimate is

fed back to the controller input. If̂P is an accurate model of the plant, the control design is now

effectively open-loop! A result of this is thatP must be stable in order for internal model control

to work. If P is originally unstable, it must be stabilized using traditional methods. The nature of

the stabilization is not critical; the controllerC is designed based on whatever the stabilized plant

turns out to be, in order to give acceptable servo behavior. The two design objectives of stability and

performance are now separated and may be handled individually rather than by joint optimization.

The second step required to make the framework suitable for adaptive control is to move the

feedback path. Justification will be presented in Chap. 5. All that is required for now is to note the

resulting block diagram in Fig. 1.4,3 and especially the addition of the new filter,X . Disturbance

cancelling is done byX .

The design process is now well defined. The blockP̂ is adapted in order to model the plant;

the blockC is adapted to provide servo control; and the blockX is adapted to perform disturbance

cancelling and to ensure robustness of the design to errors in the plant model. A great deal of this

dissertation will address how to properly adaptC andX .

3Some minor modifications to the block diagram will be required. Details will be addressed when the need arises.

6 Chapter 1. Adaptive Inverse Control

Plant
PC

P̂

X

Dist. wk

ŵk

rk yk

Figure 1.4: Adaptive inverse control.

1.4 Author’s Contributions

The main contributions made by the author to the field of adaptive inverse control include:

1. Constrained control of linear and nonlinear plants: This contribution may be divided into

two main areas.

� Analysis of constrained control—Constraints on control effort may be required in a

design due to actuator limitations. It is shown that they may also be useful to limit

ringing phenomenon inherent in an inverse-control scheme. A non-adaptive method is

developed to generate a controller which is guaranteed to meet constraints on the control

effort. This controller may be used as an initialization for an adaptive controller design

algorithm. It is also shown that the optimal constrained controller is nonlinear, even if

the plant is linear. It is shown that constraints on the control effort determine a good

estimate of the latency to use when controlling nonminimum phase plants.

� Synthesis of a constrained controller—A gradient descent algorithm is derived to adapt

a controller to minimize the mean-squared system error while meeting constraints on the

control effort. The controller may be a linear FIR filter, a linear IIR filter, a nonlinear

transversal filter implemented with a neural network, or a NARX filter implemented

with a neural network. The algorithm is shown to decouple, so that the structure of the

plant model and the structure of the controller may be chosen independently and still

result in a practical design. Initialization procedures for linear controllers are presented

which greatly decrease the required adaptation time. A possible initialization technique

for nonlinear controllers is also proposed.

1.4. Author’s Contributions 7

Simulation results are presented to verify the analysis and the synthesis methods. Linear and

nonlinear, minimum-phase and nonminimum-phase, SISO and MIMO plants are simulated.

2. Disturbance cancelling for linear and nonlinear plants: This contribution may also be

divided into two main areas.

� Analysis of disturbance cancelling—Simultaneous on-line system identification and dis-

turbance cancelling may come at the expense of degraded performance compared with

a system which performs off-line system identification. It is shown that conventional

disturbance rejection schemes fail when performed with on-line system identification.

A solution, adapted from reference [45], is used to correctly perform on-line system

identification and disturbance cancelling for linear plants. It is shown that the scheme

still causes a degradation in performance if the plant is nonlinear, but the degradation

experienced in simulation seems to be small. The structure of the function performed

by the disturbance canceller is analyzed, leading to the conclusion that it is equal to

a disturbance predictor cascaded with a plant inverse. The optimal predictor may be

nonlinear which leads to the discovery that the disturbance canceller may need to be

implemented with a nonlinear adaptive filter even if the plant is linear.

� Synthesis of a disturbance canceller—Three methods are presented to generate a distur-

bance canceller. The first two methods require minimal or no adaptation to reach their

solution, and are based on the analysis of the function performed by the disturbance

canceller. The third method is based on the algorithm developed to perform constrained

control, and provides the best performance, in general.

Simulation results are presented to verify the analysis and the synthesis methods. Linear and

nonlinear, minimum-phase and nonminimum-phase, SISO and MIMO plants are simulated.

3. Compensation for sensor dynamics and sensor noise:Previous work in adaptive inverse

control has assumed that the sensors used to measure the plant output are ideal. If the sensors

are not ideal, performance may be severely degraded. A method is proposed to compensate for

the non-ideal sensors, and a sensitivity analysis shows that the method works well. It is found

that the sensor noise and sensor dynamics affect the feedforward control and disturbance

cancelling circuits differently, and the effects are analyzed. Simulation results are presented

to verify the analysis.

8 Chapter 1. Adaptive Inverse Control

4. Simplification of control architecture: In this dissertation, emphasis is put on asystems

level approachto controller design. This translates into separable block diagrams where the

structure of each block may be independently selected to optimize its task. The blocks are not

coupled in any strange way.

The prior state-of-the-art is presented in reference [45, p. 322], where five adaptive filters,

twelve digital copies of the adaptive filters and six fixed digital filters are required to im-

plement the nonlinear MIMO control scheme. The comparable method presented here (see

p. 101) requires three adaptive filters, one digital copy of an adaptive filter, and one fixed dig-

ital filter. This simplification is not done at the expense of performance or higher algorithmic

complexity.

1.5 Outline

This dissertation is divided into seven chapters and two appendices. Chapter 2 is a review of the

adaptive filter theory required to proceed further in this work. Adaptive system identification is

used as an example of how the theory is applied. Chapter 3 introduces the plants used as ex-

amples throughout the remainder of the text. Examples of linear and nonlinear, minimum-phase

and nonminimum-phase, SISO and MIMO plants are included. Chapter 4 shows how to perform

adaptive inverse control with constraints on the control effort. Analysis of constrained control is

presented, and an algorithm to adaptively synthesize a controller is introduced. Simulations show

that the scheme works very well. Chapter 5 shows how to perform disturbance cancelling with

adaptive inverse control. Analysis is done to show why conventional disturbance rejection schemes

do not work. More analysis demonstrates a scheme which does work, and methods are presented to

adaptively synthesize a disturbance canceller. Simulations show that the methods work very well.

Chapter 6 shows how to perform adaptive inverse control with imperfect sensors. Finally, chapter 7

presents conclusions and suggests future work. Appendix A introduces some analysis on stability

of the LMS and backpropagation algorithms which gives a very practical method for selecting the

learning rate. Appendix B presents further results of simulations for SISO nonlinear plants.

Chapter 2

Adaptive
(Linear and Nonlinear)

Digital Filters

There is nothing permanent except change.

—Heraclitus (c.540–c.480 B.C.)

2.1 Introduction

Adaptive inverse control is built upon the foundational theory of linear and nonlinear adaptive fil-

tering. This chapter introduces the applicable concepts. Nothing here is new, but a few obscure

attributes of these systems are reviewed as they are frequently used in later chapters.

An adaptive filter is illustrated in Fig. 2.1. It has an input, an output, and a “special input”

called the desired response. The desired responsedk specifies the output we wish the filter to have.

It is used to calculate an error signalek , which in turn is used to modify the internal parameters of

the filter in such a way that the filter “learns” to perform a certain function.

Output
yk

Input
xk

Errorek

Desired Responsedk

Adaptive
Filter

Figure 2.1: Symbolic representation of an adaptive filter.

9

10 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

At first, it may seem strange to have a desired response. If such a signal is available, why do

we need the filter in the first place? We could just replace the filter with its desired response! For

now, this question will be left unanswered. We will see later on that there are indeed various ways

that such a filter may be configured such that it serves a useful purpose.

In this chapter, we will first consider linear adaptive filters—their structure, adaptation algo-

rithm and analytic solution. Then, we look at the same characteristics for nonlinear adaptive filters.

The chapter closes with an example of how to use adaptive filters to perform system identification.

2.2 Linear Adaptive Filters

2.2.1 Structure of Linear Adaptive Filters

The structure of a linear filter is illustrated in Fig. 2.2. It consists of a tapped delay line connected

to the input and, possibly, a tapped delay line connected to the output. The output of the filter is

calculated to be a weighted sum of the delayed inputs and outputs. The coefficients of the forward

and reverse filters are termed theweightsof the overall filter. If the weight values are fixed, the filter

realizes a linear constant coefficient difference equation of the form

yk −
Nr∑

i=1

wr,i yk−i =
Nf∑

i=0

wf,i xk−i . (2.1)

Linear adaptive filters come in two basic flavors:finite impulse response(FIR), andinfinite

impulse response(IIR). When an FIR filter is excited by an impulse at its input, the response of

the filter is non-zero for a finite period of time. An IIR filter, on the other hand, may respond with

z−1 z−1

z−1z−1z−1

w f,0 w f,1 w f,2 w f,N f −1 w f,N f

wr,1wr,Nr−1wr,Nr

. . .

. . .

. . .

xk

yk

Figure 2.2: Structure of a linear filter.

2.2. Linear Adaptive Filters 11

non-zero values for an infinite period of time. Using the notation of Eq. (2.1), an FIR filter is one

for which all the feedback weightswr,i are zero. An IIR filter may have non-zerowr,i .

It is well known that any stable linear system may be approximated by a “sufficiently long”

FIR filter. Therefore we concentrate on this type of filter in this dissertation. All results presented in

upcoming chapters apply equally well to IIR filters, but their use was avoided due to the possibility

of instability.1 FIR filters with finite weights are always stable. IIR filters are not.

Linear MIMO filters are created via a simple extension to these ideas. A tapped delay line is

connected to each input and, possibly, each output. Every output is then computed to be a weighted

sum of the totality of delayed inputs and outputs.

2.2.2 Adapting Linear Adaptive Filters

Here we consider how to adapt the weights of a linear filter. At each time instant, a desired response

signaldk is applied to the filter. The true outputyk is compared to this desired response, and the

error is computed to beek = dk − yk . After the filter has run for some time, we wish to modify

the weights of the filter in order to minimize the accumulated squared error. That is, we wish to

minimize the cost functionJk , where

Jk =
k∑

j=0

‖ek‖2.

The filter is run fork time steps, the total squared errorJk is computed, and the weights are modified

by a gradient-descent optimization procedure—they are adapted in the direction of the negative

gradient of the cost function with respect to the weights

W := W − µ∇W Jk. (2.2)

The parameterµ is called thelearning rate, and controls the step size in the direction of the negative

gradient, andW is the vector of filter weights.

In order to calculate the gradients, we use a mathematical tool calledordered partial deriva-

tives, ∂+(·)/∂xk , as opposed to the ordinary partial derivative,∂(·)/∂xk . The ordered partial deriva-

tives were introduced by Werbos in [41], and are very well explained in [31]. They are useful for

easily finding derivatives of complex dynamical systems.

A normal partial derivative of(·) with respect toxk “refers to thedirect causal impact ofxk

on (·), while the ordered derivative refers to thetotal causal impact, including direct and indirect

1The use of IIR filters may be advantageous in some situations. They require fewer parameters than the equivalent
FIR filter to be able to model the same system, and thus can learn with fewer data samples.

12 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

effects, both [42].” The ordered partial derivative easily calculates derivatives of equations which

are evaluatedin a specific time order. An alternate method to that of ordered partial derivatives

is to substitute all intermediate equations into the final equation, and to then take ordinary total

derivatives. Using ordered partial derivatives, the desired result may be found without expanding

the final equation.

The primary usefulness of the ordered derivative is that complex dynamical systems may be

differentiated using a simple chain rule expansion. Suppose, for example, we have a function

yk = f (xk, xk−1, . . . , xk−n, W),

then,
∂+yk

∂W
= ∂yk

∂W
+

n∑
j=0

∂yk

∂xk− j

∂+xk− j

∂W
.

Armed with this tool, we now consider adapting an FIR (possibly MIMO) filter. The forward

equation for the filter is

yk =WXk,

whereW is the weight matrix of the filter,2 and Xk is a composite vector comprising all of the

delayed inputs

Xk = [xT
k xT

k−1 . . . xT
k−Nf

]T.

We also define the weight vectorW , in terms of the weight matrixW to be

W = [W0W1 . . . WN f]
T,

where, for example,W0 is the first row ofW.

Therefore, we can compute the gradient of the cost function with respect to the weights as

follows

∂+ Jk

∂W
=

k∑
j=0

∂+‖e j‖2
∂W

=
k∑

j=0

−2eT
j
∂+y j

∂W
,

2Note thatW andW differ. Both contain identical information, but arranged differently. The former,W, is amatrix,
arranged in such a way that multiplication withXk will produce yk. The later,W , is avector, and contains the elements
of W in an implementation-dependent arrangement. The distinction is maintained for mathematical correctness.

2.2. Linear Adaptive Filters 13

where,

∂+yk

∂W
= ∂yk

∂W
+

Nf∑
j=0

∂yk

∂xk− j

∂+xk− j

∂W

= diag
{

X T
k , X T

k , . . . X T
k

}

=


X T

k 0 . . . 0

0 X T
k . . . 0

...
...

. . .
...

0 0 . . . X T
k

.

The summation disappeared sincex j is not a function ofW . Continuing,

∂+ Jk

∂W
=

k∑
j=0

−2eT
j diag

{
X T

j , X T
j , . . . X T

j

}
.

The way this algorithm has been presented, one would run the system fork time steps, then compute

∂+ Jk/∂W and update the weights using Eq. (2.2). However, if the learning rate is small, and thus

each weight change is small, the adaptation may be done at each time step. Then,

Wk+1 = Wk + 2µeT
k diag

{
X T

k , X T
k , . . . X T

k

}
.

Equivalently, in our implementation-dependent, but easy-to-use format

Wk+1 =Wk + 2µek X T
k .

This stochasticupdate rule for FIR filters is commonly known as the LMS algorithm. It is well

described in several textbooks [17, 44].

2.2.3 Optimal Solution for Linear Adaptive Filters

One property of linear systems is that the mean squared error (MSE) of the system output is

quadratic in the weights. This implies that there is one and only one minimum (optimal) solu-

tion when the cost function used is MSE, and that gradient descent methods will converge to the

solution.3 Another nice property is that the solution is mathematically tractable if certain statistical

information about the input and desired response is available. This solution is known as theWiener

solution.

3Provided that the learning rate,µ is “small enough.” See App. A for proper ranges ofµ.

14 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

The details are presented in [45]. Here, we state certain properties without proof. If we let

(φxd)n be the crosscorrelation function between the inputxk and the desired responsedk , and(φxx)n

be the input autocorrelation function, then the unconstrained solution,W (opt)(z), is

W (opt)(z) = [
8xd (z)

][
8xx (z)

]−1
,

where8xd (z) and8xx (z) are the z-transform of(φxd)n and (φxx)n, respectively. Note that this

solution allows for the filterW (opt) to be non-causal. TheShannon-Bodesolution for the optimal

causal filters is

W (opt)
causal(z) =

[
[8xd (z)][8

−
xx (z)]

−1]
+
[
8+xx (z)

]−1
,

where,8xx (z)= 8+xx (z)8−xx (z) and8+xx (z) has all the poles and zeros of8xx (z) which are inside

the unit circle in the z-plane. Furthermore, the operator [·]+ means “take the time series generated

by the inverse-z-transform of the operand, retain only the causal section (set the non-causal entries

to zero), and take the z-transform of the result.” Mathematical analysis of a system constrained to

be causal is not simple, but in certain specific cases, useful results may be obtained.

2.3 Nonlinear Adaptive Filters

2.3.1 Structure of Nonlinear Adaptive Filters

The structure of a nonlinear filter is illustrated in Fig. 2.3. It consists of a tapped delay line connected

to the input and, possibly, a tapped delay line connected to the output. The output of the filter is

computed to be a nonlinear function of these delayed inputs and outputs. The nonlinear function

may be implemented in any way, but here we use a neural network (depicted within the dotted

rectangular box).

A neural network is an interconnected set of very simple processing elements called neurons.

Each neuron computes an internal sum which is equal to a constant plus the weighted sum of its

inputs. The neuron outputs a nonlinear “activation” function of this sum. In this work, the activation

function is chosen to be the tanh(·) function

neuron output= tanh

constant+
#inputs∑

i=1

wi · inputi

.

2.3. Nonlinear Adaptive Filters 15

z−1

z−1

z−1

+1

x1

x2

xn

w0

w1

w2

wn

..

.

xk

yk

6

Neural Network

Neuron

Figure 2.3: Structure of a nonlinear filter.

The constant may be easily incorporated into the summation by augmenting the input vector with a

zeroth entry which is always equal to one, and by augmenting the weight vector with a zeroth entry

equal to the particular desired constant. Note that in this work, all output neurons have the nonlinear

function removed. This is done to give them unrestricted range.

Neural networks may be constructed from individual neurons connected in very general ways.

However, it is sufficient to havelayersof neurons, where the inputs to each neuron on a layer are

identical, and equal to the collection of outputs from the previous layer (plus the augmented value

“1”). The final layer of the network is called theoutput layer, and all other layers of neurons are

calledhidden layers. A layered network is a feedforward (non-recurrent) structure which computes

a static nonlinear function. Dynamics are introduced via the tapped delay lines at the input to the

network.

This layered structure also makes it easy to compactly describe the topology of a nonlinear

filter. The following notation is used:N(a,b):α:β This means: “The filter input is comprised

of a tapped delay line with ‘a’ delayed copies of the exogenous input vectorxk , and ‘b’ delayed

copies of the output vectoryk. Furthermore, there are ‘α’ neurons in the neural network’s first layer

of neurons, ‘β’ neurons in the second layer, and so on.” For example, the filter in Fig. 2.3 would

be represented asN(2,2):3:3:1. Occasionally, filters are encountered with more than one exogenous

16 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

input.4 In that case, the ‘a’ parameter is a row vector describing how many delayed copies of

each input are used in the input vector to the network. For example, considerN([a1,a2],b):α:β . . .,

where ‘a1’ and ‘a2’ are the numbers of the tapped delay line copies of the exogenous inputs, and

‘b’ is the number of feedback tapped delay line copies ofyk. To avoid confusion, any strictly

feedforward nonlinear filter is denoted explicitly with a zero in that part of its description. For

example,N(2,0):3:3:1.

The above structure is called aNARX(Nonlinear AutoRegressive eXogeneous input) filter. It

is general enough to approximate any nonlinear dynamical system [36]. Therefore, it is widely used

in this work. Nonlinear MIMO filters are easily constructed by allowingxk and yk to be vectors,

and by augmenting the output layer with the correct number of additional neurons.

2.3.2 Adapting Nonlinear Adaptive Filters

The weights of an adaptive nonlinear filter can be adapted using gradient descent. The methods

used to adapt a feedforward network (without self-feedback) and an externally recurrent network

(with feedback of the network output) differ in the details, so will be discussed separately.

Adapting a Feedforward Neural Network: A feedforward neural network may be adapted using

the popularbackpropagation algorithm, discovered independently by several researchers [41, 29],

and popularized by Rumelhart, Hinton and Williams [35]. It is a method for recursively calculating

the weight update for all weights in the network (for output neurons as well as hidden neurons),

based on an error at the output of the network. The notation which will be used throughout this

development is:s(l)
i is the internal sum value of neuroni in layerl, anda(l)

i is the output (activation

value) of neuroni in layer l. For notational convenience, we denote the inputs to the network as

the output of a fictitious zeroth layer of neurons:s(0)
i = a(0)

i
1= xi . Furthermore, the output of the

network is equal to the output of theLth layer of neurons:yi
1= a(L)

i = s(L)
i .

The network computes a function of its inputs and its weight vector

yk = f (xk, xk−1, . . . , xk−n, W).

The difference between the actual output and the desired output is the error, and the sum of squared

errors is a typical cost function to be minimized by adapting the weight vector. As we did with a

4An example is the disturbance cancelling filterX in Chap. 5. It may have exogeneous inputsuk andŵk , as well as a
feedback input of its own output,ũk .

2.3. Nonlinear Adaptive Filters 17

linear filter, we adapt the weights in the direction of the negative gradient of the cost function with

respect to the weights.

The derivation proceeds by selecting an arbitrary weight in the network,w
(l)
i: j —the one which

connects neuroni in layerl−1 with neuronj in layerl—and computing the derivative of the error

squared with respect to that weight.5 Once all such derivatives are calculated, Eq. (2.2) is used to

update the weights. Proceeding with the chain rule

∂+‖e‖2
∂w

(l)
i: j

= ∂‖e‖2
∂s(l)

j

∂+s(l)
j

∂w
(l)
i: j

= δ
(l)
j a(l−1)

i ,

where we define

δ
(l)
j

1= ∂‖e‖2
∂s(l)

j

.

The values ofa(l)
i are known from the forward pass through the network. All that remains is to

calculate theδ(l)
j .

Since the output layer of the neural network has no activation function,yi = a(L)
i = s(L)

i , and

δ
(L)
i = −2ei . In the hidden layers, no specific error signal exists. We must use the chain rule

expansion to determine an equivalent sensitivity of the output with respect to that weight

δ
(l)
i

1= ∂‖e‖2
∂s(l)

i

=
∑

j

∂‖e‖2
∂s(l+1)

j

∂s(l+1)
j

∂a(l)
i

∂a(l)
i

∂s(l)
i

= f ′
(
s(l)

i

)∑
j

δ
(l+1)
j w

(l+1)
i: j , l = 1,2, . . . L −1.

Thus, δ(l)
i is calculated by propagating values ofδ

(l+1)
i backwards through the network. If the

tanh(·) activation function is used, thenf ′
(
s(l)

i

)= 1− (
a(l)

i

)2
, which is a particularly efficient form

to compute.

The backpropagation algorithm has now been derived. In operation, a network experiences

two phases: a forward phase and a reverse phase. In the forward phase, the input is propagated to

5A similar notation is often used in the neural network literature, but with the colon replaced by a comma. However,
if one considers all of the weights in a layer to form a matrix which multiplies the inputs to that layer, the correct notation
(by mathematical convention) is:w(l)

j,i . That is, thei and j are reversed in the neural network literature. To help clarify
this unfortunate discrepancy, a colon is used in this dissertation to distinguish the two notations.

18 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

the output to computeyk . In the backward phase, the error is applied at the output, changed into the

appropriateδ(L)
i form, and theδ(L)

i are propagated backward through the network. The weights are

then adapted usingδ(l)
i anda(l)

i

1w
(l)
i: j = −µδ

(l)
j a(l−1)

i .

Calculating Jacobians of Neural Networks: Situations arise, as will be seen in the next section,

where it is necessary to calculate the Jacobian of the function implemented by a neural network.

Since the network is a function of its inputs and its weights, two Jacobians may be calculated. Let

the composite input vector to the network beX ; then,y = f (X,W), and the two Jacobians are

∂y

∂W
, and

∂y

∂ X
.

They may be calculated very efficiently. The derivation is almost exactly the same as that used

to determine the backpropagation algorithm. The only change is to redefineδi

δ
(l)
i

1= vT ∂y

∂s(l)
i

,

wherev is an arbitrary vector. For example, instead of settingδ(L) =−2e, we setδ(L) = v. Then, we

use the backpropagation algorithm to propagate these redefinedδs backward through the network.

If we proceed one more step, and propagate theδs to the inputs, and define

δ
(0)
i

1= vT ∂y

∂s(0)
i

,

then we have just computed [
δ
(0)
1 , . . . δ

(0)
Nx

]
= vT ∂yk

∂ X
. (2.3)

Furthermore, since
∂s(l)

i

∂w
(l)
i: j

= a(l−1)
i , then we have also computed, in the same step,

[
. . . , δ

(l)
j a(l−1)

i , . . .
]
= vT ∂yk

∂W
, (2.4)

where the terms invT ∂yk/∂W are ordered according to the same implementation-dependent order-

ing of W = [. . . ,w(l)
i: j , . . .]

T .

Combining these two results, we can propagateNy unit vectorsv = êi backward through

the network to build up both Jacobian matrices, one row at a time. Werbos called this ability of the

backpropagation algorithm the “dual-subroutine.” The primary subroutine is the feedforward aspect

of the network. The dual subroutine is the recursive calculation of the Jacobians with the network.

2.3. Nonlinear Adaptive Filters 19

Adapting an Externally-Recurrent Neural Network: Now that we have seen how to adapt a

feedforward neural network and how to compute Jacobians of a neural network, it is a simple matter

to extend the backpropagation algorithm to adapt externally recurrent neural networks. This was

first done by Williams and Zipser [46] and called “real time recurrent learning” (RTRL). A similar

presentation follows.

An externally recurrent neural network computes a function of the following form

yk = f (xk, xk−1, . . . , xk−n, yk−1, yk−2, . . . , yk−m, W).

To adapt using the familiar “sum of squared error” cost function, we need to be able to calculate

∂+‖ek‖2
∂W

= −2eT
k

∂+yk

∂W
∂+yk

∂W
= ∂yk

∂W
+

n∑
i=0

∂yk

∂xk−i

∂+xk−i

∂W
+

m∑
i=1

∂yk

∂yk−i

∂+yk−i

∂W
.

The first term,∂yk/∂W , is the direct effect of a change in the weights onyk, and is one of the

Jacobians calculated by the dual-subroutine of the backpropagation algorithm. The second term is

zero, since∂+xk/∂W is zero for allk. The final term may be broken up into two parts. The first,

∂yk/∂yk−i , is a component of the matrix∂yk/∂ X , as delayed versions ofyk are part of the network’s

input vectorX . The dual-subroutine algorithm may be used to compute this. The second part,

∂+yk−i/∂W , is simply a previously calculated and stored value of∂+yk/∂W . When the system is

“turned on,”∂+yi/∂W are set to zero fori = 0,−1,−2, . . ., and the rest of the terms are calculated

recursively from that point on.

Note that the dual-subroutine procedure naturally calculates the Jacobians in such a way that

the weight update is done with simple matrix multiplication. Let

(dwy)k
1=

[(
∂+yk−1

∂W

)T (
∂+yk−2

∂W

)T

· · ·
(

∂+yk−m

∂W

)T
]T

,

and

(dxy)k
1=

[(
∂yk

∂yk−1

) (
∂yk

∂yk−2

)
· · ·

(
∂yk

∂yk−m

)]
.

The latter is simply the columns of∂yk/∂ X corresponding to the feedback inputs to the network,

and is directly calculated by the dual-subroutine. Then, the weight update is calculated efficiently

as

1W =
(

2µeT
k

[
∂yk

∂W
+ (dxy)k(dwy)k

])T

.

20 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

One final comment: The reader is invited to notice that, since (in this work) the output layer of

neurons is linear, a single-layer neural network is the same as a linear adaptive filter (if the bias

weights are zero). The adaptation rule for a feedforward neural network, in this case, reduces to the

familiar LMS rule used to adapt an FIR linear filter. The adaptation rule for an externally recurrent

neural network may be used to adapt an IIR linear filter.

2.3.3 Optimal Solution for Nonlinear Adaptive Filters

In principle, a neural network can emulate a very general nonlinear function. It has been shown that

any “smooth” static nonlinear function may be approximated by a two-layer neural network with a

“sufficient” number of neurons in its hidden layer [21]. Furthermore, a NARX filter can compute

any dynamical finite-state-machine (It can emulate any computer with finite memory) [36].

In practice, a neural network seldom achieves its full potential. Gradient-descent based train-

ing algorithms converge to a local minimum in the solution space, and not to the global minimum.

However, it is instructive to exactly determine the optimal performance that could be expected from

any nonlinear system, and then to use it as a lower bound on the MSE of a trained neural network.

Generally, a neural network will get quite close to this bound.

The following theorem of the optimal solution is from reference [13, Theorem 4.2.1]. If the

input vector to the adaptive filter isXk , the output isyk, and the desired response isdk , then the

optimal filter performs the function

yk = E
[
dk |Xk

]
.

This is proven by supposing thatyk is the claimed optimal estimate, and thatŷk is some other

estimate. We will show that̂yk must yield an MSE no smaller than doesyk. To see this, consider,

MSE(ŷk) = E
[‖dk − ŷk‖2

]
= E

[‖dk − yk + yk − ŷk‖2
]

= E
[‖dk − yk‖2

]+ E
[‖yk − ŷk‖2

]+2E
[
(dk − yk)

T (yk − ŷk)
]

≥ MSE(yk)+2E
[
(dk − yk)

T (yk − ŷk)
]
.

We will show that the rightmost term is zero and hence that MSE(ŷk) ≥ MSE(yk), proving the

theorem. Recall thatyk = E
[
dk |Xk

]
and hence

E
[
(dk − yk)|Xk

] = 0.

Sinceyk − ŷk is a deterministic function ofXk ,

E
[
(dk − yk)

T (yk − ŷk)|Xk
] = 0.

2.4. Example: Linear and Nonlinear System Identification 21

Then, by iterated expectation, we have

E
{
E
[
(dk − yk)

T (yk − ŷk)
∣∣ Xk

]} = E
[
(dk − yk)

T (yk − ŷk)
]

= 0,

as claimed, which proves the theorem.

2.4 Example: Linear and Nonlinear System Identification

As an example of adaptive filtering, we now look at how to determine a plant model. The model

should capture the dynamics of the plant well enough that a controller designed to control the plant

model will also control the plant very well.

Such a model might be derived from physics by carefully analyzing the system and deter-

mining a set of partial-differential equations which explain its dynamics. Alternately, the model

might be a “black box” implementing some sort of universal transfer function. This function may

be tuned by the adjustment of its internal parameters to capture the dynamics of the system. Often,

even a physically modeled system will have some adjustable parameters, so that both methods will

require tuning based on observed input-output data. In the literature, this process is calledsystem

identification. Any method of system identification must address two major concerns:

1. We cannot have all possible “data cases” in the observed data. If we did, then system identi-

fication would be reduced to a table lookup exercise. Therefore, we must have some sort of

interpolation and/or extrapolation rule.

2. We need to make some sort of assumptions about the disturbancesw(t) experienced by the

system we are identifying. The disturbance is anunmodeled inputto the system. If we make

no assumptions about its behavior, then there is no information in the output of the plant

concerning its dynamical relationship with the input.

Identification of Linear Systems: Let us first consider the identification of a linear system. We

address the first concern—the interpolation/extrapolation rule—by the structure of the model. For

a physically modeled system, it is readily apparent what parameters need to be identified, and how

the model is structured. If we are identifying a “black box” model, its structure may be chosen

to be either: a state-space implementation adjusted by subspace methods [40]; an auto-regressive

ARMA IIR filter adjusted by recursive least-squares methods [24]; or an FIR model adjusted by an

22 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

algorithm such as LMS [44]. Each of these methods has its advantages. The state-space method

can be made numerically very robust. The ARMA model may have many fewer parameters than

FIR, and hence may learn more quickly. The FIR model is very simple and unbiased by zero-mean

disturbances if they are uncorrelated with the system input. The intent of this dissertation is not to

address the issue of model structure selection—the reader may choose any model structure he or

she may prefer. However, for the sake of brevity, adaptive FIR models are used to identify all linear

systems in this text. Even if such a model is not used, the FIR impulse response of any plant model

may easily be calculated by filtering an impulse and truncating the response.

We address the second concern—the character of disturbances—by assumption. For this work

we assume that plant disturbances are stationary, zero-mean and uncorrelated with the plant input.

This allows us to find models of the plant which are unbiased by the disturbance.

Black-box adaptive system identification is performed as shown in Fig. 2.4. The plant is

excited with the signaluk , and the disturbed outputyk is measured. The plant model̂P is also

excited withuk, and its output̂yk is computed. The plant modeling error is the difference between

the model output and the measured plant output:e(mod)
k = yk − ŷk. This modeling error is then used

by the adaptation algorithm to update the weight values of the adaptive filter.

Plant
P

P̂

Dist. wk

uk yk

e(mod)
k

ŷk

Figure 2.4: System identification.

The desired response of the filter is set to beyk. The input to the filter isuk . This information

can be used with the techniques of Sec. 2.2.3 to compute the Wiener solution for the optimal plant

model.

(φuy)n = E
[
uk yk+n

]
= E

[
uk(pk+n ∗ uk+n +wk+n)

]
= E

[
uk(pk+n ∗ uk+n)

]+ E
[
ukwk+n

]
= pn ∗ (φuu)n + (φuw)n,

2.4. Example: Linear and Nonlinear System Identification 23

wherepk is the impulse response of the plant. If the disturbance is zero-mean and uncorrelated with

the plant input, then

(φuy)n = pn ∗ (φuu)n

8uy(z) = P(z)8uu(z)

P̂
(opt)

(z) = 8uy(z)

8uu (z)

P̂
(opt)

(z) = P(z).

So, the adaptive plant model converges to the plant.

Identification of Nonlinear Systems: Nonlinear systems are much more complicated to model.

Physical modeling is still possible, but in practice this method is not as useful as “black box” mod-

eling. For nonlinear systems, a NARX model of sufficient order is a universal dynamic system

approximater. Hence, we restrict ourselves in this work to NARX neural network plant models.

Neural networks have some excellent features which turn out to be very important in finding con-

trollers; for example, the Jacobian matrices of the plant may be very simply computed. We will see

that this is necessary when adapting the controller in Chap. 4.

NARX models have implicit feedback of delayed versions of their output to the input of the

model (see Fig. 2.3). This feedback is assumed in all block diagrams, and is not drawn explicitly,

except in Fig. 2.5. The purpose of Fig. 2.5 is to show that this feedback, when training an adaptive

plant model, may be connected to either the model outputŷk or the plant outputyk. The first method

is called aparallel connection for system identification, and the second method is called aseries-

parallel method for system identification. Networks configured in the series-parallel mode may be

trained using the standard backpropagation algorithm. Networks configured in the parallel mode

must be trained with either real-time-recurrent-learning (RTRL) or backpropagation-through-time

(BPTT). The first configuration is simple, but is biased by disturbance. The second configuration

is more complex to train, but is unbiased by disturbance. In this work, nonlinear system identifica-

tion is first performed using the series-parallel configuration to initialize weight values of the plant

model. When the weight values converge, the plant model is re-configured in the parallel configura-

tion and training is allowed to continue. This procedure allows speedy training of the network, but

is not compromised by disturbance.

Again, we address the second concern—the character of disturbances—by assumption. We

assume that plant disturbances are stationary, zero-mean and statistically independent of the plant

24 Chapter 2. Adaptive (Linear and Nonlinear) Digital Filters

Plant
P

P̂

Dist. wk

uk yk
yk

ŷk

e(mod)
kParallel

Series-Parallel

Figure 2.5: Nonlinear system identification.

input. This allows us to find models of the plant which are unbiased by the disturbance. The

mathematics showing that the nonlinear system identification scheme converges to the correct result

are given in Sec. 5.2.1.

2.5 Summary

This chapter has discussed linear and nonlinear adaptive digital filters. The structure, adaptation

algorithm and optimal solution are given for both classes of filter. Further results concerning the

stability of the adaptive algorithms may be found in App. A. An example was presented showing

how to use an adaptive filter to perform adaptive system identification. The structure of the iden-

tification system was given, with proof of convergence to the correct solution provided that any

disturbance is stationary zero-mean and independent of the plant input signal.

Chapter 3

Plants Used as Examples

Few things are harder to put up with than the annoyance of a good example.

—Mark Twain

3.1 Introduction

This chapter introduces the plants used throughout this dissertation as examples of their respective

control categories. Representative linear and nonlinear, SISO and MIMO systems are included. The

examples were chosen because they are typical of actual control problems, but simple enough to be

thoroughly understood. In the following pages, the dynamics of each plant are outlined, reference

signals that the plants’ outputs are required to track are specified, and the characteristics of expected

disturbances are presented.

3.2 Linear Plants

The dynamics of linear continuous-time systems may be expressed mathematically in a number of

ways. One of these is by linear constant coefficientdifferentialequations, and another is by a state-

space form. In this work, the first example is defined by a differential equation, and the second by a

state space form.

Continuous-time plants are discretized by realizing that the plant input is held constant forT

seconds (whereT is the sampling period), and the plant output is sampled everyT seconds. The

transfer function of the plant in thez-transform domain may then be readily calculated from the

transfer function in the (Laplace)s-plane. Notationally, we say

H(z) = (1− z−1) Z

{
H(s)

s

}
,

25

26 Chapter 3. Plants Used as Examples

where the operatorZ {·}means “take the inverse Laplace transform of(·), sample the resulting time

sequence at 1/T samples per second, and return thez-transform of the sampled sequence.”

The resulting transfer functionH(z), along with its region of convergence in thez-plane,

uniquely defines a linear time invariant discrete-time system. Important properties of the system

may be quickly deduced fromH(z). Assuming thatH(z) is in rational polynomial form, the roots

of its denominator polynomial are calledpoles, and the roots of its numerator polynomial are called

zeros. If all of the poles are within the unit circle in thez-plane, the system is stable and causal.

If any pole is outside the unit circle, the system must be either unstable or non-causal. If all of the

zeros are inside the unit circle, the system is calledminimum phase, and a stable, causal inverse of

the system exists. This makes controlling the system relatively easy. If any zero is outside the unit

circle, the system is callednonminimum phase, and a stable, causal inverse does not exist. However,

a delayed, causal, approximate inverse does exist, and works very well for controlling such systems.

Two linear plants were chosen to demonstrate aspects of adaptive inverse control in this dis-

sertation. They are described in the following sections.

3.2.1 Linear SISO Plant

The linear SISO example was selected from reference [7, pp. 659–61]. The goal is to control the

temperature of a tank of water. The flow-rate of water into the tank is constant and equal to the flow-

rate of water out of the tank. The temperature of the incoming water is controlled by a mixing valve

that adjusts the relative amounts of hot and cold supplies of the water (see Fig. 3.1). A length of

pipe, assumed to have negligible heat loss, separates the mixing valve from the tank. This distance

causes a time delay between the application of a change in the mixing valve and the discharge of

the flow with the changed temperature into the tank. If our goal were to design an analog controller

for this plant, this time delay significantly complicates the task. No exact analysis techniques are

available to handle pure delays, and approximations, such as the Pad´e approximation must be used

to design the controller. Discrete-time design for this plant can also be complicated. Depending

on the length of the delay, the transfer function of the plant may have a finite zero outside the unit

circle. Such a zero makes the plant nonminimum-phase and must be considered carefully. We will

see this as we proceed.

Assuming that the mixing in the tank is instantaneous, and that negligible heat is lost in the

pipe connecting the valve to the tank, the differential equation governing the tank temperature is

Ṫt (t)+ ṁ

M
Tt(t) = ṁ

M
Tv(t − τd),

3.2. Linear Plants 27

Hot

Cold

Mixing
Valve Tv

Tt

Figure 3.1: Tank temperature control.

where

Tv = temperature of water immediately after the control

valve and directly controllable by the valve,

Tt = tank temperature,

ṁ = mass flow rate(ṁ in = ṁout),

M = water mass contained in the tank,

τd = delay time of water between valve and tank.

When transformed, lettinga = ṁ/M, the transfer function fromTv to Tt becomes

H(s) = e−τd s

(s/a)+ 1
.

The equivalentz-transform of the discretized plant may be computed as follows

H(z) = (1− z−1) Z

{
H(s)

s

}
.

To compute this result, we break up the delay timeτd into integer plus fractional multiples of the

sampling timeT . That is,τd = θT −ψT , 0≤ψ < 1. Then,

H(z) = (1− z−1) Z

{
e−θsT eψsT

s[(s/a)+1]

}
= (1− e−aψT)

zθ

z+ e−aψT−e−aT

1−e−aψT

z− e−aT
.

It is interesting to consider the location of the zeros ofH(z). There areθ zeros located at infinity;

alternately, we may consider there to beθ poles at the origin. These zeros (or poles) correspond to

the built-in time delay of the system. Because of them, a non-delayed inverse cannot be constructed.

However, a perfect stable and causal inverse with delay of at leastθ time stepsmay berealizable.

28 Chapter 3. Plants Used as Examples

The remaining (finite) zero ofH(z) will be either inside or outside the unit circle, depending

on the value ofψ . If the zero is inside the unit circle, the system is generalized minimum phase. A

perfect stable and causal delayed inverse may be constructed. If the zero is outside the unit circle,

the system is nonminimum phase. Even if the zero is outside the unit circle, a very accurate delayed

stable and causalapproximateinverse may still be obtained. Simulations were performed for both

cases to verify the efficacy of the proposed control algorithms. For these simulations, the following

values were chosen for the variables

ṁ = 2 kg/s,

M = 10 kg,

T = 1 s,

θ = 2 time steps.

The value forψ was chosen to be either 0.55 (finite zero inside unit circle) or 0.35 (finite zero

outside unit circle) time steps. With all the variables substituted, the transfer functions become:

H1(z) = 0.1042
z+0.7402

z3−0.8187z2

H2(z) = 0.0676
z+1.6813

z3−0.8187z2
,

whereH1(z) has its finite zero inside the unit circle, andH2(z) does not. These transfer functions

are realized through the following difference equations, respectively:

yk = 0.8187yk−1+ 0.1042uk−2 + 0.0771uk−3, (3.1)

and,

yk = 0.8187yk−1 + 0.0676uk−2 + 0.1137uk−3. (3.2)

For reference, the impulse responses and pole-zero plots of these transfer functions are presented

in Fig. 3.2. H1(z) is referred to as the minimum-phase plant, andH2(z) is referred to as the

nonminimum-phase plant.

Range of Operation: Water exists in a liquid phase (at atmospheric pressure) for temperatures

between 0◦C and 100◦C. To remain within the middle of this range, we would like to operate

the mixer at temperatures roughly between 40◦C and 60◦C. Therefore, the reference signal the

plant will be required to track when performing simulations is generated by filtering i.i.d. uniformly

3.2. Linear Plants 29

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Impulse response ofH1(z).

Time (s)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Impulse response ofH2(z).

Time (s)

A
m

pl
itu

de

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

A
xi

s

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

A
xi

s

Figure 3.2: Discrete-time impulse responses and pole-zero plots for the linear SISO plants.

distributed random numbers (between 45◦C and 55◦C) using a one-pole digital filter, where the pole

is located atz = 0.7. This is a first-order Markov process.

When constraints on the control effort are considered, they will be as follows: The control

effort is allowed to be in the range 5◦C to 95◦C. This ensures a practical implementation as water is

still in its liquid phase over this range of temperatures. Physically, this means that the hot resevoir

is a 95◦C hot water source, and that the cold resevoir is a 5◦C cold water source.

Disturbances: There are several possible sources of disturbance for this particular plant. There

could be heat loss in the pipe between the valve and the tank, heat loss in the tank itself, non-

instantaneous mixing in the tank, or poorly regulated hot and cold reservoirs. It is quite reasonable

to assume that the pipes and tank are very well insulated, and so heat loss is not considered to be

significant. Furthermore, the relatively slow 1 Hz sampling rate allows for good mixing between

samples. Therefore, we focus on the regulation of the hot and cold sources, which provides a very

interesting problem.

30 Chapter 3. Plants Used as Examples

The controller output selects a desired valve temperature. The nominal hot reservoir tempera-

ture isTh = 95◦C, and the nominal cold reservoir temperature isTc = 5◦C. Therefore, the valve is

set based on the control signal,uk , to be:1

Tv =
(

uk − 5

90

)
Th +

(
95− uk

90

)
Tc, 5≤ uk ≤ 95.

Now, let us assume that the hot source is poorly regulated. It heats up and cools down in a

periodic fashion. Let

Th = 95+ 5 sin(2π t/60+ φ) ,

whereφ is random variable, uniformly distributed between [−π,π], and independent ofuk .

Then,

Tv = uk +
(

uk −5

18

)
sin(2πk/60+φ)

distk =
(

uk −5

18

)
sin(2πk/60+φ) ∗ pk ,

where the disturbance is measured at the output of the plant, so is shown convolved with the plant

impulse response,pk . This disturbance is interesting for two main reasons: (1) It is nonlinear, and

(2) It is statistically dependent onuk . Note, however, that it isuncorrelatedwith uk .

3.2.2 Linear MIMO Plant

The Boeing 747 aircraft is one of the most capable transport jets ever built (see Fig. 3.3). It can carry

approximately 420 passengers and has a range of more than 8,000 miles. Because of its extensive

range (resulting in pilot fatigue), and a desire to minimize the crew requirements, a capable “auto-

pilot” controller is required in the aircraft design. With this motivation, two aspects of flight control

were selected to demonstrate linear, MIMO control.2

As the reader might imagine, the control equations for an airplane are actually quite nonlinear;

however, they may be adequately approximated by a linear model around an equilibrium point. In

the case at hand, the equilibrium “point” is: level flight at 40,000 ft and a nominal forward speed of

Mach 0.8 (774 ft/sec). The resulting linearized equations of motion are eighth-order, but they may

be separated into two fourth-order sets representing the perturbations in longitudinal and lateral

motion.

1Even should the control signal go outside of bounds, this relationship is used to preserve the linearity of the problem.
2The primary reference for this section is [7, pp. 684–93]. The author in turn references the seminal but elusive

source [18]. The augmented equations for MIMO control were obtained from [14, pp. 23–35].

3.2. Linear Plants 31

Aileron Elevators

Rudder

x y

z

θ,q

ψ,r

φ, p

x, y, z = position coordinates

p,q,r = roll, pitch and yawrates

φ,θ,ψ = roll (bank), pitch and yawangles

Figure 3.3: Aircraft yaw-rate and bank-angle control.

The longitudinal motion consists of axial (x), vertical (z) and pitching (θ,q) motion, while

the lateral motion consists of rolling (φ, p), yawing (ψ,r) and lateral (y) movement. Additionally,

we define the side-slip angleβ to be the angle between the forward velocity vector and the nose-

direction of the airplane. The elevator control surfaces and the throttle control the longitudinal

motion, and the aileron and rudder primarily affect lateral motion. The coupling between lateral

and longitudinal motion is minimal and is usually ignored when designing controllers. Here, we

wish to control the aircraft’s yaw-rate (r) and bank-angle (φ).

The dynamics of the system are most compactly represented in state-space form. Define

x(t) =


Sideslip angle,β(t), in radians
Yaw rate,r(t), in radians/second
Roll rate,p(t), in radians/second
Bank angle,φ(t), in radians


y(t) =

[
Yaw rate,r(t), in radians/second
Bank angle,φ(t), in radians

]
,

and,

u(t) =
[

Rudder angle in degrees
Aileron angle in degrees

]
.

Then,

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t),

32 Chapter 3. Plants Used as Examples

where,

A =


−0.0558 −0.9968 0.0802 0.0415

0.5980 −0.1150 −0.0318 0.0000
−3.0500 0.3880 −0.4650 0.0000

0.0000 0.0805 1.0000 0.0000

, B =


0.0073 0.0000
−0.4750 0.1230

0.1530 1.0630
0.0000 0.0000

,

C =
[

0 1 0 0
0 0 0 1

]
.

The set of continuous-time impulse responses corresponding to this set of equations is plotted

in Fig. 3.4. As can be seen, the decay rate of these impulse responses is very slow, with some effect

even after 500 seconds. In order to improve this we use output feedback to increase the damping

on the very lightly-damped modes of the system. The very simple feedback structure is shown in

Fig. 3.5. As will be shown shortly, the response time is greatly improved, and a simpler digital

controller (i.e., one with fewer taps) may be realized.

0 100 200 300 400 500 600 700
−5

−4

−3

−2

−1

0

1

2
Rudder angle7→ Yaw rate

Time (s)

A
m

pl
itu

de

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Aileron angle7→ Yaw rate

Time (s)

A
m

pl
itu

de

0 100 200 300 400 500 600 700
−40

−35

−30

−25

−20

−15

−10

−5

0
Rudder angle7→ Bank angle

Time (s)

A
m

pl
itu

de

0 100 200 300 400 500 600 700
0

5

10

15

20

25
Aileron angle7→ Bank angle

Time (s)

A
m

pl
itu

de

Figure 3.4: Uncompensated jet impulse responses.

3.2. Linear Plants 33

k=0.32

Rudder angle

Aileron angle

Yaw rate

Bank angle

Figure 3.5: Simple feedback system to increase the damping of one of the lateral modes.

The process of converting this system from continuous-time to discrete-time is simple yet

tedious. Fortunately, theControl Systems Toolbox for Matlab[14] comes to our rescue and gives us

the following set of equations (forT = 0.5 seconds)

xk =


Sideslip angle,βk , in radians
Yaw rate,rk , in radians/second
Roll rate,pk , in radians/second
Bank angle,φk , in radians

,

yk =
[

Yaw rate,rk , in radians/second
Bank angle,φk , in radians

]
,

and,

uk =
[

Rudder angle in degrees
Aileron angle in degrees

]
.

Then,

xk+1 = Ad xk + Bduk

yk = Cd xk,

where,

Ad =


0.8876 −0.3081 0.0415 0.0198
0.2020 0.3973 −0.0046 0.0024
−1.2515 0.5106 0.7617 −0.0139
−0.3313 0.1510 0.4407 0.9976

, Bd =


0.4806 −0.0013
−1.5809 0.3887

0.0599 4.8390
0.0390 1.2585

,

Cd =
[

0 1 0 0
0 0 0 1

]
.

The corresponding discrete-time impulse responses are shown in Fig. 3.6. Note in particular that

the output feedback has reduced the length of the impulse responses to about 25 seconds.

34 Chapter 3. Plants Used as Examples

0 5 10 15 20 25 30 35 40 45 50
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Rudder angle7→ Yaw rate

Time (0.5s)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Aileron angle7→ Yaw rate

Time (0.5s)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50
−8

−7

−6

−5

−4

−3

−2

−1

0

1
Rudder angle7→ Bank angle

Time (0.5s)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

4

5

6

7

8
Aileron angle7→ Bank angle

Time (0.5s)

A
m

pl
itu

de

Figure 3.6: Compensated, discrete-time jet impulse responses.

Range of Operation: Proper ranges for the input and output signals of this plant are unknown, so

the following limits were arbitrarily chosen. The reference signal for the yaw-rate to track varied

between±0.1 radians per second. The bank angle to be tracked varied between±0.4 radians.

This corresponds roughly to yaw-rates between±6◦ per second, and bank angles between±23◦.

The reference command to be tracked was generated independently for each output. The reference

command for the desired yaw-rate was a first-order Markov process generated by filtering i.i.d.

uniform random variables with maximum value 0.03 using a one-pole filter whose pole was at

z = 0.9. The reference command for the desired bank angle was a first-order Markov process

generated by filtering i.i.d. uniform random variables with maximum value 0.12 with a one-pole

filter whose pole wasz = 0.9.

Constraints on the control effort were considered to be slew-rate constraints. The slew-rate

of the rudder angle was constrained to be between±0.3◦ per second. The slew-rate of the aileron

angle was constrained to be between±1.5◦ per second.

3.3. Nonlinear Plants 35

Disturbances: The primary disturbance experienced by the dynamics of the airplane are those

induced by bursts of wind. It is assumed here that the nominal wind values are incorporated into the

dynamic model of flight, and that gusts around that nominal value are the disturbances. The state

of the airplane,xk , is affected directly by the wind. So, the full discrete-time model of the airplane

dynamics, with disturbance, is

xk+1 = Ad [xk +distk]+ Bduk

yk = Cd xk, (3.3)

Furthermore, it is assumed that the wind gusts occur as planar fronts and thus do not affect the yaw-

rate, roll-rate or bank-angle directly. Instead, the sideslip angle is directly affected by the wind,

and the other state-variables are affected indirectly through the dynamical relationship between

themselves and the sideslip angle. If we model the wind in the lateral direction, then the sideslip

angle is perturbed by

tan−1
(

wind speed

airplane speed

)
.

The model for generating a wind speed time series was derived based on the data presented

in [20]. An approximation was made to the autocorrelation function of the cited paper. The power

spectral density of wind velocity was calculated from the autocorrelation function, and was found

to be

8(f) = 3950

1+ (20π f)2
.

An FIR filter was designed using a weighted least-squares optimization algorithm to produce this

power spectral density given an input stream of i.i.d. uniform random numbers with maximum

magnitude 1. The filter impulse response and the power spectral density of wind disturbances is

shown in Fig. 3.7. The maximum absolute wind speed is in the neighborhood of 20 feet per second,

so the maximum perturbation toβk is around 0.03 radians.

3.3 Nonlinear Plants

Unlike linear systems, nonlinear systems do not satisfy the superposition principle. Therefore, they

cannot be described in terms of impulse responses or transfer functions. They must be described in

the time domain. Continuous time systems may be described by systems of nonlineardifferential

equations, and discrete time systems may be described with sets of nonlineardifferenceequations.

36 Chapter 3. Plants Used as Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

Wind disturbance power spectral density

Frequency (Hz)
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Impulse response of disturbance-generating filter

Time (0.5s)
(b)

A
m

pl
itu

de

0 500 1000 1500 2000 2500 3000
−20

−15

−10

−5

0

5

10

15
Sample wind time series

Time (0.5s)
(c)

A
m

pl
itu

de

Figure 3.7: Simulation of wind disturbances.
(a) Spectral density of wind disturbanceS(f)

(solid) plotted together with simulated spectral
density (dashed); (b) Impulse response of FIR fil-
ter (order=80) used to create spectral density of
wind disturbances. (c) Sample wind time series.

It is not always possible to analytically discretize a set of nonlinear differential equations.

In many cases it is necessary to discretize the plant by simulating (numerically integrating) the

differential equations over the sampling period. At times, dozens of integration steps need to be

taken to advance the system from its current state to its state after a sampling period.

Some work has already been done in the area of nonlinear adaptive inverse control [2, 4].

This work focused on seven nonlinear SISO plants, all defined by difference equations. Successful

feedforward control was achieved for most, but not all, of the plants. In this work, these seven

plants are considered in App. B to demonstrate that the methods presented in later chapters are able

to control all seven plants, and that disturbance cancelling may also be achieved for them.

Here, however, we consider two more difficult nonlinear control problems with greater prac-

tical motivation. Much more insight may be gathered from studying them since we already have

an expectation of what their limits of performance might be. Their dynamics are computed by

simulating the continuous-time differential equations since they cannot be analytically discretized.

3.3. Nonlinear Plants 37

3.3.1 Nonlinear SISO Plant

Autopilots for ships are often designed to keep the ship’s heading (yaw angle) in a desired direction

(see Fig. 3.8). There are some applications, such as course changing and turning, however, where

it is desirable to be able to track a time-varying reference direction. This scenario was selected as

an example of a very nonlinear control problem. The primary reference is [39] but [30] was also

consulted for additional insight into the meanings of some of the parameters involved.

N

ψ(t)

Figure 3.8: Illustration of heading (yaw) angle,ψ(t). Not drawn to scale!

The SISO maneuvering model of a ship may be expressed as

ψ̈ + k d(ψ̇) = kδr ,

whereψ(t) is the yaw angle of the ship,δr is the rudder angle andd(ψ̇) is a damping term of the

form

d(ψ̇) = d3ψ̇
3+ d2ψ̇

2+ d1ψ̇ + d0.

Because of symmetry, most ships have the property thatd2= d0= 0.

Not only does the ship itself exhibit a nonlinear dynamical relationship between its heading

and rudder angle, but so too does the rudder angle with respect to the (steering) wheel position; that

is, the rudder angleδr does not follow the wheel angleδw exactly. The rudder is rate-limited to 6◦ per

38 Chapter 3. Plants Used as Examples

second until|δw − δr | ≤ 3◦ after which the rudder operates in the linear range of its characteristic.

One final restriction is that the rudder angle may not exceed 35◦ in either direction. Keeping all

these things in mind, the ship dynamics may be represented as shown in Fig. 3.9.

Rudder angle
limiter

Rudder rate
limiter

1
s

1
s

1
s

Disturbance

δw ψ
ψ̇δrδ̇r

Figure 3.9: Block diagram of ship yaw dynamics from wheel angleδw to heading angleψ.

To summarize, the system dynamics are controlled by the coupled pair of differential equations

ψ̈(t) = k
[
δr(t)+disturbance(t)− d(ψ̇(t))

]
δ̇r (t) = 6sat

35sat
(

δw(t)
35

)
− δr(t)

3

,

where,

sat(x) =


−1, x <−1;

x, −1≤ x < 1;

1, otherwise,

and constants have been added to convert from degrees to radians and to allow the use of the nor-

malized saturation function sat(x). The sampling rate used in the discrete time controller was 2Hz.

All remaining parameters were taken from reference [39].

k = 0.0107, d1 = 9.42, d3 = 2.24,

and correspond to the dynamics of a Royal Navy warship traveling at sixteen knots.

Stabilizing the Dynamics: The dynamics of the ship are unstable. This may easily be seen by

applying a step function to the control input. The plant output for a collection of step inputs ranging

in magnitude from 10◦ to 180◦ is shown in Fig. 3.10(a). A bounded input does not produce a

bounded output, and hence the dynamics are unstable.

A very simple feedback circuit can stabilize the dynamics. The modification to the ship

block diagram is shown in Fig. 3.11. The step responses for the stabilized dynamics are shown

3.3. Nonlinear Plants 39

in Fig. 3.10(b). Now, bounded inputs produce bounded outputs. In fact, the feedback loop makes

a pretty good control system all by itself. A step input ofψ◦ will asymptotically produce a step

output ofψ◦. The nonlinear controller will enhance the dynamic response where it can (when the

rudder rate and angle limits are not saturated).

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400
Step response to different step sizes.

Time (s)
(a)

H
ea

di
ng

an
gl

e,ψ

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200
Step response to different step sizes.

Time (s)
(b)

H
ea

di
ng

an
gl

e,ψ

Figure 3.10: Step response of ship to input step commands of magnitude 10◦ to 180◦ in increments
of 10◦. (a) Unstable ship dynamics; (b) Stabilized ship dynamics.

Rudder angle
limiter

Rudder rate
limiter

1
s

1
s

1
s

Disturbance

δw ψ
ψ̇δrδ̇r

Figure 3.11: Block diagram of stabilized ship.

Range of Operation: Since the nonlinear controller can not improve performance when the rud-

der dynamics are in their saturation region, only relatively small perturbations around a fixed head-

ing need to be considered. A default “steady” heading of 0◦ was used, with perturbations limited to

±30◦ around that heading. More specifically, the reference command to be tracked was a first-order

Markov process, generated by filtering i.i.d. uniform random numbers with maximum magnitude

0.05◦ using a one-pole filter with the pole atz = 0.99.

40 Chapter 3. Plants Used as Examples

Disturbances: The disturbances experienced in the dynamics of the ship are caused almost ex-

clusively by the action of sea waves acting on the rudder angle, and by wind acting on the super-

structure. Here, we consider only the effects of waves, as is done in reference [39]. The power

spectral density of wave height as a function of wave frequency is

S(f) = αg2

(2π)4 f 5
exp

[
−β

{
g

2πU19.5 f

}4
]

,

where,

f = wave frequency (Hz)

α = Phillips constant (8.1×10−3)

β = dimensionless constant (0.74)

U19.5 = wind velocity 19.5m above sea level (knots)

g = acceleration due to gravity.

The nominal wind velocityU19.5 was taken to be 20 knots. This power spectral density (scaled as

will be described later) is plotted as the solid line in Fig. 3.12(a).

In order to generate wave disturbances, i.i.d. uniformly distributed random numbers with max-

imum magnitude 1 are passed through a filter having the same power spectral densityS(f). This

filter, shown in Fig. 3.12(b), was designed fromS(f) using a least-squares filter design method. As

is done in reference [39], the filter is scaled so that peak-to-peak yaw rates of approximately 0.3◦

per second occurred when there was no rudder input. The scaling factor was 3. Using the random

uniform input and this filter, a sample wave time series is plotted in Fig. 3.12(c).

3.3.2 Nonlinear MIMO Plant

The plant chosen to illustrate nonlinear MIMO control is a two-link planar robot arm. This is a stan-

dard example from the robotics literature; the equations of motion are taken from reference [25] and

the specific parameter values are taken from reference [38]. The model includes all joint coupling

terms (centripetal and Coriolis torques, variable effective moments of inertia, etc.).

The manipulator is depicted in Fig. 3.13. Both links are capable of 360◦ rotation. As the

emphasis of this dissertation is not on robotic control, we do not present a detailed tutorial on the

subject. However, a few details and definitions will be mentioned to aid the discussion.

There are two major aspects to robotic control. The first is thekinematicsof the manipulator.

These specify the relationship between the angles of the joints and thex, y location of the end

3.3. Nonlinear Plants 41

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

Rudder disturbance power spectral density

Frequency (Hz)
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

1.5

Impulse response of disturbance-generating filter

Time (0.5s)
(b)

A
m

pl
itu

de

0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

4

6
Sample wave time series

Time (0.5s)
(c)

A
m

pl
itu

de

Figure 3.12: Simulation of sea disturbances.
(a) Spectral density of wave disturbanceS(f)

(solid) plotted together with simulated spectral
density (dashed); (b) Impulse response of FIR fil-
ter (order=80) used to create spectral density of
wave disturbances. (c) Sample wave time series.

l1

l2

θ1

θ2

✪

✪

r1

r2

x

y

Figure 3.13: Two-link robot arm.

effector. The so-calledinverse kinematicsproblem concerns itself with finding an appropriate set

of joint angles to achieve some desired end-effector position. There may be no solution at all to a

specific inverse kinematics problem, but in general there are multiple solutions. Neural networks

have been used to solve the inverse kinematics problem in a slightly different application [27, 12].

42 Chapter 3. Plants Used as Examples

The second aspect to robotic control concerns thedynamicsof the manipulator. These are

concerned with computing the forces required to achieve a certain movement of the robot. Inertial,

Coriolis, centrifugal, and gravitational forces are considered. Some advanced models also account

for frictional forces and for the flexibility of the manipulator, which is usually considered a rigid

body when the physics are developed. The standard Lagrangian model of manipulator dynamics is

given by

τ = A(θ)θ̈ + B(θ)
[
θ̇ θ̇

]+ C(θ)
[
θ̇2]+ G(θ),

where,

A(θ) is then× n kinetic energy matrix,

B(θ) is then× n(n−1)/2 matrix of Coriolis torques,

C(θ) is then× n matrix of centrifugal torques,

G(θ) is then-vector of gravity torques,

θ̈ is then-vector of joint-angle accelerations,

θ̇ is then-vector of joint-angle velocities,

θ is then-vector of joint angles,

τ is the joint-force vector.

Also, the symbols
[
θ̇ θ̇

]
and

[
θ̇2

]
are notation for then(n−1)/2-vector of velocity products and the

n-vector of squared velocities. They are defined as[
θ̇ θ̇

] = [
θ̇1θ̇2, θ̇1θ̇3 . . . θ̇1θ̇n, θ̇2θ̇3, θ̇2θ̇4 . . . θ̇n−2θ̇n, θ̇n−1θ̇n

]T[
θ̇2] = [

θ̇2
1, θ̇2

2 . . . θ̇2
n

]T
.

As can be seen, the matricesA,B, C andG are all dependent on the configuration of the manipulator

θ .

These equations have been expanded and simplified for this particular manipulator[
τ1

τ2

]
=

[
α+2βc2 δ+βc2

δ+βc2 δ

][
θ̈1

θ̈2

]
+

[−βs2θ̇2 −βs2(θ̇1+ θ̇2)

βs2θ̇1 0

] [
θ̇1

θ̇2

]
,

wherec2= cos(θ2), s2= sin(θ2) and

α = Iz1+ Iz2+m1r2
1 +m2(l

2
1+ r2

2)

β = m2l1r2

δ = Iz2+m2r2
2,

3.3. Nonlinear Plants 43

and: Iz(·) is the z-component of the inertial tensor of the(·)th link around its center of mass (relative

to a frame attached at the center of mass of the link and aligned with the principle axes of the bar),

m(·) are the link masses,r(·) is the distance from the joint to the center of mass of the link, andl(·) is

the length of the link.

The values of the parameters are:

m1 = 1 kg

m2 = 2 kg

l1 = 1 m

l2 = 1.2 m

r1 = 0.5 m

r2 = l2
2
+ 0.5m3l2

m2+m3
m

Iz1 = 0.12 kg m2

Iz2 =
m2l2

2

12
+m2

(
r2− l2

2

)2

+m3 (r2− l2)
2 kg m2.

The third mass,m3, is a point-mass load at the end of the second link. It is considered to have a

value of 0 kg under normal circumstances. A more involved discussion follows, under the section

of disturbances. The sampling rate for discrete-time control was 100 Hz.

Stabilizing the Dynamics: The dynamics of the robot are not globally stable. The dynamics were

stabilized by creating a PD controller.

τk = −K p(yk − uk)− Kd ẏk,

where,K p = 2000I andKd = 100I . This is shown in Fig. 3.14.

Dist. wk

uk
yk

PD
Ctrlr.

τk

Figure 3.14: Stabilized robot.

44 Chapter 3. Plants Used as Examples

Range of Operation: The two links of the arm are required to follow independent reference com-

mands. Both commands are generated by filtering i.i.d. uniform random variables with maximum

magnitude 0.15π using a one-pole filter whose pole was atz = 0.95. Slew-rate constraints on the

control input required thatτ1 be between±15N ·m/10ms , andτ2 be between±5N ·m/10ms .

Disturbances: The “disturbance” experienced by the robotic arm is due to a time-varying loadm3

attached to the end of the manipulator. The load is allowed to vary between 0 kg and 10 kg, with its

value chosen in discrete increments of 0.1 kg. As a function of time, the load is piecewise constant.

The duration that a specific load is attached to the end of the manipulator is a geometric random

variable with average 100 samples (1 second).

3.4 Summary

This chapter introduces four specific plants to be used throughout this dissertation as representative

of their specific control classes. There is a linear SISO plant, a linear MIMO plant, a nonlinear

SISO plant and a nonlinear MIMO plant. Additionally, the linear SISO plant may be selected to

be minimum phase or nonminimum phase by changing one of its parameters. All simulations done

in this dissertation (with the exception of those done for further examples presented in App. B) are

performed to demonstrate control of these plants.

In each case, the plant dynamics are discussed, the reference signals they are required to track

are specified and the disturbances experienced by the plant are characterized. The reader who wishes

to duplicate any result in this dissertation should have enough information at hand to do so!

Chapter 4

Constrained Adaptive
Feedforward Control

Who controls the past controls the future.

Who controls the present controls the past.

—George Orwell in1984

4.1 Introduction

To perform adaptive inverse control, we need to be able to adapt the three filters of Fig. 1.4: the

plant model̂P, the controllerC, and the disturbance cancellerX . One of these tasks has already

been addressed—we saw in Sec. 2.4 how to adaptP̂ to make a plant model. For the time being

we set aside consideration of the disturbance cancelling filterX and concentrate on the design of

the feedforward controllerC. This chapter presents an algorithm which can be used to trainC to

perform constrained model-reference based control of a linear or nonlinear, SISO or MIMO plant.

This algorithm has a number of nice properties and works very well. Along the way, some new

analytical results relating to constrained adaptive inverse control of linear plants are presented, and

some insight into choosing the delay for the control of a nonminimum-phase plant is discovered.

From time to time, results obtained from simulation are presented to corroborate and illuminate

certain analytical results before the algorithm used in the simulation is developed. The reader is

asked to accept the fact that the algorithm will be developed later in the chapter.

This chapter is organized into three parts. The first part deals with analytical results pertaining

to constrained control, particularly for linear MIMO (and hence also linear SISO) plants. The second

part develops an algorithm to train a controller to perform constrained control, and discusses an

efficient implementation. The third part presents results from simulations for the plants of Chap. 3.

45

46 Chapter 4. Constrained Adaptive Feedforward Control

4.2 Analysis of Constrained Linear Control

4.2.1 A Working Linear MIMO Control Architecture

The notion of the “optimal controller” is very important in this chapter. Various degrees of opti-

mality are considered. Without any constraints, the optimal controller is the one which minimizes

the mean-squared system error:E
[
(dk − yk)

T (dk − yk)
]
. A controller may not achieve this level of

performance due to constraints on its architecture. For example, we might restrict the controller to

be a linear system, or to be causal. In that context, we still talk about the “optimal controller” as

being the one which minimizes the mean-squared system error while satisfying the architecture con-

straints. We know from Chap. 2 that the optimal solution for a linear system is the Wiener solution,

and that the optimal solution for a causal linear system is the Shannon-Bode solution.

In addition to imposing constraints on the architecture of the controller, we might impose

constraints on the output of the controller; that is, on the control effortuk . Determining the con-

troller weights for a linear controller with control-effort constraints is a convex optimization prob-

lem and closed-form solutions for the transfer function of the controller are not available. This

chapter presents a simple analytic method to determine the weights of the controller to meet the

control-effort constraints—but not necessarily minimize the mean-squared system error—and an

algorithm which adapts a controller to find the optimal constrained solution whichdoesminimize

mean-squared system error. Before exploring the adaptive algorithm, it is worthwhile to consider

the analytic solution for the linear causal controller with and without constraints on the control

effort.

Linear SISO and MIMO plants may be controlled using linear SISO or MIMO controllers.

Here, we look at a method for adapting the weights of a linear causal controller. This controller

satisfies architecture constraints but does not consider constraints on the control effort—a different

algorithm is developed later on for that purpose. The controller which satisfies only architecture

constraints will be called the “optimal causal controller” and denotedC(opt)
causal(z).

The optimal causal linear MIMO controller is adapted using a simplification of a method from

reference [45, Chap. 10]. This method is diagrammed in Fig. 4.1. An on-line feedforward part

controls the plant, and two off-line processes are used to adapt the controller. The off-line process

on the left makes a left-inverseV (z) of the plant model̂P(z), and the process on the right uses this

left-inverse to make a model-reference based right-inverseC(z) of P̂(z). A copy of C(z) is then

used as the system controller. IfP̂(z) is equal toP(z), andV (z) is a good left-inverse of̂P(z), then

the resulting controller minimizes the mean-squared system error.

4.2. Analysis of Constrained Linear Control 47

Plant
P

C

CCOPY

P̂

P̂COPY

M

Dist. wk

rk

rk

uk yk

VCOPY

V z−1 I

z−1 I

noise
nk

Offline process to generateV Offline process to generateC

Figure 4.1: MIMO controller design.

The off-line process on the left makesV (z), a left-inverse of̂P(z). If the plant is minimum-

phase, then the delay1 may be set to zero. If the plant is nonminimum-phase, then the delay is set

long enough to make an excellent delayed inverse ofP̂(z). This delay is removed when adapting

the controller, so it does not affect the latency of the final control system. There is no penalty for

selecting a large delay if it is necessary to create a good inverse.

Since we assume1 to be sufficiently large, the transfer function of the adaptive filterV (z)

will approach its unconstrained Wiener solution. This may be calculated using the techniques of

Chap. 2.

8
(V)

xd (z) = (
z−1 I

)(
P̂COPY(z

−1)
)
8nn(z)

8(V)
xx (z) = (

P̂COPY(z)
)(

P̂COPY(z
−1)

)
8nn(z)

V (opt)(z) = (
8xd (z)

)(
8xx (z)

)−1

= (
z−1 I

)(
P̂COPY(z)

)−1

The off-line process on the right of the figure uses a copy ofV (z) to adapt the controller,C(z).

The delay1 is the same as in the off-line process used to generateV (z). The reference model

M (z) specifies the desired transfer function of the controlled system, including any delay required

to make a good inverse of a nonminimum-phase plant. The user chooses this delay to strike a

compromise between system latency and precision of control. We must use the Shannon-Bode

48 Chapter 4. Constrained Adaptive Feedforward Control

approach to compute the optimal causal solution forC(z) (since the plant may be nonminimum-

phase, the Wiener solution may be noncausal).

8
(C)
xd (z) = (

z+1 I
)
V (z)M (z)8rr (z)

= (
P̂COPY(z)

)−1
M (z)8rr (z)

8(C)
xx (z) = 8rr (z)

C(opt)
causal(z) =

[(
8xd (z)

)(
8−xx (z)

)−1
]
+

(
8+xx (z)

)−1

=
[(

P̂COPY(z)
)−1

M (z)8+rr (z)
]
+

(
8+rr (z)

)−1
(4.1)

If the plant is minimum-phase, then this simplifies to:

C(opt)
causal(z) =

(
P̂COPY(z)

)−1
M (z).

The analysis in the following sections computes a controller which satisfies constraints on the con-

trol effort. This analysis usesC(opt)
causal(z) as a starting point.

4.2.2 Constraint on the Control Effort

The preceding section sketches a method to adapt a controller to perform model-reference based

control while minimizing mean-squared system error. In general, however, we would also like to be

able to incorporate actuator constraints in the design process. Reasons include, (summarizing [3, p.

190]):

� Saturation.Exceeding absolute limits on actuator signals may damage an actuator, or cause

the plant model̂P to be a poor model of the system being controlled. This may be avoided by

constraining the peak magnitude ofuk .

� Actuator heating.Persistently large actuator signals may cause excessive heating and damage

the system. This may be avoided by constraining the RMS norm ofuk .

� Power, fuel, or resource use.Large actuator signals may be associated with excessive resource

use. This may be avoided by constraining the average-absolute norm ofuk .

� Mechanical wear. Excessively rapid changes in the actuator signal may cause undesired

stresses or excessive wear. This may be avoided by constraining the slew rate ofuk .

One further reason we might like to constrain the control effort is more subtle. We are perform-

ing discrete-timecontrol of continuous-timeplants. If pure inverse control is performed, then the

4.2. Analysis of Constrained Linear Control 49

plant output will match the desired output very wellat the sampling times. However, the plant output

may behave very poorly during the inter-sample interval. Figure 4.2 shows an example. An inverse

controller was trained for the minimum-phase tank example of Sec. 3.2.1, with the reference model

M(z)= z−2. The step response of the controlled system is shown in Fig. 4.2(a). The discrete-time

response of the system is shown as dots, and the continuous-time response of the system is shown

as a solid line. The desired response is shown as a gray line. We see that the discrete-time response

precisely tracks the desired response. However, due to very high control effort, the continuous-time

response “rings” wildly about the desired response. A second controller was trained with exactly

the same desired response, but which incorporated constraints on the peak magnitude of the control

signaluk . The step-response of the controlled system is shown in Fig. 4.2(b). Although the rise

time is longer, the settling time is shorter, and a much smoother continuous-time step response is

achieved. Further details of this simulation may be found in Sec. 4.4.1.

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Unconstrained Step Response

Time (s)
(a)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Constrained Step Response

Time (s)
(b)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

Figure 4.2: Step response of controlled minimum-phase tank. In (a), the control effort is uncon-
strained. In (b), the control effort is constrained to be between 5◦C and 95◦C. The dots are the
discrete-time response; the solid line is the continuous-time response; and the gray line is the desired
response. (The control effort is plotted in Fig. 4.18(b) and Fig. 4.18(f).)

4.2.3 An Approximate Solution for the Constrained Controller

Constraints on the control effort are most naturally expressed in the time-domain. On the other

hand, the Wiener and Shannon-Bode methods for determining optimal solutions for controllers use

the frequency-domain. As such, it is not clear how the constraints on control effort will change the

solution for the controller itself.

This section presents some analysis which translates constraints on thecontrol signaluk in

the time domain into constraints on thecontroller C in the frequency domain. The controller and

50 Chapter 4. Constrained Adaptive Feedforward Control

plant are assumed to be linear—possibly MIMO—systems. The result is a “recipe” for turning

an unconstrained controller into one which isguaranteedto satisfy the constraints. The design is

conservative, but an example is presented which demonstrates that the solution is quite good. First,

we examine constraints on the peak magnitude of the control signaluk , and then extend the analysis

to encompass constraints on the peak slew rate.

Constraints on the Peak Control Effort

Here, we consider designing a controller such that its peak output over all time is bounded by some

user-specified constant,u(peak)
k . If the controller has more than one output, then we restrict the peak

of each individual output to be belowu(peak)
k . Mathematically, we express the peak output over all

time using the infinity-norm of the control signal

‖uk‖∞ 1= sup
k

max
i
|uk,i |,

whereuk is the vector control signal at timek, anduk,i is thei th component of that control signal.

Then, the constraint on the control effort becomes

‖uk‖∞ ≤ u(peak)
k .

We convert this time-domain specification into a frequency-domain specification using some

simple results relating time-domain bounds to frequency-domain bounds. Each inequality is “tight”

in the sense that equality is achievable with some set of input signals.

‖uk‖∞ ≤ ‖U(e jω)‖∞
1= sup

ω∈[−π,π]
‖U(e jω)‖2

= sup
ω∈[−π,π]

‖C(e jω)R(e jω)‖2

≤ sup
ω∈[−π,π]

σ̄ [C(e jω)]‖R(e jω)‖2.

The last line replaces the norm ofC(e jω) with its maximum singular value,̄σ [C(e jω)], found using

a singular-value decomposition. Since we want‖uk‖∞ ≤ u(peak)
k , this means

σ̄ [C(e jω)] ≤ γ (e jω)
1= u(peak)

k

‖R(e jω)‖2 , ∀ω. (4.2)

4.2. Analysis of Constrained Linear Control 51

Any controller which satisfies this constraint will have acceptable control effort. Any controller

which does not satisfy this constraint may or may not have acceptable control effort.

Equation (4.2) may be used to design a controller which isguaranteedto satisfy the time-

domain restrictions onuk . To do this, we modify the unconstrained controllerC(opt)
causal(z) designed

in Sec. 4.2.1.

The controllerC(opt)
causal(z) may not reduce the system error to zero. Any residual error will be

called theirreducible error. If we were to use a different controller, by definition sub-optimal, then

there will be additional error at the system output. This will be called thereducible error. When

we design a controller to meet constraints on the control effort, we need to satisfy Eq. (4.2) while

minimizing the added reducible error.

If y(opt)
k is the (undisturbed) system output using the optimal controller, andyk is the (undis-

turbed) system output using the sub-optimal controller, then the square-reducible error, summed

over time, is

∞∑
k=0

(
e(reducible)

k

)T (
e(reducible)

k

) = ∞∑
k=0

(
y(opt)

k − yk
)T (

y(opt)
k − yk

)
= 1

2π

∫ π

−π

Tr
[(

Y (opt)(e jω)−Y (e jω)
)∗ (

Y (opt)(e jω)−Y (e jω)
)]

dω

= 1

2π

∫ π

−π

∥∥Y (opt)(e jω)−Y (e jω)
∥∥2

2 dω

where the second line is Parseval’s relationship for MIMO systems, and the third line is due to the

fact that the trace of a scalar is just that scalar. This function may be minimized by independently

minimizing its value at each frequency. Note that

Y (opt)(e jω) = P(e jω)C(opt)
causal(e

jω)R(e jω)

Y (e jω) = P(e jω)C(e jω)R(e jω)

Let

C(opt)
causal(e

jω) = υ(e jω)6(e jω)ν∗(e jω)

whereυ(e jω), 6(e jω), andν(e jω) form the singular-value decomposition ofC(opt)
causal(e

jω). Then,

also let

C(e jω) = υ(e jω)3(e jω)ν∗(e jω)

whereυ(e jω) andν(e jω) are the same, and3(e jω) is used to designC. The design goal is now to

minimize ∥∥P(e jω)υ(e jω)
{
6(e jω)−3(e jω)

}
ν∗(e jω)R(e jω)

∥∥2

52 Chapter 4. Constrained Adaptive Feedforward Control

while satisfying the constraint of Eq. (4.2). If3(e jω) is chosen to be diagonal with positive entries,

then this is very easy to do. Each diagonal entry of3(e jω) is a singular value ofC(e jω). It is very

easy to see then if Eq. (4.2) is satisfied. The entries of3(e jω) are chosen as follows:

3i (e
jω) =

{
6i(e jω), if 6i(e jω)≤ γ (e jω);

γ (e jω), otherwise.
(4.3)

We now have a “recipe” for designing a controller which will minimize the system mean-

squared error while satisfying a constraint on the maximum control effort. It is summarized in

Fig. 4.3.

beginfGenerate constrainedCg

DetermineR(e jω) and then findγ (e jω) using Eq. (4.2).

Design the optimal unconstrained controllerC(opt)
causal(z) using the method in

Sec. 4.2.1.

At each frequency, perform the singular-value decomposition ofC(opt)
causal(z) to find

υ(e jω), 6(e jω) andν(e jω).

Determine3(e jω) from 6(e jω) andγ (e jω) using Eq. (4.3).

ComputeC(e jω)= υ(e jω)3(e jω)ν∗(e jω).

The impulse response for implementingC may be found by taking the inverse
FFT of C(e jω).

endfGenerate constrainedCg

Figure 4.3: An algorithm for synthesizing a linear MIMO controller to satisfy constraints on the
control effort.

Constraints on the Peak Slew Rate

The slew ratesk of the system is computed assk = uk − uk−1. This is the same as passing the

control signaluk through the filter
(
1− z−1

)
I . This filter has a gain of two. Therefore, to construct

a controller which satisfies constraints on the slew rate, we use the exact same analysis as above,

except that Eq. (4.2) becomes

σ̄ [C(e jω)] ≤ γ (e jω)
1= s(peak)

k

2‖R(e jω)‖2 , ∀ω,

because of this extra factor of two. This new value ofγ (e jω) may be used to design a controller

using the algorithm of Fig. 4.3 to satisfy the slew-rate constraints.

4.2. Analysis of Constrained Linear Control 53

Example of Constraints on Peak Control Effort

At this point it is profitable to see an example of constrained control. A simulation was performed,

using the algorithm to be developed later in this chapter, to find the unconstrained inverse of the

minimum-phase tank of Sec. 3.2.1. A simulation was also performed to find the linear constrained

inverse when the control effort was restricted to be between 5◦C and 95◦C. The input source was

equal to the constant 50◦C plus a first-order Markov process with pole atz = 0.7 and driven by i.i.d.

uniform random variables with zero mean and maximum magnitude 5◦C. For the purposes of the

analysis here, since the system is linear, the input and output are shifted down by 50◦C to change

the constraints such that‖uk‖∞ ≤ 45◦C.

The results of these simulations are shown in Fig. 4.4. This figure plots the magnitude response

of the unconstrained inverse as a solid line, the magnitude response of the constrained inverse as

a dashed line, andγ (e jω) as a gray line. The design procedure for finding a controller which is

guaranteed to meet the constraints is to set the magnitude response of the controller equal to the

minimum of the unconstrained magnitude response andγ (e jω) at each frequency. The adaptive

algorithm has done something very similar, but not exactly this. Since the design procedure of

Fig. 4.3 is conservative, the adaptive controller is able to do somewhat better.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40
Magnitude Response of Controllers

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Figure 4.4: Magnitude response of unconstrained (solid line) and constrained controllers (dashed
line), plotted withγ (e jω) (gray line).

54 Chapter 4. Constrained Adaptive Feedforward Control

The Optimal Constrained Controller is Nonlinear

Before concluding this section, it should be mentioned that all of the analysis has been for a linear

controller controlling a linear plant. This may work relatively well but, in general, optimal con-

strained control is performed by a nonlinear system. This may be proven by (1) assuming that the

optimum controller is linear, and (2) providing a counter-example.

Suppose that the plant has trivial dynamicsP(z)= 1, and that the reference model isM (z)= 1.

Let the input signal,rk , be equal to 0.1 with probabilityp, and equal to 10 with probability 1− p.

Constrain the control effort such that‖uk‖∞ ≤ 1.

The optimal unconstrained controller isC(opt)
causal(z) = 1. The optimal linear constrained con-

troller is C(z)= 1/10. The optimal nonlinear constrained controller isuk = sat(rk), where sat(·) is

the saturation function. In this case, the unconstrained controller has mean-squared error of zero.

The linear controller has mean-squared error ofp · (0.0081)+ (1− p) · (81). The nonlinear con-

troller has mean-squared error(1− p) ·(81). The nonlinear controller is always better than the linear

controller, and becomes relatively more so asp→ 1. A general rule of thumb is that if the input

signal is very regular, then the linear controller does well. If the input signal has infrequent “spikes,”

then the nonlinear controller may be much better. Figure 4.7 shows an example of the nonlinear con-

troller giving better performance than the linear controller when controlling the nonminimum-phase

tank from Sec. 3.2.1. The simulations themselves are described in a future section. Another simu-

lation was done for the minimum-phase tank from Sec. 3.2.1. Histograms of the control effort were

computed when using a linear controller and when using a nonlinear controller. These histograms

are shown in Fig. 4.5. It is easily seen that the nonlinear controller makes better use of the available

control effort. The nonlinear controller also had significantly better mean-squared system error.

4.2.4 Control Effort and Controlling Nonminimum-Phase Plants

If the plant to be controlled is nonminimum-phase, then a stable and causal inverse does not exist.

A delayed inverse must be used as the controller. The longer the delay, the lower the system error

(as will be shown). The designer is then left with the question of how to pick the “best” delay. The

application itself may determine this factor by specifying a certain maximum latency; however, we

can not assume that this is always the case.

When there is a constraint on the control effort, the designer has some help choosing the system

latency. There exists a value of delay beyond which the control ceases to provide better performance.

This value of delay can be thought of as the “best” delay if there are no other guidelines. We now

proceed to show this mathematically.

4.2. Analysis of Constrained Linear Control 55

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800
Control Effort with Linear Controller

Value of Control Signaluk .
(a)

N
um

be
r/

10
,0

00

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700
Control Effort with Nonlinear Controller

Value of Control Signaluk .
(b)

N
um

be
r/

10
,0

00

Figure 4.5: Histograms of control effort (for the same command input) when the controller is either
linear FIR or nonlinear. The control effort was constrained to be between 5◦C and 95◦C. The nonlinear
controller is better able to take advantage of the full range of allowed control effort. The nonlinear MSE
was about 0.67 and the linear MSE was about 1.0.

First, a simple logical argument based on Eq. (4.1) will show that increasing delay will result in

decreasing mean-squared system error. If the delay is equal to−∞ then the output of the controller

will be zero. This is the worst-case output. If the delay is+∞, then the controller will be a delayed

version of the Wiener solution, which is the best-case output. For intermediate delays, consider

what happens when the delay goes from1− 1 to 1. One solution for the controller is that all the

weights fromC(1−1) be copied toC(1), but shifted over one time step. If this is done, the output

error will be identical. Therefore, by increasing the delay, we can doat least as wellas before, but

possibly better. Therefore, the mean-squared system error is a non-increasing function of the delay.

Secondly, we need to show that the control effort is an increasing function of the delay. We

do this by considering the gain of the controller on therk signal. Figure 4.6 shows a comparison

of two optimal linear causal controllers (with no constraint on the control effort). One has been

designed for a delay of1−1, and the other has been designed for a delay of1. They share part of

their transfer function up until the node marked➀. From that point on, the transfer functions differ.

Therefore, in considering the relative gain of the two controllers, we need only look at the gain from

the node marked➀ to the two outputs.

The gain of a linear MIMO system, relating maximum input to maximum output, is equal

to [47]

g(C)
1= sup

rk

‖uk‖∞
‖rk‖∞ = max

i∈[1,Ni]

∞∑
k=0

No∑
j=1

|ck,i j |,

56 Chapter 4. Constrained Adaptive Feedforward Control

rk [8+
rr

(z)]−1

[
z−(1−1)[P̂COPY(z)]−1M(z)8+

rr
(z)

]
+

[
z−1[P̂COPY(z)]−1M(z)8+

rr
(z)

]
+

u(1−1)

k

u(1)

k

➀

Figure 4.6: Two Shannon-Bode optimal controllers: One for a delay of1−1, one for a delay of1.

where,Ni is the number of outputs from the controller (inputs to the plant),No is the number of

inputs to the controller (outputs from the plant), andck,i j is thekth value of the impulse response

relating thej th input to thei th output. In other words, the gain from the input vector to one output

is the absolute sum of the impulse responses from all components of the input vector to that output.

The maximum of all of these gains is equal to the gain of the system.

The gain of a controller designed to give a system delay of1−1 is compared to the gain of a

controller designed for a system delay of1

g
(
C(1−1)

)
g
(
C(1)

) = g
([

z−(1−1)
(
P̂COPY(z)

)−1
M(z)8+rr (z)

]
+

)
g
([

z−1
(
P̂COPY(z)

)−1
M(z)8+rr (z)

]
+

)
≤

g
([

z−1
(
P̂COPY(z)

)−1
M(z)8+rr (z)

]
+

)
g
([

z−1
(
P̂COPY(z)

)−1
M(z)8+rr (z)

]
+

)
= 1.

The inequality in the second line is due to the fact that the impulse responses for the shorter delay

are identical to the impulse responses for the larger delay, except shifted over one time step and with

some taps set to zero due to the causality restriction. Since some taps are set to zero, the absolute

sum of the impulses will be lower, and the gain will be lower.

Therefore, we have seen that increasing delay causes decreasing system mean-squared error,

but increasing control effort. If control effort is limited, then the controller will no longer give

the optimal mean-squared error, and increasing delay causes no further decrease in system mean-

squared error.

This is demonstrated using simulations of the nonminimum-phase tank of Sec. 3.2.1. A suite

of simulations were performed to find the optimal controller for delays of two through fifteen. A

further suite of simulations were performed to find the optimal constrained linear controller for the

same delays. A final suite was performed to find the optimal constrained nonlinear controller for the

same delays. The unconstrained solution shows progressively lower mean-squared error as the delay

4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 57

increases. However, after a delay of four, the linear constrained solution stops improving. After a

delay of six, the nonlinear constrained solution stops improving. Therefore, we might consider

using a delay of four if we are satisfied with the linear controller, or a delay of six if we prefer the

nonlinear controller.

0 2 4 6 8 10 12 14 16
−60

−50

−40

−30

−20

−10

0

10
Nonminimum Phase Plant

Delay (s)

10
lo

g 1
0(

S
te

ad
y-

st
at

e
M

S
E

)

Figure 4.7: Steady-state system mean-squared error versus the system delay. The solid line shows
that the steady-state mean-squared error decreases logarithmically if the control effort is unconstrained.
The dashed line shows that if the control effort is constrained such that 5◦C ≤ uk ≤ 95◦C, and the
controller is linear, then the steady-state mean-squared error decreases to a constant value. The dash-
dot line is similarly constrained but the controller is nonlinear.

4.3 Synthesis of the Constrained Controller via the BPTM Algorithm

We now begin the second part of this chapter. We have seen some analytic results pertaining to the

design of a constrained controller, and are ready to present an algorithm which trains a controller to

perform constrained model-reference based control of a linear or nonlinear, SISO or MIMO plant.

A key hurdle which must be overcome by the algorithm is to find a mechanism for converting the

system error to an adaptation signal used to adjustC. For the most general MIMO nonlinear case,

we need some functional block which uses the system error and some form of plant state information

to compute the controller error. This block is denoted as “?” in Fig. 4.8.

This functional block must describe an algorithm which also satisfies the following design

criteria:

� The algorithm must work with SISO and MIMO, linear and nonlinear plants.

� The algorithm must not be biased by disturbances.

58 Chapter 4. Constrained Adaptive Feedforward Control

Plant
PC

M

Dist. wk

rk
uk yk

dk

e(sys)
k

state

?

Figure 4.8: Conceptual block diagram of a system used to train the controllerC.

� The algorithm must work for autoregressive implementations ofP̂ andC.

� The algorithm must minimize some cost functional of the system errorand the control effort.

The algorithm is now developed.

A related method was introduced in reference [2] where it was referred to as a type of real-

time recurrent learning (RTRL) [46]. Here, it is extended in a number of important ways: (1) It is

generalized from the SISO case to the MIMO case, where it able to attribute different performance

objectives to each plant output; (2) It has been extended from the nonlinear-only case to also incor-

porate control of linear systems, and (3) It now handles very general (differentiable) constraints on

the control signaluk . We will also see in Chap. 5 that this algorithm can be used to adapt a filter to

perform disturbance cancelling.

Plant
PC

P̂

M

Dist. wk

rk
uk yk

dk

e(sys)
k

Figure 4.9: Structure diagram illustrating the BPTM method.

Figure 4.9 shows the general framework to be used. Rather than manipulating the block di-

agram to generate an indirect error signal with which to adaptC, the system error signal is used

directly. It is back-propagatedthrough the plant model, and there used to adapt the controller. For

this reason, the algorithm is named “BackProp Through (Plant) Model” (BPTM).

4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 59

The algorithm is derived as follows. We wish to train the controllerC to minimize the squared

system error over a certain trajectory and to simultaneously minimize some function of the control

effort. To do so, the system is run forK time steps. At the end of theK time steps, the following

sum is computed

JK =
K∑

j=0

{
e(sys)

j

T
Qe(sys)

j + h
(
u j , u j−1, . . . , u j−r

)}
.

The differentiable functionh(·) defines the cost function associated directly with the control signal

uk , and is used to penalize excessive control effort, slew rate and so forth. The system error is the

signale(sys)
k = dk − yk, and the symmetric matrixQ is a weighting matrix which assigns different

performance objectives to each plant output. To minimize the system error over a trajectory of length

K and simultaneously minimize a function of the control effort, we must minimize the functionJK .

It is possible to compute the required equations to minimizeJK using gradient descent (in fact,

they do not differ very much from what follows). One problem with this approach is that it does not

adapt the controller weights in real time. Time is divided into epochs ofK time samples in length,

and adaptation of the controller weights is performed once at the end of each epoch. For this work,

a real-time approach was preferred. Therefore, the same trick is employed as used in [46]. The cost

metric JK is stochastically approximated at each time step as

Jk =
{

e(sys)
k

T
Qe(sys)

k + h(uk, uk−1, . . . , uk−r)

}
.

The gradients of the approximate cost functionJk are not the same as the gradients found for the

true cost functionJK . Therefore, adaptation is a “noisy” process. In practice, however, it works

well.

Continuing, if we letg(·) be the function implemented by the controllerC, and f (·) be the

function implemented by the plant modelP̂, we can state without loss of generality

uk = g
(
uk−1,uk−2, . . . ,uk−m,rk,rk−1, . . . ,rk−q,W

)
yk = f

(
yk−1, yk−2, . . . , yk−n,uk,uk−1, . . . ,uk−p

)
, (4.4)

whereW are the adjustable parameters (weights) of the controller.

As is typical for LMS and backpropagation-like learning methods, the controller weights are

updated in the direction of the negative gradient of the cost functional

1W T
k = −µ

∂+

∂W
Jk

= −µ
∂+

∂W

{
e(sys)

k

T
Qe(sys)

k + h(uk,uk−1, . . . ,uk−r)
}
,

60 Chapter 4. Constrained Adaptive Feedforward Control

whereµ is the adaptive learning rate. Continuing,

1W T
k

µ
= 2eT

k Q

(
∂+yk

∂W

)
−

[
r∑

j=0

(
∂h(uk, . . . ,uk−r)

∂uk− j

)T
(

∂+uk− j

∂W

)]
. (4.5)

Using Eq. (4.4) and the chain rule for ordered derivatives, two further substitutions may be made at

this time

∂+uk

∂W
= ∂uk

∂W
+

m∑
j=1

(
∂uk

∂uk− j

)(
∂+uk− j

∂W

)
(4.6)

∂+yk

∂W
=

p∑
j=0

(
∂yk

∂uk− j

)(
∂+uk− j

∂W

)
+

n∑
j=1

(
∂yk

∂yk− j

)(
∂+yk− j

∂W

)
. (4.7)

A quick note should be made regarding the dimensions of each term in Eqs. (4.5), (4.6),

and (4.7)—if theplant hasNi inputs andNo outputs, and the controller hasNW weights[
∂+uk

∂W

]
Ni×NW

[
∂+yk

∂W

]
No×NW

[
∂yk

∂yk− j

]
No×No[

∂h(·)
∂uk− j

]
Ni×1

[
∂yk

∂uk− j

]
No×Ni

[
∂uk

∂uk− j

]
Ni×Ni

Also,

[Q] No×No
[ek]No×1 [uk] Ni×1 [yk]No×1 [W] NW×1 .

4.3.1 Linear FIR Plant Model, Linear FIR Controller

The equations for the weight update in their general form, as presented so far, are equally applicable

to linear or nonlinear systems. From this point on, the derivations diverge in order to specialize

to two different architectures. Here, we look at the example where both the plant model and the

controller are linear systems.

Any stable linear plant and linear controller may be approximated with arbitrary precision by

FIR filters. Moreover, the feedback terms inf (·) andg(·) are unnecessary and can be dangerous as

they invite instability.1 Therefore, we assume that both the the plant model and the controller are

FIR.

The input to the controller filter is a tapped-delay-line ofq+1 vectors, each of lengthNo. We

define this composite vector, at timek, to be

Rk
1=

[
r T

k r T
k−1 · · · r T

k−q

]T
.

1Even if the plant model, for example, is not implemented as an FIR filter, an FIR impulse response can be generated
by using the plant model to filter an impulse signal. Therefore, the results of this section are more general than they
appear.

4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 61

The plant hasNi inputs. Therefore, the controller will haveNi different linear filters operating on

Rk to produce the control signaluk . We letW T
1 be the first such filter,W T

2 be the second, and so on.

We may organize these filters into amatrix Wc such that

Wc =
[
W1 W2 · · ·WNi

]T
.

Then,

uk =Wc Rk . (4.8)

This definition is useful for actually computinguk . However, for the purpose of adapting all the

weight values of the controller it is also useful to define thecolumn vectorof weights to be

W = [
W T

1 W T
2 · · ·W T

Ni

]T
. (4.9)

Note thatWc is a matrix whileW is a vector; both contain identical information in different arrange-

ments. One is a digital copy and rearrangement of the other. We wish to adapt the values inW to

optimize Jk .

The input to the plant model is analogous to the input to the controller—it is a tapped-delay-

line of p+1 vectors, each of lengthNi . We define this composite vector, at timek, to be

Uk
1=

[
uT

k uT
k−1 · · · uT

k−p

]T
.

In further likeness to the controller, the plant model has weight matrixW p̂ which acts the same way

as the controller weight matrixWc. So,

yk =W p̂ Uk.

With these definitions, we may solve Eq. (4.5) to find the weight update. We need to find three

quantities:∂h(·)/∂uk− j , ∂+uk/∂W and∂+yk/∂W .

First, we note that∂h(·)/∂uk− j depends on the user-specified functionh(·). It can be cal-

culated givenh(·). Later, we will see that it is useful to arrange the result in a composite vector,

defined at timek to be

dHk
1=

[(
∂h(·)
∂uk

)T (
∂h(·)
∂uk−1

)T

· · ·
(

∂h(·)
∂uk−r

)T
]T

. (4.10)

Secondly, we consider∂+uk/∂W as expanded in Eq. (4.6). Since the controller is assumed to

be FIR, this simplifies
∂+uk

∂W
= ∂uk

∂W
.

62 Chapter 4. Constrained Adaptive Feedforward Control

From the definition ofuk in Eq. (4.8), and the ordering ofW in Eq. (4.9), we see∂uk/∂W is a

block-diagonal matrix containingNi copies ofRT
k

∂uk

∂W
= diag

{
RT

k , RT
k , · · · , RT

k

} =


RT
k 0 . . . 0

0 RT
k . . . 0

...
...

. . .
...

0 0 . . . RT
k

.

Thirdly, we consider∂+yk/∂W , as expanded in Eq. (4.7). Since the plant model is assumed to

be FIR, we may re-write the expression as

∂+yk

∂W
=

p∑
j=0

(
∂yk

∂uk− j

) (
∂+uk− j

∂W

)
. (4.11)

The first term in this summation,∂yk/∂uk− j , is equal to theNi columns ofW p̂ associated with the

input uk− j . The second term is∂+uk/∂W , as calculated for this time-step and the previousp time

steps. We have seen how to calculate this. We can put all of this together by defining

dUk
1=

[(
∂uk

∂W

)T (
∂uk−1

∂W

)T

· · ·
(

∂uk−p

∂W

)T
]T

. (4.12)

Then Eq. (4.11) can be computed to be

∂+yk

∂W
=W p̂ dUk.

Finally, we combine all the above to get

1Wk = µ
([

2eT
k QW p̂ − dH T

k

]
dUk

)T
. (4.13)

The curious reader may wish to verify the result of Eq. (4.13) by considering it in its simplest

form. Suppose that the plant is SISO and has no dynamics (i.e., W p̂ = [1]). Furthermore, suppose

thath(·)≡ 0 and thatQ = 1. Then, the adaptation rule reduces to the regular LMS rule for adapting

a filter. If, however, the plant has some dynamics,

1Wk = 2µek

(
p∑

j=0

W p̂, j Rk− j

)
,

4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 63

which is the LMS rule weighted by the impulse response of the plant. Since the plant is assumed

stable,W p̂, j → 0 as j gets large, and the current inputs are weighted more strongly than past inputs.

The bottom line: Figure 4.10 shows a summary of BPTM for linear SISO or MIMO plants.

Ultimately, the weight update is calculated using Eq. (4.13). Prior known quantities are:µ, andQ.

The errore(sys)
k is an input to the weight-update process, and the weights of the plant modelW p̂ are

also known. Thus, it remains to computedHk anddUk . ThedHk vector is a function of the vector

Uk, which is known as it is the input to the plant model. Similarly,dUk is a function ofdUk−1

and the vectorRk , which is known as it is the input to the controller. Notice that the algorithm is

extremely simple. No computations other than matrix multiplies are necessary. The algorithm may

be implemented in one line ofMatlab code, for example.

beginfAdapt C (linear)g

Initialize dU k to 0.

ComputedH k as a function ofUk .

Shift dUk down Ni rows, and shift inNi copies ofRk .

Compute weight update according to Eq. (4.13).

endfAdapt C (linear)g

Figure 4.10: An algorithm for adaptingC when the controller and plant model are linear. The first
step is performed once, and the other steps are performed in sequence, iteratively as time progresses.

4.3.2 Nonlinear NARX Plant Model, Nonlinear NARX Controller

Given the background material in Chap. 2, the derivation of BPTM for a nonlinear plant and non-

linear controller is actually somewhat more compact than for the linear case. This is true even

though autoregressive plant models and controllers are generally required for nonlinear control.

The dynamical behavior of most nonlinear systems may not be well approximated by a nonlinear

transversal model.

Whereas for the linear plant we had some freedom to choose the structure of the plant model,

here we need to restrict ourselves to a single paradigm. This is because there is no equivalent in the

nonlinear domain to an “impulse response.” The BPTM algorithm, for a linear plant, was able to

compute the impulse response of the plant model, regardless of the structure of the model, and use

that to update the controller. Here, we assume that NARX neural network filters are used for both

64 Chapter 4. Constrained Adaptive Feedforward Control

the plant model and the controller. Such filters are universal function approximators and are capable

of controlling any (controllable) nonlinear system with acceptable accuracy.

To restate the problem at hand, we desire to compute the weight-update1Wk of Eq. (4.5).

The only terms which differ from the linear derivation are those of Eqs. (4.6) and (4.7), which are

repeated here for convenience

∂+uk

∂W
= ∂uk

∂W
+

m∑
j=1

(
∂uk

∂uk− j

)(
∂+uk− j

∂W

)
(4.6)

∂+yk

∂W
=

p∑
j=0

(
∂yk

∂uk− j

)(
∂+uk− j

∂W

)
+

n∑
j=1

(
∂yk

∂yk− j

)(
∂+yk− j

∂W

)
. (4.7)

A quick examination of these equations will be adequate to see that the terms which need to

be computed at each iteration are

∂uk

∂W
,

∂uk

∂uk− j
,

∂yk

∂uk− j
, and

∂yk

∂yk− j
.

The first term is the direct effect of the controller weights on the controller output, and the other

terms are the effects of the inputs of the controller and plant model to their respective outputs.

They are all Jacobian matrices and are very simple to calculate for any neural network, using the

backpropagation algorithm (as described in Sec. 2.3.2). Armed with this information, we may

readily compute the required terms of Eqs. (4.6) and (4.7). All that is required is a little careful

bookkeeping.

The ∂+uk/∂W term of Eq. (4.6) is computed by determining the values of∂uk/∂W and

∂uk/∂uk− j . These are found by back-propagating unit vectorsv = êi through the controller neural

network and using Eqs. (2.3) and (2.4) as appropriate.

The ∂+yk/∂W term of Eq. (4.7) is then computed. To do so, we need to know∂yk/∂uk− j

and∂yk/∂yk− j , which are found by back-propagating unit vectorsv = êi through the plant-model

neural network and using Eq. (2.3).

A practical implementation is realized by compacting the notation into a collection of ma-

trices as before. The definitions ofdUk anddHk remain unchanged from Eqs. (4.12) and (4.10).

Furthermore, we define

dYk
1=

[(
∂yk−1

∂W

)T (
∂yk−2

∂W

)T

· · ·
(

∂yk−n

∂W

)T
]T

∂UYk
1=

[(
∂yk

∂uk

)T (
∂yk

∂uk−1

)T

· · ·
(

∂yk

∂uk−p

)T
]T

4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 65

∂YYk
1=

[(
∂yk

∂yk−1

)T (
∂yk

∂yk−2

)T

· · ·
(

∂yk

∂yk−n

)T
]T

∂UUk
1=

[(
∂uk

∂uk−1

)T (
∂uk

∂uk−2

)T

· · ·
(

∂uk

∂uk−p

)T
]T

.

beginfAdapt C (nonlinear)g

Update∂+uk/∂W :

� Shift dU k down Ni rows.

� BackpropagateNi unit vectors throughC to form∂UUk and∂uk/∂W . Each back-
propagation produces one row of both matrices.

� Compute topNi rows ofdU k to be∂uk/∂W + (∂UUk)(dUk).

Update∂+yk/∂W :

� BackpropagateNo unit vectors througĥP to form∂UYk and∂YYk . Each backprop-
agation produces one row of both matrices.

� ComputedWYk = (∂UYk)(dU k)+ (∂YYk)(dY k).

� Shift dY k down No rows and savedWYk in the topNo rows.

ComputedH k .

Update Weights:

� Compute1W T
k = 2µeT

k Q(dWYk)−µ(dH T
k)(dU k).

� Adapt, enumerating weights in the same order as when computing∂WUk .

endfAdapt C (nonlinear)g

Figure 4.11: Algorithm to adapt a NARX controller for a NARX plant model.

The bottom line: The algorithm to adapt a NARX controller for a NARX plant model is sum-

marized in Fig. 4.11. Any programming language supporting matrix mathematics can very easily

implement this algorithm. It works well.

4.3.3 Separability for Efficient Implementation

The preceding discussion introduced an algorithm to train an adaptive controller to control a plant.

Two specific examples were derived in detail: (1) A linear FIR controller for a linear FIR plant

model; (2) A NARX neural network controller for a NARX neural-network plant model. But, what

66 Chapter 4. Constrained Adaptive Feedforward Control

if we want to adapt a NARX controller for a linear plant? (see, for example, Sec. 4.4.1) What if we

want a nonlinear transversal filter plant model or controller? (see, for example, Sec. 4.4.5) It would

seem that if there areN possible options for the structure of either the adaptive controller or the

adaptive plant model, then our suite of algorithms must haveN2 subroutines to be able to handle all

combinations. Each time we add a new structure to our repetoire, we move fromN to N + 1 types

and need to add 2N +1 algorithms to our collection!2

Fortunately, this is not the case. A quick examination of Eqs. (4.6) and (4.7) verifies this fact.

We see that∂+uk/∂W depends only on information local to the controller. The term∂+yk/∂W

depends only on information local to the plant model as well as the value of∂+uk/∂W . This data-

flow relationship is depicted in Fig. 4.12.

C P̂

e(sys)
k

∂+uk

∂W

∂+yk

∂W

Figure 4.12: Data-flow diagram illustrating the algorithmic independence of BPTM on the structures
of C andP̂.

Therefore, each type of structure needs only two subroutines. One subroutine computes

∂+uk/∂W and the other computes∂+yk/∂W given ∂+uk/∂W ande(sys)

k . If we haveN candidate

structures, our control suite needs only 2N algorithms. Adding a new structure means that we

need to add only two subroutines. This is a very important feature of the algorithm which makes it

feasible as a control technology.

4.3.4 Initialization of Linear Controllers

The BPTM learning method, when used to control linear plants, will train a controller regardless of

the initial weights of the controller. If the plant model is initialized to some non-zero function, the

weights of the controller may even start at zero.

The size of the controller is chosen by the designer to balance the trade-off between training

time and performance. In a low-cost-of-control scenario, the number of weights required by the

2For example, in this dissertation, structures used for the plant model were: linear FIR, linear IIR (connected in
parallel), linear IIR (connected in series-parallel), nonlinear transversal filters, NARX filters (connected in parallel) and
NARX filters (connected in series-parallel). Structures used for the controller and disturbance canceller were: linear
FIR, linear IIR (connected in parallel), nonlinear transversal filters, and NARX filters (connected in parallel). Instead of
needing 7×4= 28 algorithms, only 7+4= 11 were needed.

4.3. Synthesis of the Constrained Controller via the BPTM Algorithm 67

controller may be quite large. This, however, greatly increases the training time of the system.

What is desired is a clever way to initialize the weights so that they are very nearly optimal before

the training commences. This section outlines a method to do this for a linear controller. It is an

extension of the system-identification method called “empirical transfer function estimate.”

If there are no constraints on the control effort, the weights of the controller are initialized to

an estimate of the Wiener solution

C(e jω) = (
P̂(e jω)

)−1(
M (e jω)

)
. (4.14)

This is computed by taking the FFT of the reference model impulse response and the plant model

impulse response and dividing them at each frequency. After initialization, the controller is adapted

using the BPTM algorithm to improve the solution. Further adaptation is required for a number of

reasons

� Equation (4.14) is the Wiener solution for an unconstrained controller. We really desire the

Shannon-Bode solution. This may be computed instead of Eq. (4.14) but requires knowledge

of the statistics of the input signalrk , and factoring of its spectrum. Using the Wiener solution

is fine for a minimum-phase plant, and is pretty good for a nonminimum-phase plant if the

delay inM (z) is large enough.

� The expression being used is the Wiener solution for an IIR controller. Our controllers are

FIR. Simply truncating the response does not give the Wiener solution for an FIR controller.

� The implementation is done using the FFT algorithm. Hence, each frequency is not being

matched, as the equation would suggest, but only discrete frequencies within the band of

interest. This problem may be largely mitigated by zero-padding the time-domain signals

before taking the FFT (A good rule of thumb seems to be to zero-pad the signals to eight

times their original length).

� The expression
(

P(e jω)
)−1(

M (e jω)
)

is not being implemented; rather, we use the plant

model and compute
(
P̂(e jω)

)−1(
M (e jω)

)
. If the plant model is significantly different from

the plant, or if the model is corrupted by noise, the solution will be poor. Some sort of

Wiener-inspired filtering can be performed on̂P(e jω) to try to eliminate the effects of noise.

For example:3

C(e jω) = M (e jω)

P̂(e jω)

‖P̂(e jω)‖2+ k2

‖P̂(e jω)‖2 .

3This is similar in form to the Wiener-optimal filter which would filter out the effects of white noise.

68 Chapter 4. Constrained Adaptive Feedforward Control

If there are constraints on the control effort, then Eq. (4.14) may be used to estimateC(opt)
causal(z),

which is then used in the algorithm of Fig. 4.3 to compute an initial guess for the controller.

0 2 4 6 8 10 12 14 16 18

x 10
7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Regular Jet Learning Curve

Iteration

M
ea

n
S

qu
ar

ed
E

rr
or

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Initialized Jet Learning Curve

Iteration

M
ea

n
S

qu
ar

ed
E

rr
or

(a) (b)

Figure 4.13: Comparison of learning curves when training a controller for the Boeing 747 example
of Sec. 3.2.2. (a) Controller initialized to zero; (b) Controller initialized using Eq. (4.14). In both cases
the plant model was pre-trained.

Figure 4.13 shows a comparison of the learning curves (for the example of Sec. 3.2.2) when the

controller was and was not initialized using Eq. (4.14). When the controller was initialized to zero,

training took more than 18×107 iterations. When the controller was pre-initialized using Eq. (4.14),

a better solution was obtained almost immediately, and the process converged after approximately

1×104 iterations. An improvement of over three orders of magnitude can be realized!

4.3.5 Initialization of Nonlinear Controllers

Initialization of a nonlinear controller is much more difficult than for a linear controller. No known

analytical solutions are available beyond the expressions in Chap. 2. These equations are not use-

ful for initializing the weights of a nonlinear neural-network filter since they specify the optimal

function and not the optimum weights.

To initialize a nonlinear controller we need some prior knowledge of how that controllershould

function. If we have this prior information, we can create a fixed controller which coarsely controls

the plant. An adaptive controller is placed in parallel with the fixed controller and is adapted to

fine-tune the output of the fixed controller. This control methodology is shown in Fig. 4.14.

This merger of engineering know-how and adaptive fine-tuning presents a practical marriage

between the technologies of fuzzy control and adaptive neural control. Fuzzy logic can compactly

4.4. Simulation Examples 69

Plant
P

C

P̂

M

Dist. wk

rk
uk yk

dk

e(sys)
k

Fixed
Ctrlr.

Figure 4.14: Diagram showing a possible method of initializing a nonlinear controller.

represent prior knowledge, and neural networks can fine-tune the result. Much future work needs to

be done researching this possibility. No results are available at this time.

4.4 Simulation Examples

We have now seen some analytic results pertaining to constrained control, and an algorithm for

adapting a controller to perform constrained control. This final section presents a number of simu-

lation examples to demonstrate the algorithm just developed.

4.4.1 Minimum-Phase Linear SISO Plant

The first examples are for the minimum-phase tank of Sec. 3.2.1. Equation (3.1) is the difference

equation specifying the dynamics of the plant. For all simulations, the input source was equal to the

constant 50◦C plus a first-order Markov process with pole atz = 0.7 and driven by i.i.d. uniform

random variables with zero mean and maximum magnitude 5◦C. When constraints on the control

effort were considered, the control signaluk was restricted to be between 5◦C and 95◦C. The

controller was a twenty-tap FIR filter.

Figure 4.15 shows the penalty function,h(uk), used when adapting a constrained controller.

The penalty is zero for control effort between 5.5◦C and 94.5◦C. For control effort outside this

range, a parabolic function was used to compute the penalty. In Fig. 4.15(a), the overall penalty

function is plotted. It apears to be a hard limit on the control signal. However, in Fig. 4.15(b),

70 Chapter 4. Constrained Adaptive Feedforward Control

a region of Fig. 4.15(a) is magnified to show the parabolic nature of the constraint. The actual

equation governing the penalty function is:

h(uk) =


(

uk−5.5
5−5.5

)2
, if uk < 5.5;(

uk−94.5
95−94.5

)2
, if uk > 94.5;

0, otherwise.

(4.15)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
Penalty function foruk

Control effort,uk

(a)

P
en

al
ty

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4
Magnified Penalty function foruk

Control effort,uk

(b)

P
en

al
ty

Figure 4.15: Penalty function used on the magnitude of the control effort.

The reference-model was a simple delay of two sample periods:M (z)= z−2. This is required

for precise control of this plant since it is a generalized minimum-phase plant, and may be perfectly

controlled only for delays greater than or equal to two samples. Simulations were performed to

determine the controller with and without constraints on the control effort. Figure 4.16 shows the

impulse response of both controllers. It is easy to see that the gain (absolute sum of the impulses)

of the unconstrained controller is much larger.

Figure 4.17 shows the tracking performance of the unconstrained and constrained controllers

for identical first-order Markov reference signals. Two constrained controllers were trained. The

first was a linear controller, implemented as an FIR filter with 20 taps. The second was a nonlinear

controller, implemented by aN(4,1):20:1neural controller. In Figs. 4.17(a), (c), and (e), the tracking

performance of these three controllers are compared. The solid line shows the continuous-time

output of the plant, computed by simulating the continuous-time differential equations governing

the plant output. The dotted line shows the discrete-time output of the plant, and the gray stair-step

line shows the desired response of the plant output. The desired response exists only at the sampling

intervals, but is shown as a continuous stair-step line to make reading the figure easier.

We see that the unconstrained controller (nearly) exactly controls the discrete-time output of

the plant. That is, the output of the plant is nearly the same as the desired responseat the sampling

4.4. Simulation Examples 71

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15
Unconstrained Controller Impulse Response

Time (s)
(a)

M
ag

ni
tu

de

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8
Constrained Controller Impulse Response

Time (s)
(b)

M
ag

ni
tu

de

Figure 4.16: Impulse responses of the unconstrained and constrained controllers for the minimum-
phase tank.

instants. The constrained controllers are not able to match this performance at the sampling instants.

However, the inter-sample responses of the constrained controllers are much more reasonable than

the response of the unconstrained controller.

Figures 4.17(b), (c) and (f) show the control effort required by the three controllers for the

same input signal. We see that the unconstrained controller produces control signals outside the

allowed range of 5◦C ≤ uk ≤ 95◦C. Both of the constrained controllers produce acceptable control

signals. We can compare the figures visually and see many similarities. The nonlinear constrained

controller makes the best advantage of its allowed range and performs the best, overall. Figure 4.5

also shows that the nonlinear controller is better able to use the allowed range of control effort.

Figure 4.18 is similar to Fig. 4.17, but plots the step response of the system rather than the

tracking response. In Fig. 4.18(a), we can very easily see the ringing between samples caused by

the excessive control effort demanded by the unconstrained controller. The step responses of the

linear and nonlinear controllers are much more reasonable, with the step response of the nonlinear

controller being the smoothest, and having the fastest settling time.

4.4.2 Nonminimum-Phase Linear SISO Plant

The second set of examples are for the nonminimum-phase tank of Sec. 3.2.1. Equation (3.2)

specifies the dynamics of the plant. The input source was equal to the constant 50◦C plus a first-

order Markov process with pole atz = 0.7 and driven by i.i.d. uniform random variables with zero

mean and maximum magnitude 5◦C. When constraints on the control effort were considered, the

72 Chapter 4. Constrained Adaptive Feedforward Control

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Unconstrained Tracking

Time (s)
(a)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

100

150
Unconstrained Control Effort

Time (s)
(b)

C
on

tr
ol

E
ffo

rt
u k

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Constrained (linear) Tracking

Time (s)
(c)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
Constrained (linear) Control Effort

Time (s)
(d)

C
on

tr
ol

E
ffo

rt
u k

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Constrained (nonlinear) Tracking

Time (s)
(e)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
Constrained (nonlinear) Control Effort

Time (s)
(f)

C
on

tr
ol

E
ffo

rt
u k

Figure 4.17: Tracking performance of three controllers for the minimum-phase tank example. In
(a), (c), and (e), the tracking performance is shown. The solid line is the continuous-time output of the
plant. The dotted line is the plant output at the sample instants. The gray line is the desired response at
the sample instants. In (b), (d), and (f), the control effort required is shown.

4.4. Simulation Examples 73

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Unconstrained Step Response

Time (s)
(a)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50
−20

0

20

40

60

80

100

120

140
Unconstrained Control Effort

Time (s)
(b)

C
on

tr
ol

E
ffo

rt
u k

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Constrained (linear) Step Response

Time (s)
(c)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
Constrained (linear) Control Effort

Time (s)
(d)

C
on

tr
ol

E
ffo

rt
u k

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Constrained (nonlinear) Step Response

Time (s)
(e)

O
ut

pu
tT

em
pe

ra
tu

re◦
C

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
Constrained (nonlinear) Control Effort

Time (s)
(f)

C
on

tr
ol

E
ffo

rt
u k

Figure 4.18: Step response of three controllers for the minimum-phase tank example. In (a), (c), and
(e), the step response is shown. The solid line is the continuous-time output of the plant. The dotted
line is the plant output at the sample instants. The gray line is the desired step. In (b), (d), and (f), the
control effort required is shown.

74 Chapter 4. Constrained Adaptive Feedforward Control

control signaluk was restricted to be between 5◦C and 95◦C. Figure 4.15 shows the penalty function

h(uk) used when adapting the constrained controller
(
see also Eq. (4.15)

)
.

The reference-model was a variable delay which took on values between two to fifteen sample

periods:M (z) = z−1, 1 ∈ [2 . . .15]. The different delays caused different levels of performance,

as shown in Fig. 4.7. The longer the delay, the smaller the steady-state mean-squared system error.

Simulations were performed to determine the controller with and without constraints on the

control effort. Figure 4.20 shows the impulse responses of several of thecontrollers when there

were no constraints. It also shows thesystemimpulse response. It is easy to see that as the delay

increases, the system impulse response approaches a delayed impulse, as it should. Figure 4.19

shows the impulse response for a constrained linear controller, and the resulting system impulse

response. Clearly, performance using the constrained controller is worse than if the controller is

unconstrained.

0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8
Constrained Controller Impulse Response, Delay=10

Time (s)
(a)

M
ag

ni
tu

de

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
System Impulse Response, Delay=10

Time (s)
(b)

M
ag

ni
tu

de

Figure 4.19: Impulse response of the constrained controller for the nonminimum-phase tank.

Tracking performance and step responses were similar to those shown in Figs. 4.17 and 4.18,

so are not shown. As with the minimum-phase tank example, Fig. 4.7 shows that a nonlinear

controller (N(20,1):20:1) can provide much better performance for constrained control than a linear

controller.

4.4.3 Linear MIMO Plant

The third set of simulations demonstrate multi-input multi-output linear control. The problem is to

control the lateral motion of a Boeing 747 airliner (from Sec. 3.2.2), linearized around the operating

“point” of Mach 0.8 velocity and 40,000 ft. altitude. The inputs to the plant are the rudder and

aileron angles (in degrees) and the output of the plant is the yaw rate (in radians/second) and the

4.4. Simulation Examples 75

0 2 4 6 8 10 12 14
−10

−5

0

5

10

15
Controller Impulse Response, Delay=5

Time (s)
(a)

M
ag

ni
tu

de

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1
System Impulse Response, Delay=5

Time (s)
(b)

M
ag

ni
tu

de

0 2 4 6 8 10 12 14
−10

−5

0

5

10

15
Controller Impulse Response, Delay=10

Time (s)
(c)

M
ag

ni
tu

de

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1
System Impulse Response, Delay=10

Time (s)
(d)

M
ag

ni
tu

de

0 2 4 6 8 10 12 14
−10

−5

0

5

10

15
Controller Impulse Response, Delay=15

Time (s)
(e)

M
ag

ni
tu

de

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1
System Impulse Response, Delay=15

Time (s)
(f)

M
ag

ni
tu

de

Figure 4.20: Impulse responses of constrained controllers for the nonminimum-phase tank. System
delays of 5, 10, and 15 samples are shown. The system impulse response becomes closer to a delayed
impulse as the delay increases.

76 Chapter 4. Constrained Adaptive Feedforward Control

bank angle (in radians). The inputs to the controller are thus the desired yaw rates and bank angles.

The desired yaw rate was modeled as a first-order Markov process, with a pole atz = 0.9 and an

input stream of i.i.d. uniform random variables with zero mean and maximum magnitude 0.03. The

desired bank angle was also modeled as a first-order Markov process (independent of the desired

yaw rate), with a pole atz = 0.9 and an input stream of i.i.d. uniform random variables with zero

mean and maximum magnitude 0.12. The plant is minimum-phase so the reference model was a

unit delay.

0 20 40 60 80 100 120 140
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
Desired yaw rate7→ Rudder angle

Time (0.5s)

A
m

pl
itu

de

0 20 40 60 80 100 120 140
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
Desired bank angle7→ Rudder angle

Time (0.5s)

A
m

pl
itu

de

0 20 40 60 80 100 120 140
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Desired yaw rate7→ Aileron angle

Time (0.5s)

A
m

pl
itu

de

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3
Desired bank angle7→ Aileron angle

Time (0.5s)

A
m

pl
itu

de

Figure 4.21: The four impulse responses comprising the Boeing 747 controller. The controller had
no constraints on the control effort.

Since there are two inputs and two outputs, four transfer functions are used to specify the

input-output behavior, and these can be represented as four impulse responses. Figure 4.21 shows

the impulse-response matrix for the converged controller. As can be seen, the architecture of the

controller was four FIR filters of length 128.

The tracking response and control effort for a characteristic input signal are plotted in Fig. 4.22.

In this figure, the desired response is a gray line, the actual discrete-time response is plotted as

dots at each sample instant, and the continuous-time resonse is plotted as a solid line. Like the

4.4. Simulation Examples 77

0 5 10 15 20 25
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Yaw-rate Tracking

Time (s)
(a)

Y
aw

-r
at

e,
ra

di
an

s/
se

co
nd

0 5 10 15 20 25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bank-angle Tracking

Time (s)
(b)

B
an

k-
an

gl
e,

ra
di

an
s

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Rudder-angle Control Effort

Time (s)
(c)

C
on

tr
ol

E
ffo

rt
,d

eg
re

es

0 5 10 15 20 25
−0.5

0

0.5

1
Aileron-angle Control Effort

Time (s)
(d)

C
on

tr
ol

E
ffo

rt
,d

eg
re

es

Figure 4.22: Tracking performance and control effort for the Boeing 747 controller. In (a) and
(b), the tracking performance is shown. The desired response is a gray line, the actual discrete-time
response is plotted as dots at each sample instant, and the continuous-time response is plotted as a solid
line. In (c) and (d), the corresponding control effort is plotted. The controller had no constraints on the
control effort.

minimum-phase tank example, there is some ringing in the continuous-time response so control-

effort constraints may be desired to remove the ringing. Constraints on the control effort might also

be considered for all of the other reasons discussed earlier.

A slew-rate constraint was placed on the control effort. The constraints are limits on the

control effort such that−0.15≤ (slew-rate of rudder angle)≤ 0.15, and−0.75≤ (slew-rate of

aileron angle)≤ 0.75. The constraints were implemented using the following penalty functions:

h
(
u(rudder)

k

) =


((
u(rudder)

k −u(rudder)
k−1

)
+0.1485

−0.15+0.1485

)2

, if u(rudder)
k <−0.1485;((

u(rudder)
k −u(rudder)

k−1

)
−0.1485

0.15−0.1485

)2

, if u(rudder)
k > 0.1485;

0, otherwise,

78 Chapter 4. Constrained Adaptive Feedforward Control

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

Unconstrained Slew Rate, Rudder Angle

Slew Rateuk − uk−1, degrees/0.5s.
(a)

N
um

be
r/

10
,0

00

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

200

400

600

800

1000

1200

1400

1600
Constrained Slew Rate, Rudder Angle

Slew Rateuk − uk−1, degrees/0.5s.
(b)

N
um

be
r/

10
,0

00

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

1600

1800

Unconstrained Slew Rate, Aileron Angle

Slew Rateuk − uk−1, degrees/0.5s.
(c)

N
um

be
r/

10
,0

00

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000

1200

1400
Constrained Slew Rate, Aileron Angle

Slew Rateuk − uk−1, degrees/0.5s.
(d)

N
um

be
r/

10
,0

00

Figure 4.23: Histograms of constrained and unconstrained Boeing 747 slew rate.

h
(
u(aileron)

k

) =


((
u(aileron)

k −u(aileron)
k−1

)
+0.7425

−0.75+0.7425

)2

, if u(aileron)
k <−0.7425;((

u(aileron)
k −u(aileron)

k−1

)
−0.7425

0.75−0.7425

)2

, if u(aileron)
k > 0.7425;

0, otherwise.

Figure 4.23 shows histograms of slew rate for unconstrained and constrained control. As can be

seen, the constraints are satisfied by the converged controller.

4.4.4 Nonlinear SISO Plant

A fourth set of simulation experiments was performed to demonstrate control of a SISO nonlinear

system. The goal was to control the heading angle of a large oceangoing ship (Sec. 3.3.1), with

4.4. Simulation Examples 79

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

25
Tracking

Time (s)
(a)

H
ea

di
ng

A
ng

le
ψ

,d
eg

re
es

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

25
Control Effort

Time (s)
(b)

R
ud

de
r

A
ng

le
,d

eg
re

es

Figure 4.24: Tracking performance of ship controller. The reference model is a delay of 12 samples
(6 seconds).

constraints on the maximum rudder angle and the rate-of-change of the rudder angle. This example

is unique among all the examples chosen in that the constraints were built into the dynamics of the

ship, and thus no external penalty function was used to adapt the controller to perform constrained

control. This method worked very well, and guaranteed that the constraints would be met, regardless

of the control input signal. It is not recommended for linear plants because it implicitly causes the

plant dynamics to become nonlinear, and thus a linear plant model is no longer feasible and a linear

controller will no longer work well.

The ship was commanded to track a first-order Markov process which generated the desired

heading angle. The Markov process had a pole atz = 0.99 and was fed by i.i.d. uniform random

numbers with maximum magnitude 0.05. AN(22,1):50:1controller was trained to control the ship,

with a command latency of 12 time samples. Figure 4.24(a) shows the tracking performance for

a typical input signal. The gray line is the desired heading angle, and the solid line is the actual

heading angle as a function of time. We see that the built-in constraints on the control effort do not

allow the ship to follow all of the high-frequency peaks in the desired response signal, but tracking

of the moving average is very good.

This plant is nonminimum-phase. The meaning of “nonminimum-phase” in the context of

nonlinear control is that a stable, causal inverse does not exist. We must use a delay in the refer-

ence model in order to provide good control. Figure 4.25 plots steady-state mean-squared system

error versus system latency. Different nonlinear controllers, with architecturesN(10+1,1):50:1, were

trained for desired response delays of five through sixteen. The steady-state mean-squared system

error was measured for each controller, and the results plotted. We can see that the error drops until

the delay is about 14 time samples (7 seconds). After that point, the error remains constant. This

80 Chapter 4. Constrained Adaptive Feedforward Control

4 6 8 10 12 14 16
−30

−28

−26

−24

−22

−20

−18
Ship (SISO Nonlinear Plant)

Delay (0.5s)

10
lo

g 1
0(

S
te

ad
y-

st
at

e
M

S
E

)

Figure 4.25: Steady-state system mean-squared error versus the system delay. The steady-state
mean-squared error decreases to a constant value.

result is in accord with the analytical result proven for constrained linear controllers—the mean-

squared system error cannot improve past a certain point because the constraints on the control

effort prohibit it. In this example, a delay of 12 time samples (6 seconds) seemed a good compro-

mise between latency and system error, so was used in the simulation of Fig. 4.24.

4.4.5 Nonlinear MIMO Plant

The final example is for constrained control of a nonlinear MIMO plant. This plant is the two-

link robotic arm of Sec. 3.3.2. The arm is commanded to track a given time trajectory of desired

arm angles. A higher-level controller is assumed to compute the inverse kinematics to provide

the desired arm angles. The adaptive inverse controller computes control signals to make the arm

dynamically track this desired trajectory.

Both joints were commanded to follow desired trajectories which were independent first-order

Markov processes. Both processes were generated with a pole atz = 0.95 and fed with i.i.d. uniform

random variables with zero mean and maximum magnitude 27◦. Robots are required to perform

very high-speed accurate control, so are minimum-phase systems by design. Thus, the reference

model was a unit delay.

A N(11,1):20:2controller was trained to control the arm. The tracking response and control

effort for a characteristic input signal are plotted in Fig. 4.26. In (a) and (b), the desired response is

a gray line, the actual response is a solid line. Very precise control is achieved, but at the expense

of high control effort, and in particular, high slew rate.

4.4. Simulation Examples 81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−150

−100

−50

0

50

100
Joint Angle 1 Tracking

Time (s)
(a)

A
ng

le
,d

eg
re

es

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−150

−100

−50

0

50

100

150
Joint Angle 2 Tracking

Time (s)
(b)

A
ng

le
,d

eg
re

es

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−15

−10

−5

0

5

10

15
Joint Angle 1 Control Effort

Time (s)
(c)

C
on

tr
ol

E
ffo

rt
,N
·m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−8

−6

−4

−2

0

2

4

6

8
Joint Angle 2 Control Effort

Time (s)
(d)

C
on

tr
ol

E
ffo

rt
,N
·m

Figure 4.26: Tracking performance and control effort for the robot controller. In (a) and (b), the
tracking performance is shown. The desired response is a gray line, the actual response is plotted as a
solid line. In (c) and (d), the corresponding control effort is plotted. The controller had no constraints
on the control effort.

A controller was adapted where the slew rate was limited. The goal was to limit the slew rate of

the first angle to±15N ·m/10ms , and to limit the slew rate of the second angle to±5N ·m/10ms .

The penalty function is similar to the ones used in previous examples:

h
(
u(1)

k

) =


((
u(1)

k −u(1)
k−1

)
+14.85

−15+14.85

)2

, if u(1)
k <−14.85;((

u(1)
k −u(1)

k−1

)
−14.85

15−14.85

)2

, if u(1)
k > 14.85;

0, otherwise,

82 Chapter 4. Constrained Adaptive Feedforward Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−150

−100

−50

0

50

100
Joint Angle 1 Tracking

Time (s)
(a)

A
ng

le
,d

eg
re

es

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−150

−100

−50

0

50

100

150
Joint Angle 2 Tracking

Time (s)
(b)

A
ng

le
,d

eg
re

es

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5

10

15
Joint Angle 1 Control Effort

Time (s)
(c)

C
on

tr
ol

E
ffo

rt
,N
·m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−4

−2

0

2

4

6
Joint Angle 2 Control Effort

Time (s)
(d)

C
on

tr
ol

E
ffo

rt
,N
·m

Figure 4.27: Tracking performance and control effort for the constrained robot controller. In (a) and
(b), the tracking performance is shown. The desired response is a gray line, the actual response is
plotted as a solid line. In (c) and (d), the corresponding control effort is plotted. The controller had
slew-rate constraints on the control effort.

h
(
u(2)

k

) =


((
u(2)

k −u(2)
k−1

)
+4.95

−5+4.95

)2

, if u(2)
k <−4.95;((

u(2)
k −u(2)

k−1

)
−4.95

5−4.95

)2

, if u(2)
k > 4.95;

0, otherwise.

The tracking response of the constrained controller is plotted in Fig. 4.27. We see that the re-

sponse is not as accurate as the unconstrained response of Fig. 4.26, but still tracks reasonably well.

Histograms of slew-rate for the control signals of the constrained and unconstrained controllers are

shown in Fig. 4.28, and we see that the constrained controller satisfies the constraints.

4.5. Summary 83

−30 −20 −10 0 10 20 30
0

500

1000

1500
Unconstrained Slew Rate, Joint 1

Slew Rateuk − uk−1, N ·m/10ms .
(a)

N
um

be
r/

10
,0

00

−15 −10 −5 0 5 10 15
0

200

400

600

800

1000

1200

1400
Constrained Slew Rate, Joint 1

Slew Rateuk − uk−1, N ·m/10ms .
(b)

N
um

be
r/

10
,0

00

−15 −10 −5 0 5 10 15
0

200

400

600

800

1000

1200

1400

1600
Unconstrained Slew Rate, Joint 2

Slew Rateuk − uk−1, N ·m/10ms .
(c)

N
um

be
r/

10
,0

00

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

900
Constrained Slew Rate, Joint 2

Slew Rateuk − uk−1, N ·m/10ms .
(d)

N
um

be
r/

10
,0

00

Figure 4.28: Histograms of slew rate using constrained and unconstrained controllers for the robot
example.

4.5 Summary

This chapter has three main divisions. The first is an analytic discussion of constrained control; the

second derives an algorithm to perform constrained control in the adaptive inverse control paradigm;

and the third demonstrates this algorithm with a wide variety of examples.

It was shown analytically, and verified with simulations, that precision of control comes at the

cost of high control effort. If very precise control is desired, the actuator signals are very large.

Problems with large control effort include (1) The actuator may not be able to respond to the control

command due to its physical design, thus causing degradation in the control which is not accounted

for in the design; and (2) The actuator or the system being controlled may be damaged by excessive

control effort. Since this is a significant problem, a method is devised to perform adaptive inverse

control with constraints on the control effort. The controller is adapted such that the mean-squared

84 Chapter 4. Constrained Adaptive Feedforward Control

system error is minimized under the constraint that the peak control effort and/or the peak slew rate

be lower than a user-specified amount. Simulations have shown that this works very well.

If the plant is nonminimum-phase, its inverse does not exist. However, if a delay in the control

action is acceptable, then a “delayed inverse” does exist, and very precise control can be performed.

Choosing the correct delay is a significant design issue. This chapter gives a very simple method of

choosing this latency if there are constraints on the control effort. Analytical results and simulations

agree that there is a value of latency beyond which control precision does not improve. We choose

this delay as the optimal compromise between precision of control and control latency. Finally,

Table. 4.1 tabulates the architectures of the plant models and controllers used in simulations in this

chapter. The overall conclusion is that very good feedforward control may be achieved.

TABLE 4.1 FILTER ARCHITECTURES USED IN THIS CHAPTER.

Linear Nonlinear
Plant Feedforward Feedforward

System Model,̂P Controller,C Controller,C

Linear SISO
Unconstrained Minimum Phase FIR(40,0):1 FIR(20,0):1 —
Constrained Minimum Phase FIR(40,0):1 FIR(20,0):1 N(4,1):20:1
Unconstrained Nonminimum Phase FIR(40,0):1 FIR(15,0):1 —
Constrained Nonminimum Phase FIR(40,0):1 FIR(15,0):1 N(20,1):20:1

Linear MIMO
Unconstrained FIR(60,0):2 FIR(128,0):2 —
Constrained FIR(60,0):2 FIR(128,0):2 —

Nonlinear SISO
Constrained Dynamics N(20,1):8:1 — N(10+1,1):50:1

Nonlinear MIMO
Unconstrained N(20,0):10:2 — N(11,1):20:2
Constrained N(20,0):10:2 — N(11,1):20:2

Chapter 5

Closing the Loop:
Disturbance Cancelling

Sometimes the news is in the noise, and sometimes the news is in the silence.

—Thomas L. Friedman inNew York Times

5.1 Introduction

It has now been established that a disturbance-free dynamical system may be controlled with a

feedforward adaptive controller. The plant output tracks the desired output as closely as possible in

a mean-squared-error sense. It remains to determine what can be done to mitigate plant disturbance

should it be present. One basic method has been used in the past for disturbance cancelling with

linear plants [45]. This method is simplified and enhanced in the following pages. Three methods

have been attempted in the past to cancel disturbances with nonlinear plants. The first [45], based on

a derivative plant model, suffers from high complexity; the second [45], based on the filtered-epsilon

method, has been demonstrated to fail [4]; and the third [2], based oninternal model control[9, 10,

11, 34, 5, 6] is shown in Sec. 5.2.2 to be incorrect if on-line plant modeling is performed. These

three approaches are abandoned here in favor of extending the disturbance cancelling method used

for linear plants to encompass nonlinear plants as well.

When considering how to cancel disturbances, the first idea which may come to mind is to

simply “close the loop.” Two methods commonly used to do this are discussed in Sec. 5.2.2. Unfor-

tunately, neither of these methods is appropriate if an adaptive controller is being designed. Closing

the loop will cause the controller to adapt to a “biased” solution. It is shown here that the extent of

the bias is dependent on the plant dynamics, the spectrum of the disturbance, and the spectrum of

85

86 Chapter 5. Closing the Loop: Disturbance Cancelling

the plant’s control signal. Since these combine in a fairly complicated way, simulation examples are

presented as an attempt to show the significance of the problem.

There is no need to fear! A method is developed which improves upon previous “optimal”

results for disturbance cancelling with linear plants. It is highly effective for nonlinear systems as

well. In this chapter, some analysis is first performed to demonstrate that conventional disturbance

rejection methods fail when simultaneous on-line system identification and disturbance rejection

is performed. Analysis is done on an alternate technique, which is optimal for linear systems,

but slightly sub-optimal for nonlinear systems. Methods for adapting the disturbance canceller are

introduced, and simulations are presented to verify the analysis and the synthesis methods.

5.2 Analysis of Disturbance Cancelling

5.2.1 Correctness of Feedforward Design in the Presence of Disturbance

Until this point, disturbance has been ignored. We have not done anything to remove it and we

have not even checked to see if the design presented thus far “works” if there is disturbance. In this

section we present a proof to show that the controller adapted according to Chap. 4 causes the plant

output to converge to the desired output plus the disturbance. That is, the design is correct but does

nothing to mitigate disturbance.

Plant
PC

P̂

Dist. wk

rk
uk yk

Figure 5.1: Plant modeling in the context of feedforward control. The circuitry for adaptingC has
been omitted for clarity.

We re-examine the system identification problem as depicted in Fig. 5.1. To be most general

in our analysis, we assume that the plant is nonlinear MIMO and that the adaptive controller and

adaptive plant model are also nonlinear MIMO systems. We first confirm that the adaptive plant

modelP̂ converges toP. From Sec. 2.3.3 we know that the optimal solution forP̂ is:

P̂
(opt)

(Euk) = E
[
yk

∣∣ Euk
]

= E
[
P(Euk)+wk

∣∣ Euk
]

5.2. Analysis of Disturbance Cancelling 87

= E
[
P(Euk)

∣∣ Euk
]+ E

[
wk

∣∣ Euk
]

= P(Euk)+ E
[
wk

]
= P(Euk),

whereEuk is an infinite vector containing past values of the control signaluk,uk−1, . . . , and where

two assumptions were made: (1) In the fourth line we assume that the disturbance is statistically

independent of the command input signaluk ; and (2) In the final line we assume that the disturbance

is zero-mean.1 Under these two assumptions, the plant model converges to the plant despite the

presence of disturbance. Similarly, it can be shown (using a method similar to the one in Sec. 5.2.2)

that the controller adapts to the correct solution, unbiased by the disturbance. The conclusion is that

the plant output converges to the sum of the desired outputplusthe disturbance. We now investigate

how to reduce disturbance.

5.2.2 Conventional Disturbance Rejection Methods Fail

The block diagram for a feedforward control system is shown in Fig. 5.1. To complete the control

design, and reject the disturbance, the conventional approach is to “close the loop.” Two approaches

commonly seen in the literature are shown in Fig. 5.2.2 By closing the loop we either feed back

the disturbed plant outputyk, as in Fig. 5.2(a), or we feed back an estimate of the disturbanceŵk,

as in Fig. 5.2(b). The approach shown in Fig. 5.2(a) is more conventional, but is difficult to use

with adaptive inverse control since the transfer function of the closed-loop system is dramatically

different from the transfer function of the open-loop system. Different methods than those presented

in this dissertation are required to adaptC. The approach shown in Fig. 5.2(b) is calledinternal

model control[9, 10, 11, 34, 5, 6]. The benefit of using this scheme is that the transfer function of

the closed-loop system is equal to the transfer function of the open-loop system if the plant model is

identical to the plant. Therefore, the methods found to adapt the controller for feedforward control

may be used directly.

Unfortunately, closing the loop usingeither method in Fig. 5.2 will causêP to adapt to an

incorrect solution. In the following analysis the case of a linear SISO plant controlled with internal

model control is considered. A similar analysis may be performed for the conventional feedback

system in Fig. 5.2(a), with the same conclusion.

1Alternately, we could make the single assumption that the disturbance is conditionally zero-mean given the command
input signal; however, this does not make much physical sense.

2The purpose of thez−1 block will be explained in Sec. 5.2.4.

88 Chapter 5. Closing the Loop: Disturbance Cancelling

Plant
PC

P̂

z−1

Dist. wk

rk
uk yk

(a)

Plant
PC

P̂

z−1

Dist. wk

ŵk

rk
uk yk

(b)

Figure 5.2: Two methods to close the loop: (a) The output,yk , is fed back to the controller; (b) An
estimate of the disturbance,̂wk , is fed back to the controller. The circuitry for adaptingC has been
omitted for clarity.

Shannon-Bode Solution forP̂: When the loop is closed as in Fig. 5.2(b), the estimated distur-

bance term̂wk is subtracted from the reference inputrk . The resulting composite signal is filtered

by the controllerC and becomes the plant input signal,uk . In the analysis done so far, we have

assumed thatuk is independent ofwk, but that assumption is no longer valid. We need to revisit the

analysis performed for system identification to see if the plant modelP̂ still converges toP.

The direct approach to the problem is to calculate the least mean-squared-error solution forP̂

and see if it is equal toP. However, due to the feedback loop involved, it is not possible to obtain a

closed form solution for̂P. An indirect approach is taken here. We do not need to know exactly what

P̂ converges to—we only need to know whether or not it converges toP. The following indirect

procedure is used a number of times in this chapter:

5.2. Analysis of Disturbance Cancelling 89

Plant
PC

P̂z−1

Dist. wk

rk
uk yk

wk

Figure 5.3: An intermediate step when analyzing the convergence ofP̂.

1. First, remove the feedback path (open the loop) and perform on-line plant modeling and

controller adaptation as shown in Fig. 5.1. When convergence is reached, we know from

Sec. 5.2.1 that̂P→ P.

2. At this time,̂P≈ P, and the disturbance estimatêwk is very good. We assume that̂wk =wk.

This assumption allows us to construct a feedforward-only system which is equivalent to the

internal model control feedback system by substitutingwk for ŵk. This is drawn in Fig. 5.3.

3. Lastly, analyze the system, substitutingwk for ŵk. If the least mean-squared-error solution

for P̂ still converges toP, then the assumption made in the second step remains valid, and

the plant is being modeled correctly. If̂P diverges fromP with the assumption made in step

2, then it can not converge toP even if the assumption is not made and an exact analysis is

done. We conclude that the assumption is justified for the purpose of checking for proper

convergence of̂P.

We now apply this procedure to analyze the system of Fig. 5.2(b). We first open the loop and allow

the plant model to converge to the plant. Secondly, we assume thatŵk ≈ wk. Finally, we compute

the least mean-squared-error solution forP̂. If causality is enforced, this solution is the Shannon-

Bode solution from Sec. 2.2.3. To calculate it, we first determine the correlation terms8uy(z) and

8uu(z).

(φuy)n = E
[
uk yk+n

]
= E

[
uk · (pk+n ∗ uk+n +wk+n)

]
= pn ∗ (φuu)n + E

[
ukwk+n

]
,

where pk is the impulse response of the plant. To proceed, note thatuk = ck ∗ (rk −wk−1) =
ck ∗ (rk −wk ∗ δk+1), whereδk is the unit impulse function. So,

(φuy)n = pn ∗ (φuu)n + E
[
ck ∗ (rk −wk ∗ δk+1) ·wk+n

]

90 Chapter 5. Closing the Loop: Disturbance Cancelling

= pn ∗ (φuu)n − c−n ∗ δ−n−1 ∗ (φww)n

8uy(z) = P(z)8uu(z)− z+1C(z−1)8ww (z).

Similarly, we compute8uu(z).

(φuu)n = E
[
ukuk+n

]
= E

[
ck ∗ (rk −wk−1) · ck+n ∗ (rk+n −wk+n−1)

]
= c−n ∗ cn ∗

(
(φrr)n + (φww)n

)
8uu(z) = C(z)C(z−1)

(
8rr (z)+8ww (z)

)
.

The Shannon-Bode solution for̂P may now be calculated (assuming in the third line that the plant

is causal)

P̂
(opt)
causal(z) =

1

8+uu(z)

[
8uy(z)

8−uu(z)

]
+

= 1

8+uu(z)

[
P(z)8uu(z)− z+1C(z−1)8ww (z)

8−uu(z)

]
+

= P(z)− 1

8+uu(z)

[
z+1C(z−1)8ww (z)

8−uu(z)

]
+

= P(z)−1P̂(z).

Assumptions concerning the nature of therk andwk signals are needed to simplify this further. For

example, ifrk andwk are both white, then the plant model converges to the plant. Under almost

all other conditions, however, the plant model converges to something else. We conclude that in

general, an adaptive plant model made using the internal model control scheme will be biased by

disturbance. We next show that the entire control system will then be biased.

Wiener Solution for C: The method used to trainC backpropagates the system error through the

plant model̂P in order to create an error signal to adaptC. We can therefore consider the process of

adaptingC as that of adapting the cascade(P̂C) to matchM , whereP̂ is a fixed filter, unchanged

by the adaptation ofC.

The input toC is: r ′k = rk −wk ∗ δk+1. The desired response of the system is equal to:mk ∗
(rk −wk ∗ δk+1). We find that the Wiener solution is

(P̂C)(opt)(z) = 8r ′d(z)

8r ′r ′(z)

= M(z)
[
8rr (z)+ z−18ww(z)

][
8rr (z)+ z−18ww(z)

]
= M (z).

5.2. Analysis of Disturbance Cancelling 91

Therefore,C is adapted such that(P̂C)(z)= M(z). This means thatC(opt)(z)=M (z)/P̂(z), or

C(opt)(z) = M (z)

P(z)−1P̂(z)
6= M (z)

P(z)
.

The controller and the entire system dynamics are biased by the disturbance.

The bottom line: If the loop is closed, and the plant model is allowed to continue adapting after

the loop is closed, the overall control system will become biased by the disturbance. One solution

is to “freeze” the weights of the plant model just before the loop is closed. This solution will

work, but does not allow the control system to respond to time variations in the plant dynamics.

Another solution, applicable to linear plants, is to perform plant modeling with dither signals rather

than with the command input signaluk [45, schemes B,C]. However, this will increase the output

noise level. A better solution is presented next, in which the plant model is allowed to continue

adaptation. There is no extra disturbance at the output. The plant disturbances will be handled by

a separate circuit from the one handling the task of dynamic response. This results in an overall

control problem which is partitioned in a very nice way.

5.2.3 A Solution Allowing On-Line Adaptation of P̂

The only means at our disposal to cancel disturbance is through the plant input signaluk . This signal

must be computed in such a way that the plant output negates (as much as possible) the disturbance.

Therefore, the plant input signal must be statistically dependent on the disturbance. However, we

have just seen that the input signal to the plant modelP̂ cannot contain terms correlated with the

disturbance or the plant model will be biased. This conundrum was first solved by Widrow [45] and

his solution is shown (slightly modified) in Fig. 5.4.

By studying the figure, we see that the control scheme is very similar to internal model control.

The main difference is that the feedback loop is “moved” in such a way that the disturbance dynam-

ics do not appear at the input to the adaptive plant model, but do appear at the input to the plant.

That is, the controller outputuk is used as input to the adaptive plant modelP̂; on the other hand,

the input to the plant is equal touk + ũk , whereũk is the output of a special disturbance-cancelling

circuit, X . P̂ is not used directly to estimate the disturbance; rather, a filter whose weights are a

digital copy of those in̂P is used to estimate the disturbance. This filter is calledP̂COPY.

In later sections we will see how to adaptX and how to modify the diagram if the plant is

nonlinear. Now, we proceed to show that the design is correct if the plant is linear.

92 Chapter 5. Closing the Loop: Disturbance Cancelling

Plant
PC

P̂

P̂COPY

X z−1

Dist. wk

ŵk

rk
uk

ũk

yk

Figure 5.4: Correct on-line adaptive plant modeling in conjunction with disturbance cancelling for
linear plants. The circuitry for adaptingC has been omitted for clarity.

Linear Plant Model Unbiased by Disturbance

Here, we show that the scheme of Fig. 5.4, when used with a linear plant, causes the plant model to

adapt to the correct solution. As before, we follow the three-step procedure. First, we open the loop

and allowP̂ to adapt until it converges toP. Secondly, we assume that̂wk ≈ wk. Lastly, we check

to see whether or not̂P remains converged toP.

The input to the plant model isuk . The signal used as the desired output when adaptingP̂ is

the disturbed plant output

yk = (uk + ũk) ∗ pk +wk,

where pk is the impulse response of the plant, andũk is the output of the disturbance cancelling

filter X . This latter term is computed to be

ũk = xk ∗ wk ∗ δk+1,

wherexk is the impulse response of the disturbance cancelling filterX , andδk+1 is a unit impulse

at timek =−1, representing a unit delay. We compute the Shannon-Bode solution for the adaptive

plant model by first computing8uy(z).

(φuy)n = E
[
uk (uk+n ∗ pk+n + ũk+n ∗ pk+n +wk+n)

]
= pn ∗ (φuu)n

8uy(z) = P(z)8uu(z),

5.2. Analysis of Disturbance Cancelling 93

assuming thatuk andwk are uncorrelated. The Shannon-Bode solution is

P̂
(opt)
causal(z) =

[(
P(z)8uu(z)

)(
8−uu(z)

)−1
]
+

(
8+uu(z)

)−1

= P(z),

assuming that the plant is causal. So, the plant model converges to the plant regardless of the

disturbance (if it is zero-mean and uncorrelated withuk) and regardless ofX .

Nonlinear Plant Model Still Biased

We now examine the least mean-squared-error solution for the plant model if the plant is a nonlinear

dynamical system. Again, we use the three-step procedure. We first open the loop and allowP̂ to

adapt until it converges toP. Secondly, we substitutêwk ≈ wk . Finally we check to see if̂P still

converges toP, using the techniques from Sec. 2.3.3. As before, we assume thatwk is independent

of uk , and is zero-mean.

P̂
(opt)

(Euk) = E
[
yk

∣∣ Euk
]

= E
[
P(Euk + Ẽuk)+wk

∣∣ Euk
]

= E
[
P(Euk + Ẽuk)

∣∣ Euk
]+ E

[
wk

∣∣ Euk
]

= E
[
P(Euk + Ẽuk)

∣∣ Euk
]
,

where Euk is an infinite vector containing past values of the control signaluk,uk−1, . . ., and Ẽuk is

an infinite vector containing past values of the disturbance canceller output,ũk, ũk−1, . . . Using a

Taylor series expansion of the system dynamics at each time step around the “point”Euk we get

P̂
(opt)

(Euk) = E

[
P(Euk)+ ẼuT

k P′(Euk)+0.5 ẼuT
k P

′′
k(Euk) Ẽuk + . . .

∣∣∣ Euk

]
= P(Euk)+ E

[ẼuT
k P′(Euk)+0.5 ẼuT

k P
′′
k(Euk) Ẽuk + . . .

∣∣∣ Euk

]
.

Sincewk is assumed to be independent ofuk , then Ẽuk is independent ofEuk . We also assume thatẼuk

is zero-mean.

P̂
(opt)

(Euk) = P(Euk)+ E
[ẼuT

k

]︸ ︷︷ ︸
=0

P′(Euk)+ E
[
0.5 ẼuT

k P
′′
k
Ẽuk

∣∣ Euk
]+H.O.T. (5.1)

= P(Euk)+H.O.T.

≈ P(Euk),

94 Chapter 5. Closing the Loop: Disturbance Cancelling

where “H.O.T.” means “higher-order terms.” The first order term is zero. The higher-order terms go

to zero since, by assumption, the plant is stable and its Taylor series expansion exists and is finite.

The higher-order terms may not go to zero quickly unless the plant is approximately linear, in which

case they disappear and the plant model approximates the true plant. If the plant is very nonlinear,

however, the plant model may be quite different from the plant.

So, we conclude that this system is not as good as desired if the plant is nonlinear. It may not be

possible to perform on-line adaptive plant modeling while performing disturbance cancelling while

retaining an unbiased plant model. One solution might involve freezing the weights of the plant

model for long periods of time, and scheduling shorter periods for adaptive plant modeling with the

disturbance canceller turned off when requirements for output quality are not as stringent. Another

solution suggests itself from Eq. (5.1). If theũk terms are kept small, the bias will disappear. We

will see in Sec. 5.3 thatX may be adapted using the BPTM algorithm. We can enforce constraints

on the output ofX using our knowledge from Chap. 4 and ensure thatũk remains small.

5.2.4 Structure of the Disturbance Canceller

This final section of analysis concerns itself with the mathematical function that the disturbance

cancelling circuit must compute. A little careful thought in this direction leads to a great deal of

insight, and some surprising conclusions are reached. First, we must consider some issues of timing

which arise since we are performing discrete-time control. Then, we are ready to investigate the

function of the disturbance canceller.

Issues of Timing

The type of adaptive inverse control examined in this dissertation is implemented by a discrete-time

digital controller. Due to the discrete-time nature of the control scheme, a subtle issue arises which

is not present in continuous-time control systems. Consider the timing diagram in Fig. 5.5.

yk−1 yk yk+1

uk−1 uk uk+1

time
axis

Figure 5.5: Input-output timing of a discrete-time control system.

If the sampling rate of the system is equal to 1/T samples per second, then the discrete-

time/continuous-time correspondence is:t = kT seconds, wheret is the physical time in seconds

5.2. Analysis of Disturbance Cancelling 95

andk is the discrete-time index. Thekth command to the plantuk takes place att = kT , and thekth

plant outputyk is sampled in the neighborhood oft = kT seconds. More precisely, supposing that

the plant might not be strictly proper,yk must be measured at timet = (kT)+ seconds.

The command input to the plantuk takes finite time to compute, sork must be supplied at

t = (kT)− seconds to be able to compute the disturbance-cancelling signaluk in time. We must

also be able to computẽuk slightly before timet = kT . This brings us to the important point:If

we want to cancel disturbance, we must have an estimate ofwk
(
the disturbance actually present

at timet = (kT)+
)

at timet = (kT)− to be able to compute a commandũk to cancel it.We do not

sampleyk in time to computewk from it, so we must useyk−1 to estimate the disturbance at time

t = kT . To make this inherent delay more explicit, we incorporate az−1 block in the feedback path.

The delay is unavoidable in any discrete-time control system.

Heuristically Determined Structure of X

This section is a heuristic investigation of the function performed by the disturbance cancellerX .

The analysis is precise if the plant is minimum phase (that is, if it has a stable, causal inverse),

but is merely qualitative if the plant is nonminimum phase. The goal of this analysis is not to be

quantitative, but rather to develop an understanding of the function performed byX .

A useful way of considering the overall system is drawn in Fig. 5.6. Using operator notation,

we restate that the control goal is forX to produce an output so thatyk =M (Erk). We can express

yk as

yk = wk + P
(
C(Erk)+ X (Êwk−1, Euk)

)
.

Note that the dashed line in the figure shows thatX takes the optional signaluk . This signal is used

when controlling nonlinear plants as it allows the disturbance canceller some knowledge of the plant

state. We will see shortly that it is not required if the plant is linear.

Plant
PC

X

Dist. wk

rk
uk

ũk

yk

ŵk−1

Figure 5.6: A useful way of looking at the feedforward system dynamics.

96 Chapter 5. Closing the Loop: Disturbance Cancelling

Next, we substituteyk =M (Erk) and rearrange to solve for the desired response ofX . We see

that

X (opt)(Êwk−1, Euk) = P−1(M (Erk)− Ewk
)−C(Erk)

= P−1(P(Euk)− Ewk
)− uk,

assuming that the controller has adapted untilP(Euk)≈M (Erk). The function ofX is a deterministic

combination of known (by adaptation) elementsP andP−1, but also of the unknown signalwk.

Because of the inherent delay in discrete-time systems, we only knowwk−1 at any time, sowk must

be estimated from previous samples ofwk−1,wk−2, . . . Assuming that the adaptive plant model is

perfect, and that the controller has been adapted to convergence, the internal structure ofX is then

shown in Fig. 5.7. Thewk signal is computed by estimating its value from previous samples ofŵk.

These are combined and passed through the plant inverse to compute the desired signalũk .

P̂

ũkŵk−1

uk

E [ŵk | Êwk−1] P̂
−1

Figure 5.7: Internal structure ofX .

Thus, we see that the disturbance canceller contains two parts. The first part is an estimator

part which depends on the dynamics of the disturbance source. The second part is the canceller part

which depends on the dynamics of the plant. The diagram simplifies for a linear plant since some

of the circuitry cancels. Figure 5.8 shows the structure ofX for a linear plant.

ũkŵk−1 −E [ŵk | Êwk−1] P̂
−1

Figure 5.8: Internal structure ofX if the plant is linear.

One very important point to notice is that the disturbance canceller still depends on both the

disturbance dynamics and the plant dynamics. If the process generating the disturbance is not

5.3. Synthesis of the Disturbance Canceller via the BPTM Algorithm 97

generated by filtering white noise using a linear filter, then the estimator required will in general be

a nonlinear function. The conclusion is that the disturbance canceller should be implemented as a

nonlinear filtereven if the plant is a linear dynamical system. Simulations in Sec. 5.4 demonstrate

this result.

If the plant is generalized minimum phase (minimum phase with a constant delay, as with the

first example of Sec. 3.2.1), then this solution must be modified slightly. The plant inverse must be

a delayed plant inverse, with the delay equal to the delay inherent in the plant. The estimator must

estimate the disturbance one time step into the future plus the delay of the plant. For example, if

the plant is strictly proper, there will be at least one delay in the plant’s impulse response, and the

estimator must predict the disturbance at least two time steps into the future.

It was stated earlier that these results are heuristic and do not directly apply if the plant is

nonminimum phase. We can see this easily now, since a plant inverse does not exist. However,

the results still hold qualitatively since a delayed inverse exists; the solution forX is similar to the

one for a generalized minimum phase plant. The structure ofX consists of a part depending on

the dynamics of the system which amounts to a delayed plant inverse, and a part which depends on

the dynamics of the disturbance generating source, which must now predict farther into the future

than a single time step. Unlike the case of the generalized minimum phase plant, however, these

two parts do not necessarily separate. That is,X implements some combination of predictors and

delayed inverses which compute the least mean-squared-error solution.

5.3 Synthesis of the Disturbance Canceller via the BPTM Algorithm

We have seen how a disturbance cancelling filter can be inserted into the control-system design in

such a way that it will not bias the controller for a linear plant, and will minimally bias a controller

for a nonlinear plant. This, the second part of our discussion on disturbance cancelling, describes

methods to adapt the disturbance cancelling filter. The development of the algorithm is done in three

stages. The final stage is the most general, but occasions have been found where one of the earlier

(simpler) methods work just as well and adapt more quickly.

5.3.1 Controller Feedback

We first consider cancelling disturbance for a linear plant. Based on our heuristic discussion of

the rôle of the disturbance canceller, we recognize that its function is that of an estimator coupled

98 Chapter 5. Closing the Loop: Disturbance Cancelling

with a plant inverse. Supposing that we are performing straightforward inverse control (not model-

reference based inverse control), we have already trained the controller to be the plant inverse.

Therefore we can setX = −CCOPY. If the disturbance generating process is a Martingale process3

then this method quickly and easily determines the optimal disturbance cancelling filter. Figure 5.9

depicts this method.

Plant
PC

CCOPY

P̂

P̂COPY

M

z−1

Dist. wk

ŵk

rk
uk

ũk

yk

Figure 5.9: Disturbance cancelling via controller feedback.

5.3.2 Estimator Plus Controller Feedback

Still supposing that the plant is a linear system, but that the disturbance is not a Martingale process,

an estimate of the disturbance is required in order to optimally cancel disturbance. Such an estimator

may be implemented using an adaptive linear or nonlinear filter and is very easily trained as shown

in Fig. 5.10. As has been described, the optimal estimator may be a nonlinear filter even if the plant

is a linear system. This second method separates the function of the disturbance canceller very

nicely so that the linear part (the plant inverse) is done by a linear filter, and the nonlinear part (the

predictor) is done by a nonlinear filter.

The predictorE trains rapidly using the circuitry at the bottom of the figure since a direct

error signal is available. The input to the predictor is a delayed version of the measured disturbance,

ŵk−2. The desired response for the predictor is the measured disturbanceŵk−1. The predictor learns

3A Martingale process is a special case of Markov process where the expected value of the current sample given the
past is equal to the most recent past sample.

5.3. Synthesis of the Disturbance Canceller via the BPTM Algorithm 99

Plant
PC

CCOPY

P̂

P̂COPY

M

E

ECOPY

z−1

z−1

Dist. wk

ŵk

rk
uk

ũk

yk

Figure 5.10: Disturbance cancelling via estimator plus controller feedback.

to predict the disturbance one time step into the future. Assuming that the disturbance is a stationary

random process, a digital copyECOPY of the predictorE is used to predict̂wk from ŵk−1.

If the plant is nonminimum phase, then a delayed inverse is used asC, and the estimator must

be trained to estimate disturbance the correct number of samples into the future.

5.3.3 Training X In-Place

If the plant is nonlinear, the above methods cannot be used. The third and most general method is

to adaptX in-place. The method works on the following basis. We know that the system error is

composed of three parts:

� One part of the system error is dependent on the input command vectorErk in C. This part of

the system error is reduced by adaptingC.

� Another part of the system error is dependent on the estimated disturbance vectorÊwk in X .

This part of the system error is reduced by adaptingX .

100 Chapter 5. Closing the Loop: Disturbance Cancelling

� The minimum-mean-squared-error. This part of the system error is independent of both the

input command vector inC and the estimate disturbance vector inX . It is either irreducible

(if the system dynamics prohibit improvement), or may be reduced by making the tapped-

delay lines at the input toX or C larger. In any case, adaptation of the weights inX or C will

not reduce the minimum-mean-squared-error.

� The fourth possible part of the system error is the part which is dependent on both the in-

put command vector and the disturbance vector. However, by assumption,rk and wk are

independent, so this part of the system error is zero.

Using the BPTM algorithm to reduce the system error by adaptingC, as discussed in Chap. 4,

will reduce the component of the system error dependent on the inputrk . Since the disturbance

and minimum-mean-squared-error are independent ofrk , their presence will not bias the solution of

C. The controller will learn to control the feedforward dynamics of the system, but not to cancel

disturbance.

If we were to use the BPTM algorithm and backpropagate the system error through the plant

model, using it to adaptX as well, the disturbance canceller would learn to reduce the component of

the system error dependent on the estimated disturbance signal. The component of the system error

due to unconvergedC and minimum-mean-squared-error will not bias the disturbance canceller.

This method is illustrated in Fig. 5.11 where a complete integrated MIMO nonlinear control

system is drawn. The plant model is adapted directly, as before. The controller is adapted by back-

propagating the system error through the plant model and using the BPTM algorithm of Chap. 4.

The disturbance canceller is adapted by backpropagating the system error through thecopyof the

plant model and using the BPTM algorithm as well. So we see that the BPTM algorithm serves two

functions: it is able to adapt bothC andX .

Using BPTM to adaptX works well for either linear or nonlinear systems. If the disturbance

is not Martingale, if the plant is nonlinear or nonminimum phase, or if the controller is trained to

perform model-reference control (where the reference is not a simple delay) then the “controller

feedback” solution is not optimal. If the plant is nonminimum phase and a large delay is used in the

controller or if the controller is trained to perform model-reference control then the “estimator plus

controller feedback” solution is not optimal either. The BPTM algorithm produces the best results

of the three methods outlined. Since it adapts slowly, however, it can be useful to initializeX using

one of the other two methods.

5.4. Simulation Examples 101

Plant
PC

P̂

P̂COPY

X

M

z−1

Dist. wk

rk
uk yk

e(sys)
k

e(sys)
k

Figure 5.11: An integrated nonlinear MIMO system.

5.4 Simulation Examples

We have seen some analytical results relating to disturbance cancelling, and several methods to

perform disturbance cancelling in the context of adaptive inverse control. It is now time to present

some simulation results for the plants of Chap. 3 to verify the analytical results of this chapter and

to demonstrate the viability of the disturbance cancelling methods.

5.4.1 Minimum-Phase Linear SISO Plant

The first examples we look at are for the minimum-phase tank of Sec. 3.2.1. We have already

seen (cf. Chap. 4) simulation results showing that this plant may be very effectively controlled in

a feedforward sense using either a linear FIR or nonlinear NARX filter as a controller. Controllers

were adapted to perform either unconstrained control, or control where the control effort was limited

to be between 5◦C and 95◦C. We now look at the problem of disturbance cancelling.

The disturbance experienced by this plant was specified to be a periodic fluctuation in the

temperature of the hot source. A portion of this fluctuation is coupled into the plant input, with the

amount depending on the controller outputuk . As such, the disturbance is statistically dependent

on the control signal. However, it can be shown that the disturbance is not correlated withuk , and

so the plant model will adapt to an unbiased solution, despite the disturbance.

102 Chapter 5. Closing the Loop: Disturbance Cancelling

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14
System error for internal model control system

Time (s)
(a)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8
System error for “controller-feedback” system

Time (s)
(b)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8
System error for linear BPTM system

Time (s)
(c)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8
System error for nonlinear BPTM system

Time (s)
(d)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Linear BPTM versus nonlinear BPTM system

Time (s)
(e)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Nonlinear BPTM versus no disturbance

Time (s)
(f)

A
m

pl
itu

de
S

qu
ar

e

Figure 5.12: Plots showing the difference between different disturbance-cancelling schemes for the
unconstrained minimum-phase linear SISO system. The disturbance canceller was turned on at time
1000.

5.4. Simulation Examples 103

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30
System error for internal model control system

Time (s)
(a)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25
System error for “controller-feedback” system

Time (s)
(b)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30
System error for linear BPTM system

Time (s)
(c)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25
System error for nonlinear BPTM system

Time (s)
(d)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20
Linear BPTM versus nonlinear BPTM system

Time (s)
(e)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
Nonlinear BPTM versus no disturbance

Time (s)
(f)

A
m

pl
itu

de
S

qu
ar

e

Figure 5.13: Plots showing the difference between different disturbance-cancelling schemes for the
constrained minimum-phase linear SISO system. The disturbance canceller was turned on at time
1000.

104 Chapter 5. Closing the Loop: Disturbance Cancelling

Another interesting feature of this disturbance is that it is a nonlinear random process. That

is, the least mean-squared-error predictor of the current disturbance value given all previous distur-

bance values is a nonlinear function. We will find that the disturbance cancelling filterX which

gives the best performance is therefore a nonlinear NARX filter.

Simulations were performed to adapt disturbance cancelling filtersX of various types for this

plant, and some results are shown in Fig. 5.12. For these simulations there were no constraints

on the control effort. In the plots the system was run for 1000 seconds with the disturbance can-

celler turned off. Then, the disturbance canceller was turned on and the system was allowed to run

for an additional 1000 seconds (the disturbance cancelling filtersX had already adapted to con-

vergence before these experiments were performed). The squared system error is plotted versus

time. In Fig. 5.12(a), we see results for the internal-model-control disturbance-cancelling scheme

of Fig. 5.2(b). As expected from the analysis, this system does not cancel disturbance well. The

plant model, shown in Fig. 5.14(a), is biased by the disturbance. The entire system becomes biased,

and the mean-squared system error is very high.

Figure 5.12(b) shows how the result improves when the system of Fig. 5.9 is used instead.

This system is identical to the one in Fig. 5.2(b) if the plant model is not allowed to adapt on-line,

but is the correct extension to the internal model control scheme if the plant model is allowed to

adapt on-line. We see that better performance is achieved when the disturbance canceller is turned

on.

Neither of these two schemes attempts to predict future disturbance values while performing

disturbance cancelling. We obtain much better results in Fig. 5.12(c) when the BPTM-adapted

system of Fig. 5.11 is used to perform disturbance cancelling. The disturbance cancelling filter

X was a sixty-tap FIR filter whose input was the estimate of the disturbanceŵk−1. It adapts to

the solution shown in Fig. 5.18(a). The solution comprises a three-step-ahead estimator (due to the

inherent two-step delay in the plant, and the one-step delay in the disturbance measurement process)

convolved with a delayed plant inverse. We also see in Fig. 5.14(b) that the plant model adapted

on-line using this scheme adapts to the correct solution.

The results in Fig. 5.12(d) are better yet! For these simulations, a NARX neural network filter

was used as the disturbance cancelling filter. Since the disturbance process is a nonlinear process,

the neural network is better able to predict future disturbance values in order to cancel them. The

filter used bothuk and ŵk−1 as input. Figure 5.12(e) compares the results using the linear and

nonlinear filters. For the first 1000 seconds, the linear filter is used to cancel disturbance; for the

5.4. Simulation Examples 105

0 5 10 15 20 25 30 35 40
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Impulse response of̂P for internal model control system

Time (s)
(a)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Impulse response of̂P for BPTM system

Time (s)
(b)

A
m

pl
itu

de

Figure 5.14: Plots showing that the plant model may be biased by disturbance cancelling if on-line
plant modeling is performed. (a)̂P after adaptation for the internal model control system; (b)P̂ after
adaptation for the “BPTM” system.

remaining 1000 seconds, the nonlinear filter is used to cancel disturbance. The nonlinear filter does

much better.

Finally, we see in Fig. 5.12(f) that the nonlinear filter still does not cancel all of the distur-

bance. The system was run with disturbance and the nonlinear disturbance-cancelling filter for

1000 seconds; the disturbance (and disturbance-cancelling filter) was turned off for the remaining

1000 seconds. Not all of the disturbance can be estimated and removed.

Returning to the issue of biased plant models, Fig. 5.15 plots the mean-squared system error

versus time for three different disturbance cancelling schemes. The system was allowed to run for

1× 106 seconds without disturbance cancelling, and then the disturbance canceller was turned on.

The light-gray line in Fig. 5.15 shows the mean-squared system error versus time for the internal

model control system of Fig. 5.2(b). When the loop is closed, the system initially performs very

well. However, as the plant model is allowed to continue adapting, it becomes biased by the distur-

bance. In trying to invert the plant model, the controller also becomes biased. Over time, the system

error becomes worse—although still better than with no disturbance cancelling at all.

The dark-gray line shows same result for the “controller-feedback” system of Fig. 5.9. When

the loop is closed, the performance is immediately better, and remains the same over time. Con-

tinued adaptation of the plant model does not degrade system performance. However, since the

disturbance is not Martingale, we can do better by using the system of Fig. 5.11. The results for

this system are drawn as the black line. After this disturbance canceller (whose impulse response

was initialized to all zeros) was turned on, the system performance became steadily better until

106 Chapter 5. Closing the Loop: Disturbance Cancelling

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.5

1

1.5

2

2.5

3
Learning curves for three systems

Time (s)

M
ea

n
S

qu
ar

ed
E

rr
or

Figure 5.15: Plots showing various aspects of disturbance cancelling for the minimum-phase tank
system Learning curves for the internal model control system (light gray), “controller-feedback” sys-
tem (dark gray), and BPTM system (black).

the disturbance canceller had adapted to convergence. Even better results were obtained when the

disturbance canceller was allowed to be nonlinear, but the learning was slower.

Very similar simulations were performed for this plant when there were constraints on the

control effort. Figure 5.13 displays the results of these simulations. We see that the squared system

error is always fairly high. This is because the constraints on the control effort do not allow us to

precisely control the plant. There is always a residual error due to the constraint, in addition to any

disturbance which may be present.

The internal model control system results shown in Fig. 5.13(a) and the “controller-feedback”

system results shown in Fig. 5.13(b) are both fairly poor. When a linear filter is used to cancel

disturbance using the method of Fig. 5.11 then somewhat better results are achieved, as shown in

Fig. 5.13(c).Muchbetter results are achieved by using a nonlinear disturbance canceller, as shown

in Fig. 5.13(d), and are compared with the system error when there is no disturbance in Fig. 5.13(f).

We see that the system error with disturbance, a nonlinear disturbance canceller, and constraints

on the control effort at the output ofC is lower than the system error without disturbance but with

constraints on the control effort at the output ofC. The nonlinear disturbance cancelling filter is

using theuk signal to cancel disturbance and provide better tracking at the same time. This is

actually cheating—the control effort at the output ofC has been constrained, but the total control

effort, uk+ũk has not been constrained. This simulation shows that the system designer must use the

constrained BPTM algorithm to adapt bothC andX ; otherwise, the total control effort constraints

may be violated.

5.4. Simulation Examples 107

5.4.2 Nonminimum-Phase Linear SISO Plant

Very similar simulations were performed for the nonminimum-phase tank. Since it has been deter-

mined that the internal model control system and the “controller-feedback” system do not give good

performance, they were not simulated. Instead, the BPTM algorithm was used with the system of

Fig. 5.11 to adapt both a linear and a nonlinear disturbance cancelling filter.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10
System error for linear BPTM system

Time (s)
(a)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10
System error for nonlinear BPTM system

Time (s)
(b)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2
Linear BPTM versus nonlinear BPTM system

Time (s)
(c)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Nonlinear BPTM versus no disturbance

Time (s)
(d)

A
m

pl
itu

de
S

qu
ar

e

Figure 5.16: Plots showing the difference between different disturbance-cancelling schemes for the
unconstrained nonminimum-phase linear SISO system. The disturbance canceller was turned on at
time 1000.

The results using the linear disturbance-cancelling filter are shown in Fig. 5.16(a). We see that

it does a very credible job of removing the disturbance. However, much more disturbance remains

in the system error than with the same disturbance source and the minimum-phase tank. The linear

disturbance canceller is not able to predict the disturbance far enough into the future to cancel as

much of the disturbance. The nonlinear disturbance canceller, on the other hand, is able to predict

108 Chapter 5. Closing the Loop: Disturbance Cancelling

the future with much more accuracy. The final performance with a nonlinear disturbance canceller

for the minimum phase tank and the nonminimum phase tank are very comparable.

Simulation results are plotted in Fig. 5.17 when there were constraints on the control effort.

The same general comments apply as for the corresponding simulations for the minimum phase

tank. Some care needs to be taken to penalize the additional control effort due to the output ofX .

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20
System error for linear BPTM system

Time (s)
(a)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12
System error for nonlinear BPTM system

Time (s)
(b)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
Linear BPTM versus nonlinear BPTM system

Time (s)
(c)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
Nonlinear BPTM versus no disturbance

Time (s)
(d)

A
m

pl
itu

de
S

qu
ar

e

Figure 5.17: Plots showing the difference between different disturbance-cancelling schemes for the
constrained nonminimum-phase linear SISO system. The disturbance canceller was turned on at time
1000.

Finally, in Fig. 5.18, the impulse responses of the linear disturbance cancelling filters for the

minimum-phase and nonminimum-phase tank examples are plotted. Unlike the controllersC, the

disturbance cancelling filters are fairly similar for these plants.

5.4. Simulation Examples 109

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Impulse response ofX for Minimum Phase Tank

Time (s)
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Impulse response ofX for Nonminimum Phase Tank

Time (s)
(b)

A
m

pl
itu

de

Figure 5.18: Disturbance cancelling filterX . (a) For the minimum-phase tank; and (b) For the
nonminimum-phase tank.

5.4.3 Linear MIMO Plant

The next example we look at is the Boeing 747 linear MIMO plant of Sec. 3.2.2. This plant may

also be very effectively controlled in a feedforward sense. Controllers were adapted to perform

either unconstrained control, or control where the slew-rate of the control effort was limited. We

now look at the problem of disturbance cancelling, and consider only the case where control effort

is not constrained.

The disturbance experienced by this plant was specified to be due to gusts of wind operating

directly on the sideslip-angle—an internal state variable in the state-space representation of the

system. Raw wind disturbance was simulated by passing white noise through a linear filter whose

spectrum was the same as the spectrum of wind speeds. The resulting wind speed was divided by the

forward speed of the airplane, and the arc-tangent of the quotient was added to the sideslip-angle.

Hence, the disturbance source was a nonlinear random process. In all practicality, however, the

disturbance was small enough that the arc-tangent operator was approximately linear. We will see

that a linear disturbance canceller is able to do almost as well as a nonlinear disturbance canceller.

Figure 5.19 plots the results of disturbance cancelling. Since the plant is minimum-phase,

the estimator-feedback system of Fig. 5.10 was used to cancel disturbance. This proved to train

much more rapidly than the system of Fig. 5.11, and gave just as good results. Both the linear

and nonlinear disturbance cancelling systems are able to remove almost all of the disturbance, as

can be seen in Fig. 5.19(a) and (b). When the two are compared in Fig. 5.19(c), we can not detect

any difference visually (although the results in Table. 5.1 show that the nonlinear system is able to

do somewhat better). Finally, when the nonlinear disturbance-cancelling results are compared to

110 Chapter 5. Closing the Loop: Disturbance Cancelling

feedforward control without disturbance in Fig. 5.19(d), we see that almost all of the disturbance

has been removed.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
System error for linear estimator-feedback system

Time (s)
(a)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
System error for nonlinear estimator-feedback system

Time (s)
(b)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8
x 10

−4
Linear versus nonlinear estimator-feedback systems

Time (s)
(c)

A
m

pl
itu

de
S

qu
ar

e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8
x 10

−4
Nonlinear estimator-feedback versus no disturbance

Time (s)
(d)

A
m

pl
itu

de
S

qu
ar

e

Figure 5.19: Plots showing the difference between different disturbance-cancelling schemes. The
disturbance canceller was turned on at time 1000.

5.4.4 Nonlinear Plants

Simulations were also performed to demonstrate disturbance cancelling for the nonlinear plants of

Chap. 3. The reader may recall that the nonlinear SISO plant was selected to be a large ocean-going

ship for which we would like to control the heading angle. The nonlinear MIMO plant was a two-

link robot arm for which we would like to control the joint angles. Both of these plants were initially

unstable, and were stabilized using feedback. Simple unity feedback was used to stabilize the ship,

and a PD controller was used to stabilize the robot.

5.5. Summary 111

This feedback has two effects. Most importantly, it stabilizes the system dynamics. Secondly,

however, it also performs some disturbance rejection. The feedback works in such a way that the

input command is modified to cancel any error in the output, and this error can include disturbance.

Therefore, we find that the results for disturbance cancelling for the nonlinear plants are not

as spectacular as the results for the linear plants. The reason for this is that the system error with

disturbance and without disturbance are not very different. The disturbance canceller improves upon

the system error with disturbance, but the difference is so small that the disturbance canceller may

be considered unnecessary for these plants. Results in Table. 5.1 show that the disturbance canceller

does improve performance slightly.

Disturbance can not always be ignored with nonlinear plants! Simulations for nonlinear SISO

plants in App. B show that the methods developed for nonlinear disturbance cancelling can work

very well. The reader is referred to that appendix for further details.

5.5 Summary

This chapter discusses disturbance cancelling for linear and nonlinear, SISO and MIMO plants.

It is organized into three main divisions. The first division explores some analysis of disturbance

cancelling; the second division presents methods to adapt a disturbance canceller; and the third

division presents results to verify the analysis and the disturbance cancelling algorithms.

The analytic section first shows that the feedforward control system of Chap. 4 still works if

the plant is disturbed, but that nothing is done to reject the disturbance. That is, the output of the

plant will converge to the sum of the desired outputplus the disturbance. The conventional method

to remove disturbance is to “close the loop.” It is shown that if the loop is closed, on-line plant

modeling will not converge to the right solution. This biases the controller as well, so the entire

system performs in a sub-optimal way.

A method is adapted from reference [45] which performs disturbance cancelling in a more

clever way. It is shown that a linear plant model will not be biased by this proposed scheme, but

that a nonlinear plant model will still be somewhat biased. Since the plant is assumed to be stable,

this bias is small, and simulations later show that the bias is acceptable.

Further analysis explores the function performed by the disturbance canceller. It is discovered

that the disturbance cancelling filterX performs two duties: (1) It predicts the disturbance at the

plant output one time step into the future; and (2) It computes the control signal required to eliminate

that disturbance. The first duty is a function of the statistics of the disturbance signal, and the

112
C

hapter
5.

C
losing

the
Loop:

D
isturbance

C
ancelling

TABLE 5.1 STEADY-STATE MEAN SQUARED SYSTEM ERROR FOR ALL PLANTS SIMULATED.

System
Feedforward Int. Model Controller Linear Nonlinear No

Control Control Feedback Canceller Canceller Disturbance

Linear SISO

Unconstrained Minimum Phase 2.475262 0.678148 0.362881 0.032043 0.005100 0.000020

Constrained Minimum Phase 3.231202 1.697775 1.581939 1.032886 0.331095 0.757910

Unconstrained Nonminimum Phase 2.474227 — — 0.029332 0.004689 0.000002

Constrained Nonminimum Phase 3.026145 — — 0.587182 0.126064 0.551610

Linear MIMO

Unconstrained 0.077286 — — 0.000068 0.000054 0.000011

Nonlinear SISO

Constrained Dynamics 0.001326 — — — 0.001302 0.001248

Nonlinear MIMO

Unconstrained 0.006061 — — — 0.005221 0.003594

5.5. Summary 113

second duty is a function of the plant dynamics. In general, an estimator to predict future values

of disturbance is a nonlinear function, so the disturbance canceller is best realized by a nonlinear

adaptive filter, even if the plant dynamics are linear!

In the synthesis section of this chapter, three methods are proposed to perform disturbance

cancelling. The simplest methods only work for linear plants. The first simply uses a copy of

the controller as the disturbance canceller. It is optimal if the disturbance is a Martingale process

and the reference model for the controller is the identity function:M(z) = I . The second method

cascades a disturbance-predicting filter with the plant inverse and is optimal if the disturbance is not

Martingale, but the reference model for the controller is still the identity function. The third method

works for linear and nonlinear plants, and uses the BPTM algorithm developed in Chap. 4 to adapt

the disturbance canceller weights.

The third division of the chapter presented simulations to verify the analytical results and the

disturbance cancelling algorithms. Simulations were performed to test disturbance cancelling for

all of the plants introduced in Chap. 3, with the conclusion that better performance was always

obtained using the disturbance canceller.

The internal model control scheme was simulated in conjunction with on-line plant model-

ing. It was shown to fail, just as theory predicts. All three of the “correct” disturbance cancelling

schemes presented in the synthesis division of this chapter were simulated as well. In general, it was

found that the BPTM-adapted disturbance canceller of Fig. 5.11 worked best. A surprising result of

the analysis which is verified in the simulations is that the optimum disturbance canceller may be a

nonlinear system even if the plant is linear. Numerical results from the simulations are tabulated in

Table. 5.1. All values are steady-state system mean-squared error, averaged over 1× 106 simulated

time steps, computed after the plant model, controller and disturbance canceller had converged.

Finally, Table. 5.2 tabulates the architectures of the plant models, controllers and disturbance can-

cellers used in simulations in this chapter. The overall conclusion is that extremely good disturbance

cancelling may be achieved.

114 Chapter 5. Closing the Loop: Disturbance Cancelling

TABLE 5.2 FILTER ARCHITECTURES USED IN THIS CHAPTER.

Linear Nonlinear
Plant Feedforward Disturbance Disturbance

System Model,̂P Controller,C Canceller,X Canceller,X

Linear SISO
Unconstrained Minimum Phase FIR(40,0):1 FIR(20,0):1 FIR(60,0):1 N([60,60],0):30:1
Constrained Minimum Phase FIR(40,0):1 FIR(20,0):1 FIR(60,0):1 N([60,60],0):10:1
Unconstrained Nonminimum Phase FIR(40,0):1 FIR(15,0):1 FIR(60,0):1 N([60,60],0):30:1
Constrained Nonminimum Phase FIR(40,0):1 FIR(15,0):1 FIR(60,0):1 N([60,60],0):30:1

Linear MIMO
Unconstrained IIR(4,3):2 IIR(4,4):2 IIR(12,8):2 N(12,2):5:2

Nonlinear SISO
Constrained Dynamics N(20,1):8:1 N(22,1):50:1 — N([20,20],1):10:1

Nonlinear MIMO
Unconstrained N(20,0):10:2 N(11,1):20:2 — N([4,5],1):20:2

Chapter 6

Imperfect Sensors

If I had any humility I would be perfect.

—Ted Turner

6.1 Introduction

All work done in adaptive inverse control to this time has made the assumption that the sensors used

to measure the plant output are ideal. This may often be a realistic assumption; however, for many

applications an ideal sensor would either be prohibitively expensive or altogether impossible. This

chapter proposes simple modifications to the existing adaptive inverse control structure to properly

compensate for non-ideal sensors.

An ideal sensor measures the exact value of a system variable or output at some point in time.

An imperfect sensor adds dynamics, distortion and/or noise to the measurement process. We may

consider an imperfect sensor to comprise an ideal sensor, cascaded with some added dynamicsS,

and corrupted by sensor noise,vk . This is shown in Fig. 6.1. The true value of the variable being

sensed isyk. The output of the sensor is̃yk. The operatorS may be linear or nonlinear, and may

include dynamics. The sensor noisevk is considered to be any zero-mean and bounded random

process, statistically independent ofyk.

S

Sensor
Noise,vk

ykyk ỹk
Ideal

Sensor

Figure 6.1: A non-ideal sensor.

115

116 Chapter 6. Imperfect Sensors

In the rest of this chapter, the effect of the imperfect sensor on plant modeling, feedforward

control, and disturbance cancelling are discussed. Additionally, ways are proposed to compensate

for imperfect sensors, and to restore full functionality to the control system. Simulation results are

presented to verify the new analysis and design.

6.2 Analysis of Adaptive Inverse Control with an Imperfect Sensor

and Synthesis of a New Design

6.2.1 Effect ofS on Plant Modeling

With an imperfect sensor, we must modify our perception of the plant modeling process. If an

adaptive model is made in the same way as before, it now has a different meaning. We see this by

examining Fig. 6.2. The sensor is explicitly included in the diagram. The “plant model” now models

the dynamics of both the plant and the sensor and may include some effects due to the disturbance. If

we assume that the sensor is linear (the plant may either be a linear or nonlinear dynamical system),

the least mean-squared-error solution for the function performed by the adaptive block labeledŜP

is

ŜP
(opt)

(Euk) = E
[
ỹk

∣∣ Euk
]

= E
[
S
(
P(Euk)+ Ewk

)+ vk
∣∣ Euk

]
(6.1)

= E
[
S
(
P(Euk)

) ∣∣ Euk
]+ E

[
S(Ewk)

∣∣ Euk
]

(6.2)

= E
[
S
(
P(Euk)

) ∣∣ Euk
]
.

If, in addition to the sensor being linear, the plant is also linear, the adaptive element converges to

S(z)P(z). Note that if the sensor is nonlinear, then Eq. (6.2) does not follow from Eq. (6.1), and

the disturbance termwk may bias the solution for the adaptive block to include effects due to the

disturbance. Zero-mean sensor noise never biases the solution as long as it is independent of the

input signaluk.

So, the adaptive plant model includes the dynamics of both the plant and the sensor. Therefore,

a change in terminology is appropriate. Whereas before we considered a plant modelP̂, we now

consider a system model,̂SP. If the sensor is ideal (S= 1), then the two are equivalent. Otherwise,

we must carefully consider the effects of the sensor on the control system operation.

Note that it is not wise to try to invert the sensor dynamics in order to isolate the plant dy-

namics for plant identification. The sensor may be nonlinear or nonminimum phase and not have an

6.2. Analysis and Synthesis of Adaptive Inverse Control with an Imperfect Sensor 117

Plant
P S

ŜP

Dist. wk

Sensor
Noise,vk

uk ỹk

Figure 6.2: The system model is an adaptive model of the combined dynamics ofS andP.

inverse. The inversion process also magnifies sensor noise. Therefore, we prefer to adapt a system

model including both the sensor and plant dynamics, and modify the rest of the control scheme to

compensate.

The bottom line: If the sensor noise is zero-mean, then it has no effect on plant modeling. How-

ever, the sensor dynamics do become part of the adaptive plant model. Therefore, the adaptive

model is really a system model,̂SP, including the combined dynamics of the plant and sensor.

6.2.2 Effect ofS on Feedforward Control

When used in an adaptive inverse control system, an imperfect sensor has different effects on feed-

forward control and on disturbance cancelling. Here, we look at the effect of the sensor on feed-

forward control, and how to correctly control a plant even when the sensor is not ideal. With no

compensation for the imperfect sensor, a diagram of the control system is shown in Fig. 6.3.

The true output of the system isyk. The measured output is̃yk. In this figure, the measured

system error̃e(sys)
k is calculated as the difference between the desired output of the system and the

measured output:̃e(sys)
k = dk − ỹk. This error is backpropagated through the system model via

the BPTM algorithm and is used to adapt the controller. Nothing has changed in this diagram

(compared with Fig. 4.9) except for the interpretation of the measured signalỹk and the rˆole of

the system model. Previously,yk was equal tõyk, andP̂ was modeled. Now,̃yk includes sensor

dynamics and sensor noise, and̂SPmodels the combined sensor and plant dynamics.

This system adaptsC such that the mean square ofẽ(sys)
k is minimized. Thus, the measured

output ỹk matches the desired outputdk as closely as possible, in a mean-square sense. Unfortu-

nately, we do not want̃yk to matchdk ; rather, we want the true outputyk to match the desired output

dk .

118 Chapter 6. Imperfect Sensors

Plant
PC

M

S

ŜP

Dist. wk

Sensor
Noise,vk

rk
uk

yk

ỹk

dk

ẽ(sys)
k

Figure 6.3: Uncompensated feedforward control.

To compensate for the imperfect sensor we must first note that the sensor noise does not affect

the control as long as it is zero mean and uncorrelated with the plant input,uk (independence is

required in a nonlinear control system). Under these conditions, we have seen that the system

model will converge to an unbiased solution:̂SP→ SP. The controller will also converge, albeit to

the wrong solution:C→ [SP]−1M , rather than the correct solution,C→ [P]−1M . The problem

with performing adaptive (feedforward) inverse control with an imperfect sensor is not due to the

sensor noise, but due to the sensor dynamics.

As one approach to solving this problem, we might try to find a way to adaptively modelS and

P separately, and to use the modelsŜ andP̂ to adapt a controllerC. However, this is fundamentally

impossible. The measured system output,ỹk, consists of two components. One component is the

part of ỹk which is correlated with the control inputuk . The other component is uncorrelated with

uk . The system model adapts to explain the part ofỹk which is correlated withuk ; the rest is a

combination of disturbance and sensor noise. The correlated part is a function of two dynamical

systems connected in cascade with a single vector inputuk and vector output̃yk. Without prior

information onS or P, we cannot separate them using this information alone.

We are forced to consider other solutions which require that eitherP or S (or both) be knowna

priori . The approach taken here is to assume that the sensor dynamicsS are known, or approximated

asŜ. This is felt to be realistic as manufacturers usually supply this information with their sensors.

If the sensor dynamics are not known, they must be identified by some system identification method.

Our model of the sensor dynamics is calledŜ. These are incorporated into the control system

as shown in Fig. 6.4. The reference modelM is now cascaded with the approximate sensor dynamics

Ŝ, and the desired response signals are re-labeled. The output of the reference model is calleddk

6.2. Analysis and Synthesis of Adaptive Inverse Control with an Imperfect Sensor 119

Plant
PC

M

S

ŜP

Ŝ

Dist. wk

Sensor
Noise,vk

rk
uk

yk

ỹk

d̃kdk

ẽ(sys)
k

Figure 6.4: Compensated feedforward control.

and the output of the sensor model is calledd̃k . A “measured system error” is calculated to be

ẽ(sys)
k = d̃k − ỹk. If we assumêS= S and minimize the mean square of this measured system error,

we minimize the mean square of the unmeasurable system errore(sys)
k = dk − yk. Using operator

notation and the method from Sec. 5.2.2 we see that actual plant output converges to the correct

plant output if the sensor is invertible.

SPC→ ŜM

PC → S−1ŜM

= S−1[S+1S
]
M

= M + [
S−11S

]
M

= (PC)(opt)+ [
S−11S

]
M , (6.3)

whereŜ= S+1S. So, if Ŝ= S, then the system is properly controlled. IfŜ 6= S, then the sensi-

tivity to errors inŜ is equal toS−11SM . If M is made to be “small” where there are uncertainties

in the transfer function of the sensor, the overall sensitivity to error will be small.

The bottom line: In order to compensate for sensor dynamics and noise in the feedforward control

process, we needa priori knowledge of either the plant model or sensor model. The approach taken

here is to assume an approximate sensor modelŜ. Using this sensor model, a small change is

made to the control system to compensate for the sensor dynamics. Sensor noise does not degrade

feedforward control in any way if it is zero-mean1 and uncorrelated with the sensor input.

1The mean of the sensor noise may be subtracted from the output of a sensor with a non-zero-mean sensor noise to
accomplish the same level of performance for any general sensor-noise signal.

120 Chapter 6. Imperfect Sensors

6.2.3 Effect ofS on Disturbance Cancelling

Thirdly, we consider the effect of a non-ideal sensor on disturbance cancelling. First, we look at the

effect of sensor dynamics; secondly, we look at the effects of sensor noise.

Effect of Sensor Dynamics on Disturbance Cancelling: The feedforward dynamics of the sys-

tem were compensated by cascadingM with Ŝ. Let us see what effect this has on disturbance

cancelling. First, we assume that the sensor noise is zero. In Chap. 5 we saw that the disturbance

cancellerX was adapted so that

M (Erk) = P̂
(Euk + X (Euk, Êwk−1)

)+wk .

If we include the sensor and sensor model, then this becomes

Ŝ
(
M (Erk)

) = S
(
P̂

(Euk + X (Euk, Êwk−1)
)+ Ewk

)
.

So,X is adapted so that the mean-squared-measured error is minimized. We want the mean-squared

true error to be minimized. If̂S= S, then we have achieved the desired result. Even ifŜ 6= S, this

is the best we can do. Note that ifS is nonminimum phase, the disturbance cancelling will be

poorer than if the sensor were ideal, since sensor dynamics must be implicitly inverted to cancel

disturbance.

Effect of Sensor Noise on Disturbance Cancelling: We saw in Sec. 6.2.2 that sensor noise does

not affect the feedforward dynamics of the system. We will see that it does affect the feedback

dynamics. The circuitry of Fig. 5.11 for disturbance cancellation may be too aggressive if there is

sensor noise. Let us consider the effects of the two uncertainty sources in the system:

� wk : Plant disturbance is physical and affects the true output of the system. We want to cancel

as much of it as possible.

� vk : Sensor noise is not physical—it is an artifact of the measurement process and is not part

of the true output of the system. We donot want to cancel it.

If we use the disturbance cancelling system we have developed so far, then our estimate of the plant

disturbancêwk ≈ S(Ewk)+ vk . If we cancel all ofŵk then the true plant output will be perturbed

from the desired output by the amount−S−1(Evk). This is bad!

6.2. Analysis and Synthesis of Adaptive Inverse Control with an Imperfect Sensor 121

We can look at this more formally. We wish to minimize the true mean-squared system error.

The best that we can do is to adaptC andX such that

y(opt)
k = E

[
dk

∣∣ Erk, Êwk−1
]
.

We do not have access to the true error signal, so we must find another way to adaptC andX . If we

minimize the mean-squared measured error, we find the following:

ẽ(sys)
k = d̃k − ỹk

= Ŝ(Edk)−
(
S(Eyk)+ vk

)
=

(
Ŝ(Edk)− vk

)
−S(Eyk).

If we minimize the mean square of this error, we get

S
(Ey(opt)

k

) = E
[

Ŝ(Edk)
∣∣ Erk, Êwk−1

]− E
[
vk

∣∣ Erk, Êwk−1
]
.

We see that there is an extra term in this solution:−E [
vk

∣∣ Erk, Êwk−1
]
. Thus, the sensor noise biases

the disturbance canceller. Under general conditions, minimizing the mean-squared measured error

does not minimize the true mean-squared system error.

To achieve the correct solution, we define amodifiederror ε̃k

ε̃k = d̃k − ỹk + v̂k

= Ŝ(Edk)−
(
S(Eyk)+ vk

)
+ v̂k

=
(
Ŝ(Edk)− vk + v̂k

)
−S(Eyk).

If we minimize the mean square of this error, we get

S
(Ey(opt)

k

) = E
[

Ŝ(Edk)
∣∣ Erk, Êwk−1

]− E
[
vk − v̂k

∣∣ Erk, Êwk−1
]
.

If we definev̂k = E
[
vk

∣∣ Erk, Êwk−1
]
, then

S
(
y(opt)

k

) = E
[

Ŝ(Edk)
∣∣ Erk, Êwk−1

]
.

If S is linear and̂S= S, then

y(opt)
k = E

[
dk

∣∣ Erk, Êwk−1
]
,

122 Chapter 6. Imperfect Sensors

which is the correct solution. Errors in̂S will bias this solution somewhat. Noninvertible nonlinear-

ities cause the true system error to be unobservable, so are also a problem (as they would be for any

control system). In general, however, by minimizing the mean square ofε̃k , we minimize the true

mean squared system error.

To computẽεk , we need to knoŵvk . Again, we are faced with the lack-of-information prob-

lem. We knowŵk−1 ≈ S(Ewk−1)+ vk−1, but need to separate it into its two components. We need

external information to be able to do this. This is unfortunate, but unavoidable. So, using this

external information, we design a filter “F”:

F v̂kŵk−1 ≈ S(Ewk−1)+ vk−1

So, if we filterŵk−1, then we get̂vk . The filterF is designed using standard digital filtering design

methods to implement the functionE
[
vk

∣∣ Erk, Êwk−1
]
. Synthetic sequences ofS(Ewk) andvk may be

generated in a computer simulation, and a neural network or adaptive linear filter may be trained as

shown in Fig. 6.5.

P̂

ŜP

Ŝ

Fz−1

Dist. wk

ŵk

Sensor
Noise,vk

uk + ũk

(a)

Ŝ Fz−1wk

vk

(b)

Figure 6.5: GeneratingF. If the sensor is nonlinear, the system in (a) must be used. If the sensor is
linear, the system in (b) may be used.

If we know certain autocorrelation functions, we can also compute the Shannon-Bode solution

for F if the sensor is linear:

(φŵv)n = E
[(

S(Ewk−1)+ vk−1
)
vk+n

]
= E

[
S(Ewk−1)vk+n

]+ E
[
vk−1vk+n

]

6.2. Analysis and Synthesis of Adaptive Inverse Control with an Imperfect Sensor 123

= E
[
δk+1 ∗ vk · vk+n

]
= δ−k−1 ∗ (φvv)n

8ŵv(z) = z+18vv (z).

Similarly,

8ŵŵ(z) = S(z)S(z−1)8ww (z)+8vv (z)

F(opt)
causal(z) =

[(
z+18vv (z)

)(
8−ŵŵ(z)

)−1
]
+

(
8+ŵŵ(z)

)−1
.

This analytical result can be used to design the filter directly, or the spectrum may be used to derive a

filter via the common digital filter design tools of least-square fitting and the Remez algorithm [28].

White Sensor Noise: An important special case is when the sensor noisevk is white. We quickly

see thatF(opt)
causal(z)= 0. Sensor noise may be assumed to be white if the only errors are quantization

noise, and a sufficient number of bits are used in the quantizer [23]. If the only sensor imperfection

is quantization noise, then the structure of Fig. 5.11 works well without changes!

Function of X with an Imperfect Sensor: One more observation should be made before moving

on to some simulation examples. Regardless of whether or not the sensor noise is correlated, proper

adaptation of the disturbance cancellerX will result in the internal structure shown in Fig. 6.6. It is

identical in form to the structure in Fig. 5.7, except that the estimator performs a different function.

Before, the estimator tried to estimate the current disturbance value given past estimates of the

disturbance. Now, the estimator tries to estimate the current disturbance given past estimates of the

disturbanceplussensor noise. Unless the estimator is able to perfectly separate the disturbance and

sensor noise, it will not perform as well as previously. The gain of the disturbance canceller must be

lower in order to eliminate as much disturbance as possible without trying to remove sensor noise.

P̂

ũkŵk−1

uk

E [wk | Êwk−1] P̂
−1

Figure 6.6: Internal structure ofX if there is sensor noise. Note thatŵk−1 ≈ S(Ewk−1)+ vk−1.

124 Chapter 6. Imperfect Sensors

The bottom line: This final change in our block diagram is shown in Fig. 6.7. The overall control

design has been complicated by the imperfect sensor, but each new task is easy to accomplish. The

system is still very simple given the powerfully precise control which may be achieved.

6.3 Simulation Examples

We have seen some analysis demonstrating the effects of imperfect sensors on adaptive inverse

control. A modified structure has been presented to compensate for the effects of the sensors. This

section presents some simulation results to verify the main points of this chapter. For all of the

simulations, the minimum-phase tank example from Sec. 4.4.1 was controlled. The simulations

differ only in the sensor used to measure the plant output.

6.3.1 The Sensors

The sensors used in the simulations were divided into three basic categories. The first category

contained a family of minimum-phase low-pass filters; the second contained a single nonminimum-

phase low-pass filter; the third contained a nonlinear filter. Sensor noise was added to the output of

the linear sensors.

The minimum-phase low-pass sensor was nominally a second-order digital Butterworth filter

with cutoff frequency of 0.4 Hz. For a number of simulations, it was assumed that the actual filter

was not precisely known. For these simulations, a family of eleven filters were used. They were all

second-order digital Butterworth filters with cutoff frequencies between 0.35 Hz and 0.45 Hz, incre-

mented by 0.01 Hz. The transfer functions of these filters are listed in Table. 6.1. The magnitude

and phase response of these filters are plotted in Fig. 6.8(a) and (b). The solid line represents the

nominal sensor dynamics with cutoff at 0.4 Hz. The dashed lines represent the other family mem-

bers. In Fig. 6.8(c), the pole-zero plot of the family of filters is depicted. We see that all the filters

are minimum-phase, with their poles safely within the unit circle, and the two zeros right on the unit

circle atz =−1.

The nonminimum-phase low-pass sensor had the same poles as the nominal minimum-phase

sensor, but had zeros atz = −1.05 andz = −0.95. Finally, the nonlinear sensor computed the

function ỹk = 100tanh(yk/c), wherec was either 90, 100, or 110.

6.3.
S

im
ulation

E
xam

ples
125

Plant
PC

X

M

S

ŜP

ŜPCOPY

Ŝ

Fz−1

z−1

Dist. wk

Sensor
Noise,vk

rk
uk

yk

d̃kdk

ẽ(sys)
k

ε̃k ε̃k

Figure 6.7: Integrated, compensated control system.

126 Chapter 6. Imperfect Sensors

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−80

−70

−60

−50

−40

−30

−20

−10

0

10
Magnitude Response of Sensors

Frequency (Hz)
(a)

20
lo

g 1
0(
|S

(e
j2

π
f
)|)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−180

−160

−140

−120

−100

−80

−60

−40

−20

0
Phase Response of Sensors

Frequency (Hz)
(b)

P
ha

se
(d

eg
re

es
)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map of Sensor Dynamics

Real Axis
(c)

Im
ag

A
xi

s

Figure 6.8: Dynamics of the minimum-phase
linear sensors. In (a), the magnitude response is
shown. In (b), the phase response is shown. In
both plots, the solid line is the response of the
nominal sensor, and the dashed lines are the re-
sponses of the other ten sensors. In (c), the pole-
zero map of the eleven sensors are plotted to-
gether.

6.3.2 Linear Sensor; No Sensor Noise

The first set of simulations used the minimum-phase low-pass sensor dynamics, with no additional

sensor noise. The sensor modelŜ was chosen to be equal to the nominal sensor. For the first run, the

actual sensorS was equal tôS. The system model̂SPwas allowed to adapt to model the combined

effect of the plant and sensor dynamics. Figure 6.9 compares the impulse response of the plant

and the impulse response of the entire system. Careful examination shows that there are significant

differences. We can not assume that the control systems of Chap. 5 will adequately control the

system. We need the modified approach derived in this chapter.

In order to test the sensitivity of the control system to the accuracy of the sensor modelŜ, a

suite of simulations were run wherêS was given the nominal sensor dynamics, and the actual sensor

varied in cutoff frequency from 0.35 Hz to 0.45 Hz. For each of the eleven cases, the simulation

was run until convergence was achieved, and the steady-state mean squared (true) system error

was recorded. Note that in practice we do not have access to the true error, but because we are

6.3. Simulation Examples 127

TABLE 6.1 TRANSFER FUNCTIONS OF THE MINIMUM-PHASE SENSORS. THE SUBSCRIPT

DENOTES THE CUTOFF FREQUENCY OF THE FILTER IN HERTZ.

H.35(z)= 0.5050+ 1.0100z−1+ 0.5050z−2

1+ 0.7478z−1+ 0.2722z−2
H.41(z)= 0.6688+ 1.3375z−1+ 0.6688z−2

1+ 1.2247z−1+ 0.4504z−2

H.36(z)= 0.5300+ 1.0599z−1+ 0.5300z−2

1+ 0.8252z−1+ 0.2946z−2
H.42(z)= 0.6998+ 1.3995z−1+ 0.6998z−2

1+ 1.3073z−1+ 0.4918z−2

H.37(z)= 0.5558+ 1.1116z−1+ 0.5558z−2

1+ 0.9034z−1+ 0.3197z−2
H.43(z)= 0.7320+ 1.4640z−1+ 0.7320z−2

1+ 1.3909z−1+ 0.5372z−2

H.38(z)= 0.5825+ 1.1650z−1+ 0.5825z−2

1+ 0.9824z−1+ 0.3477z−2
H.44(z)= 0.7656+ 1.5312z−1+ 0.7656z−2

1+ 1.4755z−1+ 0.5869z−2

H.39(z)= 0.6102+ 1.2204z−1+ 0.6102z−2

1+ 1.0622z−1+ 0.3786z−2
H.45(z)= 0.8006+ 1.6012z−1+ 0.8006z−2

1+ 1.5610z−1+ 0.6414z−2

H.40(z)= 0.6389+ 1.2779z−1+ 0.6389z−2

1+ 1.1430z−1+ 0.4128z−2

0 5 10 15 20 25 30 35 40
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Plant Impulse Response

Time (s)
(a)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

System Impulse Response

Time (s)
(b)

A
m

pl
itu

de

Figure 6.9: Impulse response of plant compared with impulse response of system.

simulating the system, we know the true error. The results of the simulation are plotted as the solid

line in Fig. 6.10.

We see that the system error is minimum where the sensor modelŜ is equal to the true sensor

S. As S becomes more and more different from̂S, the mean squared system error increases. We

can also see this in Fig. 6.11. In Fig. 6.11(a) and (b) we see the tracking performance of the system

when the sensor has cutoff frequency at 0.35 Hz and 0.45 Hz, respectively. The tracking is good. In

Fig. 6.11(c) we see tracking when the sensor model is exact. The tracking is excellent.

128 Chapter 6. Imperfect Sensors

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

True sensor cutoff frequency (Hz)

S
te

ad
y-

st
at

e
m

ea
n-

sq
ua

re
d

sy
st

em
er

ro
r

Sensitivity of System to Uncertain Sensor

Figure 6.10: Sensitivity of system error to sensor uncertainty. The horizontal axis is the cutoff
frequency of the true sensor; the vertical axis is the steady-state mean-squared system error. The solid
line shows error when the reference-model is a delay of two seconds; the dashed line shows when the
the reference-model is a delay of two seconds followed by a low-pass filter with cutoff of 0.25 Hz.

In order to decrease the sensitivity of the control system to the sensor, we consider Eq. (6.3).

We see that the reference model should have low gain where the sensor has uncertainty. In order

to test this, model-reference control was performed where the reference model was an fourth-order

digital Butterworth filter with cutoff frequency of 0.25 Hz

M (z) = 0.0940+ 0.3759z−1 + 0.5639z−2 + 0.3759z−3 + 0.0940z−4

1+ 0.4860z−2 + 0.0177z−4
.

The simulations were redone, and the steady-state mean-squared (true) system error is plotted as the

dashed line in Fig. 6.10. As we can see, the sensitivity of the control system to sensor uncertainty

is much lower. In Fig. 6.12(a) and (b) we see the tracking performance of the system when the

true sensor had cutoff frequency of 0.35 Hz and 0.45 Hz, respectively. The tracking is very good. In

Fig. 6.12(c) we see the tracking when the sensor model is exact. There is not much visual difference.

Further simulations were done where there was disturbance and a disturbance-cancelling filter

X was adapted. The actual sensorS was equal to the sensor modelŜ. Table. 6.2 lists the steady-

state system mean-squared error after adaptation. Comparing the results with those of Table. 5.1,

we see that equivalent performance is achieved. The sensor dynamics do not affect performance.

Simulations were also done for the nonminimum-phase sensor where the sensor model was

equal to the sensor. Table. 6.2 lists the steady-state system mean squared error for these simulations.

Equivalent performance was achieved, compared with the case of the minimum-phase sensor. Note

that it is important that the sensor model zeros and sensor zeros are identical, or an unstable inversion

will implicitly take place. Since most sensors are not nonminimum-phase, this should rarely be a

6.3. Simulation Examples 129

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S has Cutoff at 0.35 Hz

Time (s)
(a)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S has Cutoff at 0.45 Hz

Time (s)
(b)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S has Cutoff at 0.4 Hz

Time (s)
(c)

A
m

pl
itu

de

Figure 6.11: Tracking performance oftruesys-
tem outputyk (black) versusdk (gray) whenS was
uncertain. The system reference model was a de-
lay of two seconds. In all plots, the sensor model
Ŝ was a second-order Butterworth low-pass filter
with cutoff at 0.4 Hz. In (a), the true sensorS had
cutoff at 0.35 Hz; in (b), the true sensorS had cut-
off at 0.45 Hz; and in (c) the sensor was equal to
the sensor model̂S.

TABLE 6.2 STEADY-STATE MEAN SQUARED SYSTEM ERROR FOR DISTURBANCE CANCELLING.

Sensor
Minimum-Phase Low-Pass Nonminimum-Phase Low-Pass

LinearX NonlinearX LinearX NonlinearX

Ideal (Chapter 5) 0.032043 0.005100 0.032043 0.005100

No Sensor Noise 0.030434 0.005321 0.029315 0.005094

White Noise 0.174887 0.110836 0.136364 0.111265

Correlated Noise, NoF 0.172897 — 0.170283 —

Correlated Noise, UsesF 0.057709 — 0.057171 —

problem. A sensor might be nonminimum-phase due to a pure delay term, but this is easy to measure

and cancel out exactly in the sensor model.

130 Chapter 6. Imperfect Sensors

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S has Cutoff at 0.35 Hz

Time (s)
(a)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S has Cutoff at 0.45 Hz

Time (s)
(b)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S has Cutoff at 0.4 Hz

Time (s)
(c)

A
m

pl
itu

de

Figure 6.12: Tracking performance oftruesys-
tem outputyk (black) versusdk (gray) whenS
was uncertain. The system reference model was
a delay of two seconds followed by an fourth-
order Butterworth low-pass filter with cutoff at
0.25 Hz. In the three plots, the sensor modelŜ was
a second-order Butterworth low-pass filter with
cutoff at 0.4 Hz. In (a), the true sensorS had cut-
off at 0.35 Hz; in (b), the true sensorS had cutoff
at 0.45 Hz; and in (c) the sensor was equal to the
sensor model̂S.

6.3.3 Linear Sensor; White Sensor Noise

Simulations were also done to test disturbance cancelling when the sensor was either the nominal

minimum-phase sensor or the nonminimum-phase sensor, but when there was an addition of white

sensor noise. To each measurement, a uniformly distributed random value between±3.125 was

added. This roughly corresponds to the quantization error which would be experienced if the system

used a four-bit uniform quantizer when measuringyk. As we saw earlier, the filterF is not needed

when the sensor noise is white.

Results are listed in Table. 6.2. As expected, the performance is worse than if there was no

sensor noise. However, the system still works well. The gain of the disturbance cancellerX cannot

be as high because we don’t have as accurate an estimate of the true disturbance.

6.4. Summary 131

6.3.4 Linear Sensor; Correlated Sensor Noise

Thirdly, simulations were done to test disturbance cancelling when the sensor noise was correlated.

The sensor noise was generated by passing uniformly distributed i.i.d. random variables with max-

imum magnitude 0.1 through a first-order Markov filter whose pole was atz = 0.95. Because the

sensor noise is highly correlated, much of it can be removed, and the disturbance cancellation is

better. FiltersF were adapted for the minimum-phase and nonminimum-phase sensor using the

system of Fig. 6.5(b).

Table. 6.2 lists two entries where there is correlated sensor noise. The first entry shows what

happens when the correlation in the sensor noise is ignored and the filterF is not used. The steady-

state system mean-squared error is high. The second entry shows the steady-state mean-squared

system error if the filterF is used in the adaptation ofX . The error is much lower, verifying the

earlier analysis.

6.3.5 Nonlinear Sensor

Finally, simulations were done with the nonlinear sensor. The sensor modelŜ was set to the nominal

sensor̂S(yk) = 100tanh(yk/c), with c = 100. The actual sensor was of the same form, withc =
90,100 or 110. Tracking performance for these three cases is shown in Fig. 6.13. The tracking is

very good in all three plots.

6.4 Summary

This chapter discusses the effect of non-ideal sensors on the adaptive inverse control scheme. It is

organized into two main divisions. The first division analyzes the problem of non-ideal sensors and

proposes a solution. The second division presents simulation results to validate this new scheme.

A non-ideal sensor was first defined. An ideal sensor measures the exact value of a system

variable or output at some point in time. An imperfect sensor adds dynamics, distortion and/or

noise. It was shown that non-ideal sensors have different effects on plant modeling, feedforward

control and disturbance cancelling.

With an ideal sensor, an adaptive plant model converges to the undisturbed dynamics of the

plant. With a non-ideal sensor, the adaptive model converges to the combined dynamics of the

plant and the sensor, and may include a bias based on the disturbance if the sensor is nonlinear.

Therefore, we no longer consider an adaptive plant modelP̂, but now consider an adaptive system

132 Chapter 6. Imperfect Sensors

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S= 100tanh(yk/90)

Time (s)
(a)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S= 100tanh(yk/110)

Time (s)
(b)

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50

40

42

44

46

48

50

52

54

56

58

60

Tracking:S= 100tanh(yk/100)

Time (s)
(c)

A
m

pl
itu

de

Figure 6.13: Tracking performance oftruesys-
tem outputyk (black) versusdk (gray) whenS
was nonlinear. The system reference model was
a delay of two seconds. In (a), the true sen-
sor computed 100 tanh(yk/90); in (b), the sensor
computed 100tanh(yk/110), and in (c), the sensor
computed 100 tanh(yk/100), which was equal to
the sensor model̂S.

modelŜPwhich contains the dynamics of both the plant and the sensor. Sensor noise does not bias

the adaptive system model if it is zero-mean and independent of the true signal being sensed.

If the feedforward-control-system architecture of Fig. 6.3 were used with a non-ideal sen-

sor, the controller would converge to the wrong solution. The measured outputỹk would track the

desired outputdk very well, but the true system outputyk would not. The control system architec-

ture must be revised to compensate for the sensor dynamics. The revised architecture is shown in

Fig. 6.4. The reference-modelM is now cascaded with an estimate of the sensor dynamicsŜ. If

Ŝ= S then minimizing the mean-squared measured system error also minimizes the mean-squared

true system error. If̂S 6= S, then the system exhibits some sensitivity to the uncertainty inŜ. This

can be minimized by making the gain of the reference-modelM low in the frequency band of un-

certainty. Once again, the effect of a non-ideal sensor on feedforward control is entirely due to the

sensor dynamics—zero-mean sensor noise (independent of the true signal being sensed) does not

bias the solution.

6.4. Summary 133

Unlike system modeling and feedforward control, disturbance cancelling is not affected by

the sensor dynamics. It may be affected by sensor noise. The disturbance-cancelling scheme of

Chap. 5 may be too aggressive. It attempts to remove all of the measured disturbance, which now

includes sensor noise. The sensor noise is not a real plant disturbance, but rather an artifact of the

measurement process. We do not wish to cancel it from the plant output. If the sensor noise is

correlated, then a special filterF must be included in the design to properly generate the signal used

to adapt the disturbance cancellerX (cf. Fig. 6.7). If the sensor noise is white, then this filter is not

needed, and then the system architecture presented in Fig. 5.11 will work (if augmented withŜ after

the reference model). In either case, the disturbance canceller adapts to a solution which depends

on the sensor noise. Since it is not able to separate the disturbance and sensor noise completely, it

must have a lower gain than if the sensor were ideal. Disturbance cancelling cannot be as good as

before.

The second division of the chapter presented simulations to verify the analysis of the chapter.

Tests were done to show the sensitivity of the control system to uncertainties in the plant model.

The sensitivity was reasonable, and was shown to decrease when a reference modelM was used

which had low gain where there were uncertainties in the sensor transfer function.

Tests were also done with a nonlinear sensor and it was shown that the compensated system

performed very well, and was highly insensitive to uncertainty in the nonlinearity.

Tests were done without sensor noise to show that the compensated system architecture pro-

vides equivalent performance to a system where the sensor was ideal. Tests were done with sensor

noise to show that system performance degrades gracefully. If the sensor noise is correlated and the

filter F is not used to adapt the disturbance cancelling filterX , then performance was shown to be

worse than ifF is used, as theory predicted.

Finally, Table. 6.3 lists the architectures of the adaptive and non-adaptive filters used in the

simulations of this chapter. The overall conclusion is that it is possible to effectively compensate

for an imperfect sensor. Very good performance may be achieved.

134 Chapter 6. Imperfect Sensors

TABLE 6.3 FILTER ARCHITECTURES USED IN THIS CHAPTER.

Adaptive

Filter Architecture

M IIR(5,4):1

Ŝ IIR(3,2):1

F FIR(50,0):1

ŜP FIR(40,0):1

C FIR(20,0):1

X (linear) FIR(60,0):1

X (nonlinear) N(60,60):30:1

Chapter 7

Conclusions and Future Work

I hate quotations.

— Ralph Waldo Emerson

7.1 Summary

The problem of controlling a plant may be broken down into three separate tasks: stabilization of

the plant dynamics; control of plant dynamics; and control of plant disturbance. Using conventional

control techniques, one uses feedback to treat all three problems simultaneously. Compromises are

necessary to achieve good solutions.

Adaptive inverse control is a method to treat the three control tasks separately. First, the plant

is stabilized; secondly, the plant is controlled using a feedforward controller; thirdly, a disturbance

canceller is used to reject plant disturbances. Adaptive filters are used as controller and disturbance

canceller, and algorithms adapt the transfer functions of the filter to achieve excellent control.

Prior work in adaptive inverse control has focused primarily on feedforward control and dis-

turbance cancelling for SISO linear plants, and on feedforward control for SISO nonlinear plants.

This dissertation extends the prior work to encompass constrained feedforward control and distur-

bance cancelling for SISO or MIMO, linear or nonlinear plants, where the sensors used to measure

the plant output are possible non-ideal.

7.1.1 Constrained Adaptive Feedforward Control

We assume that the plant is stable. If it is not stable, we must first stabilize it using feedback.

Adaptive inverse control is used to control the stabilized plant.

135

136 Chapter 7. Conclusions and Future Work

Our next task is to make an adaptive plant model. This process was briefly outlined in Chap. 2.

We assume that the adaptive plant modeling task continues while the plant is operating, so that any

time-variations in the plant dynamics are learned, and so that the controller learns to control the

plant as it varies.

Thirdly, we need to train a feedforward controller for the plant. This task is well understood

for SISO linear plants [45] and has been studied for SISO nonlinear plants [2]. In this dissertation,

we see how to extend adaptive inverse control to be able to control MIMO linear and nonlinear

plants, and to satisfy constraints on the control effort.

Precision of control comes at the cost of high control effort. If very precise control is desired,

the actuator signals are very large. Problems with large control effort include (1) The actuator may

not be able to respond to the control command due to its physical design, thus causing degradation

in the control which is not accounted for in the design; and (2) The actuator or the system being

controlled may be damaged by excessive control effort. Since this is a significant problem, a method

is devised to perform adaptive inverse control with constraints on the control effort.

A gradient-descent based algorithm was developed to update the weights of the controller. The

algorithm decouples nicely, allowing separate implementation of the adaptive controller and plant

model; only local information is needed for the weight update. Very general user-specified con-

straints on the control effort may be satisfied. Simulation results show that very good performance

may be achieved.

If the plant is nonminimum-phase, its inverse does not exist. However, if a delay in the control

action is acceptable, then a “delayed inverse” does exist, and very precise control can be performed.

Choosing the correct delay, with no constraints on the control effort, is a significant problem. As

the delay increases, the quality of control also increases; however, system latency is undesirable so

we must compromise between precision and latency. If there are constraints on the control effort,

choosing the delay is simple. There is a value of latency beyond which control precision does not

improve. We choose this delay as the optimal compromise between precision of control and control

latency.

7.1.2 Disturbance Cancelling

With the design completed to this point, the plant output will track the desired output if there is no

disturbance. If there is disturbance, then the plant output will track a signal which is equal to the

desired output plus the disturbance. For this reason, a disturbance rejection method is required.

7.2. Future Work 137

Commonly, output feedback is used to perform disturbance rejection. An alternate method

used by internal model control is to feed back an estimate of the disturbance. Neither method works

for adaptive inverse control if the plant model is allowed to adapt on-line. The disturbance biases

the solution of the plant model, and causes the entire system to adapt to an incorrect solution.

Instead of closing the loop directly, an adaptive filter is trained to perform disturbance can-

celling. This method does not bias the plant model if the plant is linear, but does bias the model

somewhat if the plant is nonlinear. Simulations seem to indicate that the bias is tolerable.

The function performed by this disturbance-cancelling filter has two parts. The first part esti-

mates the current disturbance value given past disturbances; the second computes a signal to cancel

the disturbance. Since the least mean-squared-error estimator of the disturbance may be nonlinear,

a nonlinear disturbance cancelling filter is always recommended, even if the plant is linear.

The algorithm developed to adapt a feedforward controller can also be used to adapt the dis-

turbance canceller. This is a great boon to the system designer—only one algorithm needs to be

coded! Simulation results show that disturbance cancelling works very well for linear, nonlinear,

SISO and MIMO plants.

7.1.3 Imperfect Sensors

One assumption which has been implicit in the above discussion is that the sensors used to measure

the plant output are ideal. An ideal sensor measures the exact value of a system variable or output

at some point in time. An imperfect sensor adds dynamics, distortion and/or noise. It was shown

that non-ideal sensors have different effects on plant modeling, feedforward control and disturbance

cancelling. If the sensors are not ideal, performance may be severely degraded.

A method is proposed to compensate for the non-ideal sensors. Simulations were done without

sensor noise to show that the compensated system architecture provides equivalent performance

to a system where the sensor was ideal. Tests were done with sensor noise to show that system

performance degrades gracefully. An imperfect sensor may be effectively compensated, and very

good performance may be achieved.

7.2 Future Work

Self-Stabilization of Unknown, Unstable Plants: To make use of inverse control, the plant must

be stable or it must be stabilized. At the moment, this is the only step in the adaptive inverse control

138 Chapter 7. Conclusions and Future Work

design process which is not done automatically. Real-time stabilization of an unknown, unstable

and possibly nonlinear plant is a difficult problem, and must be investigated.

Fault Tolerance (to Catastrophic Failure): The biggest problem with catastrophic failure is

plant stabilization. Combinations of the available parameters must be tried rapidly in order to deter-

mine if stabilization is possible, as above.

As one further step toward fault tolerance, banks of controllers might be pre-trained. There

will be a controller for each of a number of possible pre-specified failure modes. In the event of

a true and unexpected failure, combinations of these controllers may be used to generate a control

signal which will allow continued operation even when there is catastrophic damage to the plant.

Multi-Rate Control: It was seen in Chap. 4 that a discrete-time control system experiences arti-

facts due to the sampling circuit on the A2D converter. Ringing in the continuous-time plant output

is not sensed. The controller adapts to minimize the measured mean-squared system error, and is

unaware of the fact that oscillation is occurring in the plant output.

Multi-rate control might be attempted to help compensate for discretizing the control system.

The plant would be controlled at a faster rate than control signals enter the controller. By supplying

multiple “desired-responses” for each control input, the output of the plant may be smoothly brought

from one value to another.

Integration with Higher-Level Control: This dissertation considers regulator and servo control,

but does not consider terminal control. The concepts may be applied to terminal control as follows:

A plant controlled by an adaptive inverse controller would become an “equivalent new plant” to be

controlled by an adaptive terminal controller. The high-level systems would supply the command

input to the inverse controller, which would do the low-level detailed control of the plant. The

inverse control system makes the equivalent plant simpler than the actual plant, and does an optimal

job of cancelling disturbance. This facilitates the high-level control process.

Faster Learning Algorithms: Training of the controller and disturbance canceller is often a very

slow process. Methods of initializing a linear controller (cf. Chap. 4) speed this process up sig-

nificantly. Methods still need to be developed to speed up learning for nonlinear controllers. One

possible solution might be to investigate Kalman-style learning algorithms [37, 32, 33]. These al-

gorithms have proven to be very memory intensive, so methods must be found to simplify them.

7.3. Final Comments 139

7.3 Final Comments

As a researcher, it has been very rewarding to work on this dissertation. Although careful thought

brought understanding, many of the simulation and analytical results were puzzling at first and

caused much curiosity. For example, a nonlinear controller and disturbance canceller may be needed

for constrained control even if the plant is linear; if the only sensor imperfection is due to quanti-

zation, then we don’t need to worry about it—the scheme of Fig. 5.11 works well; if the plant is

nonminimum-phase, the control latency may be chosen by eye off a simple plot.

Some of the results are still puzzling and invite further work. The accurate generalization of

the controllers in App. B to follow untrained reference signals is amazing. Much further research

needs to be done, and some of it is outlined above. However, it is time to wrap up this part of the

work before proceeding to the rest.

It is the glory of God to conceal a matter;

to search out a matter is the glory of kings.

—Proverbs 25:2

It has been fun playing king.

140 Chapter 7. Conclusions and Future Work

Appendix A

Stability Analysis of the
LMS and Backpropagation

Algorithms

Remember that there is nothing stable in human affairs; therefore avoid

undue elation in prosperity, or undue depression in adversity.

—Socrates

A.1 Introduction

It is a major concern for adaptive control that the adaptive process converges and is stable. This

appendix reviews the LMS and backpropagation algorithms, and derives approximate stability cri-

terion for the adaptive process by imposing limits on their adaptation rates. For the adaptive linear

filter, it is shown that this stability criterion results in an algorithm similar to alpha-LMS. A cor-

respondingly normalized version of the backpropagation algorithm is derived for neural networks.

Special thanks to Raymond Shen and Daniel Carbonell who helped work out some of the details.

A.2 Linear Filters and the LMS Algorithm

An adaptive FIR linear filter is shown in Fig. A.1. The input to the filter is the signalxk , and a vector

of the present and theN − 1 most recent input samples is stored inXk . The output of the filter is

computed to beyk = X T
k Wk , whereWk is a vector of weight values (filter coefficients).

The adaptation algorithm for this filter is the ubiquitous LMS algorithm, pioneered by Widrow

and Hoff [17, 44]. LMS was chosen over other adaptive algorithms such as Recursive Least Squares

141

142 App. A. Stability Analysis of the LMS and Backpropagation Algorithms

z−1z−1z−1

w0 w1 w2 wN−1 wN

. . .

. . .

xk

yk

Figure A.1: Finite-impulse-response (FIR) linear filter.

(RLS), since it is more robust [16]. The weights of the filter are adapted by performing a stochastic

gradient descent on the error surface of the output squared error. At any instantk, the output cost

function is

Jk = 1

2
e2

k ,

where

ek = dk − yk.

The corresponding gradient is:

∂ Jk

∂ Wk
= −ek

∂ yk

∂ Wk

= −ek Xk .

Therefore, the weight update rule for LMS is:

Wk+1 = Wk + µek Xk,

whereµ is the adaptation rate. The choice ofµ will determine whether or not the adaptation process

is stable, so we are motivated to determine its stable range. There are many ways to go about doing

this, but the method chosen here generalizes well to the backpropagation case to follow.

A.2.1 Stability of the LMS Algorithm

One very powerful approach to determine stability and convergence is to use the Lyapunov method.

If a time function is positive and decreasing, then it converges and is stable. There are two com-

monly chosen candidates for convergence—one of them is convergence of the weight vector, and

the other is convergence of the output error. Convergence of the weight vector is most important

for applications such as LPC speech coding which make explicit use of the weights. We are more

concerned here with convergence of the output error. Therefore, the Lyapunov functionVk is:

Vk = 1

2
e2

k .

A.2. Linear Filters and the LMS Algorithm 143

If Vk can be shown to be positive and decreasing when the filter is adapted via the LMS algorithm,

then we conclude that the output error converges and the adpative process is stable. By construction,

Vk is positive. We now proceed to find conditions which ensure thatVk is decreasing.

The difference in the Lyapunov function from time stepk to time stepk+1 is:

1Vk = Vk+1− Vk = 1

2

[
e2

k+1− e2
k

]
.

The error difference due to the learning can be represented by

ek+1 = ek +1ek .

Assuming that the input and desired responses remain the same from time stepk to k+1,

ek+1 = dk − yk+1

= dk −W T
k+1Xk

ek = dk − yk

= dk −W T
k Xk

1ek = ek+1− ek

= −(
W T

k+1−W T
k

)
Xk

= −1T
Wk

Xk

= −µek X T
k Xk,

where1Wk is determined by the LMS weight update equation. Therefore,

1Vk =
1

2

(
2ek1ek +12

ek

)
= 1ek

(
ek + 1

2
1ek

)
= −µek‖Xk‖2

(
ek − 1

2
µek‖Xk‖2

)
= −µe2

k‖Xk‖2
(

1− 1

2
µ‖Xk‖2

)
.

For Vk to be decreasing,1Vk must be negative. We find that

0 < µ <
2

‖Xk‖2 .

144 App. A. Stability Analysis of the LMS and Backpropagation Algorithms

It is interesting to note that ifµ is allowed to vary with the input, and (more specifically) is set

to α/‖Xk‖2, then the above condition specifies that 0< α < 2. This is the well-known algorithm

and stability condition for alpha-LMS! It is at first surprising that we came up with this nice answer

given the questionable assumption made in the derivation. However, the result helps explain the

analysis being performed here.

Rather than being a steepest descent adaptation rule, alpha-LMS is known to be an error cor-

rection rule [43]. By choosingα = 0, no part of the error is being corrected by this weight adapta-

tion. Furthermore, by choosingα = 1, all of the current error is being corrected, and by choosing

α = 2, we are exactly over-correcting the error. Ifα > 2 then we have over-corrected the weight

vector to the extent that the error increases over what it currently is. Since exactly correctingthis

error can cause other input patterns to have higher error than before (and hence cause high missad-

justment in the adapted process),α is usually chosen to be between 0.1 and 1.

By relating alpha-LMS to the above result we see that the “proof” given does not explicitly

promise convergence of the output but rather gives us is a sensible range forµ. We can use it to

dynamically changeµ, as in alpha-LMS:

µk = α

‖Xk‖2 ,

or, we can makeµ constant over time by choosing:

µ = inf
0≤ j<∞

1

‖X j‖2 ,

or, we can use the minimumµ computed to this point in time:

µk = min
0≤ j<k

1

‖X j‖2 .

The adaptive learning rate of the later method is the one used in this work. It ensures that we are

never over-correcting the error. Furthermore, the initial high learning rate allows faster convergence.

A.3 Neural Networks and the Backpropagation Algorithm

Neural networks are interconnected structures of simple processing elements which crudely model

the function of a biological neuron. Each artificial neuron (hereafter referred to simply as neu-

ron) has the composition shown in Fig. A.2. Internally, the scalar product of the input vector1 Xk

1The input vector is augmented by adding a zeroth element, always equal to 1.

A.3. Neural Networks and the Backpropagation Algorithm 145

and a weight vectorWk is computed, and the output is a nonlinear function of this scalar prod-

uct: yk = f (X T
k Wk). In this work, the nonlinear function is chosen to be the sigmoidal function:

f (·) = tanh(·). Modifications to the value of the weight vector allow different output functions to

be realized.

+1

x1

x2

xn

w0

w1

w2

wn

.

..

6

Figure A.2: Artificial neuron.

By combining many of these simple neurons into a layered network, where the input vector of

a given neuron is comprised of all the outputs of the neurons in the previous layer, a very powerful

computational tool is achieved. The layer of neurons connected to the output of the network is called

the output layer, and all other layers are called hidden layers. This structure is shown in Fig. A.3,

configured as a nonlinear transversal filter. It has been shown by Kolmogorov [21] that such a

network with a single hidden layer and a sufficient number of neurons is capable of computing

(with some set of weight vectors) any continuous nonlinear function of the inputs to any degree of

accuracy.

z−1

z−1

z−1

+1

x1

x2

xn

w0

w1

w2

wn

...
xk

yk

6
Neural Network

Neuron

Figure A.3: Nonlinear transversal filter.

146 App. A. Stability Analysis of the LMS and Backpropagation Algorithms

The most popular learning algorithm, due mostly to its simplicity and its robustness, is the

“Error Backpropagation” algorithm. This algorithm was originally discovered by Werbos [41] but

was independently developed and popularized by Rumelhart, Hinton and Williams in 1986 [35].

The backpropagation algorithm, like LMS, is a stochastic gradient descent algorithm for weight

update.

To derrive the backpropagation algorithm, we consider the neurons to be numbered, such that

Xi is the input vector to thei th neuron, andWi , si , andyi are the weight vector, internal sum and

output of that neuron, respectively. Again, we use the mean squared error cost function, so at any

point in time,k, the output cost function is

Jk = 1

2
e2

k ,

where

ek = dk − yk.

For a neuroni in the output layer, the corresponding gradient is:

∂ Jk

∂ Wi,k
= ∂ Jk

∂ si,k

∂ si,k

∂ Wi,k

= −ei,k f ′(si,k)Xi,k .

To compute the gradient of the error for neurons in the hidden layers, the chain rule must be used:

∂ Jk

∂ Wi,k
= ∂ Jk

∂ si,k

∂ si,k

∂ Wi,k

= ∂ Jk

∂ yi,k

∂ yi,k

∂ si,k
Xk

= ∂ Jk

∂ yi,k
f ′(si,k)Xk

=
[∑

j

∂ Jk

∂ s j,k

∂ s j,k

∂ yi,k

]
f ′(si,k)Xk

=
[∑

j

δ j,kwi: j,k

]
f ′(si,k)Xk

= f ′(si,k)Xk

∑
j

δ j,kwi: j,k.

The summation overj in the fourth line is the summation over all neurons to which the outputyi

of neuroni is connected.δ j,k then, is the derivative of squared error with respect tos j,k and is

recursively computed backwards through the network.

A.3. Neural Networks and the Backpropagation Algorithm 147

To summarize, the weights of the network are changed as follows:

Wi,k+1 = Wi,k − µδi,k Xi,k,

whereWi,k is the value of the weight vector in thei th neuron after thekth learning step.

µ is the learning rate.

Xi,k is the input to thei th neuron, including the bias input of 1.

δi,k is the derivative of the squared error for that neuron.

For an output layer neuron,

δi,k = −ei,k f ′(si,k),

wheresi,k is the result of the scalar product in the neuron. For any other neuron,

δi,k = f ′(si,k)
∑

j

δ jwi: j,k,

wherewi: j,k is the weight connecting the output of thei th neuron to the input of thej th neuron.

The summation is over all neurons fed by the output of neuroni .

A.3.1 Stability of the Backpropagation Algorithm

Stability for a Single Adaline

Before addressing the issue of stability for a neural network whose weights are adapted by the

backpropagation algorithm, we first consider the simpler case of a single neuron. Such a neuron, or

Adaline, is shown in Fig. A.2.

We proceed to analyze it in a similar fashion to the adaptive linear filter. The Lyapunov

function is again chosen to be:

Vk = 1

2
e2

k .

The difference in the Lyapunov function from time stepk to time stepk+1 is:

1Vk = Vk+1− Vk = 1

2

[
e2

k+1− e2
k .

]
The error difference due to the learning can be represented by

ek+1 = ek +1ek .

148 App. A. Stability Analysis of the LMS and Backpropagation Algorithms

Again, assuming that the input and desired responses remain the same,

ek+1 = dk − yk+1

= dk − f (W T
k+1Xk)

ek = dk − yk

= dk − f (W T
k Xk)

1ek = ek+1− ek

= −(
f (W T

k+1Xk)− f (W T
k Xk)

)
= −

(
f (W T

k Xk +1W T
k

Xk)− f (W T
k Xk)

)
≈ −

(
∂ f (x)

∂ x

∣∣∣∣
x=W T

k Xk

·1W T
k

Xk

)
= − f ′(W T

k Xk)1
T
Wk

Xk,

where f (x) is the sigmoidal function used by the neuron, and the approximation is used by expand-

ing the Taylor series and discarding all terms of second order and higher. To proceed, we define

sk =W T
k Xk, and replace1Wk by the backpropagation weight update equation:

1ek ≈ −µ[f ′(sk)]
2ek X T

k Xk .

Therefore,

1Vk =
1

2

(
2ek1ek +12

ek

)
= 1ek

(
ek + 1

2
1ek

)
= −µ[f ′(sk)]

2ek‖Xk‖2
(

ek − 1

2
µ[f ′(sk)]

2ek‖Xk‖2
)

= −µ[f ′(sk)]
2e2

k‖Xk‖2
(

1− 1

2
µ[f ′(sk)]

2‖Xk‖2
)

.

For1Vk to be negative, we need that:

0 < µ <
2

[f ′(sk)]2‖Xk‖2 .

Stability for an Entire Neural Network

In order to extend the above analysis to a network of neurons, with possibly many outputs, the

mathematical steps can become very complicated [4]. Happily, there is an easier solution. Rather

A.4. Summary 149

than retaining the cost functionVk = (1/2)e2
k , we use a vector cost functionVk = (1/2)E T

k Ek ,

where the vectorE has one entry for each neuron in the network, and contains the errors of each

neuron. Vk , then, is equal to the sum of the squares of the errors at the output of each neuron. A

sufficient condition forVk to be decreasing is for each of the errors to be decreasing. Furthermore,

we allow each neuron to have its own learning rateµi,k . Therefore, for all output neurons, we have

already solved the stability criteria and have discovered the acceptable range of learning rate. It only

remains to determine the range of learning rate for hidden neurons.

A hidden neuron has no explicit desired response, and hence no measure of error. However,

we can construct an error “by analogy” with an output layer neuron, and state:

ei,k = −δi,k

f ′(si,k)
.

Therefore,

1ei,k = µi f ′(si,k)δi,k‖Xi,k‖2

1Vi,k = 1ei,k

(
ei,k −1ei,k

)
= µi f ′(si,k)‖Xi,k‖2δi,k

(−δi,k

f ′(si,k)
+ 1

2
µi f ′(si,k)δi,k‖Xi,k‖2

)
= µiδ

2
i,k‖Xi,k‖2

(
−1+ 1

2
µi

(
f ′(si,k)

)2‖Xi,k‖2
)

.

From the last line, we can conclude that the condition onµi for stability is the same for hidden layer

neurons as for output neurons! Therefore, we conclude:

0 < µi <
2

[f ′(si,k)]2‖Xi,k‖2 ,

for each neuroni in the network.

As with the linear filter, there are a number of ways to use this result. The method used in this

work is to choose:

µi,k = min
0≤ j<k

1

[f ′(si,k)]2‖Xi,k‖2 .

A.4 Summary

This appendix proposes methods to adaptively control the learning rate when using the LMS or

backpropagation algorithms. The analysis is based on an approximate Lyapanov method, and at-

tempts to find the maximum learning rate which will ensure convergence. A rigorous theoretical

150 App. A. Stability Analysis of the LMS and Backpropagation Algorithms

treatment of the convergence properties of the algorithms is difficult and has yet to appear. How-

ever, these approximate analyses give very useful insight into the stable range for each of these

algorithms. In all cases, checks with computer simulation indicate that the analytical results pre-

sented here are sufficiently accurate for design purposes.

The adaptive learning rates were used with all simulations reported in this dissertation. While

the results were not derived for the case of recurrent neural networks and linear filters, it was found

in practice that they worked just as well when “blindly” applied even in those cases. Much frustra-

tion was saved by having the adaptive system find the right “ballpark” learning rate automatically.

Appendix B

More Nonlinear
SISO Examples

Example is not the main thing in influencing others. It is the only thing.

—Albert Schweitzer

B.1 Introduction

In the main text, a few practically motivated control tasks were chosen to illustrate the principal

results of this dissertation. Here, rather than burden the previous discussion, we consider seven more

SISO nonlinear plants. These have been proposed by other researchers investigating adaptive inverse

control for nonlinear SISO systems [2, 4]. This appendix will show that the methods developed in

this dissertation are able to control these seven systems. The plants are defined, system identification

is performed (in the presence and absence of disturbance), feedforward control is accomplished, and

disturbance cancelling is demonstrated.

B.2 System Identification

This section describes the seven different nonlinear SISO plants, and demonstrates system iden-

tification for each of them. First, the systems are identified in theabsenceof disturbance, and a

summary plot of the system identification process is presented in Fig. B.8. Secondly, system iden-

tification is performed, starting again with random weight values, in thepresenceof disturbance,

and a summary plot is presented in Fig. B.9. For the cases where a recurrent plant model was used,

it was trained using a series-parallel method first to accomplish coarse training. Final training was

always in a parallel connection to ensure unbiased results. The RTRL algorithm was used.

151

152 App. B. More Nonlinear SISO Examples

A variety of plants are considered. The collection includes nonlinear FIR and nonlinear IIR

plants; plants described in state-space, plants described with nonlinear difference equations (and

combinations of the two); and both minimum-phase and nonminimum-phase plants. Similarly, a

variety of ways to inject disturbance are considered. Since the plants are not motivated by any

particular ‘real’ dynamical system, the command signal and disturbance sources are artificial as

well. In each case, command signal is uniform i.i.d., which was chosen since it is the most difficult

to follow. The raw disturbance source is a first-order Markov process. In some cases the Markov

process is driven by i.i.d. uniform random variables, and in other cases by i.i.d. Gaussian random

variables. The disturbance is added to either the input of the system, to the output of the system, to

a specific state in the plant’s state-space representation or to an intermediate stage of the processing

performed by the plant.

System 1: The first plant we consider was initially proposed in [26]. The plant’s block diagram is

shown in Fig. B.1, and the difference equations defining its dynamics are:

sk = sk−1

1+ s2
k−1

+ u3
k−1

yk = sk +distk.

Plant identification in the absence of disturbance was performed using aN(2,1):8:1 network,

with the plant input signaluk being i.i.d. uniformly distributed between [−2,2]. Results of system

identification are shown in Fig. B.8.

distk

(·)3

(·)
1+ (·)2

z−1uk yk

Figure B.1: Block diagram of system 1.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-

cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range

[−0.5,0.5]. The filter used to generate the first-order Markov process was a one-pole filter with the

pole atz = 0.99. The resulting disturbance was added directly to the output of the system. Note

that the disturbance is addedafter the nonlinear filter, and hence it does not affect the internal state

of the system.

B.2. System Identification 153

Plant identification in the presence of disturbance was performed using the sameN(2,1):8:1

network, with the plant input signaluk being i.i.d. uniformly distributed between [−2,2]. Results

of system identification are shown in Fig. B.9. The plant model very closely approximates the

undisturbeddynamics of the system (which is the goal).

System 2: The second nonlinear SISO system is a generalization of the first. The plant’s block

diagram is shown in Fig. B.2 and the difference equations defining its plant’s dynamics are:

sk = sk−1

1+ s2
k−1

+ sin(uk−1)

yk = sk +distk.

Plant identification was performed in the absence of disturbance using aN(2,1):3:1network, with the

plant input signaluk being i.i.d. uniformly distributed between [−1,1]. Results of system identifi-

cation are shown in Fig. B.8.

distk

sin(·)

(·)
1+ (·)2

z−1uk yk

Figure B.2: Block diagram of system 2.

Disturbance was a first-order Markov process, generated by filtering a primary random process

of i.i.d. random variables. The i.i.d. random variables were distributed according to a Gaussian

distribution with zero mean and standard deviation 0.1. The filter used to generate the first-order

Markov process was a one-pole filter with the pole atz = 0.99. The resulting disturbance was added

directly to the output of the system, as with system 1, and does not affect the internal state of the

system. Plant identification was performed in the presence of disturbance using the sameN(2,1):3:1

network, with the plant input signaluk being i.i.d. uniformly distributed between [−1,1]. Results

of system identification are shown in Fig. B.9.

System 3: The third plant is a nonlinear transversal system, defined by:

yk = tan−1 (uk−1− 0.5uk−2+ distk−1) .

154 App. B. More Nonlinear SISO Examples

Its block diagram is shown in Fig. B.3. Plant identification was performed in the absence of dis-

turbance using aN(3,0):2:1network, with the plant input signaluk being i.i.d. uniformly distributed

between [−2,2]. Results of system identification are shown in Fig. B.8.

distk

tan−1(·)z−1− 1
2z−2uk yk

Figure B.3: Block diagram of system 3.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-

cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range

[−0.05,0.05]. The filter used to generate the first-order Markov process was a one-pole filter with

the pole atz = 0.99. The resulting disturbance was added to the input of the system. Plant identifica-

tion was performed in the presence of disturbance using the sameN(3,0):2:1network, with the plant

input signaluk being i.i.d. uniformly distributed between [−2,2]. Results of system identification

are shown in Fig. B.9.

System 4: The fourth plant is also a nonlinear transversal system. Unlike system 3, however, it is

also nonminimum-phase. The difference equation defining its dynamics is:

yk = exp(uk−1− 2uk−2+ distk−1)− 1.

Its block diagram is shown in Fig. B.4. Plant identification was performed using aN(3,0):3:1 net-

work, with the plant input signaluk being i.i.d. uniformly distributed between [−0.5,0.5]. Results

of system identification are shown in Fig. B.8.

distk

exp(·)−1z−1−2z−2uk yk

Figure B.4: Block diagram of system 4.

Disturbance was a first-order Markov process, generated by filtering a primary random process

of i.i.d. random variables. The i.i.d. random variables were distributed according to a Gaussian

distribution with zero mean and standard deviation 0.03. The filter used to generate the first-order

Markov process was a one-pole filter with the pole atz = 0.99. The resulting disturbance was added

to the input of the system, as with system 3. Plant identification was performed in the presence of

B.2. System Identification 155

disturbance using the sameN(3,0):3:1network, with the plant input signaluk being i.i.d. uniformly

distributed between [−0.5,0.5]. Results of system identification are shown in Fig. B.9.

System 5: The fifth system is a nonlinear plant expressed in state-space form. An equivalent

transfer-function form is shown in Fig. B.5. The system consists of a linear filter followed by a

squaring device. The difference equations defining this plant’s dynamics are:

xk =
[

0 1
−0.2 0.2

]
xk−1+

[
0.2
1

]
uk−1+

[
1
0

]
distk−1

sk =
[

1 2
]

xk

yk = 0.3(sk)
2 .

Plant identification was performed using aN(10,5):8:1network, with the plant input signaluk being

i.i.d. uniformly distributed between [−1,1]. Results of system identification are shown in Fig. B.8.

distk

0.66z+0.264

z2−0.2z+0.2

0.3z+0.18

z2−0.2z+0.2

(·)2

0.3
uk yk

Figure B.5: Block diagram of system 5.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-

cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range

[−0.5,0.5]. The filter used to generate the first-order Markov process was a one-pole filter with

the pole atz = 0.99. The resulting disturbance was added directly to the first state of the system.

Plant identification was performed in the presence of disturbance using the sameN(10,5):8:1 net-

work, with the plant input signaluk being i.i.d. uniformly distributed between [−1,1]. Results of

system identification are shown in Fig. B.9.

System 6: The sixth system was first suggested in reference [45]. It comprises a linear filter

followed by a nonlinear squashing function, and followed in turn by another linear filter. Its block

diagram is shown in Fig. B.6. The difference equations defining this plant’s dynamics are:

sk = 0.4sk−1+0.5uk

yk = 0.8yk−1+ tanh(sk)+distk.

156 App. B. More Nonlinear SISO Examples

Plant identification was performed using aN(5,1):10:1network, with the plant input signaluk being

i.i.d. uniformly distributed between [−1,1]. Results of system identification are shown in Fig. B.8.

tanh(·) distk

0.5z

z−0.4

z

z−0.8
uk yk

Figure B.6: Block diagram of system 6.

Disturbance was a first-order Markov process, generated by filtering a primary random pro-

cess of i.i.d. random variables. The i.i.d. random variables were uniformly distributed in the range

[−0.05,0.05]. The filter used to generate the first-order Markov process was a one-pole filter with

the pole atz = 0.95. The resulting disturbance was added to an intermediate point in the system, just

before the output filter. Note that the disturbance affects the stateyk of the system. Plant identifica-

tion was performed in the presence of disturbance using the sameN(5,1):10:1network, with the plant

input signaluk being i.i.d. uniformly distributed between [−1,1]. Results of system identification

are shown in Fig. B.9.

System 7: The final system is a generalization of the sixth system. The nonlinearity in the sixth

system is static—it has no memory. In the seventh system, this static nonlinearity is replaced by one

having memory or “phase.” It is a type of hysteresis device. This device makes the system have two

equilibrium states as opposed to the previous plants which all had a single equilibrium state. The

system is shown in Fig. B.7 and the difference equations defining its dynamics are:

sk = 0.4sk−1+0.5uk

yk = distk +
{

0.8yk−1+0.8tanh(sk −2), if sk > sk−1;

0.8yk−1+0.8tanh(sk +2), if sk ≤ sk−1.

Plant identification was performed using aN(10,10):30:1network, with the plant input signaluk being

i.i.d. uniformly distributed between [−1,1]. Results of system identification are shown in Fig. B.8.

Hysteresis
distk

0.5z

z−0.4

z

z−0.8
uk yk

Figure B.7: Block diagram of system 7.

Disturbance was a first-order Markov process, generated by filtering a primary random process

of i.i.d. random variables. The i.i.d. random variables were distributed according to a Gaussian

B.3. Feedforward Control 157

distribution with zero mean and standard deviation 0.01. The filter used to generate the first-order

Markov process was a one-pole filter with the pole atz = 0.95. The resulting disturbance was

added to an intermediate point in the system, just before the output filter, as with system 6. Plant

identification was performed in the presence of disturbance using the sameN(10,10):30:1network,

with the plant input signaluk being i.i.d. uniformly distributed between [−1,1]. Results of system

identification are shown in Fig. B.9.

Summary of System Identification: In all cases, a neural network was found which satisfactorily

identified the system. Each system was driven with an i.i.d. uniform control signal. This was not

characteristic of the control signal generated by the trained controller in the next section, but was a

starting point and worked quite well to initialize the plant model for use in training the controller.

Each plant produced its own very characteristic output for the same input, as seen in Fig. B.8, but it

was shown that neural networks could be trained to identify each system nearly perfectly.

When disturbance is added, it is useful to think of the “disturbed plant dynamics” and the

“nominal plant dynamics.” In each case, the system identification process matched the nominal

dynamics of the plant, which is what theory predicts, and what we would like.

B.3 Feedforward Control

After system identification was done, the controller was trained to perform feedforward control of

each system. The control input signal was always uniform i.i.d. random input. Since the plants

themselves are artificial, this artificial control signal was chosen. In general, it is the hardest con-

trol signal to follow. The plants were undisturbed. Disturbance cancelling for disturbed plants is

considered in the next section.

Note that the control signal generated by the trained controller is not an i.i.d. uniform signal.

Therefore, the system identification performed in the previous section is not sufficient to properly

train the controller. It provides a very good initial set of values for the weights of the controller,

however, and system identification continues on-line as the controller is trained with the BPTM

algorithm.

First, the controller was trained with an i.i.d. uniform command input. The reference model, in

all cases (except for system 4), was a unit delay. When the weights had converged, the values of the

network weights were frozen, and the controller was tested with an i.i.d. uniform, a sinusoidal and

158 App. B. More Nonlinear SISO Examples

0 10 20 30 40 50 60 70 80 90 100
−10

−8

−6

−4

−2

0

2

4

6

8
System 1

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
System 2

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
System 3

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
System 4

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
System 5

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
System 6

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
System 7

Iteration

A
m

pl
itu

de

Figure B.8: Plots showing system identification of
seven nonlinear SISO plantsin the absense of distur-
bance. The gray line (when visible) is the true plant
output, and the solid line is the output of the plant
model. In all cases, the input to the plant was uni-
formly distributed white noise (although, the ampli-
tudes used to drive the various plants differed. See
text for details).Note the very different responses to
similar inputs.

B.3. Feedforward Control 159

0 10 20 30 40 50 60 70 80 90 100
−10

−8

−6

−4

−2

0

2

4

6

8
System 1

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
System 2

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

5
System 3

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5
System 4

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
System 5

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
System 6

Iteration

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
System 7

Iteration

A
m

pl
itu

de

Figure B.9: Plots showing system identification of
seven nonlinear SISO plantsin the presence of distur-
bance. The dashed black line is the disturbed plant
output, and the solid black line is the output of the
plant model. The gray solid line (when visible) shows
what the plant output would have been if the distur-
bance were absent. This signal is normally unavail-
able, but is shown here to demonstrate that the adap-
tive plant model captures the dynamics of the true
plant very well. The input to each plant was uni-
formly distributed white noise, with different ampli-
tude ranges for each plant.

160 App. B. More Nonlinear SISO Examples

a square wave to show the performance and generalization of the system. The results are presented

in Figs. B.11 to B.17.

Generally (specific variations will be addressed below) the tracking of the uniform i.i.d. signal

was nearly perfect, and the tracking of the sinusoidal and square waves was excellent as well. We

see that the control signals generated by the controller are quite different for the different desired

trajectories, so the controller can generalize well. When tracking a sinusoid, the control signal for

a linear plant is also sinusoidal. Here, the control signal is never sinusoidal, indicating in a way the

degree of nonlinearity in the plants.

Notes on System 4: System 4 is a nonminimum-phase plant. This can be easily verified by notic-

ing that its linear-filter part has a zero atz = 2. This plant cannot follow a unit-delay reference

model. Therefore, reference models of different delays were tried, for delays of zero time samples

up to 15 time samples. In each case, the controller was fully trained, and the steady-state mean-

squared-system error was measured. A plot of the results is shown in Fig. B.10. Since both low

MSE and low delay is desirable, a reference model for this work was chosen to be a delay of ten

time samples:M(z)= z−10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Mean-square system error as a function of control system delay

Delay (samples)

10
lo

g 1
0(

m
ea

n-
sq

ua
re

d
sy

st
em

er
ro

r)

Figure B.10: Logarithm of mean-squared system error plotted versus control system delay.

Notes on System 5: The output of system 5 is constrained to be positive due to the squaring

device in its representation. Therefore it is interesting to see how well this system generalizes when

asked to track a zero-mean sinusoidal signal. As shown in Fig. B.15, the result is something like a

full-wave rectified version of the desired result. This is neither good nor bad—just curious.

B.3. Feedforward Control 161

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8
Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8
Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

1

1.5

2

Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.11: Feedforward control of system 1. The controller,N(2,1):6:1, was trained to track uni-
formly distributed (white) random input, between [-8,8]. Plot (a) depicts the desired plant output (gray
line) and the true plant output (solid line), at the end of training, when the training signal was used to
drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at their
trained values, the next four plots show the generalization ability of the controller. Plots (c) and (e)
show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding plant
input signals.

162 App. B. More Nonlinear SISO Examples

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.12: Feedforward control of system 2. The controller,N(2,1):10:1, was trained to track
uniformly distributed (white) random input, between [-0.5,0.5]. Plot (a) depicts the desired plant output
(gray line) and the true plant output (solid line), at the end of training, when the training signal was
used to drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at
their trained values, the next four plots show the generalization ability of the controller. Plots (c) and
(e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.

B.3. Feedforward Control 163

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5
Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.13: Feedforward control of system 3. The controller,N(2,1):20:1, was trained to track
uniformly distributed (white) random input, between [-1.25,1.25]. Plot (a) depicts the desired plant
output (gray line) and the true plant output (solid line), at the end of training, when the training signal
was used to drive the controller. Plot (b) shows the controller output for this case. With the weights
fixed at their trained values, the next four plots show the generalization ability of the controller. Plots (c)
and (e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.

164 App. B. More Nonlinear SISO Examples

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

2.5
Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.14: Feedforward control of system 4. The controller, Net(20,1):20:1, was trained to track
uniformly distributed (white) random input, between [-0.75,2.5]. Plot (a) depicts the desired plant
output (gray line) and the true plant output (solid line), at the end of training, when the training signal
was used to drive the controller. Plot (b) shows the controller output for this case. With the weights
fixed at their trained values, the next four plots show the generalization ability of the controller. Plots (c)
and (e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.

B.3. Feedforward Control 165

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.15: Feedforward control of system 5. The controller,N(2,8):8:1, was trained to track uni-
formly distributed (white) random input, between [0,3]. Plot (a) depicts the desired plant output (gray
line) and the true plant output (solid line), at the end of training, when the training signal was used to
drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at their
trained values, the next four plots show the generalization ability of the controller. Plots (c) and (e)
show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding plant
input signals.

166 App. B. More Nonlinear SISO Examples

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.16: Feedforward control of system 6. The controller,N(10,1):10:1, was trained to track
uniformly distributed (white) random input, between [-0.5,0.5]. Plot (a) depicts the desired plant output
(gray line) and the true plant output (solid line), at the end of training, when the training signal was
used to drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at
their trained values, the next four plots show the generalization ability of the controller. Plots (c) and
(e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.

B.3. Feedforward Control 167

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Tracking Uniform White Input

Iteration
(a)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

Control Signal for Uniform White Input

Iteration
(b)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Tracking Sinusoidal Input

Iteration
(c)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

Control Signal for Sinusoidal Input

Iteration
(d)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

Tracking Square-Wave Input

Iteration
(e)

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

Control Signal for Square-Wave Input

Iteration
(f)

A
m

pl
itu

de

Figure B.17: Feedforward control of system 7. The controller,N(10,1):30:1, was trained to track
uniformly distributed (white) random input, between [-0.1,0.1]. Plot (a) depicts the desired plant output
(gray line) and the true plant output (solid line), at the end of training, when the training signal was
used to drive the controller. Plot (b) shows the controller output for this case. With the weights fixed at
their trained values, the next four plots show the generalization ability of the controller. Plots (c) and
(e) show the plant tracking a sinusoidal and square wave, and plots (d) and (f) are the corresponding
plant input signals.Notice that the control signals are almost identical for these three very different
inputs!

168 App. B. More Nonlinear SISO Examples

Simulations were also done to see what would happen if the system weretrained to follow

this kind of command input. In that case, the plant output looks like a half-wave rectified version of

the input. Indeed, that is the result which minimizes MSE—the training algorithm works!

Notes on System 7: As can be seen from Fig. B.17, the control signal required to control this

plant is extremely harsh. The hysteresis in the plant requires a type of modulated bang-bang control.

Notice that the control signals for the three different inputs are almost identical. The plant is very

sensitive to its input, yet can be controlled very well by a neural network trained with the BPTM

algorithm.

B.4 Disturbance Cancelling

With system identification and feedforward control accomplished, disturbance cancellation was per-

formed. The input to the disturbance cancelling filterX was chosen to be tap-delayed copies of the

uk andŵk signals. The architecture of the filter chosen for each system is listed in Table. B.1.

The BPTM algorithm was used to train the disturbance cancellers. After training, the per-

formance of the cancellers was tested and the results are shown in Fig. B.18. In this figure, each

system was run with the disturbance canceller turned off for 500 time samples, and then turned on

for the next 500 time samples. The squared system error is plotted. The disturbance cancellers do a

fantastic job of removing the disturbance from the systems.

TABLE B.1 FILTER ARCHITECTURES USED IN THIS APPENDIX.

System
Plant Feedforward Disturbance
Model,P̂ Controller,C Canceler,X

1 N(2,1):8:1 N(2,1):6:1 N([5,5],2):10:1
2 N(2,1):3:1 N(2,1):10:1 N([4,3],4):10:1
3 N(3,0):2:1 N(2,1):20:1 N([5,5],1):10:1
4 N(3,0):3:1 N(20,1):20:1 N([5,5],1):10:1
5 N(10,5):8:1 N(2,8):8:1 N([5,5],4):10:1
6 N(5,1):10:1 N(10,1):10:1 N([20,10],2):20:1
7 N(10,10):30:1 N(10,1):30:1 N([5,5],1):30:1

B.4. Disturbance Cancelling 169

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40
System 1

Iteration

A
m

pl
itu

de
S

qu
ar

ed

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
System 2

Iteration

A
m

pl
itu

de
S

qu
ar

ed

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
System 3

Iteration

A
m

pl
itu

de
S

qu
ar

ed

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
System 4

Iteration

A
m

pl
itu

de
S

qu
ar

ed

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
System 5

Iteration

A
m

pl
itu

de
S

qu
ar

ed

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
System 6

Iteration

A
m

pl
itu

de
S

qu
ar

ed

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
System 7

Iteration

A
m

pl
itu

de
S

qu
ar

ed Figure B.18: Plots showing disturbance cancela-
tion. Each system is run with the disturbance can-
celler turned off for 500 time steps. Then, the distur-
bance canceller is turned on and the system is run for
an additional 500 time steps. The square amplitude of
the system error is plotted.

170 App. B. More Nonlinear SISO Examples

B.5 Summary

This appendix furnishes several more examples of adaptive inverse control applied to nonlinear

SISO plants. In total, seven new plants were defined. First, adaptive system identification (in the

absence and presence of disturbance) was performed using a white driving signaluk . In all cases, a

neural network plant model was able to capture the dynamics of the system very well.

Secondly, feedforward controllersC were trained. The desire was to train a controller such

that the output of the system would track an i.i.d. uniform random process. This is an unrealisti-

cally difficult goal; yet, the neural-network controllers learned to do it with very high precision. It

should be mentioned that no previous success at controlling one of the systems (system 7) has been

reported—this is the first time that it has been achieved.

The output of the trained controller is certainly not similar to the white driving signal used to

train the plant model, so simultaneous adaptation of the controller and plant model are necessary.

This worked well, as long as the plant model was allowed to adapt somewhat more quickly than the

controller. The ability of the plant model to generalize also ensured that the initial weight values

yeilded a good model regardless of the input signal.

Training of the controllers was temporarily stopped and the weight values were frozen. The

system was then tested to see how well it would track input signals which were very different from

those used when training the controllers. Surprisingly good tracking was achieved, showing that the

neural-network controllers generalize well.

Finally, disturbance cancelling filtersX were adapted. The disturbance sources corrupted

either the input, output, or internal state of each system. In all cases, the disturbance canceller

adapted to eliminate almost all of the disturbance. The overall conclusion of this appendix is that

the methods presented in this dissertation control these seven plants very well.

Bibliography

When I get a little money I buy books. And if there is any left over, I buy food.

—Erasmus

[1] K. J. Åström and B. Wittenmark.Adaptive Control. Addison-Wesley, Reading, MA, second

edition, 1995.

[2] M. Bilello. Nonlinear Adaptive Inverse Control. PhD thesis, Stanford University, Stanford,

CA, April 1996.

[3] S. P. Boyd.Linear controller design: Limits of performance. Prentice Hall, Englewood Cliffs,

NJ, 1991.

[4] D. Carbonell Oliver.Neural Networks Based Nonlinear Adaptive Inverse Control Algorithms.

Thesis for the Engineer degree, Stanford University, Stanford, CA, September 1996.

[5] C. G. Economou and M. Morari. Internal model control. 5. Extension to nonlinear systems.

Industrial and Engineering Chemistry Process Design and Development, 25(2):403–11, April

1986.

[6] C. G. Economou and M. Morari. Internal model control. 6. Multiloop design.Industrial and

Engineering Chemistry Process Design and Development, 25(2):411–19, April 1986.

[7] G. F. Franklin, J. D. Powell, and A. Emami-Naeini.Feedback Control of Dynamic Systems.

Addison-Wesley, Reading, MA, third edition, 1994.

[8] G. F. Franklin, J. D. Powell, and M. L. Workman.Digital Control of Dynamic Systems.

Addison-Wesley, Reading, MA, second edition, 1990.

171

172 Bibliography

[9] C. E. Garcia and M. Morari. Internal model control. 1. A unifying review and some new results.

Industrial and Engineering Chemistry Process Design and Development, 21(2):308–23, April

1982.

[10] C. E. Garcia and M. Morari. Internal model control. 2. Design procedure for multivariable

systems.Industrial and Engineering Chemistry Process Design and Development, 24(2):472–

84, April 1985.

[11] C. E. Garcia and M. Morari. Internal model control. 3. Multivariable control law computation

and tuning guidelines.Industrial and Engineering Chemistry Process Design and Develop-

ment, 24(2):484–94, April 1985.

[12] R. Gazit. Neural control of a multi-link robot arm. Project report for Stanford University class

“EE373A,B”, June 1994.

[13] A. Gersho and R. M. Gray.Vector Quantization and Signal Compression. Kluwer Academic

Publishers, Boston, MA, 1992.

[14] A. Grace, A. J. Laub, J. N. Little, and C. M. Thompson.Control System Toolbox for use with

MATLAB. The Math Works Inc, Natick, MA, 1992.

[15] M. Green.Linear Robust Control. Prentice Hall, Englewood Cliffs, NJ, 1995.

[16] B. Hassibi, A. H. Sayed, and T. Kailath.H∞ optimality of the LMS algorithm.IEEE Trans-

actions on Signal Processing, 44(2):267–80, February 1996.

[17] S. Haykin.Adaptive Filter Theory. Prentice Hall, Upper Saddle River, NJ, third edition, 1996.

[18] R. K. Heffley and W. F. Jewell. Aircraft handling qualities. Technical Report 1004-1, System

Technology, Inc., Hawthorne, CA, May 1972.

[19] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, NJ, 1980.

[20] F. C. Kaminsky, R. H. Kirchhoff, C. Y. Syu, and J. F. Manwell. A comparison of alternative

approaches for the synthetic generation of a wind speed time series.Transactions of the Amer-

ican Society of Mechanical Engineers. Journal of Solar Energy Engineering, 113(4):280–89,

November 1991.

Bibliography 173

[21] A. N. Kolmogorov. On the representation of continuous functions of many variables by su-

perposition of continuous functions of one variable and addition.Dokl. Akad. Nauk USSR,

114:953–56, 1957. (in Russian).

[22] A. U. Levin and K. S. Narendra. Control of nonlinear dynamical systems using neural net-

works: Controllability and stabilization.IEEE Transactions on Neural Networks, 4(2):192–

206, 1993.

[23] M. C. Liu. Statistical Analysis of Quantization—Extended from Widrow’s Quantization The-

ory. PhD thesis, Stanford University, Stanford, CA, May 1998.

[24] L. Ljung. System Identification: Theorey for the user. Prentice Hall, Englewood Cliffs, NJ,

1987.

[25] R. M. Murray, Z. Li, and S. S. Sastry.A Mathematical Introduction to Robotic Manipulation.

CRC Press, Boca Raton, 1994.

[26] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using

neural networks.IEEE Transactions on Neural Networks, 1(1):4–27, March 1990.

[27] D. Nguyen. Applications of Neural Networks in Adaptive Control. PhD thesis, Stanford

University, Stanford, CA, June 1991.

[28] A. V. Oppenheim and R. W. Schafer.Discrete-Time Signal Processing. Prentice Hall, Engle-

wood Cliffs, NJ, 1989.

[29] D. B. Parker. Learning logic. Technical Report Invention Report S81–64, File 1, Office of

Technology Licencing, Stanford University, October 1982.

[30] M. J. Paulsen and O. Egeland. An output feedback tracking controller for ships with nonlinear

damping terms.Modeling, Identification and Control, 17(2):97–106, 1996.

[31] S. W. Piché. Steepest descent algorithms for neural network controllers and filters.IEEE

Transactions on Neural Networks, 5(2):198–212, March 1994.

[32] G. V. Puskorius and L. A. Feldkamp. Decoupled extended Kalman filter training of feedfor-

ward layered networks. InProceedings of the 1991 International Joint Conference on Neural

Networks(San Diego: 1990), volume II, pages 133–141, New York, 1991. IEEE Neural Net-

works Society.

174 Bibliography

[33] G. V. Puskorius and L. A. Feldkamp. Recurrent network training with the decoupled extended

Kalman filter algorithm. InScience of Artificial Neural Networks(Orlando Florida: 21–24

April 1992), volume 1710, part 2, pages 461–473, New York, 1992. SPIE Proceedings Series.

[34] D. E. Rivera, M. Morari, and S. Skogestad. Internal model control. 4. PID controller design.

Industrial and Engineering Chemistry Process Design and Development, 25(1):252–65, Jan-

uary 1986.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error

propagation. In D. E. Rumelhart and J. L. McClelland, editors,Parallel Distributed Process-

ing, volume 1, chapter 8. The MIT Press, Cambridge, MA, 1986.

[36] H. T. Siegelmann, B. B. Horne, and C. L. Giles. Computational capabilities of recurrent NARX

neural networks.IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics,

27(2):208–215, April 1997.

[37] S. Singhal and L. Wu. Training multilayer perceptrons with the extended kalman algorithm. In

D. S. Touretzky, editor,Advances in Neural Information Processing Systems I(Denver: 1988),

pages 133–140, San Mateo, CA, 1989. Morgan Kaufmann.

[38] J. E. Slotine and W. Li.Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, NJ, 1990.

[39] R. Sutton and I. M. Jess. A design study of a self-organizing fuzzy autopilot for ship control.

Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control

Engineering, 205:35–47, 1991.

[40] P. van Overschee and B. DeMoor.Subspace Identification for Linear Systems. Kluwer Aca-

demic Press, Boston, MA, 1996.

[41] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. PhD thesis, Harvard University, Cambridge, MA, August 1974.

[42] P. Werbos. Generalization of backpropagation with application to a recurrent gas market

model.Neural Networks, 1(4):339–356, 1988.

[43] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: Perceptron, Madaline, and

backpropagation.Proceedings of the IEEE, 78(9):1415–42, September 1990.

Bibliography 175

[44] B. Widrow and S. D. Stearns.Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs,

NJ, 1985.

[45] B. Widrow and E. Walach.Adaptive Inverse Control. Prentice Hall P T R, Upper Saddle River,

NJ, 1996.

[46] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learning algo-

rithm. Connection Science, 1(1):87–111, 1989.

[47] K. Zhou, J. C. Doyle, and K. Glover.Robust and Optimal Control. Prentice Hall, Englewood

Cliffs, NJ, 1996.

