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Abstract: Many problems in adaptive control can be divided into two parts; the first part is
the control of plant dynamics, and the second is the control of plant disturbance. Very often,
a single system is util ized to achieve both of these control objectives. The approach of this
paper treats each problem separately. Control of plant dynamics can be achieved by
preceding the plant with an adaptive controller whose transfer function is the inverse of that
of the plant. Control plant disturbance can be achieved by an adaptive feedback process that
minimizes plant output disturbance without altering plant dynamics. The adaptive controller
is implemented using adaptive filters. Copyright © 1998 IFAC.
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1. INTRODUCTION

At present, the control of a dynamic system (the
“plant” ) is generally done by means of feedback. This
paper proposes an alternative approach that uses
adaptive filtering to achieve feedforward control.
Precision is attained because of the feedback
incorporated in the adaptive filtering. The control of
plant dynamic response is treated separately, without
compromise, from the optimal control of the
disturbance. All of the required operations are based on
adaptive filtering techniques  (Widrow and Walach,
1996). Following the proposed methodology,
knowledge of adaptive signal processing allows one to
go deeply into the field of adaptive control.

In order for adaptive inverse control to work, the plant
must be stable. If the plant is not stable, then
conventional feedback methods should be used to
stabilize it. Generally, the form of  this feedback is not
critical and would not need to be optimized. If the plant
is stable to begin with, no feedback would be required.
 If the plant is linear, a linear control system would
generally be used. The transfer function of the
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controller converges to the reciprocal of that of the
plant. If the plant is minimum phase, an inverse is
easily obtained. If the plant is non-minimum phase, a
delayed inverse can be obtained. The delay in the
inverse results in a delay in overall system response,
but this is inevitable with a non-minimum-phase plant.
The basic idea can be used to implement “model-
reference control” by adapting the cascaded filter to
cause the overall system response to match a pre-
selected model response.

Disturbance in a linear plant, whether minimum phase
or non-minimum phase, can be optimally controlled by
a special circuit that obtains the disturbance at the plant
output, filters it, and feeds it back into the plant input.
The circuit works in such a way that the feedback does
not alter the plant dynamic response. So disturbance
control and control of dynamic response can be
accomplished separately. The same ideas work for
MIMO systems as well as SISO systems.

Control of nonlinear plants is an important subject that
raises significant issues. Since a nonlinear plant does
not have a transfer function, how could it have an
inverse? By using a cascade of the nonlinear adaptive
filter with the nonlinear plant, the filter can learn to
drive the plant as if it were the plant’s inverse. This
works surprisingly well for a range of training and
operation signals. Control of dynamic response and



plant disturbance can be done.

This paper introduces adaptive inverse control by first
discussing adaptive filters. Then, inverse plant
modeling for linear plants is described. The ideas are
extended to nonlinear control, examples are presented
and conclusions made.

2. ADAPTIVE FILTERS

An adaptive digital filter, shown in fig. 1 has an input,
an output, and another special input called the “desired
response”. The desired response input is sometimes
called the “ training signal” .

Fig. 1. Symbolic representation of an adaptive
transversal filter adapted by the LMS algorithm

The adaptive filter contains adjustable parameters that
control its impulse response. These parameters could,
for example, be variable weights connected to the taps
of a tapped delay line. The filter would thus be FIR,
finite impulse response.

The adaptive filter also incorporates an “adaptive
algorithm” whose purpose is to automatically adjust the
parameters to minimize some function of the error
(usually mean square error). The error is defined as the
difference between the desired response and the actual
filter response. Many such algorithms exist, a number
of which are described in the text-books by Widrow
and Stearns (1985) and by Haykin (1996).

3. INVERSE PLANT MODELING

The plant’s controller will be an inverse of the plant.
Inverse plant modeling of a linear SISO plant is
illustrated in Fig 2. The plant input is its control signal.
The plant output, shown in the figure, is the input of an
adaptive filter. The desired response for the adaptive
filter is the plant input (sometimes delayed by a
modeling delay, ∆). Minimizing mean square error

causes the adaptive filter 1ˆ −P  to be the best least
squares inverse to the plant P  for the given input
spectrum. The adaptive algorithm attempts to make the
cascade of plant and adaptive inverse behave like a unit
gain. This process is often called deconvolution. With
the delay ∆ incorporated as shown, the inverse will be
a delayed inverse.

For sake of argument, the plant can be assumed to have

poles and zeros. An inverse, if it also had poles and
zeros, would need to have zeros where the plant had
poles and poles where the plant had zeros. Making an
inverse would be no problem except for the case of a
non-minimum phase plant. It would seem that such an
inverse would need to have unstable poles, and this
would be true if the inverse were causal. If the inverse
could be non-causal as well as causal, however, then a
two-sided stable inverse would exist for all l inear time-
invariant plants in accord with the theory of two-sided
z-transforms. For useful realization, the two-sided
inverse response would need to be delayed by ∆. A
causal FIR filter can approximate the delayed version
of the two-sided plant inverse. The time span of the
adaptive filter (the number of weights multiplied by the
sampling period) should be made adequately long, and
the delay ∆ needs to be chosen appropriately. The
choice is generally not critical.

Fig.2. Delayed inverse modeling of an unknown plant

The inverse filter is used as a controller in the present
scheme, so that ∆ becomes the response delay of the
controlled plant. Making  ∆ small i s generally
desirable, but the quality of control depends on the
accuracy of the inversion process, which sometimes
requires ∆ to be of the order of half the length of the
adaptive filter.

Fig. 3.  Adaptive inverse model control system

A model-reference inversion process is incorporated in
the feedforward control system of Fig. 3. A reference
model is used in place of the delay of Fig. 2.
Minimizing mean square error with the system of Fig.
3 causes the cascade of the plant and its “model-
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reference inverse” to closely approximate the response
of the reference-model M. Much is known about the
design of model-reference systems (Landau, 1979). The
model is chosen to give a desirable response for the
overall system.

Thus far, the plant has been treated as disturbance free.
But, if there is disturbance, the scheme of Fig. 4 can be
used. A direct plant modeling process, not shown,

yields P̂ , a close fitting FIR model of the plant. The
difference between the plant output and the output of

P̂ is essentially the plant disturbance.
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Fig. 4. Optimal adaptive plant disturbance canceler

Now, using a digital copy of  P̂  in place of P , an off
line process, shown in Fig. 4, calculates the best least-
squares plant inverse Q. The off line process can run

much faster than real time, so that as P̂  is calculated,
the inverse Q is immediately obtained. The disturbance
is filtered by digital copy of Q and subtracted from the
plant input. For linear systems, the scheme of Fig. 4 has
been shown to be optimal in the least-squares sense
(Widrow and Walach, 1996).

To ill ustrate the effectiveness of adaptive inverse
control, a non-minimum phase plant has been
simulated, and its impulse response is shown in  Fig.
5(a). the output of this plant and the output of its
reference model are plotted in Fig. 5(b), showing
dynamics tracking when the command input signal is a
random first-order Markov process. The gray line is the
desired output and the black line is the actual plant
output. Tracking is quite good. With disturbance added
to the plant output, Fig. 5(c) shows the effect of
disturbance cancelation. Both the desired and actual
plant outputs are plotted in the figure, and they become

close when the canceler is turned on, at 300 samplings.
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Fig. 5. (a) Impulse response of the non-minimum phase
plant used in simulation; (b) Dynamics tracking of
desired output by actual plant output when the plant
was not disturbed. (c) Cancelation of plant
disturbance.

4. NONLINEAR ADAPTIVE INVERSE
CONTROL WITH NEURAL NETWORKS

Nonlinear inverse controllers can be used to control
nonlinear plants. Although the theory is in its infancy,
experiments can be done to demonstrate this. A
nonlinear adaptive filter is shown in Fig. 6. It is
composed of a neural network whose input is a tapped
delay line connected to the exogenous input signal. In
addition, the input to the network might include a
tapped delay line connected to its own output signal.
This type of nonlinear filter is called a Nonlinear Auto-
Regressive with eXogeneous Input (NARX) filter, and
has recently been shown to be a universal dynamical
system (Siegelmann, et al., 1997). Algorithms such as



real-time-recurrent-learning (RTRL) (Willi ams and
Zipser, 1989) and the backpropagation-through-time
(BPTT) (Werbos, 1990) may be used to adapt the
weights of the neural network to minimize the mean
squared error. If the feedback connections are omitted,
the famili ar backpropagation may be used (Werbos,
1974), (Rumelhart, et al., 1986). In the nonlinear
adaptive inverse control scheme of Fig.7, such filters
are used as the plant emulator and controller.

Nonlinear systems do not commute. Therefore, the
simple and intuitive block-diagram method of Figs. 2
and 3, for adapting a controller to be the inverse of the
plant, will not work if the plant is nonlinear. Instead, a
lower-level mathematical approach is taken. We use an
extension of the RTRL learning algorithm to train the
controller. This method can be briefly summarized
using the notation of ordered derivatives, proposed by
Werbos

Fig. 6. An adaptive nonlinear filter composed of a
tapped delay line and a three-layer neural network.

(1974). The goal is to adapt the weights of the
controller to minimize the mean squared error of the
output of the system. We use the fact that the controller
computes a function of the form

),,,...,,,,...,,( 121 Wrrruuugu qkkkmkkkk −−−−−=

where W are the weights of the controller’s neural

network. We also use the fact that the plant model
computes a function of the form

).,...,,,,...,,( 121 pkkknkkkk uuuyyyfy −−−−−=

The weights of the controller are adapted using steepest
descent. The change in the weights at each time step is
in the negative direction to the gradient of the system
error with respect to the weights of the controller. To
find the gradient, we use the chain-rule expansion for
ordered derivatives
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Each of the terms in Eqs. (1) and (2) is either a
Jacobian matrix, which may be calculated using the
dual-subroutine (Werbos, 1992) of the
backpropagation algorithm, or is previously calculated

value of Wuk ∂∂+  or Wyk ∂∂+ .

Fig. 7. A method for adapting a nonlinear controller

To be more specific, the first term in Eq. (1) is the
partial derivative of the controller’s output with respect
to its weights. This term is one of the Jacobian matrices
of the controller and may be calculated with the dual
subroutine of the backpropagation algotithm.

The second part of Eq. (1) is a summation. The first
term of the summation is the partial derivative of the
controller’s current output with respect to a previous
output. However, since the controller is externally
recurrent, this previous output is also a current input.
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Therefore the first term of the summation is really just
a partial derivative of the output of the controller with
respect to one of its inputs. By definition, this is a
submatrix of the Jacobian matrix for the network, and
may be computed using the dual-subroutine of the
backpropagation algorithm.
The second term of the summation in Eq. (1) is the
ordered partial derivative of a previous output with
respect to the weights of the controller. This term has
already been computed in a previous evaluation of Eq.
(1), and need not be re-computed.

A similar analysis may be performed to determine all of
the terms required to evaluate Eq. (2). After calculating
these terms, the weights of the controller may be
adapted using the weight-update equation
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error at the system output.
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control scheme.

Disturbance canceling for a nonlinear system is
performed by filtering an estimate of the disturbance
with the nonlinear filter Q and adding the filter’s output
to the control signal. An additional input to Q is the
control signal to the plant ku , to allow the disturbance

canceler knowledge of the plant state.  The same
algorithm which was used to adapt the controller can be
used to adapt the disturbance canceling filter. The
entire control system is shown in Fig. 8.

An interesting discrete-time nonlinear plant has been
studied by Narendra and Parthasarathy (1990)
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The method just described for adapting a controller and
disturbance canceler were simulated for this plant, and
the results are presented here.
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Fig. 9. Feedforward control of a nonlinear system. The
controller was trained with uniform distributed (white)
random input (a). Plots (b) and (c) show the plant
tracking sinusoidal and square waves, having been
previously trained with the random imput.

With the reference model being a simple delay, and the
command input being an i.i.d (independent and
identically distributed) uniform process, the system
adapted and learned to track the model output. The
result is shown in Fig. 9(a). The desired plant output
(gray line) and the true plant output (solid line) are
shown, at the end of training, when the training signal
was used to drive the controller. The gray line is



completely covered by the black line, indicating near-
perfect control. With the weights fixed at their trained
values, the next two plots show the generalization
ability of the controller. After training with the random
input, the adaptive process was halted. With no further
training, the system was tested with inputs of different
character in order to demonstrate the generalization
abilit y of the controller. The first test was a sine-wave
command input. Tracking was surprisingly good, as
shown in Fig. 9(b). Again, without further training, the
system was tested with a square-wave command input,
and the results, shown in Fig. 9(c), are excellent.

A disturbance canceler was also trained for this plant,
were the disturbance was a first-order Markov signal
added to the plant output. Fig.10 shows the results of
disturbance cancelation. The power of the system error
is plotted versus time. The disturbance canceler was
turned on at iteration 500. Dramatic improvement may
be seen.
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Fig. 10. Cancelation of plant disturbance for a
nonlinear plant. The disturbance canceler was turned
on at iteration 500.

CONCLUSIONS

Adaptive control is seem as a two part problem, (a) a
control of plant dynamics, and (b) control of plant
disturbance. Conventionally, one uses feedback control
to treat both problems simultaneously. Tradeoffs and
compromises are necessary to achieve good solutions,
however.

The method proposed here, based on inverse control,
treats the two problems separately without compromise.
The method applies to SISO and MIMO linear plants,
and to nonlinear plants.

An unknown linear plant will track an input command
signal i f the plant is driven by a controller whose
transfer function approximates the inverse of the plant
transfer function. An adaptive inverse identification
process can be used to obtain a stable controller, even
if the plant is non-minimum phase. A model-reference
version of this idea allows system dynamics to closely
approximate desired reference-model dynamics. No
direct feedback is used, except that the plant output is
monitored and utili zed by an adaptive algorithm to

adjust the parameters of the controller. Although
nonlinear plants do not have transfer functions, the
same idea works well for nonlinear plants.

Control of internal plant disturbance is accomplished
with an adaptive disturbance canceler.  The canceler
does not affect plant dynamics, but feeds back plant
disturbance in a way that minimizes plant output
disturbance power. This approach is optimal for linear
plants and works surprisingly well with nonlinear
plants.

A great deal of work will be needed to gain greater
understanding of this kind of behavior, but the
prospects for useful and unusual performance and for
development of this new approach seem very
promising.
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