ADAPTIVE INVERSE CONTROL BASED ON NONLINEAR ADAPTIVE FILTERING
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Abstrad: Many problemsin adaptive control can be divided into two parts; the first part is
the control of plant dynamics, and the second isthe cntrol of plant disturbance. Very often,
asingle system is utilized to achieve both of these cntrol objedives. The gproach of this
paper treds ead problem separately. Control of plant dynamics can be atieved by
preceding the plant with an adaptive antroller whose transfer function is the inverse of that
of the plant. Control plant disturbance @n be achieved by an adaptive feedbadk process that
minimizes plant output disturbance without altering plant dynamics. The adaptive controller
isimplemented using adaptive filters. Copyright © 19981FAC.
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1. INTRODUCTION

At present, the ontrol of a dynamic system (the
“plant”) is generally done by means of feedbadk. This
paper propcses an aternative gproach that uses
adaptive filtering to acdhieve fealforward control.
Predsion is attained becaise of the feadbad
incorporated in the alaptive filtering. The control of
plant dynamic response is treaed separately, without
compromise, from the optimal control of the
disturbance All of therequired operations are based on
adaptive filtering techniques (Widrow and Waladh,
1996. Following the propcsed methoddogy,
knowledge of adaptive signal processng al ows one to
go deqly into the field of adaptive antrol.

In order for adaptive inverse cntrol to work, the plant
must be stable. If the plant is not stable, then
conventional feedbadk methods dould be used to
stabilize it. Generally, the form of thisfeedback is not
criticd and would not need to be optimized. If the plant
is gable to begin with, no feedbadk would be required.
If the plant is linea, a linea control system would
generally be used. The transfer function of the
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controller converges to the redprocd of that of the
plant. If the plant is minimum phase, an inverse is
easly obtained. If the plant is non-minimum phase, a
delayed inverse can be obtained. The delay in the
inverse results in a delay in overall system response,
but thisis inevitable with a non-minimum-phase plant.
The basic idea ca be used to implement “model-
reference @ntrol” by adapting the cacaded filter to
cause the overal system response to match a pre-
seleded model response.

Disturbancein alinea plant, whether minimum phase
or non-minimum phase, can be optimally controlled by
aspedal circuit that obtains the disturbance at the plant
output, filtersit, and feadsit badk into the plant input.
The drcuit worksin such away that the feedback does
not alter the plant dynamic response. So dsturbance
control and control of dynamic response can be
acomplished separately. The same ideas work for
MIMO systems as well as SISO systems.

Control of norlinear plantsis an important subject that
raises sgnificant isaues. Since anonlinea plant does
not have atransfer function, how could it have an
inverse? By using a cascade of the nonlinea adaptive
filter with the nonlinea plant, the filter can lean to
drive the plant as if it were the plant’'s inverse. This
works aurprisingly well for a range of training and
operation signals. Control of dynamic response and



plant disturbance can be done.

This paper introduces adaptive inverse wntrol by first
discussng adaptive filters. Then, inverse plant
modeling for linea plants is described. The ideas are
extended to norlinea control, examples are presented
and conclusions made.

2. ADAPTIVEFILTERS

An adaptive digital filter, showninfig. 1 has aninput,
an output, and ancther specid input cdled the “desired
response”. The desired response input is LmMetimes
cdled the“training signal”.
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Fig. 1. Symbolic representation of an adaptive
transversal filter adapted by the LMSalgorithm

The aaptive filter contains adjustable parameters that
control itsimpulse response. These parameters could,
for example, be variable weights conneded to the taps
of atapped delay line. The filter would thus be FIR,
finite impul se response.

The aaptive filter also incorporates an “adaptive
algorithm” whose purpose isto automaticdly adjust the
parameters to minimize some function of the eror
(usualy mean square error). The error is defined as the
difference between the desired response and the actual
filter response. Many such algorithms exist, a number
of which are described in the text-bodks by Widrow
and Steans (1985 and by Haykin (1996.

3. INVERSE PLANT MODELING

The plant’s controller will be an inverse of the plant.
Inverse plant modeling of a linea SISO plant is
illustrated in Fig 2. The plant input isits control signal.
The plant output, shown in the figure, is the input of an
adaptive filter. The desired response for the alaptive
filter is the plant input (sometimes delayed by a
modeling delay, A). Minimizing mean square eror
causes the alaptive filter P to be the best least
sguares inverse to the plant P for the given input
spectrum. The adaptive algorithm attempts to make the
cascade of plant and adaptive inverse behave like aunit
gain. This processis often cdled deconvolution. With
the delay A incorporated as $hown, the inverse will be
adelayed inverse.

For sake of argument, the plant can be assumed to have

poles and zeros. An inversg, if it also had pdes and
zeos, would need to have zeros where the plant had
poles and pdes where the plant had zeros. Making an
inverse would be no problem except for the cae of a
non-minimum phase plant. It would seem that such an
inverse would need to have unstable pales, and this
would betrue if the inverse were causal. If the inverse
could be non-causal aswell as causal, however, then a
two-sided stable inverse would exist for al linear time-
invariant plants in acord with the theory of two-sided
z-transforms. For useful redizaion, the two-sided
inverse response would need to be delayed by A. A
causal FIR filter can approximate the delayed version
of the two-sided plant inverse. The time span of the
adaptive filter (the number of weights multiplied by the
sampling period) shoud be made alequately long, and
the delay A needs to be chosen appropriately. The
choiceis generally not criticd.
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Fig.2. Delayed inverse modeling of an unknown plant

Theinversefilter isused asa a@ntroller in the present
scheme, so that A becomes the response delay of the
controlled plant. Making A small is generally
desirable, but the quality of control depends on the
acaracy of the inversion process which sometimes
requires A to be of the order of half the length of the
adaptivefilter.
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Fig. 3. Adaptive inverse model control system

A model-reference inversion process is incorporated in
the feadforward control system of Fig. 3. A reference
model is used in place of the delay of Fig. 2.
Minimizing mean square eror with the system of Fig.
3 causes the cacade of the plant and its “model-



referenceinverse’ to closaly approximate the response
of the referencemodel M. Much is known about the
design d model-reference systems (Landau, 1979). The
model is chosen to give adesirable response for the
overall system.

Thusfar, the plant has been treated as disturbance free
But, if thereis disturbance the scheme of Fig. 4 can be
used. A dired plant modeling process not shown,

yields P, a dose fitti ng FIR model of the plant. The
difference between the plant output and the output of

P isesential y the plant disturbance
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Fig. 4. Optimal adaptive plant disturbance canceler

Now, using adigital copy of P in placeof P, an off
line process shown in Fig. 4, calculates the best least-
squares plant inverse Q. The off line processcan run

much faster than red time, so that as P is cdculated,
theinverse Q isimmediately obtained. The disturbance
isfiltered by digital copy of Q and subtracted from the
plant input. For linea systems, the scheme of Fig. 4 has
been shown to be optimal in the least-squares Ense
(Widrow and Walach, 1996.

To illustrate the dfediveness of adaptive inverse
control, a non-minimum phase plant has been
simulated, and its impulse response is 1own in Fig.
5(a). the output of this plant and the output of its
reference model are plotted in Fig. 5(b), showing
dynamics tracking when the command input signal isa
random first-order Markov process The gray lineisthe
desired output and the blad line is the adual plant
output. Trackingis quite good With dsturbance alded
to the plant output, Fig. 5(c) shows the dfed of
disturbance cacdation. Both the desired and adual
plant outputs are plotted in the figure, and they become

close when the canceler isturned on, at 300 samplings.
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Fig. 5. (@) Impulse response of the non-minimum phase
plant used in simulation; (b) Dynamics tracking of
desired output by actual plant output when the plant
was not disturbed. (c) Cancelation of plant
disturbance.

4. NONLINEAR ADAPTIVE INVERSE
CONTROL WITH NEURAL NETWORKS

Nonlinea inverse antrollers can be used to control
nonlinea plants. Althoughthe theory isin itsinfancy,
experiments can be done to demonstrate this. A
nonlinea adaptive filter is down in Fig. 6. It is
composed of aneural network whose inpu is a tapped
delay line mnneded to the exogenous input signal. In
addition, the input to the network might include a
tapped delay line mnneded to its own output signal.
Thistype of nonlinea filter is called aNonlinea Auto-
Regressve with eX ogeneous Input (NARX) filter, and
has recantly been shown to be auniversal dynamicd
system (Siegelmann, et a., 1997). Algorithms such as



red-time-reaurrent-leaning (RTRL) (Williams and
Zipser, 1989 and the badpropagation-throughtime
(BPTT) (Werbos, 1990 may be used to adapt the
weights of the neural network to minimize the mean
squared error. If the feedback connections are omitted,
the familiar badpropagation may be used (Werbas,
1974, (Rumelhart, et al., 1986. In the nonlinea
adaptive inverse control scheme of Fig.7, such filters
are used as the plant emulator and controll er.

Nonlinea systems do not commute. Therefore, the
simple and intuiti ve block-diagram method o Figs. 2
and 3, for adapting a controller to be the inverse of the
plant, will nat work if the plant is nonlinear. Instead, a
lower-level mathematicd approad istaken. We use an
extension of the RTRL leaning algorithm to train the
controller. This method can be briefly summarized
using the notation of ordered derivatives, proposed by
Werbos

-1 Neural Network

Fig. 6. An adaptive nonlinear filter composed of a
tapped delay line and a three-layer neural network.

(1974. The goa is to adapt the weights of the
controller to minimize the mean squared error of the

output of the system. We use the fad that the wntroller
computes a function of the form

Uy = G (U1, U210 U=y s Te=10001 T =g W),

where W are the weights of the cntroller’s neural

network. We dso use the fad that the plant model
computes a function of the form

Yi = F(Yim1 Yk-2:m00r Yoo Uk Ug =100 U= p)-

The weights of the antroller are alapted using stegpest
descent. The change in the weights at each time step is
in the negative diredion to the gradient of the system
error with resped to the weights of the controller. To
find the gradient, we use the chain-rule expansion for
ordered derivatives

rud S el

Each of the terms in Egs. (1) and (2) is ether a
Jambian matrix, which may be cdculated using the
dual-subroutine  (Werbos, 1992 of the
backpropagation agorithm, or is previously calculated

value of d*u, /oW or 8%y, /oW .
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Fig. 7. Amethod for adapting a nonlinear controller

To be more spedfic, the first term in Eq. (1) is the
partial derivative of the mntroller’s output with resped
to itsweights. Thisterm is one of the Jacobian matrices
of the mntroller and may be cdculated with the dual
subroutine of the badpropagation algotithm.

The second part of Eg. (1) is a summation. The first
term of the summation is the partial derivative of the
controller’s current output with resped to a previous
output. However, since the mntroller is externally
reaurrent, this previous output is also a airrent input.



Therefore the first term of the summationisredly just
apartial derivative of the output of the antroller with
resped to one of its inputs. By definition, this is a
submatrix of the Jacobian matrix for the network, and
may be computed using the dual-subroutine of the
badkpropagation algorithm.

The second term of the summation in Eq. (1) is the
ordered partial derivative of a previous output with
resped to the weights of the wntroller. This term has
already been computed in a previous evaluation of Eq.
(1), and need not be re-computed.

A similar analysis may be performed to determine al of
the terms required to evaluate Eq. (2). After calculating

these terms, the weights of the ntroller may be
adapted using the weight-update equation

a+
AW, = 2418 e

Continual adaptation will minimize the mean squared
error at the system outpui.
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Fig. 8. A fully integrated nonlinear adaptive inverse
control scheme.

Disturbance cancding for a nonlinear system is
performed by filtering an estimate of the disturbance
with the nonlinea filter Q and adding thefilter’s output
to the control signal. An additional input to Q is the
control signal to the plant u, , to alow the disturbance

cancder knowledge of the plant state. The same
algorithm which was used to adapt the controll er can be
used to adapt the disturbance cancding filter. The
entire control systemis iownin Fig. 8.

An interesting discrete-time nonlinea plant has been
studied by Narendra and Parthasarathy (1990

The method just described for adapting a cntroller and
disturbance canceler were smulated for this plant, and
the results are presented here.
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Fig. 9. Feedforward control of a nonlinear system. The
controller was trained with uniform distributed (white)
random input (a). Plots (b) and (c) show the plant
tracking sinusoidal and square waves, having been
previously trained with the random imput.

o

With the reference model being a simple delay, and the
command input being an i.i.d (independent and
identicdly distributed) uniform process the system
adapted and leaned to tradk the model output. The
result is own in Fig. 9(a). The desired plant output
(gray line) and the true plant output (solid line) are
shown, at the end df training, when the training signal
was used to drive the antroller. The gray line is



completely covered by the blad line, indicaing rea-
perfed control. With the weights fixed at their trained
values, the next two plots $ow the generalization
ability of the controller. After training with the random
inpu, the adaptive process was halted. With nofurther
training, the system was tested with inputs of diff erent
charader in order to demonstrate the generalization
ability of the controller. The first test was a sine-wave
command input. Tracking was surprisingly good, as
shown in Fig. 9(b). Again, withou further training, the
system was tested with a square-wave command input,
and the results, shownin Fig. 9(c), are excdlent.

A disturbance cancder was also trained for this plant,
were the disturbance was a first-order Markov signal
added to the plant output. Fig.10 shows the results of
disturbance cacdation. The power of the system error
is plotted versus time. The disturbance cacder was
turned on at iteration 500. Dramatic improvement may
be seen.
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Fig. 10. Cancdation d plant disturbance for a
norlinear plant. The disturbance @anceler was turned
on & iteration 500

CONCLUSIONS

Adaptive mntrol is £an as atwo part problem, (a) a
control of plant dynamics, and (b) control of plant
disturbance. Conventionally, one uses feedbadk control
to trea both problems smultaneously. Tradeoffs and
compromises are necessary to achieve good solutions,
however.

The method proposed here, based on inverse cntrol,
treds the two problems separately without compromise.
The method appliesto SISO and MIMO linea plants,
and to nonlinea plants.

An unkrown linea plant will tradk an input command
signal if the plant is driven by a ntroller whose
transfer function approximates the inverse of the plant
transfer function. An adaptive inverse identificaion
processcan be used to oltain a stable controller, even
if the plant is non-minimum phase. A modd-reference
version of thisideaall ows g/stem dynamicsto closely
approximate desired reference-model dynamics. No
direda feadbadk is used, except that the plant output is
monitored and utilized by an adaptive dgorithm to

adjust the parameters of the ntroller. Although
nonlinea plants do not have transfer functions, the
same ideaworks well for nonlinea plants.

Control of internal plant disturbance is accomplished
with an adaptive disturbance cacder. The cancder
does not affed plant dynamics, but feeds bad plant
disturbance in a way that minimizes plant output
disturbance power. This approach is optimal for linea
plants and works surprisingly well with ronlinea
plants.

A grea ded of work will be needed to gain geder
understanding of this kind of behavior, but the
prospeds for useful and unusual performance and for
development of this new approach seem very
promising.
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