
STANFORD UNIVERSITY

LE
LA

N
D

 S
TA

NFORD JUNIOR UNIVE
R

S
ITY

ORGANIZED 1891

ADAPTIVE NEURAL NETWORKS FOR MINE DETECTION

Bernard Widrow, Principal Investigator (415-723-4949)

Takeshi Doi
Gregory L. Plett

Information Systems Laboratory
Stanford University

Durand Bldg. Rm 104
Stanford, CA 94305-4055

(415) 723-4769

April 28, 1995

Scienti�c and Technical Report
Final Report

Contract DAAK70-92-K-0003 (03/27/92 - 03/31/95)

UNCLASSIFIED

Prepared for

U.S. Army Belvoir Research, Development, and Engineering Center
Countermine Systems Directorate

Fort Belvoir, VA 22060

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the o�cial policies, either expressed or implied, of the Government.

Contents

1 Introduction 1

1.1 The Ft. Belvoir Mine Lane Facility : 2

1.2 Measurement Methods : 2

1.3 Measurement of S Parameters : 4

1.3.1 Design of a Complex Voltmeter and Ammeter : : : : : : : : : : : : : 6

1.4 General Approach to the Problem : 10

1.4.1 Data Files : 10

1.4.2 Training and Test Philosophy : 12

1.4.3 Desired Response Calculation : 12

1.4.4 Method of Reporting Results : 13

2 Neural Networks 15

2.1 NN Structure : 16

2.2 Weight Initialization : 16

2.3 Learning Methods : 17

2.3.1 The Error Backpropagation Algorithm : : : : : : : : : : : : : : : : : 18

2.3.2 Stochastic Learning versus Batch Processing : : : : : : : : : : : : : 18

2.3.3 Conjugate Gradient Descent Learning : : : : : : : : : : : : : : : : : 19

2.3.4 Adaptive Learning Rate : 23

2.4 Practical Considerations : 25

3 Probabilistic Neural Networks 27

3.1 Bayesian Classi�cation : 27

3.2 PNN Architecture : 28

3.3 Nearest Neighbor Classi�er : 32

4 Preprocessing Methods 33

4.1 Global Preprocessing Methods : 33

4.1.1 Normalization : 33

4.1.2 Data Flattening : 34

4.2 Local Preprocessing Methods : 40

4.2.1 Neural Network Input Vectors : 40

4.2.2 Gamma Transform : 40

4.2.3 Rotate and Mirror : 41

4.2.4 Data Folding : 43

4.2.5 Local Normalization : 45

4.2.6 Approximate Lossless Normalization : : : : : : : : : : : : : : : : : : 47

5 Postprocessing Methods 49

5.1 Number of Outputs : 49

5.1.1 Single Output : 49

5.1.2 Double Output : 50

5.1.3 Multiple Outputs : 51

5.2 Grouping Mines : 52

5.3 Filtering : 53

6 Outlier Removal 55

iii

6.1 Data Balancing : 56

6.2 Modi�ed Outlier Removal : 57

7 Transform Methods 59

7.1 The Karhunen-Loeve (KL) Transform : 59

7.1.1 Application of the KL Transform : 61

7.1.2 Whitening the KL Transform : 63

7.2 The KL+ Transform : 63

7.3 The Composite Transform : 63

7.4 The Eigenspace Separation Method : 64

7.5 The Simultaneous Diagonalization Transform : : : : : : : : : : : : : : : : : 67

7.6 The \UNKL" Transform : 68

8 Vector Quantizer Aided Generalization 71

8.1 Data Clustering via Vector Quantization : 73

8.1.1 Statistical Outlier Suppression using VQ : : : : : : : : : : : : : : : : 73

8.1.2 Statistical Outlier Removal using VQ : : : : : : : : : : : : : : : : : 74

8.2 Vector Quantizer Methods : 76

8.2.1 Optimality Conditions : 77

8.3 Bayes Risk Weighted VQ : 79

8.3.1 Method 1: � = 0 : 81

8.3.2 Method 2: � =1 : 81

8.3.3 Method 3: � =1, reclassify : 81

8.3.4 Some Visual Examples : 81

8.4 VQ Design Algorithms : 83

8.4.1 LBG: The Unsupervised/Supervised Batch Algorithm : : : : : : : : 83

8.4.2 SOM: The Unsupervised Stochastic Algorithms : : : : : : : : : : : : 85

8.4.3 SOM With a Conscience : 86

8.4.4 LVQ: The Supervised Stochastic Algorithms : : : : : : : : : : : : : : 88

8.4.5 Choosing Initial Codebooks : 94

8.4.6 Optimizing the Functional Approximation vs. the Decision Boundary 97

8.5 Deterministic Outlier Removal : 98

9 PNN and VQ Results and Conclusions 99

9.1 Nearest Neighbor Classi�cation Results : 99

9.2 VQ Sammon Maps : 101

9.3 PNN & Transform Results : 101

9.3.1 ESM Results : 103

9.3.2 Benchmark Runs : 104

9.3.3 The Eigenspace Separation Method : : : : : : : : : : : : : : : : : : 104

9.3.4 The KL Transform Method : 104

9.3.5 The KL+ Transform Method : 106

9.3.6 The SDM Transform Method : 106

9.3.7 The Composite Transform Method : : : : : : : : : : : : : : : : : : : 107

9.4 Summary PNN Results : 107

9.4.1 No Preprocessing : 107

9.4.2 Lossy Unit Norm Preprocessing : 107

9.4.3 Lossy Zero-Mean Preprocessing : 107

iv

9.4.4 Lossy Zero-Mean and Unit Norm Preprocessing : : : : : : : : : : : : 107

9.4.5 General Conclusions : 108

9.5 VQ Algorithm Results : 115

10 Backpropagation Neural Network Performance 121

10.1 Network Architecture : 121

10.2 Input Data Types : 121

10.3 E�ects of Preprocessing : 122

10.4 Detection Rate Tradeo�s : 123

10.5 Multiple Neural Network Outputs : 123

A Target Locations 127

B Derivation of the SDM Transformation 133

B.1 Optimization of the algorithm : 133

C Feature Selection with the SDM Transform 134

C.1 The Computable Method : 135

D Three Dimensional Jump/No Jump Mesh Plots 137

v

vi

Final Report for Period 3/27/92-3/31/95 1

1 Introduction

The detection and disposal of anti-personnel land mines is a problem of signi�cant military,

economic and humanitarian concern. Not only do they pose a deterrent to military activity

during con
ict, they also remain lethal long after that con
ict is over. The statistics are

staggering; [7] eighty percent of the victims of anti-personnel mines are civilians, many of

whom are children. The number of such mines currently in place is estimated at over 100

million [8], and is increasing at the rate of one half to one million mines per year.

There is great motivation to research new countermine systems. Current anti-

personnel land mines cost between $3{$25 per mine and clearance methods cost between

$300{$1000 per mine removed. The rate of removal is too slow, and the percentage of

mines cleared is too low to be acceptable. A mine detection system which will operate with

a high degree of accuracy while being simple enough to deploy at low cost is plainly needed.

Successful detection methods could result in a considerable reductions of battle�eld and

civilian casualties, and less costly minesweeping operations.

One of the problems faced by the countermine system is that newer mines contain

very little metal, and thus it is not feasible to use conventional metal detectors to locate

them. A more sophisticated approach is taken in this work, where we train adaptive neural

networks (NNs) to detect land mines using data collected from a mine lane facility located

at Ft. Belvoir. This data consists of a set of measurements made with a Separated Aperture

Sensor operating in the \waveguide near cuto�" mode. Previous work has shown that neural

network pattern classi�ers can
awlessly detect anti-tank mines [30], and the present work

addresses the much harder problem of detecting smaller anti-personnel mines.

A complete discussion of the theory of neural networks and their uses in pattern

recognition is beyond the scope of this document. For further information, the reader is

referred to [43, 22, 48, 49]. For our purposes, it is su�cient to view a neural network as a

device to perform a functional mapping between an input vector X and an output vector:

Y = fn(X). For our application, we would like to present patterns X to the network which

correspond to measurements over mines and have the output Y = True. Likewise we would

like to input patterns X corresponding to measurements not over mines (over background)

and have the output Y = False.

Since neural networks are trainable universal function approximators, they can be

taught using empirical data to learn a decision rule and accurately classify input vectors

into various categories. Minimal human knowledge of the dynamics of the underlying phe-

nomenon is needed for this task. This makes neural network pattern recognition particularly

desirable in situations where the measurement vector X is large, or when the structure of

the probability distributions for each class is complex or unknown. In either of these cases

it is di�cult and perhaps impossible to come up with an analytical solution.

This report documents the work done at Stanford University under contract DAAK70-

92-K-0003 over the period 3/27/92 to 03/31/95. The scope of the work performed is quite

2 Adaptive Neural Networks for Mine Detection

large, and an e�ort has been made to describe it in a methodical and logical manner.

Therefore, subjects that relate to each other are described together even if the work was

performed months apart. For a more chronological presentation of the work, the reader is

referred to [11, 12, 14, 13, 15, 16, 18, 17, 19, 20, 21]. In this text, the Ft. Belvoir mine lane fa-

cility is discussed �rst, followed by the methods used to measure the raw data. Next, neural

networks and probabilistic neural networks are discussed, along with the training methods

used. Preprocessing and postprocessing methods are described, the outlier removal and

transformation preprocessing techniques are elaborated on. Results are discussed, and in

conclusion the proposed network architecture is presented.

1.1 The Ft. Belvoir Mine Lane Facility

This work is based on measurements made at a simulated mine lane facility located at Ft.

Belvoir. The mine lane is housed in a quonset hut whose
oor is divided into a number

of strips of di�erent soil types. In these lanes, di�erent sized and shaped objects made

from various materials (which represent actual mines in terms of their dielectric qualities)

are buried. Over the course of this contract, four sets of measurements, titled \SAS3"{

\SAS6", were made at this facility. These data sets were measured for a single mine lane,

but with di�erent sensor con�gurations1. After initial testing, work on this project focused

exclusively on using the last set of measurements, \SAS6", which was shown at an early

date to give the best results.

The \SAS6" data was measured from a 60'�4' mine lane of sandy soil. Five di�erent
types of simulated mines (targets) were buried:

� Type 1: 6" diameter � 3" wood disk.

� Type 2: 5" diameter � 3" hard plastic disk.

� Type 3: 3.5" diameter � 3" nylon disk.

� Type 4: 6" � 6" � 3" wood block.

� Type 5: 4" � 2" \butter
y" shaped target.

There were a total of 114 targets: 15, 30, 12, 15 and 42 of each mine type, respectively.

Appendix A lists the location in the mine lane of each of the targets.

1.2 Measurement Methods

An experimental apparatus at Ft. Belvoir was used to obtain the training and test data.

The theory and data collection apparatus is described in [4, Section 2] for the \SAS1" and

1The data sets \SAS1" and \SAS2" were measured for a di�erent mine lane (for contract DAAK70-89-

K-0001[30]), where the lane contained simulated anti-tank mines. This contract focuses entirely on the more

di�cult problem of locating anti-personnel mines.

Final Report for Period 3/27/92-3/31/95 3

\SAS2" measurements. Some changes were made in the measurement apparatus for the

most recent sets of data, but the theory remains the same. The sensor system used is also

described in [39]. Brie
y, the sensor and measurement apparatus works as follows:

HP 8753A

Network Analyzer

HP 9000,

model 236

Computer

HP 85046B

S Param Test Set

M

Mine

Fiber Link

TxRx

Figure 1: Measurement Setup

A block diagram of the measurement system is shown in Figure 1. A Hewlett

Packard 8753A Network Analyzer is the heart of the system. It is capable of generating

sinusoidal signals between 300 kHz and 3 GHz. It is attached, through an HP 85046B

S parameter test set, to a separated aperture sensor. The sensor, located (nominally) 2"

above the ground, consists of a transmitting aperture or horn which injects microwaves into

the soil, and a receiving aperture which provides a return signal to the Hewlett Packard

equipment. For the \SAS6" data used during this period, the resonant frequency of the

horns was 1 GHz and the septum width (the width between transmitting and receiving

horns) was 0". In previously measured data sets the septum width and resonant frequencies

were di�erent. For example, the septum width was 6" for the \SAS5" measurements.

Figure 2 shows a pictorial diagram of the sensor. The horns look like metal troughs, and

the dipole antennae run longitudinally.

Figure 2: Microwave Horn Antennae

Both the signal received by the \receiving" horn and the return signal picked up

by the transmitting aperture are sensed. The equipment records the complex-valued two-

port scattering parameters or S parameters (roughly analogous to the Z parameters of a

low-frequency circuit) of the sensor.

The tests use continuous wave sine waves and standing waves were detected and used

4 Adaptive Neural Networks for Mine Detection

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

Mine Lane

Path of Sensor

Sensor
Mine

Figure 3: Measurement Method

to compute the S parameters. The measurements were repeated �ve times and averaged

to reduce noise. In \SAS1" and \SAS2", the data was averaged 15 times. There was no

noticeable di�erence between averaging 5 and 15 times, which is not surprising since some

implicit averaging takes place when detecting standing waves. The horns were connected

directly to the S parameter test set.

Measurements were made on a grid of 1.5" � 1.5". There were 27 columns and 527

rows of measurements. At each point, all S parameters were measured (S11,S12,S21,S22).

Eleven di�erent frequencies in 40MHz intervals were used ranging from 800MHz to 1200MHz,

inclusive. At each point, the magnitude and phase component of each S parameter was mea-

sured. So, there were a total of 88 (4�11�2) measurements at each location in the grid.

Figure 3 shows how the sensor head was scanned over the mine lane.

Unlike the system used to measure the \SAS1" and \SAS2" data, which used a

wheeled cart to house the data collection equipment, the more recent data was collected by

a system hung on an overhead rail. The measuring system was controlled at a distance by

an HP 9000 computer via optical �ber (HP-IB) link. The computer was able to move the

sensor head laterally with a worm gear control and record all measurements automatically.

To move the sensor longitudinally (from row to row), a human operator had to move the

apparatus the required 1.5" along the overhead rail.

1.3 Measurement of S Parameters

The measurements conducted at Ft. Belvoir used the HP S parameter test set to automat-

ically measure the S parameters of the two port network formed by the microwave horns

and the earth waveguide. When a system is built for the �eld, however, it will be necessary

to build hardware to measure these parameters. This section describes one way it can be

done.

If the output2 of the two-port network is terminated in its matched impedance Z0

2The two-port network we are using is symmetric, so the concept of \input" or \output" only refers to the

way the network is con�gured for measurement. Typically the \input" to the network, which we sometimes

Final Report for Period 3/27/92-3/31/95 5

I2I1

+
V2
�

+
V1
�

Zs

Vs

- �

Two-Port
Network

ZL

Figure 4: Measuring S Parameters

(such that nothing is re
ected from the load), then the S parameters have the following

interpretation3:

S11 = Input re
ection coe�cient with the output port terminated in Z0.

S21 = Forward transmission coe�cient with Z0 load.

S22 = Output re
ection coe�cient with Z0 source and Vs = 0.

S12 = Reverse transmission coe�cient with the source impedance = Z0.

Without knowing the matched impedance Z0 of the output, it is not possible to

measure the S parameters directly. Therefore, we must use an indirect method which

works as follows: First, an intermediate set of parameters must be measured. These are

the \h parameters" of the network. Given a two-port network as shown in Figure 4 which

is driven by a sinusoidal source at a �xed frequency, the h parameters are:

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

To measure the h parameters, a two step process is performed. First, the output of the

two-port network is shorted. V2 = 0 and h11 and h21 can be obtained:

h11 = V1=I1

h21 = I2=I1

Likewise, if we open circuit the input making I1 = 0 and drive the output terminal, we get:

h12 = V1=V2

h22 = I2=V2

We can now obtain the S parameters from the h parameters:

S11 =
(h

0

11 � 1)(1 + h

0

22)� h12h21

(1 + h

0

11)(1 + h

0

22)� h12h21

S12 =
2h12

(1 + h

0

11)(1 + h

0

22)� h12h21

call the transmit head or port 1, is driven by a sinusoidal source, and the \output", which we sometimes

call the receive head or port 2, is used to determine the response of the network to that source.
3If the output is not terminated in Z0 then the parameters are still meaningful, but their interpretation

is not apparent.

6 Adaptive Neural Networks for Mine Detection

S21 =
�2h21

(1 + h

0

11)(1 + h

0

22)� h12h21

S22 =
(h

0

11 + 1)(1� h

0

22) + h12h21

(1 + h

0

11)(1 + h

0

22)� h12h21

Note: h
0

11 = h11=R0; h
0

22 = h22R0, where R0 is the resistance of the source, and is a quantity

known for any given oscillator.

The following section describes how to measure a complex voltage or current as

required for measuring the h parameters4. It may seem odd, though, that actual current is

owing, since no real closed circuit seems to exist (i.e. the oscillator is connected to wires

which dangle in the air). However, we must �rst realize that the familiar concepts of circuits

are simpli�ed approximations to Maxwel's equations speci�cally modi�ed for low frequency

operation, with minimal power loss due to radiation. The purpose of our antenna system is

to radiate energy, so we must discard those concepts. Real (AC) current does indeed
ow

in the system, and charge is alternately deposited and removed from the ends of the dipole

antenna. There are real voltage di�erences across the antenna, and both the current and

voltage can be measured in standard ways using standard equipment.

The energy radiated from a dipole antenna is transmitted in both electric and mag-

netic waves. One researcher found that the leakage mode which propagates between the

ground surface and the septum was a TE mode wave [9, pp. 2-5]; the detection mode,

however, was largely transmitted through the soil over the target. There was some energy

inside the target, with the strongest �eld component parallel to the dipoles (again, a TE

mode).

1.3.1 Design of a Complex Voltmeter and Ammeter

One of the requirements for measuring the h parameters is a voltmeter which will measure

\complex" voltages. In actuality, all voltages are real, and the concept of a complex voltage

is just a mathematical convenience which incorporates both the amplitude and phase of a

sinusoidal signal (where the phase is measured relative to the source).

Such \vector" voltmeters do exist as o�-the-shelf items, but it turns out that their

design is simple enough that building one which would even provide digital output for

computer I/O would be no great di�culty. The design presented here may be a little crude

(i.e. a microwave designer may �nd some places where special measures must be taken),

but with today's advanced op-amps and analog circuitry which work at very high operating

frequencies, it will probably be su�cient.

First, let us concern ourselves with measuring the amplitude of the sinusoidal signal.

The circuitry to perform this is shown in the top section of Figure 5. The �rst stage of the

process is to bu�er and amplify the input signal so that no appreciable load is added to

4Note that we need to measure complex values for the h parameters even if we only use the magnitude

of the S parameters since the magnitude of the S parameters depends on both the magnitude and phase of

the h parameters.

Final Report for Period 3/27/92-3/31/95 7

+

�

+

�

+

�

+

�

+

�

+

�

+

�
+

�

Section

K1 � R1

K1 � R1

Section

Voltage Magnitude

Measurement Section+

+
R1

A2D

A2D

Isolation

Section

Ampli�cation

�

Vin

Vref

Voltage Phase

Measurement

C

C
R1

�

K2 � R2

R2

K2 � R2

R2

Figure 5: Circuit Diagram for Complex Voltmeter

the system we are measuring, and so that we amplify the signal to a value which will be

within the range of our measurement system. The �rst op-amp is con�gured as a voltage

follower whose input resistance is nearly in�nite and whose output resistance is near zero.

The second op-amp ampli�es the input by �K1. The factor of `�1' does not a�ect our
analysis since the input sinusoid is symmetric around zero volts. However, the amplitude

scaling factor of K1 must be taken into account when interpreting the �nal output of the

system.

We would like to determine the magnitude A of the sinusoidal signal. To do this, the

ampli�ed signal is passed through a full-wave recti�er. The output of the full wave recti�er,

which we will call X(t), is shown in Figure 6. X(t) is periodic with period 1=(2fo) if fo

is the frequency of the input signal, and with amplitude A = K1jVinj. The average value

of X(t) can be found to be 2A=�. We can measure this average value and thus compute

A as follows: since X(t) is periodic, it will have a Fourier Series, and the DC term will

be the average value. So, to determine A, we must low-pass �lter X(t) to extract the DC

component. A question of practical interest is \How narrow a �lter do we need?" It turns

out that the �lter is very realizable. Since the input is periodic, frequency components will

occur at multiples of the input frequency and nowhere else. Since the input frequency is

about 1GHz, we just need a low pass �lter with a cuto� somewhere below 1GHz. This is

certainly trivial to build! We could use a simple single stage �lter with cuto� frequency as

8 Adaptive Neural Networks for Mine Detection

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

V
o
l
t
a
g
e

Time * 1/fo

Signals used in measuring |Vin|

Vin
X(t)

2 A/pi

Figure 6: Signals used to determine voltage amplitude.

high as 1kHz, and have a suppression of more than 120dB on all other components5. The

rightmost op-amp in Figure 5 is con�gured as a low-pass �lter with gain K2 and its cuto�

frequency is 1=(2�R2C2K2).

So, X(t) is �ltered and scaled by a constantK2 to be in the correct range for an A2D

converter which is sampled by the monitoring computer. The sample value is interpreted

as being scaled by K1, K2 and �. i.e. jVinj = A2D �

2K1K2
.

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

V
o
l
t
a
g
e

Time * 1/fo

Signals used in measuring the phase of Vin

Vref
Vin
pwm

Figure 7: Signals used to determine voltage phase.

5Smaller bandwidths are preferred to suppress spurious noise and transient e�ects. However the settling

time of the LP �lter is inversely proportional to the bandwidth. Thus, if measurements must be made

quickly, then a higher bandwidth may be required.

Final Report for Period 3/27/92-3/31/95 9

Now, let us consider how one would measure the phase change with respect to the

reference signal. This turns out to be not much more di�cult and is shown in the lower

half of Figure 5. As before, we bu�er the input signal, and we also bu�er the reference

signal. Both signals are then passed through comparators which realize the function: y(t) =

K3sgn(x(t)). Next, the output from the comparators are passed through diodes which

convert the levels to be compatible with regular logic chips. The two signals are input to an

XOR gate6. The output of the XOR gate is 1 when the input signals di�er, and 0 when they

are the same. Thus, if the signals are perfectly in phase, the output of the XOR gate will be

identically zero. If they are 180� out of phase, the output of the XOR gate will be identically

1. Otherwise, the output of the XOR gate will be a pulse width modulated signal whose

width represents the fraction of 180 degrees the signals are out of phase7. An example is

shown in Figure 7 where there is a phase shift between the reference and input voltages,

and the pulse width modulated output is shown as \pwm". As with the absolute voltage

measurement circuit, the average value of this signal is where the meaningful information

is contained. Low pass �lter the pwm signal with an identical LP �lter, and measure the

average value with an A2D converter. The output of the A2D converter is a function of the

phase deviation, i.e. phase = A2D 180�

max A2D
.

The preceding analysis has assumed that a steady state sinusoidal signal is being

measured. Since there will probably be noise and
uctuations in the signal, some sort of

averaging mechanism is desired. But, this is already built into the system! The LP �lters

will average out a substantial amount of signal
uctuation.

Iin

Vin

Voltmeter

Ammeter

Vref

Figure 8: Circuit Diagram for Complex Ammeter

An ammeter can be constructed in exactly the same way as a voltmeter. The very

minor di�erence is that a resistor R� is introduced into the circuit. This resistor is of

diminishingly small value so that it does not disturb the operation of the main circuit.

The voltage across this resistor is measured, and the current is calculated as I = V=R�. To

6An XOR gate is used here because of the elegance of the solution. However, getting an XOR gate to

work at 1GHz may be tricky. An equally simple solution exists using a logical `NAND' function which can

be constructed from 3 discrete transistors. This can easily be made to work at 1GHz.
7Note: in steady state, phase di�erences of 0 to 180 degrees are indistinguishable from phase di�erences

of 0 to �180 degrees, both mathematically and physically.

10 Adaptive Neural Networks for Mine Detection

measure the phase di�erence in the current, the voltage across the resistor, Vin, is compared

with the reference voltage. This is illustrated in Figure 8.

1.4 General Approach to the Problem

This section introduces the general approach to solving the problem of detecting mines

with neural networks. The data �les used by the neural network simulator and related

programs are discussed and a data
ow analysis is presented so that the reader can see

how preprocessing, postprocessing and training �t into the system. In addition, the test

philosophy, desired response calculation and method of reporting results are discussed.

1.4.1 Data Files

The following data �les are used:

Raw Data:

The S parameter data measured by personnel at Ft. Belvoir are stored in raw data

�les, in the format in which it was received. There are 88 �les: one �le for each

measurement type. The magnitude of each S parameter is stored as a dB value, and

the phase is stored in radians (between 0 and 2�). In each �le, there are 527 rows of

measurements, with 27 columns per row.

Globally Preprocessed Data:

While it is possible to use the raw data directly with the neural network, much more

favorable results can be achieved by �rst performing some preprocessing operations

on the data. The available options are discussed in Section 4.1. The preprocessed

data are stored in 44 �les: each contains 527 rows and 27 columns of magnitude and

phase information.

Input Vectors:

Multiple S parameters measured at multiple frequencies, all measured at a single

spatial location can be combined into a single vector of data. These vectors are, in

practice, assembled at run time from the globally preprocessed data �les. However, it

is convenient for the discussion here to consider them as a single \virtual" �le which

contains 527 rows and 27 columns of vector data.

KL Transformation Matrices:

In order to use the Karhunen-Loeve transform or any of the other transform methods,

one has to �rst compute the transformation matrices from the input vectors. Being

a computationally intensive operation, and one that only has to be done once, this is

done o�-line, and the results are saved in �les.

VQ Centroids:

In order to use the Vector Quantizer with the network, one must compute the centroids

Final Report for Period 3/27/92-3/31/95 11

of the input vectors. This is also a computationally intensive operation that only needs

to be done once, and it is done o�-line, with the results saved to �les.

Output:

The simulator output is in ASCII, human readable format. It contains periodic sum-

maries of the simulator state and detection rates.

Miscellaneous Files:

Several other �les are used to control the simulations. Among the options which are

selectable via these �les are: the network architecture to be simulated; the learning

method to be used; the frequency/S parameter �les to be used as input to the simu-

lation; and lists of preprocessing and postprocessing directives. Another �le tabulates

all targets and their locations. Its contents are listed in Appendix A.

local

pre{

process

input

vectors
- - - -

global

pre{

process

raw

data

globally

pre{

processed

data

input

vectors

prekl

prevq

KL

VQ

-

- -

-

?
6

-

-

-
6
?- -

NN

PNN

output

statistics

post{

process

Figure 9: Data
ow in the simulation system

In Figure 9, we see how the data �les interact with the simulator system. The global

preprocessor takes the raw data �les provided by Ft. Belvoir, performs global preprocess-

ing operations on them, and writes the resulting data to the globally preprocessed data

�les. The local preprocessor assembles input vectors and performs local preprocessing on

the globally preprocessed data. These input vectors are in turn used by the neural net-

work simulator, the probabilistic neural network simulator, and by prevq and prekl which

train the vector quantizers and transform methods respectively. The neural network and

probabilistic neural network simulators can also use the transform matrices generated by

the prekl program, and the centroids generated by the prevq program. The output of the

simulators may be postprocessed, and mine detection statistics are written to the output

�le. More elaborate descriptions of the individual parts of the simulation system are given

in later sections.

12 Adaptive Neural Networks for Mine Detection

1.4.2 Training and Test Philosophy

For the purposes of training and testing, the length of the mine lane is divided up into

�ve sections which are approximately equal in length. The �rst, middle and last sections

are used for training the neural network, and the remaining two sections are used only for

testing. The exact divisions, chosen such that no mine is bisected by a region boundary,

can be seen in Appendix A. The training and test data are taken from intermingled areas

of the mine lane to provide a heterogeneous mixture of terrain and mine types for both the

training and test region.

During training, a vector of data taken randomly from the training region of the

mine lane is presented to the neural network, and the network output is trained to a positive

or negative response depending on whether a mine is present. This pattern of training with

random data vectors is repeated until the entire data set is presented to the neural network

approximately 100 times.

At predetermined intervals, the weights in the neural network are held constant,

and the network is tested on all the possible vectors of data from both the training and

test regions in the mine lane. Both the training and test regions are used to evaluate the

performance of the neural network to detect mines, but the results from the two regions are

reported separately. Thus, the neural network is tested on both the data used for training

and data which has never been seen. This crossvalidation approach is a good method of

testing the network's ability to generalize its pattern recognition to data which has not been

used for training.

1.4.3 Desired Response Calculation

The method used to calculate the desired response for a single spatial point in the mine lane

utilized an exact calculation of the mine positions. Since the centers, shape and rotation of

each mine are known, the arrangement of the mines can be accurately determined. When

training the neural network, each data point corresponding to a 1.5"�1.5" grid square

was given a positive desired response if part of that grid square overlapped a mine, and a

negative desired response otherwise.

The desired response used when testing the network was somewhat di�erent from the

desired response used when training. The concept of an \extended mine region" immediately

surrounding a mine was developed. Since a positive response just 1.5" or even 3" away from

a mine should not be considered a false positive, the mines could be selectively \enlarged"

during testing. If an extended mine region of zero was used, then the desired response for

testing was the same as for training. If an extended mine region of 1 was used, then the mine

was enlarged by one grid square in each direction by a morphological dilation operation.

(by convolution with a 3�3 �lter with all values set to 1). If an extended mine region of

2 was used, then the mine was enlarged by two grid squares in each direction by dilating

twice. This is shown in Figure 10. The circle represents a land mine and the darkest region

Final Report for Period 3/27/92-3/31/95 13

Figure 10: Extended mine regions of size 1 and 2.

consists of the mine data points. The middle shaded region is the extended mine region of

size 1, and the lightest shaded region is comprised of the additional data points included for

an extended mine region of size 2. Appendix A shows the entire mine lane with all mines

and their extended mine regions depicted.

1.4.4 Method of Reporting Results

For every �xed (user speci�ed) number of training iterations8, a test iteration is performed

which tests the network's ability to locate mines. All possible input vectors are presented to

the network, and the output is computed. For each positive result, there are two possibilities:

either this positive result has in fact found a mine, (a \True Positive") or it is a false alarm

(a \False Positive"). In addition, the positive result can occur in either the training or test

section of the mine lane. The number of true and false positives in both the training and

test sections of the mine lane are written separately to the output �le at the end of the test

iteration.

The test iteration where the greatest number of true positives occurs in the test

section is considered to be the optimum point in the simulation. The reason that the

number of true positives in the test section is used as the metric as opposed to those in the

training section or, for that matter, the total number of true positives overall, is that any

su�ciently large network can completely learn the training data and still give very poor

generalization. In a real situation, we will never see inputs exactly like those in the training

section, so it is the generalization ability we care most about.

Several di�erent methods of interpreting the results have been used over the course of

the contract period. First, we considered the percentage of points that the network correctly

classi�ed. However, since we don't need to correctly classify all of the points over a mine

in order to �nd the mine, this metric did not give us an accurate feel for exactly how many

of the mines were being found. So, the next step taken was to postprocess the responses at

each point in the network, looking for groups of positive responses. A contiguous group of

3 or more positive point responses was considered a positive group response. If the center

8Typically a decimation factor of 1000 or 2000 is used for stochastic backprop learning. A factor of 1 is

used for batch mode learning.

14 Adaptive Neural Networks for Mine Detection

of this group was within 3 grid points of a mine's center, then this positive group response

was considered a true positive, else it was considered a false positive. Then, we calculated:

TP% =
#Mines Found

Total Number of Mines
� 100

FP% =
#False Alarms

Total # Positive Group Responsess
� 100

This method worked well, but involved postprocessing the network responses. This

may not be practical in a �eld implementation, so an alternate method was �nally adopted.

The new method of reporting results involves no postprocessing, and since there is no

grouping, the network response at each point is considered by itself. Thus, a mine is \found"

if one or more points covered by the (possibly extended) mine is a positive response, and

a false positive is any other positive point outside the mine and outside the extended mine

region surrounding a mine. i.e.:

1. For every network response that is positive, if it is a point over a mine, or over the

extended mine region (of selectable width) surrounding a mine, then mark that mine

as found. If the positive response is over background, label that measurement as a

false positive.

2. Pick the iteration from the computer run where the generalization peaked. If there

are two equivalent points, choose the one which had the smallest false positive rate.

If the points are still equivalent, pick the one with the highest training rate, with the

smallest number of false positives.

3. Calculate the true positive rate as:

TP% =
#Mines Found

Total Number of Mines
� 100

Calculate the false positive rate as:

FP% =
#FP Points

#Background Points
� 100

Because the method of reporting results has changed, comparing results between

di�erent periods is di�cult, and only qualitative remarks can be made. Therefore, we only

include in this report those results which were generated for the �nal performance metric.

The reader is referred to the other reports [13, 17] for the other results.

Final Report for Period 3/27/92-3/31/95 15

2 Neural Networks

Computation by means of networks of arti�cial \neural" elements is an idea that has at-

tracted a large following among scientists and engineers. Neural networks have proven

themselves capable of solving problems that would be impossible or impractical to solve

by other means. Many researchers have made observations with respect to a wide variety

of neural models, adaptation algorithms, and network architectures. A consensus emerges

from this work. The following are valuable attributes of neural networks which are not

generally shared by other computing systems:

� Neural networks are not programmed. Rather, they are trained to respond and per-

form highly re�ned tasks for which no precise rules exist. One such task is pattern

recognition (such as the discrimination of mines in a mine�eld), in situations where

no empirical or theoretical rules are known.

� Neural networks can generalize. That is, they can deliver accurate responses to inputs

that were not presented during training. This is a crucially important feature since

no system can be trained on all possible mine and background patterns.

� Neural networks can give very high speed response to input stimuli, once trained, due

to their inherently parallel nature.

� Neural networks can be continually trained, keeping up with changing input environ-

ments.

� Since experience is stored distributively in the connection weights, neural networks

are fault tolerant. They are able to adapt around their own internal defects. Graceful

degradation results if the network's electronic components begin to fail.

In most applications, neural networks are applied in combination with more con-

ventional computing systems. Neural networks provide the required learning, associative

memory, and decision making functions. Conventional computing systems are needed to

couple them to existing electronic sensors (to control the measurement devices, and to pre-

process the data) and human interfaces (to postprocess the network output and to display

where mines have been located); and to act as teachers when the network is undergoing

supervised learning.

In the study described in this report, two distinct types of neural networks were

applied to the mine detection problem. The multi-layered feedforward neural networks (with

all neurons implementing sigmoidal units) and the learning algorithms used are described

in this section. The probabalistic neural network which is based on Bayesian classi�cation

is described in Section 3.

16 Adaptive Neural Networks for Mine Detection

2.1 NN Structure

Neural networks are interconnected structures of simple processing elements which crudely

model the function of a biological neuron. Each arti�cial neuron (hereafter referred to

simply as neuron) has the composition shown in Figure 11. Internally, the scalar product of

the input vector9 and a weight vector is computed, and the output is a non-linear function

of this scalar product: out = F (XT �W). In our work, F (�) = tanh(�). By modifying the

value of the weight vector, di�erent output functions can be realized.

1

w0w1
w2
w3
w4
w5x5

x4
x3
x2
x1

yF�

Figure 11: Structure of a Neuron

By combining many of these simple neurons in a layered network, where one element

of the input vector of each neuron in a layer is connected to the output of all neurons on

the previous layer, a very powerful computational tool is achieved. This structure is shown

in Figure 12. It has been shown by Kolgomorov that such a network with a single hidden

layer and a su�cient number of neurons is capable of computing (with some set of weight

vectors) any continuous nonlinear function to any degree of accuracy. Thus, for example,

it is able to compute a discriminant function used for pattern recognition.

Hidden

Layer 1

Output

Layer

Hidden

Layer 2

Input Output

-

-

-

-

-

-

-

-

--

-

-

Figure 12: Network Structure

2.2 Weight Initialization

The weights of the NN can be initialized using the weights saved from a previous simulation,

or by random initialization. If the random method is used, the weights of each layer are

9The input vector is augmented by adding a zeroth element, always equal to 1.

Final Report for Period 3/27/92-3/31/95 17

initialized with uniform distribution and zero mean,

w � unif

"
+

r
3

N

a;�
r

3

N

a

#

where N is the number of inputs to a particular layer and a is a constant between 1 and

1.5. This provides a variance of a2=N for the weights and also controls the degree to which

sigmoids are permitted to go into saturation. No signi�cant di�erences have been found in

the learning characteristics of the networks for various values of a in this range. For a more

detailed description see [30].

2.3 Learning Methods

The use of arti�cial neural networks for any useful purpose such as pattern recognition, sig-

nal processing, control engineering, etc., requires that the network be trained by a learning

algorithm before it can be used. The most popular supervised learning algorithm for non-

recursive networks is the error backpropagation algorithm [41, 50]. This training algorithm

utilizes a gradient descent technique to minimize an error function. It is a very simple and

usually successful method of learning, however its relatively slow learning speed can be a

major drawback. Depending on the size and complexity of the network and the nature of

the problem, it is not uncommon for backpropagation to require hundreds of presentations

of the data set and several days of workstation simulation time to reach a satisfactory result.

There has been much work done on other algorithms and techniques to try to speed

up the learning process. One promising area of research for this purpose is the use of second

order methods [5, 35]. Backpropagation converges to its solution following the direction of

the negative gradient of the error surface at each iteration. However, this may not be the

most direct method of convergence and may lead to much wasted learning and relearning.

The use of second derivatives within the learning algorithm can eliminate some of this waste

and result in much faster learning. Evidence shows that this speed-up can be dramatic in

some cases. Speed-up rates of more than 10 have been shown on simple problems [1].

Another area of current research for the purposes of increasing learning speed is

the use of novel approaches to learning rate adaptation. Instead of using second order

information, the learning rate of stochastic methods can be increased by performing better

weight updates at each iteration using only the gradient information. Instead of using

a constant learning rate with the gradient information, an adaptive rate can be used to

optimize the learning speed using other information acquired from previous updates.

In the following sections, the conventional backprop algorithm, a conjugate gradient

descent algorithm using second order information and a methodology for developing and

using adaptive learning rates are discussed.

18 Adaptive Neural Networks for Mine Detection

2.3.1 The Error Backpropagation Algorithm

The most popular learning algorithm, due mostly to its simplicity and the fact that it

works well, is the \Error Backpropagation" algorithm. Backprop iteratively presents the

input patterns to the network and computes the network's output. This output is then

compared to the desired output, and the weights of the network are changed as follows:

W

(k+1)
i

= W

(k)
i

� ��iXi

where: W
(k)
i

is the value of the weight vector in the ith

neuron after the kth learning step.

� is the learning constant (0 < �� 1).

Xi is the input to the ith neuron, including the

bias input of 1.

�i is the derivative of the squared error for that neuron. For an output layer neuron,

�i = �2(di � oi)F
0(si), where di is the desired output of the neuron, and si is the result of

the scalar product in the neuron. For any other neuron,

�i = F
0(si)

X
j

�jWi;j

where: Wi;j is the weight connecting the output of the ith neuron to the input of the jth

neuron. The summation is over all neurons fed by the output of neuron i.

By iteratively presenting patterns and desired responses to the network, and updat-

ing the weights using the backpropagation algorithm, the network learns to correctly classify

the patterns in the training set. The network is also able to generalize, and correctly classify

many patterns which are not in the training set.

2.3.2 Stochastic Learning versus Batch Processing

Before discussing the new learning methods, we review a fundamental di�erence between

two distinct groups of training methods.

To �nd the true gradient of the error function with respect to the weights, the

error function gradient must be averaged over all of the training patterns. When this

calculation is done before the weight update, the method of training is called batch mode

and a presentation of every training pattern to the neural network is required before each

weight update. It is also possible to do a weight update after every individual pattern

presentation instead of after the entire set of training patterns. This method of learning is

called on-line or stochastic learning since the patterns are chosen in random order.

There are advantages and disadvantages to both the batch and stochastic methods.

Since the total gradient is used in batch mode, the error function is guaranteed to decrease

at each weight update.10 Thus, convergence may be faster, smoother and without many

10This is only true if a proper learning rate is used. If the rate is too large, increases in the error are

possible.

Final Report for Period 3/27/92-3/31/95 19

inaccurate and unproductive learning steps which can occur with stochastic methods. How-

ever, stochastic learning can avoid local minima better than batch methods since the steps

involve more randomness. This method can also provide a wider search of the weight space

and the error surface resulting in a better overall solution. In some situations, for example

real time systems, where all the input patterns are not available from the beginning but

are presented one at a time, it may not be possible to run learning in batch mode. In the

present land mine detection problem, a complete data set is available and both stochastic

and batch learning methods are feasible.

Use of the total gradients are required when using second order methods such as

the conjugate gradient descent algorithm. However, stochastic methods may be used for

adaptive learning rate methods. This must be kept under consideration when comparing

the speed of di�erent learning algorithms.

2.3.3 Conjugate Gradient Descent Learning

In the �eld of optimization, many second order algorithms such as Newton's method, quasi-

Newton methods, and conjugate direction methods which o�er a much faster convergence

rate than standard gradient descent methods have been studied [31, 6]. Many of these

algorithms require N2 storage requirements where N is the dimensionality of the problem,

or number of weights in our case. This can impose formidable implementational di�culties.

However, one of these methods, the conjugate gradient descent algorithm, requires storage

only on the order of N which will make its implementation as a neural network learning

algorithm feasible. This is one of the algorithms which was investigated in this work.

Algorithm Derivation

The method of using conjugate gradients is a well-known and studied second order

technique of iteratively minimizing a multivariate function [23, 31]. The proper approxima-

tions will be made in order to use this method for supervised learning in a neural network.

The function which we try to minimize in the neural network is the error function which is

the average sum of the squared di�erences over all the training patterns

E =
1

N

NX
p=1

MX
i=1

[dpi � opi]
2

where d is the desired output, o is the neural network output and i is the output number, p

is the pattern number, N is the number of training patterns, andM is the number of neural

network outputs. The non-linear mapping function of the neural network can be expressed

as a multidimensional Taylor series,

f(w) = f(w0) +
X
i

@f

@wi

wi +
1

2

X
i

X
j

@
2
f

@wi@wj

wiwj + � � �

20 Adaptive Neural Networks for Mine Detection

where w is the vector of neural network weights, and w0 is the origin. If higher order terms

are neglected, this function can be approximated by the quadratic equation,

f(w) = c� bTw+
1

2
wTHw (1)

Here, c is the value of the error function at the origin, b is the negative of the gradient

vector, and H is the Hessian matrix of partial second derivatives all evaluated at the origin.

To minimize this error function, we can take the derivative of equation 1 and set it

equal to zero to obtain

Hw� = b

where w� is the solution weight vector at the function minimum. If H is invertible, this

linear equation can be solved by solving n equations with n unknowns where n is the total

number of weights. However, even if H is invertible, this solution is impractical due to the

large number of weights in most neural network problems.

The alternative method of �nding w� is to use the concept of conjugate directions

in an iterative approach. Direction vectors d0;d1; : : : ;dn�1 are considered H conjugate if

dTi Hdj = 0; 8 i 6= j:

In each successive step in the search for w�, w will be updated in one of the conjugate

directions,

wk+1 = wk + �kdk (2)

for some scalar �k. Standard steepest descent algorithms such as error backpropagation use

a search in the direction of the negative gradient of the error function. Here, we will use

the second order information to obtain more intelligent directions of search. The direction

vectors d0;d1; : : : ;dn�1 can be shown to be linearly independent if H is positive de�nite.

Therefore, it forms a basis of the weight space, and the solution vector can be written as

w� = w0 +

n�1X
k=0

�kdk : (3)

The problem now becomes �nding the �k 's and dk's. Multiplying equation 3 by

dTkH, substituting b for Hw�, and solving for �k results in

�k =
dTk (b�Hw0)

dTkHdk

Changing the notation for the gradient vector gk = rf(wk) = Hwk�b, the above equation
becomes

�k =
�dTk g0
dTkHdk

(4)

Given equation 2 and equation 4, we can �nd a series of steps which will minimize

the error function estimate of equation 1 provided that we can �nd the set of conjugate

Final Report for Period 3/27/92-3/31/95 21

direction vectors d0;d1; : : : ;dn�1. If we start with the initial negative gradient as the �rst

direction vector, d0 = �g0, each additional direction vector can be found with the recursive

relation

dk+1 = �g
k+1 + �kdk (5)

Using the conjugate relationship of the direction vectors, we can solve for �k

dT
k+1Hdk = (�gk+1 + �kdk)

THdk = 0

�k =
gT
k+1Hdk

dT
k
Hdk

(6)

In the above formulation, the Hessian matrix is still required. However, we can

eliminate this calculation by recognizing that �k in equation 2 is the step size for the weight

update. We can determine the value of �k by using a line search to minimize the error

function in the dk direction. Using this information about �k, we can eliminate H by

noticing that from equation 2 and the de�nition of gk

(gk+1 � gk) = H(wk+1 �wk) = �kHdk

Hdk =
(gk+1 � gk)

�k

(7)

Substitution of equation 7 into equation 6 results in the Hestenes-Stiefel formula for �k

�k =
gk+1(gk+1 � gk)

dk(gk+1 � gk)
(8)

The above analysis provides a method to calculate the solution to the minimization

of a quadratic equation in a �nite number of steps using equations 2, 5, and 8. How-

ever, it should be reiterated that the neural network error function is only approximately

quadratic and that the derivatives are estimates of the true gradients so the performance

can vary, especially in regions far from the minimum where the quadratic approximation is

less accurate.

Derivative Calculation

Although the the mechanics of the conjugate gradient descent algorithm were de-

scribed in the previous section, some unanswered issues need to be discussed further. These

issues involve the actual implementation of the algorithm in software simulation.

The three main equations developed in the previous section used to update the

weights of the neural network using the conjugate gradient algorithm for iteration k+1 are

the following:

wk+1 = wk + �kdk (9)

dk+1 = �gk+1 + �kdk (10)

22 Adaptive Neural Networks for Mine Detection

�k =
g
k+1(gk+1 � g

k
)

dk(gk+1 � g
k
)

(11)

where wk is the weight vector, gk is the gradient vector, dk is the conjugate direction vector

used for weight updating, and �k and �k are scalars.

There are several methods of calculating the gradient vector. In our simulations,

it is obtained using one backward pass of the error backpropagation algorithm [50, 40].

In terms of computational burden, this method of obtaining the gradient vector is moder-

ately expensive. From the equations in the backpropagation algorithm, the computational

complexity of the forward and backward pass is estimated on the order of O(NNw) and

O(3NNw), respectively, where N is the number of training patterns and Nw is the number

of weights. However, in practice we found the backward pass to be about 4.0 to 5.0 times

more costly than the forward pass. This may be a motivating factor to investigate other

methods of obtaining the gradient vector. One such method would be to use multiple for-

ward paths to estimate the gradient. Despite the computational cost, the current method

is most attractive at the moment since the forward pass of the input data through the

network naturally produces some of the intermediate values necessary to do the backward

pass which can be utilized to reduce the computational burden.

Computation Complexity

Using a standard gradient descent learning algorithm such as backpropagation, the

majority of the computational time is spent in the forward and backward pass of the data

and the error. When the conjugate gradient descent algorithm is used, there are additional

computational requirements which must be addressed. � and � of equations 9, 10, and 11

must also be calculated. Calculating � in equation 11 adds relatively little time. However, to

calculate � in equation 9, the current version of the algorithm uses a standard golden section

line search algorithm [37]. This line search can be very costly. The simulations run so far

indicate that the line search procedure currently used requires between four to �ve times as

much computation time as do the forward and backward pass sections alone. This was true

for a wide variety of networks ranging in size from 522 to 2082 weights. These additional

computational requirements are very signi�cant. For example, a simulation requiring 10

hours using gradient descent would require between 50 to 60 hours using conjugate gradient

with the current line search algorithm to perform the same number of iterations.

The computational burden of the line search is due to the fact that the error of

the network, which is calculated by one forward pass through the network for all training

patterns, must be calculated several times to determine the weight update step size which

will reduce the error to a minimum. Methods to reduce the time necessary for calculating

the step size, �, have been investigated. Other line search algorithms are available [31].

However, they would not be able to signi�cantly reduce the computational burden. One very

promising technique of avoiding the line search procedure is the scaled conjugate gradient

Final Report for Period 3/27/92-3/31/95 23

descent algorithm [33]. Further study on this algorithm may prove to solve many currently

existing problems.

2.3.4 Adaptive Learning Rate

In addition to second order methods, an active area of research for increasing the speed

of neural network learning is the use of adaptive learning rate parameters for the update

of the weights when using stochastic methods. In this section, we will review some of the

concepts involving adaptable learning rate parameters and describe one popular algorithm

which utilizes these ideas.

Much of the theory involved with learning algorithms for improving performance is

neither concrete nor well-established. Most of these algorithms are developed experimentally

and are highly problem dependent. However, some sensible heuristics have been established

for the purpose of speeding up the neural network learning process [27]. Four of these are:

1. Each weight should have its own individual learning rate.

2. Every learning rate should be allowed to vary over time.

3. When the error derivative of a weight possesses the same sign for several consecutive

timesteps, the learning rate for that weight should be increased.

4. When the sign of the derivative of a speci�c weight alternates, the learning rate for

that weight should be decreased.

The �rst two heuristics are related to the basic assumptions about the weight adap-

tation learning rates. First, each weight should have its own learning rate since the step size

necessary to provide an optimum or even adequate reduction in error will most likely al-

ways be di�erent in each weight dimension of the error function. The gradient alone cannot

provide su�cient information about the step size which should be used in learning. Often,

it can give contradictory information about the step size which should be used. Second,

these learning rates should be allowed to vary in time since the weight parameters move

around on the error surface which consists of highly irregular shape and curvature.

The last two heuristics are related to the actual adaptation of the learning rate

parameters when the �rst two are assumed to be incorporated. First, if the error derivative

with respect to a particular weight repeatedly has the same sign, then the current point

is very likely to be on a relatively
at part of the error surface. This would cause a slow

descent down this surface in one direction. In this case we would like to increase the learning

rate to speed up the descent.

When the sign of the derivative is changing frequently, this is a characteristic of the

network oscillating on a portion of the error surface with a high degree of curvature. In this

case, it is bene�cial to reduce the learning rate so that the error may be reduced to lower

levels without wasteful oscillations.

24 Adaptive Neural Networks for Mine Detection

Using these four heuristics for learning rate adaptation, the amount of time spent in

the learning phase should be reduced. However, there are countless ways this information

could be used to devise a productive algorithm. On method is described in the next section.

Delta-Bar-Delta

The delta-bar-delta algorithm, which adheres to the previously described heuristics

for learning rate adaptation, has been proposed [27]. We experimented with this algorithm

as a starting point for incorporating learning rate adaptation in the neural network training

process.

The weight adaptation for this algorithm is similar to standard error backpropaga-

tion. For each weight in the network, the weight update rule is de�ned as follows:

wk+1 = wk � �k+1
@f

@wk
; (12)

where wk is an individual weight, �k is the corresponding variable learning rate, and @f

@wk

is the partial derivative of the error function with respect to the given weight at iteration

k+1. In standard backpropagation, � is a non-varying constant vector. But, here we allow

� to have a time-varying independent value for each of the weights.

The learning rates, �, follow the adaptation rule given by,

��k =

8>><
>>:

� if ��k�1�k > 0

���k if ��k�1�k < 0

0 otherwise

(13)

where

�k =
@f

@wk

and

�
�k = (1� �)�k + �

�
�k�1:

In the delta-bar-delta algorithm described above, delta (�) is the partial derivative

of the error function with respect to a single weight, and bar-delta (��) is an exponential

average of the current and past derivatives. This algorithm adheres to the previous heuristics

on learning rate adaptation. When the current derivative of a particular weight and the

exponential average of past derivatives of this weight possess the same sign, then the learning

rate will be increased by a constant �. If the current derivative and the exponential average

of past derivatives have opposite signs, then the learning rate will be decreased by a factor

of � of its current value.

The reasons given by Jacobs for the two di�erent types of adaptation are the follow-

ing; a linear increment prevents the learning rates from growing too fast, and the exponential

decrease allows the weights to decrease rapidly and yet remain positive.

Final Report for Period 3/27/92-3/31/95 25

2.4 Practical Considerations

Extensive simulations have shown that second order learning methods have the potential

to speed up the training process [13]. However, making a de�nitive comparison of the

learning speed of two di�erent training algorithms can be very di�cult. There are many

factors, two of which are parameter selection and computational complexity, which a�ect

the performance of a neural network classi�cation system. The implementation method of

the algorithm in software can also have a substantial a�ect on the training speed. Although

it is worthwhile to continue investigating new learning algorithms, at this time there is no

overwhelming evidence to support using any one algorithm over another. Therefore, most of

the simulations using the feedforward sigmoidal neural network conducted for this contract

have used the backpropagation algorithm.

26 Adaptive Neural Networks for Mine Detection

Final Report for Period 3/27/92-3/31/95 27

3 Probabilistic Neural Networks

An interesting technique with neural application was studied during the later part of this

contract period. Instead of using standard neural networks to locate mines, a technique

called \Probabilistic Neural Networks" (PNNs) was investigated. The main advantage of

this technique is its simplicity. Only one training iteration through the training data is

required, and there is only one parameter that can be changed (in the basic model) in

order to optimize the mine detection capability. All of the complications associated with

neural networks, such as the optimum network topology, learning rate, learning algorithm

(etc) are removed. The end performance of the PNN was found to be not quite as good as

the performance of the neural network, however it is believed that it is still a useful tool

for evaluating novel approaches to preprocessing or postprocessing the data (for example)

before testing them with a neural network since there are fewer variables to optimize.

The following sections describe the theory behind PNNs. For an excellent discussion on

Probabilistic Neural Networks, the paper by Donald Specht [45] is recommended. It will be

brie
y summarized here.

3.1 Bayesian Classi�cation

PNNs are an architecture for performing Bayesian classi�cation, which is the optimal de-

cision rule when attempting to di�erentiate patterns. When risk factors11 are taken into

account, this rule is:

Decide X belongs to category A when hAIAfA(X) > hBIBfB(X)

Decide X belongs to category B when hAIAfA(X) < hBIBfB(X)

where fA(X) and fB(X) are the probability density functions of categories A and B for an

input vector X respectively; IA and IB are the penalty functions for making an incorrect

decision, and hA and hB are the a priori probabilities of the occurrence of an item from

category A or B.

The boundary line between deciding category A or category B is de�ned by the

equation:

fA(X) = KfB(X)

where

K =
hBIB

hAIA

The unknowns which comprise K are the a priori probabilities of A and B, which can be

estimated from the training data, and the risk function which is user speci�ed. Therefore,

11It may be that making an error when classifying patterns is more critical for one type of error than

for another. For example, calling a mine pattern \background" is far more critical than calling background

\mine". The risk factor is a quantitative measure of this tradeo�.

28 Adaptive Neural Networks for Mine Detection

in order to perform Bayesian pattern classi�cation, we only need to determine (or estimate)

the functions fA(X) and fB(X). Probabilistic Neural Networks use a Parzen window tech-

nique [43][22] to estimate these probability density functions from the training data.

This technique constructs an estimate of the probability density function by sum-

ming together multi-variate Gaussian distributions centered at each sample point XA;i in

the training data:

fA(X) � 1

(2�)k=2�k
1

NA

NAX
i=1

exp

"
�(X �XA;i)

T (X �XA;i)

2�2

#

The only parameter to this equation is the \smoothing parameter" �. Here is an

example: Figure 13 shows a two dimensional distribution estimated from eight training

points, and uses a small value for �. Figure 14 shows the same data for a larger value of �,

and Figure 15 shows the same data for an even larger value of �.

It turns out, that as long as � is in the right \ballpark", its value is not critical.

An example from one PNN program run illustrates this in Figure 16. We see that for �

in the range of about 0.025 to 0.05, the mine detection capability of the network changes

very little. Theoretically, as � goes to zero, the network behaves like a nearest neighbor

classi�er, and as � goes to in�nity, the decision boundaries become hyperplanes. Typically,

for an input vector of high dimensionality, the value of � should be small.

3.2 PNN Architecture

One of the chief advantages of using the Parzen Window technique for estimating probability

density functions is that the resulting Bayesian classi�er can be implemented in a neural

network like structure. When done this way, it is called a Probabilistic Neural Network.

Figure 17 shows the network topology of such a system. There is an input layer, two hidden

layers and an output layer of special purpose, neuron-like elements. Each element in the

input vector is connected to one input unit whose function is to distribute that value to all

of the pattern units on the next layer. There is one pattern unit for each pattern in the

training set, and the pattern units are divided up into categories according to the pattern's

class (desired response). There is one summation unit on the next layer for each class,

and each summation unit adds the responses from pattern units corresponding to its class.

Finally, there is an output unit that makes a classi�cation based on the inputs from the

summation units.

For the two category \mine versus background" problem, the system is trained by

taking each of the input patterns from the training set that correspond to \background",

normalizing this input vector by dividing each element by its norm12 so that the resulting

12As de�ned by Specht, the PNN requires unit norm inputs. However, we have generalized the pattern

unit structure in our work to allow any generalized inputs. For our pattern units,

F (X;W) = exp[�(X �Wi)
T (X �Wi)=2�

2]

Final Report for Period 3/27/92-3/31/95 29

Figure 13: Small Sigma

Figure 14: Medium Sigma

Figure 15: Large Sigma

30 Adaptive Neural Networks for Mine Detection

0

5

10

15

20

25

30

35

40

45

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

M
i
n
e
s

L
o
c
a
t
e
d

Iteration * 1000

Testing

True Pos
% False Pos [max=20%]

Figure 16: Mines found vary little over a wide range of �.

norm is 1, and setting the weights of a pattern unit to the components of this normalized

vector. Then, this process is repeated for the \mine" patterns, putting their normalized

input vectors into the weights of the remaining pattern units. The \background" pattern

units are connected to the �rst summation unit, and the rest of the pattern units are

connected to the other summation unit (clearly, this concept is easily extensible to more

than two categories, such as when we wish to determine the minetypes rather than simply

distinguishing mine from background).

Figure 18 shows the structure of a pattern unit. It is a neuron whose activation

function is exp[(Zi � 1)=�2]. The function of the pattern unit is to see how \alike" the

current input pattern is to the one stored in the pattern unit's weights. A dot product is

formed between the input pattern and the weights of the pattern unit13, and this summation

is passed through the nonlinearity. Since we force both the weights of the pattern unit and

the input vector to be of unit norm, we see that this forms the exponential function we need

in order to form the approximation to the probability density function using the Parzen

window technique:

exp
h
�(Wi �X)t(Wi �X)=2�2

i
= exp

h
�(W t

iWi �X
t
Wi �W

t

iX +X
t
X)=2�2

i

= exp

2
64�(kWik2| {z }

1

�2X t
Wi + kXk2| {z }

1

)=2�2

3
75

= exp
h
(X t

Wi � 1)=�2
i

= exp
h
(Zi � 1)=�2

i

13Note that the output of this dot product is always maximum, 1, when the input vector is equal to the

weights of that pattern unit

Final Report for Period 3/27/92-3/31/95 31

fB(X)fA(X)

Pattern Units

Input Units

Summation Units

Output Unit(s)

: : :

: : :

X1 X2 X3 : : : Xn

\+" = A, \{" = B

Figure 17: Probabilistic Neural Network Structure

� � � �

X1 X2 X3 : : : Xn

Wi;1 Wi;2 Wi;3 Wi;n: : :

F

F (Zi) = exp
h
(Zi�1)

�2

i
�

Figure 18: Pattern Unit

The summation unit is a neuron with a linear activation function (F (Zi) = Zi) and

it simply sums the responses of all the pattern units corresponding to its class. The output

of the summation unit is then the estimated probability (scaled by a constant) that the

input vector X belongs to that category.

The output unit, as shown in Figure 19 is a simple neuron whose activation function

is the binary threshold element that makes the decision. The value C in the �gure is typically

-1, but can take on other values depending on the risk function. C = �IB=IA14.
14Note: C is not logically related to K from before even though their equations look similar. The constant

K includes the values hA and hB which cancel out of the analysis when we estimate them from the number

of samples of each type in the training data. C is the negative ratio of the risk factors used to bias the

decision in the output neuron. For all simulations, except those which emphasized minetypes, C = �1.

32 Adaptive Neural Networks for Mine Detection

fA(X) fB(X)

�

�

C

Binary Output

Figure 19: Output Unit

It should be mentioned that although the PNN is very simple, it uses an extravagant

number of weights. For 44 inputs/vector and 8343 training patterns, this results in 367 092

pattern unit weights! Methods to reduce the number of necessary training patterns are also

available. Speci�cally, by using any combination of transform or VQ methods, the number

of weights can be signi�cantly reduced.

3.3 Nearest Neighbor Classi�er

An extremely simple form of the PNN is a nearest neighbor classi�er. Such a classi�er

compares the input vector to all stored input vectors, and determines the stored vector

which is closest (in terms of squared error) to the input vector. The output of the NN

classi�er is then the class of the closest stored vector. As � ! 0 in the PNN, the PNN

becomes a nearest neighbor classi�er. It should not be expected that the nearest neighbor

classi�er perform as well as a neural network classi�er, or even a PNN classi�er since the

classi�cation regions in k-space are not as general. Nonetheless, it provides a good lower

bound on the performance we would expect from more complex systems. Nearest neighbor

classi�cation simulations were performed, and results are listed in Section 9.

Final Report for Period 3/27/92-3/31/95 33

4 Preprocessing Methods

While it is possible to train the NN using the raw data supplied by Ft. Belvoir, we have

found that by performing some preprocessing operations on the data, the NN results are

greatly enhanced. Thus, a wide array of preprocessing techniques has been incorporated

into the simulator system. These techniques fall into two categories: global preprocessing

and input preprocessing. Global preprocessing is done o�-line and requires the entire data

set to perform its task. Local preprocessing is done on a vector of globally preprocessed

data, and is done on-line during the simulation. The various methods for these tasks are

described below.

4.1 Global Preprocessing Methods

The following sections describe two of the global preprocessing methods. Normalization,

which is used to \help" the network learn more quickly is discussed �rst. This is followed by

data
attening. Three other major forms of preprocessing used in this study are outlier re-

moval, transform methods, and vector quantization. These subjects are reviewed separately

in Sections 6, 7, and 8.

4.1.1 Normalization

Neural networks train fastest when the input to each neuron's activation function is within

the linear region of that function. Our NN uses the tanh(�) activation function, hence we

require that the inputs have to be roughly distributed between �1 and 1. If the value of the

input to the activation function is far outside this range, the derivative of that activation

function tanh0(�) is near zero, and the weight change is very slow.

Normalizing the input data to have a speci�c mean and standard deviation is one

way to help the network train faster. It is done on a per-data-set basis, where a data set is

the measurements for a single S parameter/frequency combination. For each data set fxig,
we can compute the mean of the data set to be:

x =
1

N

NX
i=1

xi

and the (sample) variance to be15:

�
2
x
=

1

N � 1

NX
i=1

(xi � x)T (xi � x):

In order to create a normalized data set fyig so that it has a new mean x
0 and a new

standard deviation �x0 , we must compute:

yi =
�x0

�x

(xi � x) + x
0
:

15Both the mean and variance are calculated from data in the entire mine lane (as opposed to data from

the training region only).

34 Adaptive Neural Networks for Mine Detection

Two normalizations are always performed on each data set unless otherwise men-

tioned. First, the mean is subtracted from the data (x0 = 0), and secondly, each component

of each input vector is divided by the standard deviation of that component throughout the

mine lane, to force the variance to unity (�x0 = 1). So, if we combine all of these data sets

at each point into a vector, the globally preprocessed vector Xglob is related to the mine

lane vector Xraw as:

Xglob = Diag

�
1

�1
;

1

�2
; : : :

1

�k

�
(Xraw �Xraw)

Now, consider a neuron on the �rst hidden layer. It internally needs to compute

fnet = W
T �X + b, where W is the weight vector of that neuron, and b is the bias weight.

Consider the set fW �
; b
�g which optimizes the weights for the set of input vectors Xraw. If,

instead of applying Xraw to the network, we apply Xglob, then,

Xglob = Diag

�
1

�1
;

1

�2
; : : :

1

�k

�
(Xraw �Xraw)

Diag [�1; �2; : : :�k]Xglob = Xraw �Xraw

Diag [�1; �2; : : :�k]Xglob +Xraw = Xraw

So, fnet = W
�T
Xraw + b

�

= W
�T
Diag [�1; �2; : : :�k]| {z }

=W ��T

Xglob +W
�T
Xraw + b

�| {z }
=b��

= W
��T

Xglob + b
��

So, we see that the neural network is capable of �nding a new set of optimum weights

fW ��
; b
��g which provide the identical solution for Xglob that fW �

; b
�g did for Xraw.

This raises the question: \Why perform the normalization in the �rst place?" Nor-

malization helps keep the sum fnet close to zero, (since the weights are initialized to be real

numbers with small magnitude) which in turn is close to the linear part of the activation

function of the neuron (assuming that a \tanh" like function is being used.) This avoids

saturation of the neuron, which is undesirable (especially in the initial stages of learning)

since the derivative of the activation function, and hence the weight update will be near

zero. Thus, better solutions are more likely to be reached with a normalized input. It also

allows the weight vectors to require a much lower dynamic range, which is a very practical

advantage when implementing the network. Fewer bits will be required to store weights

and input vectors, and the circuitry to perform the internal computations can be smaller.

4.1.2 Data Flattening

One signi�cant deterrent to mine detection was found to be caused by large, step-like jumps

in magnitude which periodically occur between successive rows of a data set. Figure 20

shows one example jump in the 800 MHz S11 data between rows 414 and 415.

Final Report for Period 3/27/92-3/31/95 35

It is thought that these jumps are due to the change in the ambient temperature in

the mine lane from one day to the next.16 As the day progressed, and the temperature rose,

the baseline level of response decreased in a ramp-like manner. When the day of collecting

measurements concluded and the operator went home17, the mine lane would cool down.

When the operator returned in the morning (or after a week-end) the temperature condition

would be signi�cantly di�erent from the evening before, and a jump would occur in the data.

It is postulated that, due to the signi�cant slope in the data, even a short lunch break could

be the cause of a jump in the data (as evidenced by some jumps \down"). Unfortunately,

not all of these jumps are detectable or removable.

6-800.S11.mod

0
5

10
15

20
25 384

389
394

399
404

409
414

419

-2
-1.5

-1
-0.5

0
0.5

col
row

Figure 20: Un
attened Data

We would like to remove these jumps since they are arti�cial in the sense that they

would not occur in a \real" system searching for mines: when searching for mines, one

would not pause taking measurements for a signi�cant interval in mid-scan. Furthermore,

it is hypothesized that the jumps decrease the network's performance since many di�erent

signal levels arti�cially correspond to mine patterns. Therefore it is desirable to remove the

jumps from the data if possible.

A preprocessing function called \Flatten" attempts to eliminate the jumps. It works

16Or, perhaps they are caused by a drift over the course of a day in the calibration of the measurement

instruments. This is unlikely, though, since if it were true, the jumps would all end on the same \calibrated"

level, which does not happen.
17Recall that the measurement apparatus automatically measured all data in one row, but required oper-

ator assistance to move the apparatus from row to row. This also explains why there are no jumps between

columns in a row, but only jumps between successive rows.

36 Adaptive Neural Networks for Mine Detection

as shown in Figure 21

begin fRemove Jumpsg

1 Compute the mean and standard deviation of the entire data set.

2 Compute the average over the columns for each row of data.

3 Search for jumps: Tabulate their locations.

4 Calculate the linear regression coe�cients for each interval between jumps.

5 Remove the ramp between jumps from the data by subtracting the plane formed

from the linear regression coe�cients.

end fRemove Jumpsg

Figure 21: Algorithm to remove jumps from the data

Once the jumps are found, eliminating them using the last two steps is a straight-

forward procedure. However, �nding the jumps in the �rst place turns out to be a bit of an

\art".

For all methods, the �rst step is to compute the mean and standard deviation of

both the `x' and `y' components of the data set. This information is used later when looking

for jumps. Next, the average `x' and `y' value for each row of data were computed. The

idea behind this was that if the di�erence in the average of either the magnitude (x) or

phase (y) between two successive rows was large (in some sense), a jump probably occurred

at this location. The \largeness" of a jump is a concept that is relative to the data being

considered; however, a speci�c absolute threshold is needed by the
attening routine to

determine if a jump occurred or not. We settled on determining the threshold for jumps by

choosing some multiple of the standard deviation of the data.

Three di�erent techniques of increasing sophistication to �nd jumps were tried. They

are described in the following subsections. Since the data collection equipment measured

all data within a row automatically, jumps could not occur between columns in a row.

Jumps occur between rows because the human operator needed to move the measurement

apparatus was not always present when he or she was required.

Simple Jump Search

The �rst jump removal technique considered each data �le separately. For any �le, if the

average `x' or `y' value for consecutive rows di�ered by more than the threshold value, then

a jump was considered to have occurred between those two rows in that data �le. The jump

was removed as will be described later.

Global Jump Search

This procedure took advantage of some of the information known about how the data

was gathered. We know that for every (row, column) coordinate in the mine lane, all

Final Report for Period 3/27/92-3/31/95 37

(frequency,S parameter) measurements were taken at the \same time". That is to say, only

one measurement pass was taken through the mine lane. Therefore, if a jump was found

in one data set (that is, one (frequency,S parameter) set), this implied that a jump also

occurred in all other data sets at that row, even if one was not readily apparent.

Therefore, if a jump was found in one data set, then it was considered to have

occurred in all data sets, and was removed from the same location in all other data sets.

Global Jump Search with Step Detection

The preceding method found such a large number of jumps that it was considered unuseful.

It was postulated that some of the events that were labeled as jumps were actually true

high-variance changes in the data. In other words, some of the jumps found were indeed

\false jumps". Therefore, an additional step was added to the procedure to be more certain

that a jump actually occurred. Once a jump was postulated to have occurred using the

previous method, it was veri�ed by checking that all the columns changed value in the same

direction across the jump for the data set the jump was located in; they either all increased

in value or all decreased in value. All columns in both the `x' data were required to change

in the same direction, and all columns in the `y' data were required to change in another

(not necessarily the same) direction. This addition to the procedure eliminated all of the

false jumps. Appendix D shows the 3D mesh plots of the data in the region surrounding

each of the located jumps before and after removal of the jump (for a threshold of 1.0 times

the standard deviation).

Removing the Jumps

The third jump removal technique was found to work best. The thresholds we used were

multiples of the standard deviation of the data; NN results seemed to be best with a

threshold of either 1.0 times the standard deviation or 0.0 times the standard deviation (i.e.

step detection only).

For all the algorithms, the �rst step to removing jumps is to compute the average

over all columns for the `x' and `y' components of each row. Next, the `x' and `y' standard

deviation of the entire data set is calculated. The previously described jump location

procedures are executed. For each interval of data between two jumps, the linear regression

of step 4 calculates the best least squares �t of a line to the column averaged data. This is

the approximation of the \ramp" experienced during measurement18. This line is extended

18For further information on the derivations pertaining to how to �t data to a straight line, see [38]. In

brief, the procedure works like this: We wish to �t a line, y(x) = a + bx to the data. The coe�cients a and

b are computed as follows:

b =
1PN

i=1
[xi � �x]2

NX
i=1

(xi � �x) yi

a = �y � �xb

where: N = the number of rows between jumps.

38 Adaptive Neural Networks for Mine Detection

over all of the columns to form a plane. Step 5 subtracts this plane out of the data.

For example, the \SAS6", 800 MHz S11 data �le has an original average column

magnitude as displayed in Figure 22. Many jumps are clearly evident. For example, consider

the one between rows 414 and 415 (This is the same jump as in Figure 20).

-3

-2

-1

0

1

2

3

0 100 200 300 400 500 600

M
a
g
n
i
t
u
d
e

Row Number

6-800.S11.mod

x

Figure 22: Un
attened Average Row Magnitudes.

When the jumps are removed using this method, the new average row magnitude is

as shown in Figure 23a19. When this
attened data is re-normalized to have unit variance

it is as seen in Figure 23b.

-3

-2

-1

0

1

2

3

0 100 200 300 400 500 600

M
a
g
n
i
t
u
d
e

Row Number

6-800.S11.mod

x

-3

-2

-1

0

1

2

3

0 100 200 300 400 500 600

M
a
g
n
i
t
u
d
e

Row Number

6-800.S11.mod

x

Figure 23: Flattened Row Magnitudes. a) before re-normalization; b) after re-normalization

We see that both the jump and the underlying ramp function is removed from the

xi = the row number of the ith row.

�x =
x1 + xN

2
yi = the average value of row i.

�y = the average value of the data between jumps.

19A threshold of 1.0 standard deviations was used, and jumps were removed at rows: 14, 74, 158, 250,

360, 370, 414, 430, and 458.

Final Report for Period 3/27/92-3/31/95 39

6-800.S11.mod

0
5

10
15

20
25 384

389
394

399
404

409
414

419

-2
-1
0
1
2
3

col
row

Figure 24: Flattened Data.

row average of the data. Looking at the data in three-dimensional format (Figure 24) we

see that the jump has been removed. Several other things can be noticed from Figure 23a.

One of them is that while the jumps are clearly better than before, they are not completely

removed. This can also be seen in the graphs in Appendix D20. Unfortunately there is no

real substitute for data that has been collected under identical conditions, but this may be

impossible in practice. If temperature is indeed the cause of the ramps, it may be valuable

to measure the ground temperature at the time of each measurement. This could be another

input to the neural network that may help compensate for the jump e�ect.

Another thing we note from the re-normalized average row magnitudes in Figure 23b

is that the perceptual variance of the data has increased. In actuality, the variance of both

data sets is identical since the preprocessor normalized both data sets to have a variance of

1.0, but the \randomness" of the signal is increased. In the un
attened data, the variance

has two components: the component due to the sawtooth like ramping functions, and the

component due to the variance of the signal. So, 1.0 = Var(Sawtooth) + Var(Signal)21. If we

remove the sawtooth perfectly, the variance of the signal is therefore increased to 1.0. Since

the variance of the sawtooth is quite large, the initial variance of the signal is quite small

and the perceptual \randomness" of the data set is small. When the sawtooth is removed,

for the same variance, the perceptual \randomness" of the signal is much increased.

20The jumps are shown for the 800 MHz data since this data set was most dramatically a�ected. The

frequencies near 1GHz were least a�ected. This may be one reason why the seven frequency simulations

work at least as well as eleven frequency simulations.
21Assuming that the sawtooth and signal are uncorrelated.

40 Adaptive Neural Networks for Mine Detection

4.2 Local Preprocessing Methods

The following sections describe the local preprocessing methods. Although, not necessarily

a preprocessing method, the �rst section describes the di�erent types of neural network

input vectors used. This is followed by �ve di�erent forms of local preprocessing.

4.2.1 Neural Network Input Vectors

Initially, the input vector to the NN simulator included data from a \window" of spatially

neighboring points. Many di�erent window sizes were tried, and we settled on a standard

7 � 7 input window. If the center of this window was within 3 grid positions of a mine

center, the network was to provide a positive response, otherwise it was to provide a negative

response.

Very good results were obtained after several quarters of work using this architecture

and some of the preprocessing methods here. Thus, it was determined that we should inves-

tigate the more di�cult, but also much more practical \minimal" (1�1) window. All recent
work has used the minimal window, and thus the mirror/rotate/fold techniques described

here are defunct. Their description is included for completeness only. However, should

the design ever include a larger input window, these techniques should be re-examined

(especially data folding) since they increase generalization and decrease network size.

4.2.2 Gamma Transform

R

	

R

	

- �

-�

Two Port
Network

��G ��L

�G �L

V +
1

V �
1

V +
2

V �
2

Figure 25: Two Port Network.

The data sets we use from Ft. Belvoir (\SAS6") includes all four S parameters: S11, S12,

S21, and S22. To try to incorporate all of this data into a single neural network is possible

but a simpler method is desirable. Therefore, an attempt was made to incorporate all of

the data into a single more descriptive measure.

The reader is referred to the system topology of a two port network as drawn in

Figure 25. It is characterized by the four S parameters: S11, S12, S21, and S22. A single

parameter which incorporates the features of all the S parameters is the re
ection coe�cient,

�G.

Final Report for Period 3/27/92-3/31/95 41

�G is the re
ection coe�cient seen at the generating antenna:

�G = V
�
1 =V

+
1

= S11 �
S12S21�L

S22�L � 1

where �L is the re
ection coe�cient o� of the receiving antenna:

�L = V
+
2 =V

�
2

��L = S22 �
S21S12(��G)
S11(��G)� 1

�L =
S21S12�G � S11S22�G � S22

S11�G + 1

Solving for �G by substituting in the value for �L,

�G =
S11S22�L � S12S21�L � S11

S22�L � 1

=
(S11S22 � S12S21)

S21S12�G�S11S22�G�S22
S11�G+1

� S11

S22
S21S12�G�S11S22�G�S22

S11�G+1
� 1

let X = S11S22 � S12S21

�G =
X(�X�G � S22)� S11

2�G � S11

S22(�X�G � S22)� S11�G � 1

�G
2(�S22X � S11) + �G(S11

2 � S22
2 +X

2 � 1) + (S22X + S11) = 0

Solving the quadratic equation to �nd �G,

�G =
(S11

2 � S22
2 +X

2 � 1)�
q
(S11

2 � S22
2 +X

2 � 1)2 + 4� (S22X + S11)2

2� (S22X + S11)

Now, we can have a single parameter which incorporates all the S parameters into

one. Using the re
ection coe�cient as the input to the neural network, we can use a single

set of complex data and have much of the information of all four complex S parameters.

(NOTE: This method was only used for a short time. It was not found to work well {

probably because of an over-sensitivity to noisy data).

4.2.3 Rotate and Mirror

The small size and relatively indistinct signal returns of the training data has made mine

detection by neural networks di�cult. In general, complex problems require neural networks

with large numbers of weights. Having a limited amount of training data severely restricts

the ability to train such networks.

In order to circumvent these limitations, it would be good to increase the e�ective

size of the training data set. The actual amount of data available is �xed. However, by

42 Adaptive Neural Networks for Mine Detection

taking advantage of several properties of the data and the neural network input system,

we can e�ectively increase the number of patterns in the data set by a large factor. Once

we have increased the size of the data set, we should be able to use much larger and more

powerful networks. This should then produce more accurate and dependable results. The

symmetry properties of the data we have used include rotational invariance and re
ectional

invariance.

Rotational invariance is the �rst property of the mine data and neural network input

system we used to enhance our data set. A randomly chosen square window of data from

the training section of the mine lane is used as the input to train the network for mine

detection. If we assume that the data acquisition system has no directional bias, then this

window of data has no inherent direction or orientation. Therefore, the orientation of the

data window does not matter to the neural network, and this data can be rotated to produce

a new set of equally valid data.

For each square window of data, four di�erent inputs can be arti�cially produced.

This can be done by using 0, 90, 180, and 270 degrees of rotation. This corresponds to the

signals that would have been obtained if the dirt and mines had been rotated by each of

the above amounts. These rotations produce new data for the neural network which was

not initially available, but is valid nonetheless. The new rotated data is still the same data

taken from the mine lane. It is only the viewpoint or orientation of the network with respect

to the mine lane which is changed.

Each of the data windows created by the above rotations is a new input pattern for

the neural network, and the corresponding desired response can be determined accordingly.

The rotations can be done to each of the windows of data from the entire mine lane. This

gives an e�ective data size which is four times as large as the original data set.

Of course, increasing the amount of training data in this manner is not quite equiv-

alent to having 4 times as much training data, because the noise in rotated versions of

the same window is not independent as it would be in four independent measurements.

Nonetheless, the additional patterns give us more data to constrain the weights of the

network and has a bene�cial e�ect upon classi�er performance.

Re
ectional invariance is the second property we used to increase the size of the

data set. In an analogous manner to the rotational invariance of the data set, the square

windows of data also display re
ectional invariance.

Assuming symmetric mine shapes, we can
ip the data window horizontally or

vertically to produce two additional windows of data from each window in the original mine

lane. The horizontal and vertical
ips correspond to having the mine lane re
ected about

the center line or scanning the mine lane from the end to the beginning, respectively. This

creates the possibility of three di�erent windows of data to be used as the input to the

neural network for each data window from the mine lane.

Both rotation and re
ection can be used on each data window from the original

mine lane to increase the overall size of the data. Using both rotation and re
ection and

Final Report for Period 3/27/92-3/31/95 43

eliminating redundant transformations, a maximum of eight di�erent orientations of the

data can be produced from each data window in the original mine lane. Therefore, using

these two methods in conjunction, the e�ective size of data has been increased by a factor

of eight. With this larger amount of data, there is more
exibility with the architecture

of the neural network we can use to perform the mine detection. The combined process of

rotation and re
ection is illustrated in Figure 26.

Some initial simulations showed that there was actually a slight decrease in perfor-

mance due to rotating and mirroring. It was later hypothesized that this performance drop

was due to the \ramp" and \jumps" in the input data. Rotating the underlying ramp, and

rotating the spurious jumps did not produce plausible generalized input windows, and thus

the generalization performance of the entire network was not enhanced. Once the jumps

and ramps were removed, the rotate and mirror processing options were found to improve

performance.

0� 90� 180� 270�

Horizontal

Re
ection

Vertical

Re
ection

Rotated Windows

Re
ected Windows

Figure 26: Rotating and Re
ecting an Input Pattern.

4.2.4 Data Folding

\Data Folding" is an input preprocessing method which uses input addition to achieve

data reduction as well as both rotational and re
ectional invariance of the input window.

There are two motivations to use this method. First, it enforces rotational and re
ectional

invariance in the network, and thus should improve generalization. Secondly, as will be

shown, it is an alternative method to the Karhunen-Loeve transform to reduce the size

of the input vector to the network (although mathematically the two methods are very

di�erent)22. This allows us to use more input data sets than before, with a network of a

given size. Figure 27 illustrates how data folding works.

22Part of the appeal of the folding transform is its simplicity. For example, the Karhunen-Loeve transform

requires the storage of a Di � Di transform array (where Di is the dimension of an input window) and

requires on the order of O(D2
i) multiplications per input window while data folding requires no such storage,

no multiplications, and only O(Di) additions per input window.

44 Adaptive Neural Networks for Mine Detection

�

*

j

^

]

Y

�

�

?

�

Input

Window

Rotated

Windows

Flipped

Input

Window

Rotated

Flipped

Windows

Output Window (shaded)

Figure 27: Data Folding

In the �gure, the input window is shown to be 3�3 in size for clarity, although data

folding is possible with all window sizes23. To the right of the input window, the four possible

rotations of that window are shown. To the far right, the input window has been
ipped

across a horizontal axis, and just to its left the four rotations of this window are shown. In

these two columns, titled \Rotated Windows" and \Rotated Flipped Windows", we have

all eight possible combinations of rotated and mirrored windows. Any other rotation and

ip combination will duplicate a member already in this set.

The eight windows are summed together to produce the output window. Because

of the rotations and re
ections, only three of the values in the resulting window are unique

(the shaded entries). These three values are those used to train and test the neural network.

However, to analyze what e�ect this will have on the network, let us �rst consider

what would happen if not just three, but all components of the output window were used as

input to the neural network. No data reduction is accomplished, but the input window will

still be the sum of all rotations and re
ections. Over time, this will encourage the weights

of the neurons in the �rst hidden layer (which start at random, non-symmetric values) to be

symmetric, much like training with separate re
ections and rotations of the input window.

By using only the non-redundant components of the output window, we are now

performing an operation equivalent to forcing the weights of the �rst hidden layer neurons

to be symmetric. At the same time, we are reducing the number of weights in the �rst

hidden layer due to the reduction in dimension of the input vector. Therefore, both data

reduction and data symmetry are performed.

By how much is the input vector reduced? If we consider the minimal window,

23However, data folding is meaningless for the minimal (1�1) window.

Final Report for Period 3/27/92-3/31/95 45

we see that there will be no reduction. We also observed a three to one reduction in the

example just discussed. In general, if Di is the dimension of the input vector, the dimension

of the folded vector Do is:

Do =
1

2

2
4&pDi

2

'2
+

&p
Di

2

'35
where the d�e operator truncates its operand to the next highest integer. For example,

with the frequently used 7�7 window, the output from the folding procedure will have ten

elements, to achieve a nearly �ve to one reduction in data dimensionality. This is probably

as big as one would ever want the data window to be but, as a matter of curiosity, we take

the limit as Di goes to in�nity and �nd that the limiting data reduction is eight to one.

Also, when Di is one, Do is also one, and no data reduction is achieved.

4.2.5 Local Normalization

Local normalization refers to preprocessing which performs a di�erent operation on each

input vector Xglob from the mine lane, based on the value of that input vector, independent

of all other input vectors. Two basic types (either lossy or lossless) of local normalization

can be done. These preprocessing techniques were motivated in part by careful theoretical

reasoning and in part by curiosity.

Zero Mean

The normalization with the least theoretical basis is the lossy zero mean operation. The

function of this is to compute the average of all of the components of Xglob and to subtract

this average from each component. i.e. X = Xglob � 1
k
[1; 1; : : :1]T

P
iXglob;i. Graphically,

we can see this operation as a mapping from a k dimensional space to a k � 1 dimensional

space; a hyperplane in that k dimensional space. In Figure 28, an example with k = 2 is

shown where all points along the dotted lines are mapped to the solid hyperplane where it

intersects that dotted line.

Figure 28: Zero Mean Normalization

46 Adaptive Neural Networks for Mine Detection

Unit Norm

Another normalization method is to divide each vector by its norm, so that it becomes unit

norm. i.e. X =
Xglob

kXglobk . Graphically, we can see it (Figure 29) as a mapping from a k

dimensional space onto a k� 1 dimensional hypersphere24 of radius 1 in that space. In the

�gure, all points on the dotted lines are mapped to the nearest point on the hypersphere

which intersect that line.

Figure 29: Unit Norm Normalization

If two simplifying assumptions are made, then the Bayes Decision rule can be re-

duced to a form in terms of unit normalized pattern vectors. The Bayes Rule states:

Choose class i if:

P (classijX) > P (classj jX) 8j 6= i

P (X jclassi)P (classi)
P (X)

>

P (X jclassj)P (classj)
P (X)

8j 6= i

In the decision rule, P (X) is a constant, so it cancels. If we assume that the pdf of

X is composed of independently distributed Gaussians with di�erent means, and take the

logarithm of both sides, then:

log(k X � �i k)� log(P (classi)) > log(k X � �j k)� log(P (classj))

Now, let us assume that the classes are equally likely. Then, the predicted class is

min
i

�1 k X � �i k

If we divide X and � by their norms,

min
i

�1
s
2� 2

X

k X k �
�i

k �i k

or:

max
i

�1 X

k X k �
�i

k �i k
= max

i

�1
�i

24While the hypersphere itself exists in k-dimensional space, the points on it can be mapped with a

non-linear 1:1 mapping to a k � 1 dimensional space.

Final Report for Period 3/27/92-3/31/95 47

where �i is the correlation coe�cient. Thus, the pattern recognition problem becomes one

of maximizing the correlation between the input vector and the mean vector of each of the

possible classes. Geometrically, this becomes choosing the class which makes the smallest

angle in k space with the input vector.

The assumptions made are not accurate models of the mine lane data. However

the result here seems to work well even when the assumptions are not met. One example

is [3] where character recognition based on the correlation principle correctly recognized all

but 20 out of 3,064,029 characters from 88 of Sir Arthur Conan Doyle's short stories. It is

well known that the character distributions in English text are not uniformly distributed;

neither are the vector inputs from the scanner Gaussian (for example, they are strictly

positive integer values!) Nonetheless, correlation based pattern recognition works very well

here.

It is also interesting to note that the PNN architecture was �rst de�ned by Spect

based on the correlation principle. In the original architecture, each input vector was unit-

normalized. This resulted in signi�cant simpli�cation in the computation in each pattern

unit25.

Both Normalizations

Should both of the normalizations be performed, the result will depend on the order in

which the operations are performed. If the order is: zero mean; unit norm, then the result

will be a mapping from the k dimensional space to the k � 2 dimensional space which is a

point on the intersection of the hypersphere and the hyperplane. If, however, the order is:

unit norm; zero mean, then the result is a mapping from the k dimensional space to a k� 1

dimensional space. This is illustrated in Figure 30. The starting point Xglob is shown as

point \1". Should a unit norm be performed, followed by a zero mean, then the point moves

from \1" to \2" and ends up at \3". If, however a zero mean is performed, followed by a

unit norm, the point moves from \1" to \4" to \5". In all simulations where we perform

both normalizations, we �rst do the zero mean and then the unit norm, thus performing a

mapping on a k � 2 dimensional space.

4.2.6 Approximate Lossless Normalization

In the fear that perhaps some useful information was being discarded with the lossy normal-

ization techniques, a lossless normalization was attempted. It performed the normalization

by adding one component to the vector X so that:

X =
1

R0

�
X
T

glob
;

q
R
2
0� k Xglob k2

�T

where R0 � max k Xglob k.
25In our simulations, we use a more general Gaussian function in each pattern unit which does not assume

that the input vector has unit norm.

48 Adaptive Neural Networks for Mine Detection

5

4 3

2

1

Figure 30: The Order of Normalizations is Important

Thus, each vector X has a scaled version of the input vector Xglob, and a normal-

ization coe�cient. The only problem is choosing R0 large enough so that the square root

term is positive. From experimentation, it was found that R0 had to be greater than 52.2.

The problem with needing such a large R0 is that the normalization coe�cient

\swamped" the input vector; often becoming the highly predominant component. Thus, an

approximate-lossless normalization scheme was devised. In this scheme, R0 took on a much

smaller value. The few components in the mine lane which had a larger magnitude than R0

were normalized (using the lossy norm) to length 1, and the normalization coe�cient was

set to 0. Figure 31 shows the relative frequency of vectors in the mine lane with speci�c

norms. This �gure considers all of the training data. Looking at the �gure, we see that very

few vectors have norm greater than 15, so the approximate lossless norm used a parameter

R0 of 15.

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of Vector Norms

Figure 31: Histogram of Vector Norms of Data

Final Report for Period 3/27/92-3/31/95 49

5 Postprocessing Methods

In addition to data preprocessing, some postprocessing functions were also investigated.

These were not as rich in variety as the preprocessor since the output of the network is so

simple that little can be done with it.

5.1 Number of Outputs

While not speci�cally a postprocessing operation, the number of outputs from the network

forms part of the \back end" of the mine locating process. It is one of the many variable

factors to consider when designing a neural network, and choosing it correctly can be impor-

tant. Some of our simulations have been simulated with two outputs. In this con�guration,

a separate output was used to determine both mine and background (no mine). This type of

binary pattern discrimination can also be accomplished using only one output. If we wished

to also predict minetypes, another possible method is to use �ve or six outputs: one output

for each of the �ve minetypes with or without a background output. Each of these output

con�gurations lends itself to di�erent characteristics in the performance of the network. In

addition, each provides a foundation for di�erent types of learning and for postprocessing

which can be done. In this section, we will compare the performance of three di�erent types

of output structure: a single output, two outputs, and six outputs.

5.1.1 Single Output

Using a single output for the mine discriminating neural network provides the simplest

possible output structure for a neural network classi�er. In this case, the network is trained

to have a high response for mines and a low response for background. The high and low

responses can be represented in two di�erent ways depending on the activation function

which is used in the neurons of the network. The high value is always `+1' and the low

value can be either `0' or `-1' when the neuron's activation function is

f(x) =
1

1 + e
��x

or

f(x) = tanh(�x)

respectively. Both functions behave in a similar manner, and the choice of function used

is arbitrary. We have decided to use the later equation in all of the simulations conducted

in this report. In this con�guration, a +1 output signi�es the presence of a mine, and a -1

output signi�es the presence of background (no mine).

After the desired response was determined for each position in the mine lane, the

network was trained on data from the training sections (three-�fths) of the mine lane. After

a predetermined interval of learning, the network weights were frozen and its performance

was tested on input data from the test section (the remaining unseen two-�fths) of the mine

50 Adaptive Neural Networks for Mine Detection

lane for cross-validation. Using the single output, there is only one way to interpret the

output during the test phase of the simulations. A value greater than a certain threshold

indicates a positive point response; a value less than that threshold indicates a negative

point response. This threshold value can be adjusted either up or down using information

about a priori input distributions or output cost functions; however, to do this is less than

straightforward and requires more study. For the work presented here, the half-way point,

a threshold of zero, was used.

5.1.2 Double Output

Instead of using a single output for mine discrimination, two outputs can also be used to

perform the same function. In this case, one output is used to signify a mine and another

output is used to signify background. More speci�cally, a mine desired response is given as

a +1 output for the mine output and a -1 for the background output, and the reverse is

done for a background desired response. This method adds an additional neuron to the last

layer of the network and doubles the number of weights in that layer. This may make it

possible to produce more complicated decision regions in the data and improve the overall

performance of the network. As a negative e�ect, it may prevent good generalization by

increasing the number of weights in the network.

The use of two neural network outputs can also increase the complexity of the

decision to be made about the presence of mine or background. There are many possible

methods of using the two outputs to formulate the �nal decision. The simplest method and

the one adopted here is to take the \larger" output (mine output or background output) as

the decision. In this situation \larger" is determined by the output closest to +1, which is

the same as furthest from -1. This method only utilizes relative information between the

two outputs.

Other possible methods could consider the di�erence between the outputs or the

actual magnitude of the outputs. One such method, could involve a minimum di�erence

in the output magnitudes to declare a clear decision. If this criterion is not met, there

could be a back up system to determine a proper course of action. For example, if the mine

output is 0.6 and the background is 0.2, then there is a di�erence in the outputs of 0.4. If a

minimum required di�erence of 0.5 had been predetermined, then this mine output could be

in question and the prediction could be improved by either testing adjacent positions in the

mine lane, or the input data could be altered slightly, by adding noise or by �ltering, and

tested again. A similar technique could be implemented for having a minimum magnitude

requirement for the winning output in order for a safe decision to be made. In either of

these two cases, the rule can be set up di�erently for mine outputs and background outputs

to re
ect the importance of decisions when considering risk factors. Many other possible

manipulations of the two output values can also be conceived.

Final Report for Period 3/27/92-3/31/95 51

5.1.3 Multiple Outputs

The �nal approach to designing the output layer of the network involves the use of a di�erent

output neuron for each of the �ve mine types. In the current study of multioutput networks,

six outputs, one for each mine type and one for the background, were actually used. In this

type of network, a slightly di�erent desired response which includes information about the

mine type of the nearest mine must be calculated. First, the proximity of the nearest mine

was determined. If the distance to the center of the mine was within a threshold value, the

network output corresponding to this mine was given a +1 desired response. The �ve other

outputs including the background output was given a -1 desired response. In the case where

there were no mines within the predetermined distance, the background output was given

a +1 output and all others were given a -1. A similar output con�guration can also be set

up with just �ve outputs, one for each minetype. In this case, a desired response of all -1's

could designate background. However, we are treating background as an equal output to

the mines resulting in six outputs.

This type of network which discriminates between di�erent mine types seems the

most e�cient method to approach the mine detection problem when there are many dis-

tinct mine types. Since the di�erent mines have varying sizes and are made of di�erent

materials [13], they can produce fairly di�erent sensor outputs. Therefore, in the single or

double output case, the network must distinguish all mine signals from background signals.

If all the mines produced similar signals which are drastically di�erent from background,

the problem could be easily managed. However, if even one or some of the mines produce

a signal more similar to background or very di�erent from the rest of the mines, the task

becomes much more di�cult. Not only is the detection more di�cult for the peculiar mine

type, but the use of this mine data during the training phase may jeopardize the perfor-

mance of detecting the other mines. We have seen from work in Section 3 that one particular

mine type, mine type number three, has been very di�cult to detect. The use of multiple

outputs may help reduce this problem.

After the multioutput network has been trained, the outputs of the test region must

be interpreted. Similar to Section 5.1.2, there are many ways that this can be done. Initially,

we used the simplest method, and use the largest of the outputs as the winner or decision

maker. Therefore, whenever any one of the �ve neurons representing a mine has the largest

output, a mine is predicted to be in that position. In order to signify a background, the

background output must be larger than all other outputs. For this network, there are several

possibilities for the correctness of the output:

1. A mine has been correctly identi�ed by its minetype.

2. Background has been correctly identi�ed.

3. A mine has been incorrectly identi�ed as background.

4. Background has been incorrectly identi�ed as one of the mines.

52 Adaptive Neural Networks for Mine Detection

5. A mine has been incorrectly identi�ed as a di�erent mine type.

Two di�erent measures of performance can be used to evaluate this type of network archi-

tecture. In one scheme, only output possibilities 1 and 2 are assumed to be correct and all

others are classi�ed as errors. This would determine how well the network can identify and

classify the di�erent types of mines. However, this is a little too stringent for our initial use

of the multioutput network, since misclassifying a mine as in output possibility 5 above is

not a fatal error. For the purposes of mine detection in this contract, we grouped all mine

outputs of the network as one type and used the grouping postprocessor (Section 5.2) to de-

termine the mine positions. In future study, we will look at the possibility of discriminating

mines of di�erent type with the use of di�erent postprocessing methods.

Figure 32 shows how our network diagrams depict the multi-output capabilities of

the simulator. From left to right we see output sections for one, two and six output networks.

1
Neuron

 Mine/Back 2
Neurons

 Mine

 Background
6
Neurons

 m0..m5

 Background

Figure 32: Schematic Symbols for 1, 2 and 6 Output Networks

5.2 Grouping Mines

A previous method of reporting simulation results worked by grouping together network

point responses. During the test phase in which the weights are held constant, the input

window is scanned over the entire mine lane. At each spatial location, the point response

of the neural network is tabulated. Figure 33 represents an example of the raw quantized

network output. An `M' value indicates a positive point response from the neural network

and a `b' indicates a negative point response. Without further processing, the information

in this table is hard to interpret. What we really want is to know how many mines have been

found, and how many false positives there were. This is accomplished by post-processing

this table of `M's and `b's to extract the positions where the network thought there were

mines.

The grouping algorithm looks for contiguous areas of `M's. Any region that contains

3 or more `M' values joined together was considered to be a mine, and any other region

of fewer than 3 `M' values is discarded as noise. For each region, the centroid of the `M'

positions is calculated. A sample joined region is shaded in the �gure. All other regions

with `M' in them are not shaded since they were too small to be considered a mine.

Once the program has found a list of these regions and their centroids, it matches it

against the list of `true' values that are the known locations of the mines. This information

is found in in Appendix A. If the centroid of a positive region is within 4 grid units of a

Final Report for Period 3/27/92-3/31/95 53

mine's center, it is considered to be a true positive (a mine was really there). Otherwise, it

is considered to be a false positive (no mine was there).

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

M

M

M

M M

MM

MM

Figure 33: Postprocessing by Grouping Network Responses

While we have abandoned this method for a simpler way to report results, it holds

merit if postprocessing is an implementation option.

5.3 Filtering

One of the methods discovered while investigating PNNs (see Section 3) was output �ltering.

The idea behind �ltering is to remove spurious network responses by combining them in a

weighted manner with adjacent responses.

During the test phase of the neural network, tables are created with the network

response at every location in the mine lane. There is one table for every output neuron.

Spatial �ltering can be performed on these tables; this is called Pre Quantizer �ltering. The

information from these tables is then combined to form a single table of point decisions.

The entries of this table are the `+1/-1' decisions based on the rules in section 5.1. This

is shown in Figure 33 as `M' for +1 and `b' for -1. This table can be �ltered as well; this

is called Post Quantizer �ltering. Finally, the response grouping subroutine is executed on

this table to give a list of predicted mine locations. This process is illustrated in Figure 34.

The �lter we use is a 3�3 �lter shown in Figure 35. The �ltering operation replaces

each point response with k
2 times itself plus k times the sum of the horizontal and vertical

neighbors plus one times the sum of the diagonal neighbors. (Edges are handled by treating

out-of-mine-lane responses as zeros). The choice of �lter is somewhat arbitrary, but it does

have the feature that it has a (scaled) sampled Gaussian form26. Consider the scaled two

dimensional Gaussian:

fn(d)jd2=x2+y2 = k
2 exp

�d2
2�2

!

26The scaling doesn't matter since we are using +1 and -1 as network responses, and decisions are based

only on the output sign, not on its magnitude. If we were using +1 and 0, the �lter would have to be

normalized by dividing each element by 4 + 4k + k2 or the decision threshold would need to be multiplied

by this value.

54 Adaptive Neural Networks for Mine Detection

Output

Neurons

Filtered

Tables

Decision

List

Pre Q

Filtering

Post Q

Filtering

Table of

Responses

Filtered

Output

Quantizer

Output

- - -

--

-

-

-

-

- - - -

-

-

- -

Group

MinesQuantize

F

F

F

F

Q F G

.

.

.

.

.

.

.

.

.

.

.

.

Figure 34: Postprocessing Stages with Filters

1 k 1

k k
2

k

1 k 1

Figure 35: 3� 3 Spatial Filter

Suppose we let:

�
2 =

1

2 ln(k)

then:

fn(d) = k
2 exp

�
�d2 ln(k)

�
= k

2 exp
�
ln(k�d

2

)
�

= k
2
k
�d2

= k
2�d2

At d = 0 (the center tap), the value is k2. At d = 1, the value is k, and at d =
p
2, the

value is 1. This con�rms the �lter shown previously. Some thought shows that a high value

of k emphasizes the center tap, and a low value of k provides more smoothing during the

�ltering. The value most frequently used was k = 2, but some simulations were performed

with other values, most notably k = 3. As k ! 1, there is no �ltering. As k ! 1 the

�ltering is maximally smooth. (For k < 1, �2 < 0 which is illegal).

The simulator can optionally: not �lter at all; only pre quantizer �lter; only post

quantizer �lter; or pre and post quantizer �lter. From the simulations, we found that

�ltering tends to reduce both the number of true positives and false positives.

Final Report for Period 3/27/92-3/31/95 55

6 Outlier Removal

The e�ectiveness of training a neural network is a�ected greatly by the training data set

which is used. No learning algorithm will work e�ectively if the data used does not contain

su�cient information presented in a clear and unambiguous manner. This can be a problem

which is not easily detectable, especially when using very high dimensional data. Since the

data is impossible to visualize, it can be di�cult to detect any obvious anomalies which

may interfere with the learning process of the neural network. This is the case for our mine

lane data.

Due to the nature of the mine data, it is not unreasonable to expect some anomalous

data points which would hinder the learning and generalization abilities of a neural network.

Therefore, the removal of these outlier data points from the training set should increase

the overall performance of the network. The presence of inconsistent data points can be

attributed to uneven soil conditions, including moisture and debris, inconsistent depth of

mines, sampling of data over mine edges, inaccurate measurement of exact mine positions,

and some other causes. In any case, the detection and removal of these data points from

the training set has been emphasized in the last year of the research contract.

One of the main reasons for the presence of undesirable data points in the training

data is due to the collection of data at or near the edges of the mines in the mine lane.

These areas may be producing signals which cannot be classi�ed clearly as either mine or

background. These ambiguous signals may interfere with the learning and classi�cation

abilities of the other distinct signals. Therefore, the �rst attempt at outlier removal has

concentrated on the detection and removal of data points which are near the mine edges.

Through collaboration with Dr. Don Torrieri at the Army Research Laboratory in Adelphi,

Maryland, a new data preprocessing method has been developed to perform this simple type

of outlier removal. This procedure uses simple heuristics based on the physical geometry

involved in the signal collection procedure. Other methods of outlier removal have also been

studied and are presented later in this report.

Data collected near mine edges usually have neighboring points which do not have

the same desired response. Therefore, two neighboring points with somewhat similar signals

may have opposite desired responses. This may confuse the network. Both of those data

points should not be used in the training data set. Following this reasoning, only data points

which are in the interior of a mine or the background region should be used for training. In

order to insure this condition, all the neighboring data points should be checked to make

sure that an included point is surrounded only by other data points with the same desired

response. This was done by checking the four nearest neighbors of each data point. A data

point was included in the training set only if all of its four neighbors had the same desired

response. Along the edges and corners of the mine lane, the missing neighbor was excluded

from the requirement.

As an extension of the four nearest neighbor outlier removal method, an eight nearest

56 Adaptive Neural Networks for Mine Detection

b) Eight nearest neighborsa) Four nearest neighbors

Figure 36: Four and eight nearest neighbor outlier removal.

neighbor outlier removal method has been implemented. This method examines the eight

neighbors of each data point, and if all of them do not have the same desired response as

the center point, it is excluded from the training set. Figure 36 shows an example of the two

methods. In this �gure, the dark shaded center point is a background data point in question

and the circle is a nearby land mine. In (a), the mine does not cover any of the four nearest

neighbors and the center point would be included in the training set as a background data

point. However, in (b), one of the eight neighbors is over the mine, so this point would

be removed from the training data set. As demonstrated by this example, using the eight

nearest neighbor outlier removal method instead of the four nearest neighbor method has

the e�ect of removing several additional data points from the training data set.

Initial use of the four nearest neighbor outlier removal method showed diminished

mine detection rates [19]. Inspection of the outlier removal technique and its e�ect on the

training data set showed that the distribution of mine data and background data after outlier

removal had become very skewed. The original training data sets had approximately an 7:1

ratio of mine to background data. After the outlier removal was applied the ratio became

approximately 20:1. The large bias toward background data could be one explanation for

the very low detection rates produced. A new training system was implemented in an

attempt to try to mitigate the ill e�ects produced from training the neural network using

the unevenly distributed data set.

6.1 Data Balancing

Since a heavily unbalanced training data set will produce a bias in the outputs of the

network, it was hypothesized that it may bene�cial to try to equalize the distribution of

mine and background outputs in the training data. To achieve this balance, the training was

done using the stochastic backprop method and by presenting both mine and background

data patterns with approximately the same frequency. This resulted in each of the mine

data points being used in the training of the neural network more frequently than any of the

background data. This does not provide a perfect solution for balanced training since the

Final Report for Period 3/27/92-3/31/95 57

network will be trained on a small set of data more frequently than the others. Although,

this may not be the solution for training the neural network for optimum generalization

performance, it was an attempt to improve the performance of the heavily uneven data set

created by using outlier removal.

Comparing the results after data balancing the training set against the results with-

out data balancing, a remarkable increase in the mine detection performance was observed.

This was very promising and may have explained one of the reasons why the four nearest

neighbor method was showing a decreased mine detection rate.

6.2 Modi�ed Outlier Removal

The two problems using the outlier removal method seems to be that the distribution of

mine data and background data becomes very uneven and the total number of data points

representing mines also becomes too small. The use of data balancing when training the

network, although not a perfect solution, seems to alleviate some of the problems with

the uneven data distribution. However, the very limited number of mine exemplars does

limit the e�ectiveness of the neural network to generalize over a larger input data space.

Therefore, in an attempt to get the bene�ts of outlier removal and still maintain as many

di�erent mine data inputs as possible, a new modi�ed outlier mechanism was developed.

Instead of removing all data points which do not satisfy the four or eight nearest neighbor

criterion, only the background data are subjected to outlier removal. Therefore, all of the

mine data is retained in an attempt to maintain a large data pool of mine data and the

outlier removal procedure was conducted only on the background data. The background

data near mines are removed from the training set. Although this method retains the mine

data at the edges of the mine, the hope is that the bene�t from having a larger mine data set

will be greater than the detriment of having some outlier mine data. The mine/background

data balancing was also always done on the modi�ed outlier removed training data sets.

The results from using the modi�ed outlier removal method and data balancing were very

favorable.

58 Adaptive Neural Networks for Mine Detection

Final Report for Period 3/27/92-3/31/95 59

7 Transform Methods

A number of similar but di�erent \transform" data preprocessing methods were investigated

during this contract period. All of these transforms have the property that they form a

vector Y ,

Y = A
T
X

where A is the transformation matrix, and X is a k dimensional preprocessed vector of data

from the mine lane.

The motivation behind this transformation is twofold. First, the pattern space may

be transformed in such a way that a PNN or an NN is more capable of separating the mine

patterns from the background patterns. Secondly, data reduction can be achieved: i.e. we

can compute Ym = A
T
mX where Am contains the �rst m of the k columns of A, and Ym

has the resulting dimension m. Generally, better separation and lower dimensionality can

be attained at the same time, and the data reduction is achieved without a signi�cant loss

of \energy" from the input data, and thus without a signi�cant loss of performance. This

data reduction will result in faster training times and faster and more compact network

realizations. Figure 37 shows the data
ow block diagram used by all the transformation

methods. The globally preprocessed data from the minelane, Xglob, is preprocessed to form

X , which is transformed to form: Ym = A
T

m
X . The vector Ym is then input to either an

NN or a PNN as appropriate, and training and testing is performed as usual.

NN or PNNPreprocess Transform
AT

m
X

Xglob

X
Class Estimate

Figure 37: Data Flow in the Transformation

7.1 The Karhunen-Loeve (KL) Transform

The Karhunen-Loeve Transform [43] will be discussed �rst since it forms a basis for dis-

cussing the more complex methods which follow.

The KL Transform is the only \unsupervised" transform that we investigated. The

notation \unsupervised" refers to the fact that the transform matrix A was generated from

the training patterns X in the mine lane, without knowing what the classes of the training

patterns were.

The KL method (otherwise known as principal components analysis, or the Hotelling

transform) performs a linear transformation on the input data. The input vector X is

multiplied using an orthonormal matrix A to form Y = A
T
X . Since A is orthonormal, the

resulting operation is a rotation of the input data in k-space.

We wish to compress the information content of the input window into as few pa-

rameters as possible. To see that this can be done, imagine a random variable Z whose

60 Adaptive Neural Networks for Mine Detection

probability density function (pdf) resides completely on some 2-D plane in 3-space. Three

parameters are required to specify any of the values that the random variable Z can assume.

However, suppose we rotated the entire space by some transformation such that the rotated

pdf lies on the x-y plane. In this new coordinate system, only two parameters are required

to specify any point in the pdf.

In the mine-detection problem, if all S parameters and all frequencies are being used,

then there are k=44 input coe�cients to the neural network (88 if phase values are being

used too). Assuming that the relevant information content required for �nding mines lies

in some sub-space of the 44-D space, we can �nd a matrix Am to rotate and compress the

input window such that we can extract only the parameters we need. We choose the matrix

A which performs a 44-dimensional rotation so that any input window can be speci�ed with

the fewest number of values. The correct choice of this matrix is the modal matrix of X

which can be found as follows:

First, compute the covariance matrix for X .

�X = E[(X �X)(X �X)T]

Then, compute the eigenvalues (�i) and eigenvectors (ui) of �X . Since �X is positive semi-

de�nite, all the eigenvalues will be non-negative and real. Without loss of generality, we

can order the eigenvalues such that

�1 � �2 � � � ��k � 0:

Compose the matrix A by setting its columns equal to the ordered eigenvectors:

A = [u1u2 � � �uk]

Now, let's consider the rami�cations of representing feature vector X using m < k com-

ponents of Y . Since X and Y are random vectors, the meaningful measure of error is an

expectation, and in particular the mean square error metric works well. First, make some

de�nitions:

A = [Am : Ak]

where Am is a k�m matrix consisting of the �rst m columns of A (the �rst m eigenvectors

of �X) and Ak consists of the remaining (k � m) deleted columns of A, corresponding to

the k �m terms not used to represent the vector X . Thus,

X = [Am : Ak]

"
Ym

Yk

#

where Ym is the vector consisting of them components of Y used to represent X ; Yk consists

of k�m components not used. The representation of X , denoted as X̂ resulting from using

only m elements of Y may be written as:

X̂ = AmYm

Final Report for Period 3/27/92-3/31/95 61

Therefore the representation error is given by the k � 1 vector � where:

� = X � X̂

= AkYk

=

kX
i=m+1

aiYi

where ai is the i
th column of A, and Yi is the i

th component of Y .

With some math, this reduces to:

E[k � k2] =
kX

i=m+1

�i

Clearly, if we are to minimize the error while discarding components from Y , we

must discard those components with the smallest eigenvalues.

7.1.1 Application of the KL Transform

In order to use the KL transform, one must �rst compute the modal matrix A. This was

done as follows: The input mine lane was broken up along its length into �ve sections. The

�rst, third and �fth sections were considered to be training data, and the remaining sections

were testing data (This is consistent with the rest of the report). A covariance matrix �X

was computed by taking all possible input vectorsX from the training set and computing27.

�X =
1

N � 1

NX
i=1

(Xi �X)(Xi �X)T

To compute this with one pass through the data (to compute X and �X in parallel):

�X =
1

N � 1

NX
i=1

(Xi �X)(Xi �X)T

=
1

N � 1

NX
i=1

�
XiX

T

i �XiX
T �XX

T

i +XX

T
�

27If the value of X were known explicitly, then we would need to calculate �X = 1

N

PN

i=1
(Xi �X)(Xi �

X)T . The expected value of this calculation is: E[�X] = E[X2]�X
2
, which is an unbiased estimator of the

covariance array. However, we do not know the value X, and must estimate it as: 1

N

PN

i=1
Xi. With some

calculation, we can show that it is necessary to use the multiplicative constant 1

N�1
when calculating �X in

this case in order to form an unbiased estimate.

This issue is relatively unimportant, since we are most concerned with the eigenvectors of �X, which are

una�ected by the constant. Each of the eigenvalues will be di�erent by a factor of N�1

N
if the \incorrect"

scheme is used. The eigenvalues are only used to calculate the number of eigenvectors used to form Am, and

the factor N�1

N
is so close to 1, that there will probably be no di�erence in the decision whichever selection

is made.

62 Adaptive Neural Networks for Mine Detection

=
1

N � 1

"
NX
i=1

XiX
T

i

!
�

NX
i=1

Xi

!
X

T �X

NX
i=1

X
T

i

!
+NXX

T

#

Let � =
P

N

i=1XiX
T

i
and � =

P
N

i=1Xi. Then,

�X =
1

N � 1

h
��

�
NX

�
X

T �X

�
NX

T
�
+NXX

T
i

=
1

N � 1

h
��NXX

T
i

=
1

N � 1

"
�� ��

T

N

#

where � and � can be easily computed in parallel in a summation loop. The eigenvalues

and eigenvectors of �X are computed and the matrix AT

KL
is generated and stored. This is

done as an o�-line procedure, although methods exist for computing it iteratively using a

neural-net like structure. For a full algorithm to generate the AKL matrix, see Figure 38.

begin fgenerate AKLg

N = 0, � = [0]k�1, � = [0]k�k.

For each preprocessed vector Xi in the training

section:

If Xi is not an outlier, then:

� �+Xi

� � +XiX
T
i

N N + 1

endif

endfor

�X = 1

N�1

h
�� ��T

N

i
Compute the eigenvectors ui and the eigenval-

ues �i of �X.

AKL = [u1u2 : : : uk], sorted by descending �i.

bKL = [�1�2 : : : �k]
T

Store ATKL; bKL for later use.

end fgenerate AKLg

Figure 38: Algorithm for generating AKL

To perform the KL transform, we create the matrix Am from AKL as:

Am = AKL[1 :m]:

That is, Am is a k �m dimensional array which holds the �rst m columns of AKL. The

value of m is chosen to meet the energy criterion:

m = min
j

�1
"Pj

i=1 �iP
k

i=1 �i

� E

100

#
; 0 � E � 100

Final Report for Period 3/27/92-3/31/95 63

So, Am holds the minimum number of eigenvectors required to maintain at least E

percent of the energy in the transform. Once Am is formed, the transform is carried out as

outlined above: For each input vector X ,

Ym = A
T

m
X

This vector is used as input to either the NN or PNN, as appropriate, and training

and testing is performed as usual.

7.1.2 Whitening the KL Transform

The KL transform is an orthonormal transform. That is, it preserves the structure of the

covariance matrix, and Euclidean distances between points are maintained. Only rotations

can be performed.

We could also, instead of composing AKL with the eigenvectors of �X , formAKL;w =

[u01u
0
2 : : :u

0
k
] where u0

i
= uip

�i
. Then, we are computing a whitening transform which �rst

rotates the input space, and then makes the variance along each dimension equal to one.

This can result in simplifying the decision boundary by \
attening" it out. Additionally,

since the scale of each transform coe�cient Yi is normalized, then the network will be

more easily implemented with �xed precision weights. There is also reason to believe that

network training may become faster since the NN training method is based on steepest

descent learning which in turn converges most quickly for low eigenvalue spread. Whitening

is a lossless operation, in the sense that a NN can reach exactly the same solution as with

non-whitened data by replacing the �rst hidden layer neuron weights W by Diag[
p
�i]W .

7.2 The KL+ Transform

Since we know the class of each pattern in the training region, it seems logical that we can

use this knowledge to our advantage. Suppose we were to compute the transform matrix

Am using only patterns corresponding to mines.

Then, the input space would be rotated so that the covariance matrix of the mine

patterns would be most e�ciently spanned by the basis vectors. The regular KL transform

would make the entire combined covariance matrix be most e�ciently spanned, and perhaps

would not function as well. This is illustrated in Figure 39.

The algorithms for computing AKL+ (and AKL� , used for the \Composite Trans-

form") are shown in Figure 40. As with KL, Am is formed from AKL+ to meet the energy

criterion, and Ym = A
T

mX .

7.3 The Composite Transform

The KL+ transform tries to take into account the covariance matrix corresponding to pat-

terns where mines are present. However, improvement may still be achieved by considering

64 Adaptive Neural Networks for Mine Detection

Before Transformation KL+ Transformation

KL Transformation

M

B

B

M

M
B

Note: "M" is the mine

covariance plot;

"B" is the background

covariance plot.

Figure 39: The KL+ Transform

both the AKL+ transform matrix and a similar matrix computed from a covariance matrix

of the background patterns. In Figure 40, this matrix is called the AKL� matrix.

The composite transform uses the most signi�cant eigenvectors from both the AKL+

and the AKL� matrices. To perform the composite transform, we form the matrix Am as:

Am =
�
AKL+ [1 :m1] : AKL� [1 :m2]

�
Am is a k�m dimensional array which holds the �rst m1 columns of AKL+ and the

�rst m2 columns of AKL� . The values m1 and m2 are chosen as:

m1 = # of �i from AKL+ greater than or equal to: �KL+

m2 = # of �i from AKL� greater than or equal to: �KL�

Once Am is formed, the transform is carried out as outlined above:

Ym = A
T

mX

This vector is used as input to either the NN or PNN, as appropriate, and training

and testing is performed as usual.

7.4 The Eigenspace Separation Method

One of the transform methods investigated, the Eigenspace Separation Method (ESM),

was developed by Dr. Torrieri of ARL. The following theoretical details and derivation are

courtesy his personal communication [46].

Final Report for Period 3/27/92-3/31/95 65

begin fgenerate AKL+g

N = 0, � = [0]k�1, � = [0]k�k.

For each preprocessed vector Xi in the

training section:

If Xi is not an outlier and Xi is a

mine pattern, then:

� �+Xi

� �+XiX
T
i

N N + 1

endif

endfor

�+ = 1

N�1

h
� � ��T

N

i
Compute the eigenvectors ui and the

eigenvalues �i of �+.

AKL+ = [u1u2 : : : uk], sorted by de-

scending �i.

bKL+ = [�1�2 : : : �k]
T

Store ATKL+ ; bKL+ for later use.

end fgenerate AKL+g

begin fgenerate AKL
�

g

N = 0, � = [0]k�1,� = [0]k�k.

For each preprocessed vector Xi in the

training section:

If Xi is not an outlier and Xi is a

background pattern, then:

� �+Xi

� � +XiX
T
i

N N + 1

endif

endfor

�� = 1

N�1

h
�� ��T

N

i
Compute the eigenvectors ui and the

eigenvalues �i of ��.

AKL
�

= [u1u2 : : : uk], sorted by de-

scending �i.

bKL
�

= [�1�2 : : : �k]
T

Store ATKL
�

; bKL
�

for later use.

end fgenerate AKL
�

g

Figure 40: Algorithms for generating AKL+ and AKL�

The purpose of the ESM is to perform a linear transformation which will maximize

the di�erence in norm of patterns of class 1 and patterns of class 2. i.e. we wish to maximize

the metric:

D =
���E hk y1 k2 � k y2 k2

i���
.

We note that if X is an input vector, and Am is the transformation matrix, then:

E[k Y k2] = E

2
4 mX
j=1

(aTj X)2

3
5 = E

2
4 mX
j=1

(aTj X)(XT
aj)

3
5

Computing the expected square norm for vectors X belonging to the mine class or

the background class, we get:

E[k Y+ k2] =
mX
j=1

a
T

j R+aj E[k Y� k2] =
mX
j=1

a
T

j R�aj

where R+ is the correlation matrix for mine patterns and R� is the correlation matrix for

background patterns.

We de�ne M = [R+]� [R�]. Therefore, we can write:

D =

������
mX
j=1

a
T

j Maj

������

66 Adaptive Neural Networks for Mine Detection

Now, if we de�ne:

Ep =

kX
i=1

�i>0

�i En =

kX
i=1

�i<0

j �i j

then, it can be shown that D � max [Ep; En]. Therefore, we maximize D by choosing the

transform Am to include all of the eigenvectors corresponding to the positive eigenvalues

of M if Ep > En, or by choosing the transform Am to include all of the eigenvectors

corresponding to the negative eigenvalues of M if En > Ep.

begin fgenerate AESMg

N+ = 0, �+ = [0]k�k.

N� = 0, �� = [0]k�k.

For each preprocessed vector Xi in the training section:

If Xi is not an outlier, then:

If Xi is a mine pattern then:

�+ �+ +XiX
T
i

N+ N+ + 1

else

�� �� +XiX
T
i

N� N� + 1

endif

endif

endfor

R+ = 1

N+
�+

R� = 1

N
�

��

M = [R+]� [R�]

Compute the eigenvectors ui and the eigenvalues �i of M .

AESM = [u1u2 : : : uk], sorted by descending �i.

bESM = [�1�2 : : : �k]
T

Store ATESM ; bESM for later use.

end fgenerate AESM g

Figure 41: Algorithm for generating AESM

The algorithm for generating the transform array AESM is shown in Figure 41. Two

covariance matrix are maintained: one for mine patterns, and one for non-mine patterns.

The matrix M = [R+] � [R�] is computed and the eigenvectors of this matrix are used to

form the transform matrix.

To perform the ESM transform, we create the matrix Am from AESM as either:

Am = AESM [1 :m]; or Am = AESM [k �m+ 1 : k]:

Final Report for Period 3/27/92-3/31/95 67

Again, Am is a k � m dimensional array which holds either the �rst or last m

columns of AESM . We note that M is not a positive semi de�nite matrix (although it is

still symmetric) since it is the di�erence of two other p.s.d. matrices. So, the eigenvalues of

M may be negative. With this in mind, we choose m to be:

m = max f# of positive �i;# of negative �ig

If the number of positive eigenvalues is greater than the number of negative eigen-

values, then Am = AESM [1 :m]; otherwise Am = AESM [k �m+ 1 : k].

Once Am is formed, the transform is carried out as outlined above:

Ym = A
T

m
X

This vector is used as input to either the NN or PNN, as appropriate, and training

and testing is performed as usual.

7.5 The Simultaneous Diagonalization Transform

The purpose of the KL transform is to diagonalize the covariance matrix of a distribution

by rotating the input space to align it with the axis. The KL transform has no knowledge

of the various sub-covariance matrices which form the overall distribution, so conceivably

knowledge of them could be used to simultaneously diagonalize two di�erent covariance

matrices, and thus improve on the KL transform. This method is called the \Simultaneous

Diagonalization Transform".

First, let's look at it graphically in Figure 42. If we know the covariance matrix

for the background patterns, we can compute the KL transform matrix AKL� using that

knowledge. Applying this transform to the input data aligns the background covariance

matrix with the axes, but not the minetype covariance matrix. Now, let us whiten the

KL� transform. Now, the background covariance matrix is the identity matrix, and it is

aligned with any possible set of axes. So, thirdly, we can compute the transform of the

rotated, scaled, minetype patterns, and transform the resulting data. Thus, the input set is

rotated, scaled, and rotated again to form an overall covariance matrix whose sub-covariance

matrices are diagonal28 The derivation of the SDM algorithm is included in Appendix B.

The resulting transform is not orthonormal. Euclidean distances are not maintained.

It is lossless, however, if all components of the transform array are used.

The criterion used to determine which \features" of ASDM to retain and which to

discard is rather complicated (It is covered in detail in Appendix C). Each vector in ASDM

is treated separately, and the MSE e
2
i
incurred if that row were removed is calculated. The

array ASDM is then sorted by decreasing e2
i
, and Am is formed from ASDM as:

28We also could have whitened with respect to �+ and diagonalized with respect to ��. However, we

note that �+ is in turn composed of �1;�2; : : :�5, the matrices of the 5 minetypes. The �� matrix may be

far more homogeneous, so whitening the transform with respect to it makes more sense.

68 Adaptive Neural Networks for Mine Detection

B B

B B

M M

M

M

a) b)

c) d)

Figure 42: Formation of the Simultaneous Diagonalization Transform. a) The original covari-

ance diagrams. b) Rotated w.r.t. the background patterns. c) Whitened w.r.t. the background

patterns. d) Both matrices diagonalized.

Am = ASDM [1 :m]:

Again, Am is a k�m dimensional array which holds the �rst m columns of ASDM .

The value of m is chosen as:

m = min
j

�1
"Pj

i=1 e
2
iP

k

i=1 e
2
i

� E

100

#
; 0 � E � 100

Once Am is formed, the transform is carried out as outlined above:

Ym = A
T

m
X

This vector is used as input to either the NN or PNN, as appropriate, and training

and testing is performed as usual.

7.6 The \UNKL" Transform

It was thought that there may be an advantage to re-mapping the transformed X back

to the original higher dimensional space. i.e.29 Y = Am[A
T

mX]. Since A
T

mXi is a lossy

operation, we are mapping Xi onto an m dimensional space and then re-mapping it back

29Note: Since the ASDM array is not unitary, the UNKL operation for SDM is: Y = A�T
m [ATmX], where

A�T
m is the �rst m columns of ��

1
2	.

Final Report for Period 3/27/92-3/31/95 69

begin fgenerate ASDMg

N+ = 0, �+ = [0]k�1, �+ = [0]k�k.

N� = 0, �� = [0]k�1, �� = [0]k�k.

For each preprocessed vector Xi in the training section:

If Xi is not an outlier, then:

If Xi is a mine pattern then:

�+ �+ +Xi

�+ �+ +XiX
T
i

N+ N+ + 1

else

�� �� +Xi

�� �� +XiX
T
i

N� N� + 1

endif

endif

endfor

�+ = 1

N+�1

h
�+ �

�+�
T
+

N+

i
�� = 1

N
�
�1

h
�� �

�
�
�T
�

N
�

i
Compute the eigenvectors � and the eigenvalues � of ��.

Set R = ��
1
2�T�+��

�1
2

Compute the eigenvectors 	 and the eigenvalues � of R.

Set ATSDM = 	T ��
1
2�T

Compute the individual MSE e2i for removing row i from

ASDM .

Sort ASDM by decreasing e2i .

bSDM =
�
e21e

2
2 : : : e

2
k

�T
Store ATSDM ; bSDM for later use.

end fgenerate ASDMg

Figure 43: Algorithm for generating ASDM

to the original k dimensional space. The network is given more coe�cients to work with,

which may aid it in �nding a good decision boundary (through a sparser space). Another

way to look at it is that the most signi�cant noise was eliminated in (AT

mXi), and that the

reprojection puts the vector back into the higher dimensional space with the noise removed.

70 Adaptive Neural Networks for Mine Detection

Final Report for Period 3/27/92-3/31/95 71

8 Vector Quantizer Aided Generalization

The ability of a neural network to generalize forms the basis of using them for the mine

detection problem. Clearly, there will always be a practical limit to the amount of data that

can be collected to train the network. At some time, the network must be able to process

new data and decide whether or not a mine is present at that point. In both the PNN and

NN, but most explicitly with a PNN, this generalization is an intelligent interpolation in

k-dimensional space between the known data points.

Figure 44 shows two interpolating curves that pass exactly through a discrete set of

data points. With no further knowledge of the underlying function that is being approxi-

mated, either of these two curves may be the better �t to the true data. In fact, there are

an in�nite number of curves which pass exactly through the data points, only one of which

represents the true function.

-20

-10

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5 4

f
(
x
)

x

Data Points with Two Approximations

Figure 44: Two interpolating curves for a small data set.

If, furthermore, we assume that the data points may be noisy measurements of some

true data points, then the \correct" curve may not pass exactly through any of the data

points at all, but may look more like a curve obtained using the least-squares data �tting

method.

The problem of pattern recognition/classi�cation is exactly the same problem as

�tting a function to a set of data points. It is a dual problem { it can be viewed as

generating a decision boundary curve from data points, or it can be viewed as generating

probability density surfaces, from which a decision boundary may be computed. In either

case we are faced with a problem. Which curve best represents the underlying function?

It is a widely held belief that the \best" curve is the one which most smoothly �ts the

data with the fewest oscillations. This conjecture is based on a belief in the simplicity and

elegance of nature, and also on an assumption of the uniformity of noise.

72 Adaptive Neural Networks for Mine Detection

9

9

x

x

x

x

x

x

x

xx

x

xx

x x x

o

o
o

o

o
o

o

o

o o

o

Separating Decision

Boundary

Bayesian Decision

Boundary

Figure 45: Two boundary curves.

Figure 45 shows an illustrative two-class pattern classi�cation problem. The training

data for class 1 is represented by the letter \o" and the training data for class 2 is represented

by the letter \x". These data points represent noisy samples from two underlying probability

density functions. Suppose that we know that the two classes are disjoint, that true \o"

samples only occur in the lower triangular region, and that true \x" samples only occur in

the upper triangular region. Then, the Bayesian decision boundary is the line separating

these regions (assuming uniform noise). However, using the training samples shown, a

network trying to minimize error over the training set might be trained to produce the

separating line that is shown in the �gure. As can be seen, this line perfectly separates

the training samples; however, it will perform poorly on testing samples drawn from the

underlying probability distribution functions. One method to solve this problem is to obtain

more training samples to train the network with. Given a su�ciently large set of training

samples, the network can learn the correct decision boundary. However, obtaining such a

set of data is not always possible. For the case of mine detection, for example, we have a

�xed data set with which to work.

One way to help remedy this problem is to discard or otherwise suppress the statisti-

cally unlikely points when training the network. The hope is that a more natural boundary

will be formed. For this two-dimensional, two-class problem, we may easily visualize a deci-

sion boundary that is close to the Bayesian boundary. However, for the mine classi�cation

problem there are potentially six output categories and 88 dimensions to each input vector,

which makes the statistical anomalies harder to detect. Several methods were tried, and

are described in the following sections.

Since it was just stated that increasing the training set size will help the network

learn the decision boundaries more correctly, why then should we expect the network to

do better by decreasing the training set size (which we must do if we are to suppress the

statistically unlikely points)? On one hand, many training points will help the network to

Final Report for Period 3/27/92-3/31/95 73

learn the boundary. On the other hand, the reason we need so many points is that some

of them are statistically unlikely and must be compensated for. If they are removed, the

network should be able to learn without so many training samples.

8.1 Data Clustering via Vector Quantization

This section describes several statistically motivated techniques to remove or de-emphasize

statistical outliers. All methods use vector quantizer (VQ) algorithms, which are more

commonly associated with the �eld of \lossy" data compression.

When vector quantization is used as a data compression technique, it works as

follows. First, we assume that we have a \codebook" of vectors called \centroids",

fYk : k = 1; 2; : : : ; rg

each having the same dimension as a vector in our input data source. Then, for every input

vector X from our input data source, we �nd its nearest neighbor in the codebook. This

is done by �nding the index i such that some distortion function D(Yi; X) is minimized.

Typically, D(a; b) = ka�bk2. Finally, the index i replaces the vectorX . Since r is relatively

small, the integer value i will take fewer bits to represent than the real valued vector X ,

and data compression is achieved. The decoder reverses this process to produce X̂ = Yi.
30

In order to optimize the compression, so that the reconstruction is as close as possible

to the original, the codebook used for compression must be optimized. There are several

ways to generate such a codebook; the most popular method is referred to as either the

Lloyd I algorithm, or the LBG algorithm. An alternate method by Kohonen is called

Learning Vector Quantization (LVQ). Both methods are iterative ways to develop an optimal

codebook using a training set. Once the codebook is generated using either method, its

contents (termed centroids) represent \typical" vectors in the training set.

VQ algorithms will be covered later. For now, we assume that a procedure exists to

produce (near) optimal codebooks.

8.1.1 Statistical Outlier Suppression using VQ

We have seen how vector quantizer techniques can be used to compress an information

source, but the question remains \How can they be used with networks for pattern recogni-

tion?" There are two di�erent ways that a vector quantizer codebook can be used to help

the generalization of a network, and the utility of each method will depend on the data

itself.

The �rst method is to suppress the outliers. This is done by �rst developing a

codebook of centroids. Typically a 10:1 (or even higher) ratio of training points to codebook

vectors is desirable. Then, each of the centroids will be an average of approximately ten

nearest neighbor input vectors. These centroids are then used to train a neural network.

30We note that X̂ 6= X, and so this data compression technique is \lossy".

74 Adaptive Neural Networks for Mine Detection

W

-

-

-

train

test

Decision
List

Testing

Data

Centroids

Training
Data

VQ

NN

Figure 46: Data
ow when using a VQ to suppress outliers.

That is to say, the neural network is no longer trained using data directly taken from the

mine lane, but is trained with the centroids computed by the VQ algorithm. This is shown

in Figure 46.

)

x

x

x

x

x

x

x

xx

x

xx

x x x

o

o
o

o

o
o

o

o

o o

o

Separating Decision

Boundary

Bayesian Decision

Boundary

\o"

\x"

\o"

\o"

\x"

\x"

Figure 47: Boundary curve trained using centroids.

Figure 47 illustrates how this process works. The large circles on the �gure show the

rough areas covered by each centroid. The centroids themselves are depicted as boldface

\x" or \o". We see that each centroid is on the correct side of the Bayesian boundary, and

thus the separating decision curve is much closer to the optimal one.

By training with the centroids, the network is learning a smoother function since

noise has been suppressed. If noise is a problem, generalization should improve.

8.1.2 Statistical Outlier Removal using VQ

Thus far, we have not described how desired responses are associated with centroids. This

is discussed in Section 8.3. We simply note for now that it is possible for the Voroni

Final Report for Period 3/27/92-3/31/95 75

region de�ned by a certain centroid to contain input vectors with several di�erent desired

responses. These are input vectors which are close to the Bayesian decision boundary.

In this case we may assume that those input vectors whose class does not agree with

the class of their nearest centroid are statistical anomalies. The \statistical outlier removal"

method simply deletes these input vectors from the training set.

W

-

- -

-

train

test

Decision
List

Testing
Data

Training
Data

Outliers
Deleted

VQ

NN

Figure 48: Data
ow when using a VQ to remove outliers.

Figure 48 shows how this is done. The process is very similar to that used when

suppressing outliers. The VQ algorithm is once again run on the training data. This time,

the centroids are not used to train the network. Instead, the outliers are thrown away and

the remaining training vectors are used to train the neural network.

	 �

x

x

x

x

x

x

xx

x

x

x x x

o

o

o

o

o

o o

o

Separating Decision

Boundary

Bayesian Decision

Boundary

Figure 49: Boundary curve trained without statistical outliers.

Figure 49 illustrates how this process works. With the outliers removed, the \x"

and \o" points are all on the correct side of the Bayesian boundary, and thus the separating

decision curve is much closer to the optimal one.

76 Adaptive Neural Networks for Mine Detection

-Neural
Network

�̂(x̂)
- -Phenomenon

`�'

[x;�(x)]

f�(x)

Vector
Quantizer

x̂

�(x)! i

�(i)! x̂

�(i)! �̂(x)

Figure 50: Data
ow in a pattern recognition system incorporating a vector quantizer

8.2 Vector Quantizer Methods

We now expand a bit on the theory of VQ, the di�erent algorithms used to construct

codebooks, and the rationale behind, and subtle side-e�ects of each. Material for this

summary was obtained from a wide variety of sources [10, 28, 29, 25, 34, 51, 36, 47, 2].

Since each original researcher has their own notation and style, it was necessary to develop

a uni�ed notation to compare algorithms from these di�erent sources. This notation agrees

with the original sources as well as possible without con
icting with itself.

The philosophy behind vector quantization is to represent some given phenomenon

as accurately as possible (in some sense) with �nite resources. Since the phenomenon to be

represented can not typically be de�ned by a �nite set of descriptors, there will be a certain

degree of inaccuracy in the reconstruction, termed \distortion." A description is usually

considered optimum if it minimizes this distortion31.

Let us consider only those phenomena � � <k: those � which are a subset of the

class of all real valued vectors of dimension k. Furthermore, let us consider that exam-

ples, `x', from this phenomenon have a class function (not necessarily known) �(x), and a

probability density function (pdf): 32

f�(x) =

(
0 � f�(x) � 1 x 2 �

0 x 62 �

such that

Z
�
f�(x) = 1

Therefore, examples of this phenomenon will be ordered pairs of the form [x; �(x)], and will

occur with frequencies proportional to f�(x). This is illustrated on the left hand side of

Figure 50.

A fully trained vector quantizer (VQ) is shown in the center of Figure 50. The

training of the VQ consists of constructing the functions �(x), �(i) and �(i). �(x) is the

\encoding function" which converts the input example to the quantized output `i'. The

31Note that in Sections 8.4.4 and 8.4.4 the desired solutions do not minimize distortion. Therefore, we see

that other cost functions can be used to grade the representation.
32The mine lane data clearly belongs in �: at each spatial point in the lane, we measure a vector of 88

real valued coe�cients. The class at each point takes on the value `0' if the point is a background point, or

the values `1' to `5' if the point is over a mine. The pdf is unknown, and can only be estimated from the

data.

Final Report for Period 3/27/92-3/31/95 77

\decoding function" �(i) in turn creates an estimate of the input, `x̂', from this quantized

value. �(i) is not always used, but its function is to estimate the class of the input, �̂(x),

given the quantized value. When used with a neural network to perform pattern recognition,

the VQ outputs x̂ = �(�(x)) which the neural network uses as input to produce the class

estimate �̂(x̂). A VQ distortion function D(x̂; x) is de�ned to quantify the quantization

error between x̂ and x. For our work, a simple mean-square-error distortion measure is

used, so the total distortion function to be minimized is D(x̂; x) = kx̂� xk2. �(�) and �(�)
are chosen to minimize the expected distortion Ex [D(�(�(x)); x)].

The actual functions �(�) and �(�) are realized in the vector quantizer by construct-

ing a \codebook" of \centroids". The term `codebook' simply de�nes a set `C':

C = fYk : k = 1; 2; : : : ; rg;

where each Yk is a vector of the same dimension as x, and is called a `centroid.' The function

�(x) returns the index i of the centroid which represents x with the lowest distortion:

i = �(x) = min
k

�1 [D(Yk; x)]:

The function �(i) returns the centroid vector indexed by i: �(i) = Yi. The �(�) function is

realized by constructing an array of classes, ck which correspond to Yk . Then, �(i) = ci.

While this overall concept of vector quantization is fairly uniform in the �eld, there

are a number of di�erent algorithms available for designing VQ codebooks. None of these

algorithms guarantees even that the \optimal solution" is met; however, they will all provide

\good" solutions (locally optimal ones) in terms of the error function they are trying to

minimize. The algorithms typically di�er in one of three categories: batch versus stochastic

update learning; di�erence in the error function being minimized; and supervised versus

unsupervised learning. Understanding how the algorithms di�er in these ways can be a

key to understanding the fundamental di�erences between results obtained with them. The

particular algorithms which will be addressed here are: LBG (Lloyd-I), LVQ 1, LVQ 2.1,

LVQ 3, OLVQ1, SOM, \SOM with a conscience", FSCL and C&SL.

8.2.1 Optimality Conditions

There are three known necessary (but not su�cient) conditions for a vector quantizer to

be optimal in the sense of minimizing distortion. They are called: the \Nearest Neighbor

Condition", the \Centroid Condition" and the \Zero Probability Boundary Condition".

The only algorithm which guarantees that these optimality conditions are met is the LBG

algorithm. However, even the LBG algorithmmay produce codebooks which are not globally

optimal. The conditions will be described, and then a very simple counter-example will be

given to show that a globally optimal codebook is not always achieved.

78 Adaptive Neural Networks for Mine Detection

Optimality: Nearest Neighbor Condition

The �rst optimality condition, the \Nearest Neighbor Condition", optimizes the

encoder for a speci�c decoder. It states that every input data point must be assigned to

the centroid which minimizes the distortion function:

�(x) = i = min
k

�1 [D(Yk; x)]:

This is clearly a necessary condition since, if an input data point were assigned to some

other centroid, the total distortion would be decreased by simply remapping it to its nearest

neighbor. The nearest neighbor condition partitions the input data source into regions Rk

(called \Voroni Regions") represented by each centroid Yk. The union of all Rk is the entire

input set R: R =
S
k Rk.

Optimality: Centroid Condition

The second condition, called the \Centroid Condition" optimizes the decoder for a

speci�c encoder. It states that every centroid must be equal to:

�(i) = Yi = cent(Ri) = min
y

�1
E[D(y;X)jX 2 Ri]

That is, for every Voroni region R, its centroid minimizes the total expected distortion

between itself and all points in that region. If the distortion function is the squared error

function, this reduces to: (for a discrete source)

cent(Ri) =
1

kRik

kRikX
k=1

xk

Optimality: Zero Probability Boundary Condition

The third optimality condition states that an optimal codebook will meet the con-

dition:

P

r[

k=1

Bk

!
= 0;

that is, examples `x' falling on the boundary between two Voroni regions occur with zero

probability. We see that this must be the case by considering an input point x0 which is

encoded to Yj but is equally distant to Yi. If we move x0 to the region Ri, then a di�erent

code is made with the same average distortion. This results, however, in moving a nonzero

probability input point from Rj to Ri, which must move the centroids of both Rj and Ri,

which means that the codebook is no longer optimal for the new partition.

Final Report for Period 3/27/92-3/31/95 79

This condition is clearly degenerate when the input is a continuous random variable,

since all boundary points will have zero probability. However, when the input is a discrete

random variable, this condition has meaning.

A Counter Example

--

66

A bad example of

centroid positions.

A good example of

centroid positions.

Figure 51: Two locally optimal codebooks

If all three of these conditions are simultaneously met, then the codebook of centroids

is locally optimized. However, the codebook may not be globally optimized. Consider for

instance, an input with x1 and x2 both uniformly distributed between 0 and 1. Suppose we

have a codebook of four centroids C1 which are positioned at

C1 = f(0:5; 0:125); (0:5; 0:375); (0:5; 0:625); (0:5; 0:875)g:

These centroids are locally optimal, and satisfy the three optimality conditions. However,

the codebook C2 of four centroids:

C2 = f(0:25; 0:25); (0:25; 0:75); (0:75; 0:25); (0:75; 0:75)g

produce a codebook with lower distortion. See Figure 51 for an illustration of this example.

The ability of LBG, or any of the other methods (which are all descent methods), to �nd

the globally optimal solution depends entirely on the initial codebook used. Typically, local

solutions are still quite good, but methods exist to help select the initial codebook to enable

better results. These are described in Section 8.4.5.

8.3 Bayes Risk Weighted VQ

When using Vector Quantizers to design a codebook of centroid vectors for pattern recog-

nition purposes, it is being simplistic to assume that a simple squared-error distortion cost

function will produce the optimum codebook. The cost function should really include one

other element: the cost associated with misclassifying a point [34, 51, 36].

80 Adaptive Neural Networks for Mine Detection

To incorporate this \Bayes risk" term into the VQ design, we need to rede�ne our

cost function J� as follows:

J�(�; �; �) = D(�; �) + �B(�; �)

D(�; �) = E

h
kX � �(�(X))k2

i

B(�; �) =

M�1X
k=0

M�1X
j=0

CjkPr(�(�(X)) = k and Y = j)

D(�) is the mean squared error distortion term we have used before.

B(�) is the Bayes risk term.

�(�) is the VQ encoding function: i = �(X).

�(�) is the VQ decoding function: X̂ = �(i).

�(�) is the mapping between codeword indices and output classes. A classi�cation

error occurs when �(�(X)) 6= Y , where fX; Y g are the corresponding input data

points and desired responses.

Cjk are the costs of classi�cation errors when a vector of class j is misclassi�ed as class k.

The Cjk matrix used for all experimental work here is tabulated in Table 1.

� weighs the cost function between pure distortion when � = 0 and pure Bayes risk

when � =1.

Class Estimate

Bgnd m1 m2 m3 m4 m5

Bgnd 0 1 1 1 1 1

True m1 2 0 0.1 0.1 0.1 0.1

m2 2 0.1 0 0.1 0.1 0.1

Class m3 2 0.1 0.1 0 0.1 0.1

m4 2 0.1 0.1 0.1 0 0.1

m5 2 0.1 0.1 0.1 0.1 0

Table 1: Cjk classi�cation costs.

This new Bayes risk term forces the VQ design program to generate a set of centroids

which take into account the costs associated with misclassi�cation errors. The relative costs

of these errors used for this research are tabulated in Table 1. We see that the cost associated

with classifying a point correctly is zero. The cost associated with misclassifying one mine-

type as another mine-type is a minimal constant. Since we are not too concerned (at this

point in time) with classifying mine-types individually, the cost is not large. Neither is it

zero, however, as this could introduce confusion in the VQ centroid generation process. The

cost associated with misclassifying background as mine is 1 and the cost associated with

misclassifying a mine as background is 2 to indicate that this is a more serious error.

In this enhanced cost function J�, the variable � weighs the two terms. When

� = 0, the cost function is completely distortion based, and when � =1, the cost function

Final Report for Period 3/27/92-3/31/95 81

is completely Bayes risk based. In fact, personal correspondence with Wesel, (one of the

authors of [51]) has discovered that the best results are always obtained in practice when �

is either zero or in�nity. Reducing the problem to these two cases simpli�es the process of

designing a VQ considerably.

8.3.1 Method 1: � = 0

For the � = 0 case, we consider only the MSE distortion when designing a codebook.

For this, we use the standard VQ design algorithm. A set of r locally optimal centroids

are generated in an unsupervised manner. Then, desired responses are generated for each

centroid. This is done by counting the number of vectors of each class in every cluster (ni)

and computing the misclassi�cation cost associated with it. The desired response for that

centroid is the class j which minimizes the misclassi�cation cost:

Desired Response = min
j

�1 X
classes i

niCij

8.3.2 Method 2: � =1

For the � = 1 case, the cost function is based entirely on Bayes risk. Therefore, we force

centroids to be trained only on vectors from their own class. The procedure for generating

these centroids then turns out to be the same as splitting the input data into six sets

according to desired response, and individually generating centroids for each set. Labeling

the desired responses for the centroids is simple since they were only trained using data

from one class { the desired response is simply that class.

8.3.3 Method 3: � =1, reclassify

One subtle detail arises when using method 2. Notice that the cost function B(�) is a function
of the encoding function �(�) and the mapping function �(�). The procedure described above
optimizes the �(�) function, but completely ignores the �(�) function. It turns out that a

much better VQ classi�er can be built if �(�), �(�) and �(�) are all optimized together [36].

Unfortunately, the NN or PNN structure does not a�ord us this opportunity. They both

implicitly use a �(�) function that resembles a k-nearest neighbor mapping. For such systems,
it has been found that improved results can be obtained by designing a � = 1 set of

centroids, and then reclassifying them [51]. This additional reclassi�cation step keeps the

centroids generated by Method 2, but reassigns classes j to each centroid according to:

Desired Response = min
j

�1 X
classes i

niCij

8.3.4 Some Visual Examples

For illustrative purposes, two examples are considered. The �rst example is for a completely

disjoint two-class problem. The two probability distribution functions are uniform. This is

82 Adaptive Neural Networks for Mine Detection

shown in Figure 52 as two grey boxes. Either of the three VQ design methods may be used

to generate good centroids for this case. Methods 2 and 3 will produce identical results since

there would be no misclassi�ed points for any centroid. If the centroids initially assigned

randomly at the start of method 1 are evenly split between the two distributions, then it

will produce results identical with methods 2 and 3 as well. Otherwise, it will end up with

more centroids in one distribution than the other, and performance will be poorer.

X

f(X)

Figure 52: Two Disjoint Distributions.

For the second illustrative example, consider the two probability distribution func-

tions in Figure 53. Again, both are uniform, but they overlap each other. One distribution

has width 2A and height 1/2A, and the other has width 4A and height 1/4A. The Bayesian

decision boundary in this case (with equal a priori probabilities and loss functions) is at

�A. Points inside this region should be associated with the dark pdf, and points outside

should be associated with the light pdf. We note that there will be high residual error in

this case.

X

f(X)

A 2A-A-2A

Figure 53: Overlapping Distributions: Method 1.

The � = 0 method will assign 3/4 of its centroids to the center region since it has

3 times the probability of occurring as the outside regions. All of these centroids will be

classi�ed correctly according to the Bayesian criteria. The � = 1 case, however, will do

very poorly. It will assign equal numbers of centroids to each pdf, and distribute them

evenly. Figure 54 shows that half of the centroids in the center region are assigned to the

light pdf, resulting in many non-Bayesian classi�cations. Such a system would perform

classi�cation much like the one in Figure 45. It may work well on the training data, but

will perform poorly on testing data.

Final Report for Period 3/27/92-3/31/95 83

X

f(X)

A 2A-2A -A

Figure 54: Overlapping Distributions: Method 2.

We see from Figure 55 that the � =1 case with reclassi�cation will perform much

better on this example. All vectors are classi�ed correctly, but the distribution is still not

as good as in Figure 53.

X

f(X)

A 2A-2A -A

Figure 55: Overlapping Distributions: Method 3.

These examples were intended to show that either methods 1 or 3 are expected to

perform best on the data. Which one is actually best will depend on the pdf of the data.

Method 3 will work best on disjoint data, and method 1 will perform best on overlapping

data.

8.4 VQ Design Algorithms

8.4.1 LBG: The Unsupervised/Supervised Batch Algorithm

All of the VQ design algorithms are descent algorithms { that is, they iteratively modify

the centroid positions to cause the system error to move down some error curve. The LBG

algorithm is distinguished from the other algorithms by being a \batch" algorithm. That is,

it bases each centroid update on all of the input data. The other algorithms base a centroid

update on a single example from the input source.

The LBG algorithm has the most theoretical background. It was originally invented

by Lloyd33. It is the only one which guarantees that the optimality conditions are met, and

33Lloyd invented two algorithms for scalar quantizers, which he labeled `I' and `II'. The Lloyd-I algorithm

is the one which was generalized to vector quantizers by Linde, Buzo and Gray. The VQ design algorithm

84 Adaptive Neural Networks for Mine Detection

begin fLBG Algorithmg

initialize centroids

repeat

repeat

calculate distortion between input and centroids:

d1 =
PkRk

i=1
D(�(�(xi)); xi).

update the centroids with a Lloyd iteration

check for empty cells

calculate distortion between input and centroids:

d2 =
PkRk

i=1
D(�(�(xi)); xi).

until jd1 � d2j < �

check for boundary points and reassign them

until no boundary points

end fLBG Algorithmg

Figure 56: The LBG Algorithm

it does so by construction. The algorithm is listed in Figure 56.

The initialization of the centroids is an important consideration for all of the algo-

rithms, but is most important for the LBG algorithm. The LBG algorithm, being a batch

update algorithm has monotonically nonincreasing error into the local minimum closest to

the initial point. The other, stochastic, algorithms may be able to jump out of local minima

and �nd a better solution, making the choice of initial conditions not so critical. Since the

initialization of centroids is common to all the algorithms, it is discussed in Section 8.4.5.

begin fLloyd Iteration number mg

1) Given a codebook Cm = fYig, partition the training set into cluster sets Ri
using the Nearest Neighbor condition:

Ri = fx 2 R : D(Yi; x) < D(Yj; x); all j 6= ig

For all ties, D(Yi; x) = D(Yj; x), assign x to the region with lowest index `i'.

2) Using the centroid condition, compute the new centroids for the cluster sets

just found to obtain an new codebook Cm+1 = fcent(Ri)g.

end fLloyd Iteration number mg

Figure 57: A Lloyd Iteration

A Lloyd iteration has two steps, which are outlined in Figure 57. If an empty cell j

is generated in Step 1, then the largest cell (the one with max kRik) is split by assigning

bears the initials of the latter three researchers.

Final Report for Period 3/27/92-3/31/95 85

half of its elements (arbitrarily) to cell j34.

The vector quantizer can operate in either a supervised or unsupervised manner35.

To train in an unsupervised manner, simply run the LBG algorithm using all the input data

for the r centroids you wish to produce. To train in a supervised manner, �rst divide the r

centroids into ri centroids for each class: r =
P
classes i

ri. Then, for each class, train its ri

centroids using the LBG algorithm with only the input data of that class. In either case,

the desired response for the centroid m, cm is:

cm = min
j

�1 X
classes i

niCij ;

where, ni is the number of input data points of type i in region Rm.

Cij is the cost matrix for misclassifying an input point of type i to type j. The cost

matrix used for all work to date is tabulated in Table 1.

Lastly, the LBG algorithm attempts to minimize total distortion; that is, to opti-

mally �t the underlying probability distribution function of the input source. An alternate

approach is discussed in Section 8.4.6, where the two methods are compared and contrasted.

8.4.2 SOM: The Unsupervised Stochastic Algorithms

The Self-Organizing Maps de�ne a mapping from the input data space <k onto a regular

two-dimensional array of nodes. Each node has a spatial position de�ned on a lattice, and

the lattice can be arranged in either a rectangular or hexagonal pattern. A centroid vector

Yk is associated with every node k. SOM is a stochastic algorithm: centroid updates are

based on a single input sample x(n) at time index n. As with the LBG algorithm, an

input vector x(n) is compared with the Yk, and the best match (usually in terms of MSE

distortion) is de�ned as the \response": the input is thus mapped onto this 2D location36.

i = �(x(n)) = min
k

�1 [D(Yk; x(n))]:

In case of a tie, chose the i with smallest index. Thus, x(n) is mapped onto the node i

according to the centroid values Yk .

An \optimal" mapping would be one that maps the probability density function

f�(x) in the most \faithful" fashion, trying to preserve at least the local structure of f�(x).

As such, those nodes in the array of centroids which are topographically close will be

34Alternately, the cell with the highest partial distortion could be split.
35This was discussed previously under the guise of \Bayes Risk Weighted VQ", where the unsupervised

learning occurred with � = 0 and the supervised learning occurred with � = 1 with reclassi�cation. It is

theoretically uncertain which of these approaches leads to the best solution { it is data dependent. Supervised

learning seems to work best for the mine lane data.
36One might say that the SOM is a \nonlinear projection" of the probability density function of the

high-dimensional input data space onto the two dimensional map space.

86 Adaptive Neural Networks for Mine Detection

from input vectors which are close together in the input space. This is enforced by the

neighborhood concept of the SOM learning algorithm.

The initial values of the codebook can be random or even entirely zero. For every

input example x(n), we �nd the response of the network i = �(x(n)), and update all

centroids as follows:

Yk(n+ 1) = Yk(n) + hik(n)[x(n)� Yk(n)];

where hik is the so-called neighborhood kernel; it is a function de�ned over all lattice points.

Usually hik(n) = h(kri� rkk; t), where ri; rk 2 <2 are the position vectors of nodes i and k

in the array. With increasing kri� rkk; hik ! 0. The average width and form of hik de�nes

the \sti�ness" of the elastic surface to be �tted to the data points.

Two widely used neighborhood kernels are the \bubble" kernel and the \Gaussian"

kernel. For the bubble kernel, hik(n) = �(n) if kri � rkk < �(n) and 0 otherwise, where

�(n) and �(n) are monotonically decreasing functions. A \bubble" of nodes within radius

�(n) surrounding the response node are all updated with the same strength. As the radius

decreases, the sti�ness of the elastic surface decreases, and updates are more local in nature.

As the � function decreases, smaller and smaller changes are allowed, so that the mapping

converges and does not become unstable.

For the Gaussian kernel,

hik(n) = �(n) exp

�kri � rkk2

2�2(n)

!
;

where �(n) is a learning rate as before, and �(n) de�nes the width of the kernel. �(n), �(n)

and �(n) are usually linearly decreasing functions.

As with all other methods, the initial values of the centroids will a�ect the �nal

centroid values. Due to the geometric structure of the centroid array using SOM, the

normal centroid initialization procedures may not work well, so a random initialization

could be best. In this case, however, it is a good idea to run the algorithm several times

and choose the set of centroids which represents the input phenomenon with the lowest

distortion.

The SOM algorithm is an unsupervised learning algorithm. It is also a stochastic

algorithm { centroid updates are based on a single example x(n).

8.4.3 SOM With a Conscience

One of the inherent problems with the SOM algorithm is that it is uncertain how to initialize

the centroids properly. For all the other methods, there exist algorithms which create good

initial conditions. But, due to the neighborhood kernel requiring spatially close (on the

2D centroid plane) centroids to be close in the multi-dimensional space too, the problem of

initialization becomes non-trivial. If this did not a�ect the results, we would not care, but

unfortunately, it can cause several damaging side e�ects.

Final Report for Period 3/27/92-3/31/95 87

At the termination of the SOM learning algorithm, we would like centroids which

are spread out to divide the input space into discrete, equiprobable regions37. Consider

a simple example where the initial distribution is poor and SOM fails: Make the input

probability density function uniform over the real numbers in the interval [1..2]. Initialize

a set of r centroids to uniformly cover the interval [0..3]. Recall that the SOM response

is the centroid nearest the input point. This will always be a centroid within, or the �rst

closest to, the interval [1::2]. Any centroids outside this region are never chosen as the SOM

response. With a neighborhood kernel equal to �(x), we see that these centroids will never

be updated, and at the end of the algorithm they will still lie outside of the interval [1::2]38.

Since the position of the centroid is supposed to represent probability mass, and centroids

exist where there is no probability of an input occurring, SOM has clearly failed.

An algorithm has been developed which solves this initialization problem, and even

speeds up SOM learning by roughly an order of magnitude. Rather than directly optimizing

the initial centroids, \SOM with a conscience" (which we will call SOMC) changes the

learning algorithm to make sure that all centroids will be updated at roughly the optimum

rate.

Since the desired end product will result with centroids which de�ne equiprobable

regions, at the end of training each centroid will be updated about 1=r of the time. What

the conscience mechanism in SOMC does is to enforce this ratio of updates at all times.

Let us change the Kohonen SOM algorithm as follows:

Let Ij be the indicator function which is 1 if centroid j is the closest to the input

vector x, and 0 otherwise:

Ij =

(
1 if j = mink

�1 [D(Yk; x)]

0 else

In the case of a tie, Ij = 1 for the lower index j, and 0 for the higher.

Now, let pj represent the fraction of time that processing element j wins the com-

petition. One way to generate these numbers while suppressing random
uctuations in the

input source is:

pj(n+ 1) = pj(n) + �[Ij � pj(n)]

where 0 < � � 1. The literature seems to indicate that values of � around 0:0001 work

well.

Now, let i be the winning processing element in terms of weight adjustment. A bias

term bk is introduced to modify the competition. Then,

i = �(x) = min
k

�1 [D(Yk; x)� bk]:

37It is shown in [47] that equidistortion regions are better than equiprobable regions. However, DeSienno

de�nes his algorithm for equiprobable regions.
38Choosing other neighborhood functions can help mitigate this problem, but will never make it go away.

88 Adaptive Neural Networks for Mine Detection

where,

bk = �(1=N � pk)

The constant � represents the bias factor determines the distance a losing processing

element can reach in order to enter the solution. By setting � to zero, the algorithm becomes

regular SOM learning. � around 10 works for medium sized problems.

If the researcher wishes to maintain the projection of f�(x) onto the 2D array of

centroids, a neighborhood function may still be used in the weight update. The conscience

mechanism has eliminated the need for it, however, if all that is required is the codebook

of centroids itself, and not the spatial mapping.

8.4.4 LVQ: The Supervised Stochastic Algorithms

The following section describes the �nal class of vector quantizer learning algorithms, titled

the \Learning Vector Quantization" (LVQ) algorithms. All of these algorithms update

their centroids on a stochastic, sample by sample basis, and are supervised algorithms. The

di�erences between the algorithms will be highlighted in the appropriate sections.

LVQ1

The �rst LVQ algorithm operates very similarly to the SOM algorithm, but with

the exception that the desired response �(x(n)) of every input vector x(n) is known during

training. The \response" is chosen in the same way as in SOM:

i = �(x) = min
k

�1 [D(Yk; x)]:

but, instead of simply moving that centroid toward x, we �rst check to see if �(x(n)) is

identical to �(i). If so, then centroid i is moved closer to x, else it is moved away from x:

Yi(n+ 1) = Yi(n) + �(n) [x(n)� Yi(n)]

if x and Yi are in the same class

Yi(n+ 1) = Yi(n)� �(n) [x(n)� Yi(n)]

if x and Yi belong to di�erent classes

Yk(n+ 1) = Yk(n) for k 6= i

As before, 0 < �(n) < 1, and �(n) may be constant or decrease monotonically with time. In

the above basic LVQ1 it is recommended that � should initially be smaller than 0.1; linear

decrease in time is favored.

OLVQ1

Final Report for Period 3/27/92-3/31/95 89

We now ask the question \Is there an optimal �(n) to make the LVQ1 algorithm

converge as quickly as possible?" In fact, if we assign di�erent learning rates �k(n) to each

centroid, there is. First, we re-express the weight update formula as:

Yi(n+ 1) = [1� s(n)�i(n)]Yi(n) + s(n)�i(n)x(n) (14)

Yk(n+ 1) = Yk(n) for k 6= i (15)

where s(n) is the bipolar indicator function:

s(n) =

(
1 if �(x) = �(i)

�1 else
:

We see from (14) that Yi(n) is statistically independent of x(n). It may also be obvious

that the statistical accuracy of the learned codebook vector values is optimal if the e�ects

of the corrections made at di�erent times, when referring to the end of the learning period,

are of equal weight. Notice that Yi(n + 1) contains a \trace" from x(n) through the last

term in (14), and \traces" from the earlier x(n0); n0 = 1; 2; : : : ; n � 1 through Yi(n). The

(absolute) magnitude of the last \trace" from x(n) is scaled down by the factor �i(n), and,

for instance, the \trace" from x(n � 1) is scaled down by [1� s(n)�i(n)]� �i(n � 1). Now

we �rst stipulate that these two scalings must be identical:

�i(n) = [1� s(n)�i(n)]� �i(n� 1):

If this condition is then made to hold for all n, by induction it can be shown that the \traces"

collected up to time n from all the earlier x will be scaled down by an equal amount at the

end, and thus the \optimal" values of �i(n) are determined by the recursion

�i(n+ 1) =
�i(n)

1 + s(n)�i(n)
:

In practice, this modi�cation makes LVQ1 operate much faster. However, precaution

must be taken (since �i(n) can rise as well as fall) that �i(n) never rise above the value 1,

or the solution will become unstable. If we enforce that any �i never rise above its initial

value, we can select rather high initial values (say, 0.3) and have the algorithm work very

rapidly.

OLVQ1 With a Conscience

While it is not reported anywhere in the literature (that this author is aware of),

the similarity between the SOM algorithms and the LVQ1 algorithms lend weight to the

idea of adding a conscience to LVQ1. Collecting the relevant formulae we get:

Ij =

(
1 if j = mink

�1 [D(Yk; x)]

0 else

90 Adaptive Neural Networks for Mine Detection

pj(n+ 1) = pj(n) + �[Ij � pj(n)]

bk = �(1=N � pk)

i = min
k

�1 [D(Yk; x)� bk]:

s(n) =

(
1 if �(x) = �(i)

�1 else

�i(n+ 1) =
�i(n)

1 + s(n)�i(n)

Yi(n+ 1) = [1� s(n)�i(n)]Yi(n) + s(n)�i(n)x(n)]

Yk(n+ 1) = Yk(n) for k 6= i

This is not terribly burdensome in terms of computation, and may work quite well.

FSCL

One \conscience" method of supervised VQ learning which is reported in the liter-

ature is called \Frequency Sensitive Competitive Learning" or FSCL [2]. This algorithm is

identical to LVQ1, except that the distortion criteria is modi�ed as follows:

i = �(x) = min
k

�1 [D(Yk; x) � f(k)]:

where f(k) is the cumulative number of times that centroid k has ever been updated. This

distortion measure penalizes those centroids which have been updated most often. The rest

of the algorithm is identical to that of LVQ1.

C&SL

The �nal distortion-based algorithm we will consider is one called \Competitive

and Selective Learning". In [47], it is shown that the conscience methods based on �nding

equiprobable regions are sub-optimal in the sense of minimizing average distortion. It is

shown that the optimal codebook will make the centroids have equi-partial-distortion. The

C&SL algorithm performs this task.

The algorithm alternates between two phases. In the �rst phase, the centroids are

trained using regular SOM learning, with no neighborhood function (for optimum distortion

results, we must use unsupervised methods). This phase makes one pass through the train-

ing data, in random order, and updates the centroids as usual. After the training phase,

the partial average distortions D(k); k = 1 : : :r, of each centroid are computed. If the total

average distortion has changed by less than �, the algorithm terminates, else the \select"

phase is run.

In the select phase, s(m) centroids of the total r centroids are selected. Half of

these centroids (rounded down) are those with highest partial distortion, and the other half

Final Report for Period 3/27/92-3/31/95 91

(rounded up) are those with lowest partial distortion. For these s(m) selected centroids, we

calculate:

gj =

p
D(j)Ps(m)

j=1

p
D(j)

Next, we compute:

uj = bgjs(m)c

where bxc is the largest integer less than or equal to x. For the top s(m)�Ps(m)
j=1 uj neurons

with respect to the value gjs(m)� uj , add one to each uj .

For every j, reproduce uj neurons by adding random perturbation vectors to Yj .

We end up with s(m) centroids as when we started, except that those centroids with the

smallest partial distortion were replaced by near-copies of the centroids with highest partial

distortion.

After the selection phase, the algorithm starts over at the training phase. Over

time, a set of centroids with very similar average partial distortion is generated. At the end

of the simulation, each centroid is classi�ed according to the costs in Table 1.

The only unresolved issue is the determination of s(m), the number of centroids

selected at iteration number m of the algorithm. We have determined s(m) to be initialized

at r=2, and then decrease linearly with the iteration through the simulation.

Approximate Linear Decrease

Many of the VQ algorithms call for a linear decrease in the value of some parameter

over the course of the simulation. Since the stopping criterion of the simulation is the

di�erence in distortion between iterations, and not the iteration number, we do not know

the number of iterations which will be performed, and thus we cannot directly calculate a

linear decrease of some parameter. What we can do is to estimate the iteration that the

simulation terminates on, and use this estimate to update the parameter.

The distortion of the codebook can be seen to decrease in a nearly exponential

fashion versus the iteration of the VQ design algorithm. Therefore, we model this distortion

as A + B exp[C � m], where m is the iteration number, A is the �nal distortion of the

simulation, B �A is the excess distortion and C is the rate of decrease.

We compute:

Y = (A+ B exp[C(m� 1)])� (A+ B exp[C(m)])

= B exp[Cm] exp[�C]�B exp[CX]

= B (exp[�C]� 1) exp[Cm]

Y
0 = ln Y

= Cm+ ln (B(exp[�C]� 1))

So, Y 0 is linear in m. We can use linear regression techniques to compute Ŷ
0 =

92 Adaptive Neural Networks for Mine Detection

a1m+ a0. Then,

C = a1

B =
exp(a0)

exp[�C]� 1

Our stopping criteria is:

Y � �

B exp[Cm] (exp[�C]� 1) � �

exp[Cm] � �

B(exp[�C]� 1)

m � 1

C

ln

�
�

B(exp[�C]� 1)

�

Using this estimate of the ending iteration, we can create a near-linear decrease

in some parameter. After each iteration of training, the estimate of m is updated, and it

becomes progressively better.

This method worked far better than other (parameterless & otherwise) methods of

computing a decreasing function over time.

LVQ2.1

The LVQ2.1 algorithm examines a completely di�erent approach to centroid gener-

ation from the other algorithms. The other algorithms presented place centroids to divide

the input space into discrete, equiprobable regions. As such, they can be used to build

up an estimate of the probability density functions and thus to distinguish the Bayesian

decision boundary.

The LVQ2.1 and LVQ3 algorithm directly estimate the decision boundary with the

centroids. In learning, two centroids are updated simultaneously. For each input x(n),

centroid Yi and centroid Yj may be updated. Centroid Yi is the closest centroid to x(n)

which is of the same class as x(n), and centroid Yj is the closest centroid to x(n) not of the

same class.

i = min
k

�1 [D(Yk; x)j�(k) = �(x(n))]

j = min
k

�1 [D(Yk; x)j�(k) 6= �(x(n))]

Furthermore, the update is only made if x(n) falls within a small window sur-

rounding the bisecting plane between centroid Yi and Yj . Let di = D(Yi; x(n)) and

dj = D(Yj ; x(n)). Then, x(n) falls within the window of relative width `w' if:

min

di

dj

;

dj

di

!
>

1� w

1 + w

Final Report for Period 3/27/92-3/31/95 93

widths of 0.2 to 0.3 work best.

The algorithm is:

Yi(n+ 1) = Yi(n) + �(n)[x(n)� Yi(n)]

Yj(n+ 1) = Yj(n)� �(n)[x(n)� Yj(n)]

LVQ3

The LVQ2 algorithm was based on the idea of di�erentially shifting the decision

borders towards the Bayes limits, while no attention was paid to what might happen to

the location of the Yk in the long run if this process were continued. Therefore it seems

necessary to include corrections that ensure that the Yk continue approximating the class

distributions, at least roughly. Combining these ideas, we now obtain an improved algorithm

that may be called LVQ3. If the two closest centroids to x(n), Yi and Yj are of di�erent

classes, then:

Yi(n+ 1) = Yi(n) + �(n)[x(n)� Yi(n)]

Yj(n+ 1) = Yj(n)� �(n)[x(n)� Yj(n)]

where x(n) and Yi belong to the same class, and x(n) and Yj belong to di�erent classes,

respectively; furthermore, x(n) must fall within the window. If the two closest centroids

are of the same class as x(n) then,

Yk(n+ 1) = Yk(n) + ��(n)[x(n)� Yk(n)]

for both k 2 fi; jg. Values of � between 0.1 and 0.5 seem to work, depending on the size of

the window, being smaller for narrower windows. This algorithm seems to be self-stabilizing,

i.e. the optimal placement of the Yj does not change in continued learning.

DIFFERENCES BETWEEN THE BASIC LVQ1, LVQ2.1 and LVQ3.1

The three options for the LVQ-algorithms, namely, the LVQ1, the LVQ2.1 and the

LVQ3, yield almost similar accuracies, although a di�erent philosophy underlies each. The

LVQ1 and the LVQ3 de�ne a more robust process, whereby the codebook vectors assume

stationary values even after extended learning periods. For the LVQ1 the learning rate

can approximately be optimized for quick convergence with OLVQ1. In the LVQ2.1, the

relative distances of codebook vectors from the class borders are optimized whereas there

is no guarantee for the codebook vectors being placed optimally to describe the forms of

the class borders. Therefore the LVQ2.1 should only be used in a di�erential fashion, using

a small value of learning rate and a relatively low number of training steps.

94 Adaptive Neural Networks for Mine Detection

8.4.5 Choosing Initial Codebooks

As has been mentioned earlier, codebook initialization is an important factor for locating

a good set of centroids. Since all of the VQ design methods presented here are descent

methods, the initial codebook will largely determine the �nal codebook. The stochastic

methods have a chance of escaping some local minima since they can jump around more

than the batch methods, but even these are a�ected by the initial choice.

It turns out that the methods used to initialize codebooks can be used to design

codebooks themselves. Then, the VQ algorithms are used to optimize these codebooks.

The following list presents a number of the algorithms in use today:

1. Random Coding: Centroids are assigned randomly according to the input distribu-

tion. The �rst r vectors drawn (from random, non-repeated positions) from the input

distribution can be used (this is what has been used in our work). Since the mine lane

data is correlated in space, the r vectors can not be drawn starting at the beginning,

but must be drawn from random positions in the lane. Note that the centroids are

�rst assigned randomly, but then are used deterministically as always.

2. Lattice: A regular lattice can be constructed which covers the input range evenly.

Often, some sort of product code is used, where the cross product of k, where k is the

dimension of the input space, scalar quantizers is used as the initial vector quantizer.

3. Pruning: With this method, we start with a Codebook which contains all of the

training data, and \prune" out bad members until we have a good starting set. The

pruning algorithm is:

begin fPruning Algorithmg

take �rst vector, add to codebook.

repeat

examine next vector. If its distortion with respect to the

current codebook < �, then discard it as a candidate.

else add it to the codebook.

until no more vectors, or codebook full

if not enough centroids, decrease � and repeat

end fPruning Algorithmg

This algorithm is similar to that used by ART. A good initial choice of � is: � = r
�2=k

where r is the number of centroids desired, and k is the dimension of the input vectors.

4. Pairwise Nearest Neighbor: This method starts with a codebook containing all

of the training vectors, and iteratively merges centroids until the desired number of

centroids is reached. It works as follows:

Final Report for Period 3/27/92-3/31/95 95

begin fPairwise NN Algorithmg

Set C = the training set.

Compute distortion between all pairs.

Merge the pair with lowest distortion, and replace with their centroid.

Ynew = cent(Y
1;old; Y2;old):

repeat

For each pair of centroids, computea:

�i;j =

LiX
l=1

D(xi(l); cent(Ri)) +

LjX
l=1

D(xj(l); cent(Rj));

�
0

i;j =

LiX
l=1

D(xi(l); cent(Ri
[

Rj))+

LjX
l=1

D(xj(l); cent(Rj
[

Rj)) � �i;j :

Merge the pair of clusters Ri; Rj for which �
0

i;j ��i;j is smallest.

until the correct number of centroids is reached.

end fPairwise NN Algorithmg

aThe �rst is the contribution to the average distortion if their regions are not merged,

and the second is the contribution if they are merged.

This is a \Greedy" algorithm: Each merge is optimal, but the entire procedure is not

necessarily optimal.

5. Splitting: This procedure starts with a codebook which contains only the centroid

of the entire training set. Then, iterations are performed to split the regions de�ned

by each centroid until the desired number of centroids are attained.

begin fSplitting Algorithmg

Set C = fcent(R)g.

repeat

For each centroid, split it as follows. First, compute the covariance matrix of

R(i). Compute the eigenvector v corresponding to the largest eigenvalue of

this matrix. Then, set the two resulting centroids to:

Y1 = Yi + �v;

Y2 = Yi � �v;

Perform a Lloyd iteration on the region spanned by R(i), to optimize the cen-

troids Y1 and Y2.

until the correct number of centroids is reached.

end fSplitting Algorithmg

Note that only the largest eigenvalue needs to be computed. Rather than attempting

to compute the entire set of eigenvalues and eigenvectors for a matrix which may be

singular, the method called a \Power Method" may be used to do this:

96 Adaptive Neural Networks for Mine Detection

begin fPower Methodg

Start with an estimate of v = v0.

repeat

zk = Avk�1

vk = zk=kzkk

�k = vHk Avk

until j�k � �k�1j < �:

end fPower Methodg

whereA is the covariance matrix, and � is the largest eigenvalue. If v0 has a component

in the direction of v, then this method will converge on v. Also note that A is

positive semi de�nite, and so all the eigenvalues will be real and non-negative, and

the eigenvectors will also be real. Thus, the Hermitian transpose of vk is simply a

normal transpose.

6. Simulated Annealing: Another set of algorithms which can be used to �nd a glob-

ally optimal codebooks (or initial codebooks) are called \Simulated Annealing." The

term `Simulated Annealing' is descriptive since the procedure has a strong resem-

blance to the annealing of metals. In a molten metal, the atoms are in violent random

motion. As with all physical systems, the atoms will naturally tend toward a mini-

mum energy state (a solid metallic crystal), but at high temperatures the vigor of the

atomic motions prevents this. As the metal is gradually cooled, lower and lower energy

states are assumed until �nally the lowest of all possible states, a global minimum is

achieved.

The simulated annealing algorithm closely emulates this physical procedure. The

centroids are initially assigned randomly, and a high \temperature" is assumed. This

allows large random centroid perturbation to occur at �rst, even if they make the

distortion of the system increase. As the \temperature" is gradually lowered, the

random centroid changes are allowed less often if they cause the distortion to increase,

but are always allowed if the distortion decreases. When the temperature has reached

zero, if the process has progressed slowly enough, then the �nal result will be the

globally optimal solution. In practice, if the temperature decreases a little too rapidly,

then a locally optimal solution is attained, which tends to be nearly as good as the

globally optimal one.

These statistical training methods are very robust and will always �nd a good solution.

Their only drawback is computational speed; they may be very slow to converge. The

Boltzmann learning method in particular is very slow; the Cauchy method is faster.

Methods exist which use an \arti�cial speci�c heat" analogy to detect phase changes

in the solution to help speed up the algorithm.

All of these algorithms can work in a supervised or unsupervised fashion. In the

Final Report for Period 3/27/92-3/31/95 97

unsupervised mode, the algorithm designs a codebook for all training vectors, and ignores

the class of the vectors. In the supervised mode, the algorithm designs one set of codebooks

for each input class. Only training vectors of class j are used to generate the codebook for

class j. If we desire a �nal codebook of size r, then each of the smaller codebooks can be

of size r=m if m is the number of classes (i.e. uniform size), or of r � p(j) if p(j) is the

a priori probability of class j (i.e. proportional size). There is reason to believe that the

proportional method will work best, and this is what has been used in our work to date.

None of these methods generate codebooks which work when using any of the SOM

algorithms. There are two basic methods which can be used:

1. Random: Initialize the centroids randomly.

2. Lattice: Initialize with a 2D lattice on the subspace spanned by the two principal

eigenvectors of the correlation matrix of the training set.

The second method is probably the better method, although SOMC tends to make the

centroids always converge on a good solution, even if the matrix is initialized with all zeros!

8.4.6 Optimizing the Functional Approximation vs. the Decision Boundary

Two di�erent approaches were taken to the task of codebook generation. The majority of

the methods tried to generate centroids which would accurately represent the pdf of the

underlying data. The other methods, LVQ 2.1 and LVQ3, tried to represent the Bayesian

decision boundaries instead. The question arises, "Which is best?"

There is no apparent answer to this question, but some observations will be made.

First, for pattern recognition, all we care about are the decision boundaries. The distribution

can be represented arbitrarily poorly; as long as the boundaries are accurate, we will perform

Bayesian (optimal) classi�cation.

However, we must consider that the VQ centroids are somehow used by the PNN

or NN to perform pattern recognition. We know how a PNN works by its construction. It

builds up an estimate of the posteriori probability density functions for each input class, from

the input data, and performs classi�cation based on which class has the highest posteriori

probability. Therefore, the PNN requires an accurate mapping of the pdf and thus LVQ 2.1

and LVQ 3 probably will not give centroids which work well with a PNN.

The NN case is not obvious and would require experimentation. The NN is far more

general than the PNN and is able to build up a highly nonlinear function of the input data.

However, this function is based at least loosely on the distribution of input samples and

probably will not work too well for LVQ 2.1 or LVQ 3 either.

LVQ 2.1 and LVQ 3 may work well as pattern classi�ers if the NN is removed and

the VQ performs the classi�cation �̂(x). This may work well for the other methods too, but

the NN is expected to perform better since it can compute highly non-linear functions, not

just perform nearest neighbor classi�cation. The NN's performance, �̂(x̂) may be enhanced,

98 Adaptive Neural Networks for Mine Detection

however, by appending the VQ estimate �̂(x) to the input vector x̂ to the NN when training,

and to x when testing.

8.5 Deterministic Outlier Removal

When the data retained by the VQ outlier removal method was being computed, the location

of those data points which were removed from the data set were plotted. An example of this

is shown in Figure 58. The left side of the plot shows with \." the location of those vectors

which were retained, and with \X" those vectors which were discarded. The right side of

the plot shows the location of the mines, and their extended mine regions. We see from this

�gure, that many of the outlier points occur near the boundaries of the mines, where the

accurate determination of the desired response is di�cult. This observation supports the

use of the deterministic outlier removal methods described in Section 6.

69: train==-----==..............

70:X.................. train=--111--=..............

71:XX....X................ train=-11111-=..............

72:X..................... train=-11111-=..............

73:X..................... train=-11111-=..............

74:X..X............XX... train=-11111-=......========

75:XXX...............X.. train=-------=......=------=

76:XX.... train==============.=-2222-=

77:XX.....X..... train==-----=.=-2222-=

78:X.....X...X. train=--555-=.=-2222-=

79:X....X...X. train=-5555-=.=--222-=

80:X.....XXX.X train .======...=-555--=.==-----=

81:X..X........XX. train ==----==..=-----==..=======

82:X........X............ train =--22--=..=======..........

83:X.................... train =-2222-=...................

84: .X......................... train =-2222-=...................

85: train =-2222-=......=========....

86:X..................... train =--22--=......=-------=....

87:XXX..... train ==----==......=-44444-=....

88:X..X..X..... train .======.......=-44444-=....

Figure 58: Sample VQ outlier location

Final Report for Period 3/27/92-3/31/95 99

9 PNN and VQ Results and Conclusions

The volume of results generated over the course of this contract is considerable, and it would

not be worthwhile to duplicate them all here. Many of the early results were very poor;

additionally, many of the results from previous reports were stated using di�erent perfor-

mance methodologies than is now used. Thus, only the most recent and most signi�cant

results are presented here.

The results are presented in order of complexity of the underlying classi�cation

device. Thus, the results from the nearest neighbor classi�er are reported �rst, followed

by the results from the PNN classi�er. The results for the neural network classi�er are

presented last.

9.1 Nearest Neighbor Classi�cation Results

A nearest neighbor classi�er was built and runs were performed for benchmark cases, and

using the centroids generated by the various VQ algorithms. As expected, the results are

poorer than those found by a neural network classi�er, but they are still useful in that they

determine a lower bound for how well we would expect a classi�cation system to work.

The results are presented in Table 3, where the number to the left of each line indicates

the number of VQ centroids used. The best results are extracted from this table and are

presented in Table 2.

We see that the best VQ results are always for when the centroids themselves are

used as a basis of comparison, and not for when the original data with the outliers removed

is used. This result is in agreement with similar program runs for the PNN classi�cation

structure. As will be seen later, however, the NN gives better performance with the original

data with VQ outliers removed. Thus, we conclude that the PNN classi�er is inherently a

nearest neighbor type of classi�er (which is intuitively appealing given our knowledge of the

PNN structure) and is fundamentally di�erent in its operation from a NN classi�er. While

this would seem to cast doubt on the usefulness of a PNN classi�er, it may in fact show

that since the PNN and the NN operate in di�erent ways, that even better results may be

obtained by using them together. This is a topic requiring future research.

Flat Data w/ Training Testing

param = 1.0 % TP % FP % TP % FP

VQ Algorithm

LBG 100.0 0.050 85.4 3.296

OLVQ1 100.0 0.000 83.3 3.273

C&SL 100.0 0.297 81.2 3.132

FSCL 98.5 0.000 79.2 3.108

LVQ1 98.5 0.000 79.2 3.391

OLVQ1C 100.0 0.033 75.0 2.990

Benchmark 100.0 0.000 75.0 3.626

Table 2: Best Single Nearest Neighbor Classi�cation Results

100 Adaptive Neural Networks for Mine Detection

Flat Data w/ Training Testing

param = 1.0 % TP % FP % TP % FP

Benchmark Run

Benchmark 100.0 0.000 75.0 3.626

LBG Runs (centroids)

1000 100.0 0.066 75.0 3.014

1500 100.0 0.050 72.9 3.579

2000 100.0 0.033 75.0 2.990

2500 100.0 0.017 81.2 3.179

3000 100.0 0.050 85.4 3.296

3500 100.0 0.033 83.3 3.296

4000 100.0 0.033 83.3 3.202

LBG Runs (outliers removed)

1000 100.0 0.000 75.0 3.720

1500 100.0 0.017 75.0 3.650

2000 100.0 0.017 75.0 3.650

2500 100.0 0.017 75.0 3.650

3000 100.0 0.033 75.0 3.650

3500 100.0 0.017 75.0 3.626

4000 100.0 0.017 75.0 3.626

LVQ1 Runs (centroids)

1000 90.9 0.050 66.7 2.096

1500 97.0 0.050 75.0 3.108

2000 98.5 0.033 72.9 3.155

2500 98.5 0.000 79.2 3.391

3000 100.0 0.000 79.2 3.344

LVQ1 Runs (outliers removed)

1000 89.4 0.033 64.6 2.590

1500 97.0 0.050 70.8 3.132

2000 97.0 0.033 70.8 3.085

2500 98.5 0.000 75.0 3.485

3000 98.5 0.000 75.0 3.508

OLVQ1 Runs (centroids)

1000 92.4 0.050 66.7 2.708

1500 97.0 0.050 68.8 2.943

2000 98.5 0.033 75.0 2.990

2500 100.0 0.000 77.1 3.367

3000 100.0 0.000 83.3 3.273

OLVQ1 Runs (outliers removed)

1000 90.9 0.033 68.8 2.637

1500 95.5 0.033 70.8 3.037

2000 97.0 0.033 70.8 3.155

2500 98.5 0.000 75.0 3.532

3000 98.5 0.000 75.0 3.532

Flat Data w/ Training Testing

param = 1.0 % TP % FP % TP % FP

OLVQ1C Runs (centroids)

1000 98.5 0.000 75.0 3.532

1500 98.5 0.000 75.0 3.532

2000 98.5 0.000 75.0 3.532

2500 98.5 0.000 75.0 3.532

3000 100.0 0.033 75.0 2.990

OLVQ1C Runs (outliers removed)

1000 100.0 0.033 75.0 2.990

1500 100.0 0.033 75.0 2.990

2000 100.0 0.033 75.0 2.990

2500 100.0 0.033 75.0 2.990

3000 100.0 0.033 75.0 2.990

FSCL Runs (centroids)

1000 92.4 0.083 66.7 1.907

1500 98.5 0.000 68.8 2.637

2000 97.0 0.000 72.9 2.190

2500 100.0 0.017 77.1 3.202

3000 98.5 0.000 79.2 3.108

FSCL Runs (outliers removed)

1000 92.4 0.050 70.8 2.684

1500 97.0 0.000 72.9 3.155

2000 97.0 0.000 70.8 2.990

2500 100.0 0.017 75.0 3.532

3000 98.5 0.000 75.0 3.603

C&SL Runs (centroids)

1000 90.9 1.222 79.2 3.909

1500 100.0 0.776 79.2 4.756

2000 100.0 0.793 79.2 4.097

2500 100.0 0.297 81.2 3.132

3000 100.0 0.215 81.2 3.838

C&SL Runs (outliers removed)

1000 90.9 0.215 66.7 2.849

1500 100.0 0.198 68.8 3.320

2000 100.0 0.066 72.9 3.202

2500 100.0 0.066 72.9 3.202

3000 100.0 0.017 68.8 3.461

Table 3: Single Nearest Neighbor Classi�cation Results

Final Report for Period 3/27/92-3/31/95 101

9.2 VQ Sammon Maps

The ability to visualize the data is an important research tool. In our application, we have

88 dimensional vectors, and this is an impossibility. John W. Sammon Jr. [42] devised a non-

linear projection from k dimensions to 2 dimensions, which retains the Euclidean distance

between vectors. Patterns and clustering in the data will be evident in the mapping, and

distances measured on the map between any two points corresponds to distances in k-space

between those points. Regrettably, the algorithm requires storage of a N �N array, where

N is the data set size. For our large data set, and available computing resources, this is

infeasible.

However, when the data set is reduced in size by the VQ centroid generating algo-

rithms, we can use the Sammon mapping algorithm on the centroids. This was done, and

Figure 59 shows the Sammon maps generated for the six VQ algorithms, where the maps

were used for codebooks of size 1000 centroids. The legend at the top of each map explains

what each point type is: background centroids are type 0, mine 1 centroids are type 1, and

so on.

We can see from the shape of the maps that some VQ centroid generation algorithms

work better than others. For all the algorithms except for the C&SM algorithm, the mine

data points are on top of the �gure, and the background data points are below them. We can

see here that the mine data is quite easily separated from the background data. The points

produced by the LBG algorithm are separated the best. Those produced by the C&SM

algorithm, (which is the only algorithm trained to minimize distortion in an unsupervised

manner) are the worst separated as it returns some mine centroids in the middle of the cloud

of background centroids. These two facts combined indicate that there are mine patterns in

the region occupied mostly by background patterns, but that they are infrequent. Most of

the mine patterns are distinct from the background patterns. This observation encourages

us that a solution to the mine lane classi�cation problem with low error rate exists.

9.3 PNN & Transform Results

The probabilistic neural network has been used for some time as an alternate solution to

neural network for the mine detection problem. Many sets of runs have been performed with

the PNN architecture, including VQ runs [19]. However, the VQ runs were performed using

a di�erent method of reporting results than is currently used. Thus, only qualitative remarks

can be made. It was noted that centroids generated by supervised VQ algorithms worked

much better than centroids generated by unsupervised algorithms. This is in agreement with

the NN results. It was also noted that results of runs which used the centroids themselves as

the PNN weights were much better than the results of runs which used the mine lane data

with the outliers removed as PNN weights. This is in agreement with the nearest neighbor

classi�er, but is di�erent from the NN classi�er.

The following sections describe the results from using the PNN in conjunction with

102 Adaptive Neural Networks for Mine Detection

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3 4

y

x

Sammon Map

0
1
2
3
4
5

LBG Algorithm

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Sammon Map

0
1
2
3
4
5

LVQ1 Algorithm

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Sammon Map

0
1
2
3
4
5

OLVQ1 Algorithm

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Sammon Map

0
1
2
3
4
5

OLVQ1C Algorithm

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

y

x

Sammon Map

0
1
2
3
4
5

FSCL Algorithm

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Sammon Map

0
1
2
3
4
5

C&SL Algorithm

Figure 59: Sammon Maps for 1000 Centroids & 6 VQ Algorithms

Final Report for Period 3/27/92-3/31/95 103

the various transform methods. First, some results pertaining to the ESM algorithm are

presented, followed by results from PNN simulations.

All simulations were performed with the PNN network, and used an extended mine

region of 1. For the KL based methods, several di�erent energy levels were simulated for each

scenario. We note that there is no direct correspondence between MSE in the reconstruction

and the probability of classi�cation error. Thus, there is no real trend in which energy level

is optimal for any of the transforms. In most cases, any level tested worked approximately

equally well. In all of the tables, the best result is highlighted in bold face font. The best

results for each transform paradigm are also summarized in Section 9.4.

9.3.1 ESM Results

The eigenspace separation algorithm is designed to create a distinction in the norms of

the data vectors depending on their class. A plain orthonormal linear transformation pre-

serves vector lengths, and is only able to rotate points in the input space. The ESM al-

gorithm performs an orthonormal linear transformation and then discards coe�cients from

the transformed vector in such a way that those coe�cients thrown away will cause maximal

di�erentiation in the norms of the two classes. Conceivably, the best linear transformation

is still unable to allow good separation. To test the ESM algorithm's separating ability,

some tests were run on the mine lane data.

For data in the training section39:

Without ESM: The average mine square norm is 98.2707

The average background square norm is 41.4149

The di�erence is 56.8558

With ESM: The average mine square norm is 88.2821

The average background square norm is 27.5359

The di�erence is 60.7462 = Ep

For data in the entire mine lane (training and testing section):

Without ESM: The average mine square norm is 83.8602

The average background square norm is 38.6237

The di�erence is 45.2365

With ESM: The average mine square norm is 73.2388

The average background square norm is 25.3297

The di�erence is 47.9091

39We see that the separation in the norms is equal to Ep as predicted by theory. This was one of many

tests performed to test the operational correctness of the simulator.

104 Adaptive Neural Networks for Mine Detection

We see an improvement in the separation of square norms for both the training

section and the entire mine lane, but the improvement is fairly small. Since, by Bayes' rule,

we know that the best classi�cation we can do depends on the probability density functions

of the data and not necessarily on the separation of the means, we plot the histograms of

the vector square norms of the data in Figure 60. In the histograms we see that the one-

dimensional pdf s based on the square norms do not change much (the top four histograms

are for the training region, and the bottom four histograms are for the entire mine lane.

Note that the histograms are in terms of vector norms and not in terms of the square of

vector norms.) Perhaps a nonlinear separation algorithm could separate the means and

even the density functions better than the ESM algorithm which is constrained to be linear.

9.3.2 Benchmark Runs

To provide a basis for comparison, benchmark runs were performed with no transform meth-

ods applied, with each of the various preprocessing methods. Runs were performed both

with and without the (single) 4-NN outlier removal method, and the results are tabulated

in Tables 4 and 5.

In both scenarios, the simulations with Unit Norm preprocessing provided better

results than without the Unit Norm preprocessing, although with a penalty in the false

positive rate. Outlier removal caused an additional increase in the false positive rate (which

is not surprising), and no net increase in the true positive rate. It was a general trend in the

results of the simulations that 4-NN outlier removal added nothing to the results, except if

Zero Mean preprocessing was performed as well. Simulations with 4-NN but without Zero

Mean tended to be worse than if 4-NN was not used at all. It is possible that 4-NN outlier

removal is removing some signi�cant points from the training data.

9.3.3 The Eigenspace Separation Method

Tables 6 to 9 present the results for the Eigenspace Separation Method runs. The number

of components retained in each case is reported as [#/44], where # is positive if the �rst

components from the matrix were used for the transform, and negative if the last j#j
components were used. In all cases, Unit Norm preprocessing produced the best results. For

the regular runs, the UNKL transform helped in some cases, and hindered in others, and

overall seems to add nothing. For the 4-NN outlier removed cases, the UNKL transform

provided a uniform improvement in the number of true positives, with a corresponding

increase in the number of false positives.

9.3.4 The KL Transform Method

Tables 10 to 13 present the results for the KL transform runs. Runs were performed retaining

80%-95% of the energy of the original pdf, and the corresponding number of components

Final Report for Period 3/27/92-3/31/95 105

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of Un−Preprocessed Vector Norms: Background

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of Un−Preprocessed Vector Norms: Mines

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of (post ESM) Vector Norms: Background

0 5 10 15 20 25 30 35
0

50

100

150

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of (post ESM) Vector Norms: Mines

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of Un−Preprocessed Vector Norms: Background

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of Un−Preprocessed Vector Norms: Mines

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of (post ESM) Vector Norms: Background

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

Vector Norm

N
um

be
r

of
 O

cc
ur

an
ce

s

Histogram of (post ESM) Vector Norms: Mines

Figure 60: Histograms of Vector Norms: Before and after ESM processing; Background and

Mine Patterns. The top four histograms are for the test region of the data, and the bottom

four histograms are for the training region of the data.

106 Adaptive Neural Networks for Mine Detection

retained from the KL transform (out of a total of 44) is reported next to the simulation

name as [#/44].

The best overall results came from the whitened KL runs. This is predicted by

theory, since the PNN basis functions are radially symmetric, and the whitened covariance

matrix will also be approximately radially symmetric. Thus, the basis functions approxi-

mate the underlying pdf well. This result may not carry over to the NN, which is capable

of performing more general decision boundaries with greater ease.

Again, all results with Unit Norm preprocessing performed better than comparative

runs without it. We notice that the UNKL transform produces results that are almost

identical (in some cases exactly identical) to the runs without it. We conclude that it helps

very little, if at all, while adding complexity to the system. Thus, it is probably undesirable

to pair the KL/UNKL transforms. As before, outlier removal added to the performance

only for the Zero Mean preprocessing simulations.

9.3.5 The KL+ Transform Method

Tables 14 to 17 present the results for the KL+ transform runs. Again, very good results

came from the whitened KL+ runs. They were bettered by a regular KL+ run with outlier

removal, but only in the false positive rate. So, we conclude that whitening the KL type

transforms is probably a good idea (at least when using PNN).

Results with Unit Norm preprocessing generally (but not uniformly) performed bet-

ter than comparative runs without it.

Remarkably, we notice that the UNKL transform produces results that are exactly

identical to the runs without it (these results were double checked, and are accurate). Thus,

UNKL adds nothing in this case to the mine detection capability of the system, while adding

signi�cant complexity to the system.

As before, outlier removal added most to the performance for the Zero Mean pre-

processing simulations.

9.3.6 The SDM Transform Method

Tables 18 to 21 present the results for the Simultaneous Diagonalization Method Method

runs. Runs were performed retaining, as a �rst order approximation, 80%-95% of the

energy of the original pdf, and the corresponding number of components retained from the

KL transform (out of a total of 44) is reported next to the simulation name as [#/44].

The best overall results came from the zero mean preprocessing results. In fact, the

zero mean runs had the highest TP rate with a very low FP rate. The unit norm results

are good, but are not the best results, as are the unit norm results for the other transform

methods.

Final Report for Period 3/27/92-3/31/95 107

9.3.7 The Composite Transform Method

Table 22 presents the results for the composite transform runs. The number of components

retained from the KL+; KL� transform matrices is reported as [#KL+,#KL�]. The only

cases simulated considered no Zero Mean preprocessing. For this transformation method,

outlier removal provided the best results for both the unpreprocessed and Unit Norm pre-

processed runs. For the unit norm runs, UNKL also improved performance. We note that

the Unit Norm runs were always at least as good as the unpreprocessed runs (although with

higher false positives).

9.4 Summary PNN Results

9.4.1 No Preprocessing

Table 23 summarizes the best40 (un-preprocessed) results from all of the simulation cate-

gories. We see, that for no preprocessing, all of the transform methods performed better

than the benchmark runs. The whitened KL runs performed best of all, and had a good

FP level too.

9.4.2 Lossy Unit Norm Preprocessing

Table 24 summarizes the best (unit norm preprocessed) results from all of the simulation

categories. Again, all of the transform methods performed better than the benchmark runs.

Again, the whitened KL runs performed best of all, and had a good FP level too. The

results here are better than the results for no preprocessing as well. The SDM run has an

equivalent TP rate as whitened KL, but a high FP rate.

9.4.3 Lossy Zero-Mean Preprocessing

Table 25 summarizes the best (zero mean preprocessed) results from all of the simulation

categories. Again, all of the transform methods performed better than the benchmark runs.

We also notice that the FP rate is, on average, lowest for this type of preprocessing. Here,

the SDM runs perform best, and the best results overall are the SDM runs here.

9.4.4 Lossy Zero-Mean and Unit Norm Preprocessing

Table 26 summarizes the best (zero mean and unit norm preprocessed) results from all of

the simulation categories. Here, the whitened KL+ transform provided the best results,

with 4-NN KL approximately the same. The ESM and SDM runs are also approximately

the same, with the SDM algorithm having a slightly higher FP rate.

40As always, the \best" results are those with the highest rate of true positives with the lowest false

positive rate in the testing section. In the case of a tie, the result with the highest rate of true positives

with the lowest rate of false positives in the training section is chosen.

108 Adaptive Neural Networks for Mine Detection

9.4.5 General Conclusions

1. Two of the four best results came from Table 13. This lends credence to the idea

that whitening the KL transform by dividing by the square root of the eigenvalues is

a pro�table exercise. Perhaps this is only true for the PNN which estimates the pdf

using radial functions; a whitened covariance matrix is easier to estimate with radial

functions than an elliptical covariance matrix.

2. For most of the transforms, unit norm preprocessing provided the best results. How-

ever, if 4-NN outlier removal is used, zero mean preprocessing gives the best results.

Also, for the SDM transformation, zero mean preprocessing gives the best results.

3. KL+ o�ers no real bene�t, and should be discarded.

4. By noticing the number of tables referenced per summary result, and the number of

simulations run (varying the number of transformed coe�cients retained) per table we

can see that each summary result for the KL case is the best of 8 runs, each result for

KL+ is the best of 12 runs, each ESM result is the best of 2 runs, each composite run

is the best of 1 run and each SDM result is the best of 12 runs. Therefore, we might

conclude that some of the transforms were given \more chances" than the others to

yield a good result. What is needed is a standard method of computing the number of

coe�cients retained by the KL related transform methods in order to perform fewer

simulations and give an even playing �eld. An observation made during the simulation

runs was that the optimum number of coe�cients retained for each of the transforms

was roughly two times the number of eigenvalues that were greater than the average

eigenvalue. i.e. m = 2jjf�i : �i � �gjj. This hypothesis was not tested, and is a topic

requiring future research.

5. ESM almost always had the lowest FP rate, but also always had the worst TP rate of

the transform methods.

6. All of the transform methods provided better results than the benchmark runs.

Final Report for Period 3/27/92-3/31/95 109

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing 400 100.0 0.0 75.0 3.579

Unit Norm Preprocessing 90 100.0 0.0 85.4 5.604

Zero Mean Preprocessing 500 100.0 0.0 77.1 3.508

Zero Mean and Unit Norm Preprocessing 80 100.0 0.0 83.3 5.580

Table 4: Benchmark PNN Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing 600 100.0 0.0 77.1 4.850

Unit Norm Preprocessing 60 100.0 0.0 81.2 7.558

Zero Mean Preprocessing 350 100.0 0.0 77.1 4.332

Zero Mean and Unit Norm Preprocessing 100 100.0 0.0 83.3 7.864

Table 5: Benchmark, 4-NN PNN Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing, ESM: [24/44] 600 100.0 0.0 79.2 2.543

Unit Norm Preprocessing, ESM: [-33/44] 30 100.0 0.0 85.4 3.132

Zero Mean Preprocessing, ESM: [25/44] 700 100.0 0.0 77.1 1.672

Zero Mean and Unit Norm Preprocessing, ESM: [-32/44] 30 100.0 0.0 83.3 3.555

Table 6: ESM Transformation Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing, ESM: [24/44] 600 100.0 0.0 79.2 2.355

Unit Norm Preprocessing, ESM: [-33/44] 80 100.0 0.0 85.4 3.650

Zero Mean Preprocessing, ESM: [25/44] 700 100.0 0.0 79.2 1.648

Zero Mean and Unit Norm Preprocessing, ESM: [-32/44] 60 100.0 0.0 81.2 3.391

Table 7: ESM Transformation / UNKL Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

No Preprocessing, ESM: [24/44] 600 100.0 0.0 79.2 3.296

Unit Norm Preprocessing, ESM: [-33/44] 70 100.0 0.0 81.2 4.191

Zero Mean Preprocessing, ESM: [25/44] 300 100.0 0.0 79.2 3.862

Zero Mean and Unit Norm Preprocessing, ESM: [-32/44] 70 100.0 0.0 79.2 4.756

Table 8: ESM Transformation, 4-NN Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing, ESM: [24/44] 600 100.0 0.0 79.2 3.202

Unit Norm Preprocessing, ESM: [-33/44] 50 100.0 0.0 87.5 5.086

Zero Mean Preprocessing, ESM: [25/44] 300 100.0 0.0 79.2 3.603

Zero Mean and Unit Norm Preprocessing, ESM: [-32/44] 50 100.0 0.0 87.5 5.416

Table 9: ESM Transformation, 4-NN / UNKL Runs

110 Adaptive Neural Networks for Mine Detection

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL: 80% [10/44] 500 100.0 0.0 79.2 3.956

KL: 85% [12/44] 300 100.0 0.0 72.9 4.144

KL: 90% [15/44] 300 100.0 0.0 83.3 3.485

KL: 95% [21/44] 400 100.0 0.0 79.2 3.862

Unit Norm Preprocessing

KL: 80% [12/44] 80 100.0 0.0 81.2 5.298

KL: 85% [14/44] 50 100.0 0.0 85.4 4.803

KL: 90% [17/44] 60 100.0 0.0 85.4 4.756

KL: 95% [22/44] 120 100.0 0.0 87.5 5.062

Zero Mean Preprocessing

KL: 80% [11/44] 300 100.0 0.0 75.0 4.285

KL: 85% [13/44] 600 100.0 0.0 79.2 2.896

KL: 90% [16/44] 300 100.0 0.0 79.2 3.603

KL: 95% [21/44] 500 100.0 0.0 79.2 3.485

Zero Mean and Unit Norm Preprocessing

KL: 80% [12/44] 40 100.0 0.0 85.4 5.416

KL: 85% [14/44] 60 100.0 0.0 85.4 5.510

KL: 90% [17/44] 60 100.0 0.0 83.3 5.439

KL: 95% [22/44] 80 100.0 0.0 87.5 5.557

Table 10: KL Transform Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL: 80% [10/44] 350 100.0 0.0 75.0 6.546

KL: 85% [12/44] 300 100.0 0.0 72.9 5.934

KL: 90% [15/44] 450 100.0 0.0 79.2 5.910

KL: 95% [21/44] 350 100.0 0.0 79.2 4.709

Unit Norm Preprocessing

KL: 80% [12/44] 140 100.0 0.2 81.2 6.381

KL: 85% [14/44] 50 100.0 0.0 85.4 7.558

KL: 90% [17/44] 120 100.0 0.0 83.3 7.158

KL: 95% [22/44] 120 100.0 0.0 85.4 7.370

Zero Mean Preprocessing

KL: 80% [11/44] 300 100.0 0.0 87.5 5.910

KL: 85% [13/44] 300 100.0 0.0 85.4 5.204

KL: 90% [16/44] 350 100.0 0.0 83.3 5.204

KL: 95% [21/44] 350 100.0 0.0 79.2 4.733

Zero Mean and Unit Norm Preprocessing

KL: 80% [12/44] 40 100.0 0.0 87.5 7.535

KL: 85% [14/44] 60 100.0 0.0 89.6 7.747

KL: 90% [17/44] 60 100.0 0.0 89.6 6.899

KL: 95% [22/44] 60 100.0 0.0 87.5 7.346

Table 11: KL Transform, 4-NN Runs

Final Report for Period 3/27/92-3/31/95 111

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL: 80% [10/44] 250 100.0 0.0 79.2 4.168

KL: 85% [12/44] 300 100.0 0.0 72.9 4.144

KL: 90% [15/44] 300 100.0 0.0 83.3 3.485

KL: 95% [21/44] 400 100.0 0.0 79.2 3.862

Unit Norm Preprocessing

KL: 80% [12/44] 100 100.0 0.0 81.2 5.109

KL: 85% [14/44] 50 100.0 0.0 85.4 4.803

KL: 90% [17/44] 50 100.0 0.0 85.4 4.591

KL: 95% [22/44] 120 100.0 0.0 87.5 5.062

Zero Mean Preprocessing

KL: 80% [11/44] 300 100.0 0.0 75.0 4.285

KL: 85% [13/44] 600 100.0 0.0 79.2 2.896

KL: 90% [16/44] 300 100.0 0.0 79.2 3.603

KL: 95% [21/44] 500 100.0 0.0 79.2 3.485

Zero Mean and Unit Norm Preprocessing

KL: 80% [12/44] 50 100.0 0.0 85.4 5.557

KL: 85% [14/44] 50 100.0 0.0 85.4 5.392

KL: 90% [17/44] 50 100.0 0.0 83.3 5.345

KL: 95% [22/44] 80 100.0 0.0 87.5 5.557

Table 12: KL Transform / UNKL Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL: 80% [10/44] 150 100.0 0.0 77.1 3.508

KL: 85% [12/44] 300 100.0 0.0 77.1 4.332

KL: 90% [15/44] 400 100.0 0.0 87.5 3.414

KL: 95% [21/44] 500 100.0 0.0 79.2 3.273

Unit Norm Preprocessing

KL: 80% [12/44] 530 100.0 0.0 81.2 4.544

KL: 85% [14/44] 200 100.0 0.0 91.7 5.062

KL: 90% [17/44] 230 100.0 0.0 83.3 5.180

KL: 95% [22/44] 330 100.0 0.0 89.6 7.511

Zero Mean Preprocessing

KL: 80% [11/44] 300 100.0 0.0 72.9 4.121

KL: 85% [13/44] 300 100.0 0.0 83.3 3.414

KL: 90% [16/44] 400 100.0 0.0 75.0 3.202

KL: 95% [21/44] 450 100.0 0.0 77.1 3.650

Zero Mean and Unit Norm Preprocessing

KL: 80% [12/44] 160 100.0 0.0 81.2 4.591

KL: 85% [14/44] 200 100.0 0.0 87.5 5.157

KL: 90% [17/44] 240 100.0 0.0 87.5 5.274

KL: 95% [22/44] 310 100.0 0.0 85.4 6.428

Table 13: Whitened KL Transform Runs

112 Adaptive Neural Networks for Mine Detection

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL+: 80% [8/44] 300 100.0 0.0 81.2 4.733

KL+: 85% [10/44] 500 100.0 0.0 75.0 4.427

KL+: 90% [12/44] 500 100.0 0.0 75.0 3.956

KL+: 95% [16/44] 300 100.0 0.0 72.9 3.367

Unit Norm Preprocessing

KL+: 80% [9/44] 80 100.0 0.0 83.3 4.003

KL+: 85% [11/44] 80 100.0 0.0 75.0 4.380

KL+: 90% [14/44] 40 100.0 0.0 81.2 3.767

KL+: 95% [19/44] 100 100.0 0.0 81.2 4.121

Zero Mean Preprocessing

KL+: 80% [8/44] 350 100.0 0.0 83.3 4.285

KL+: 85% [10/44] 450 100.0 0.0 70.8 3.603

KL+: 90% [13/44] 400 100.0 0.0 77.1 3.697

KL+: 95% [16/44] 500 100.0 0.0 72.9 2.967

Zero Mean and Unit Norm Preprocessing

KL+: 80% [10/44] 100 100.0 0.0 77.1 5.486

KL+: 85% [12/44] 60 100.0 0.0 79.2 5.204

KL+: 90% [15/44] 40 100.0 0.0 79.2 3.650

KL+: 95% [19/44] 140 100.0 0.0 85.4 4.450

Table 14: KL+ Transform Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL+: 80% [8/44] 350 100.0 0.0 81.2 6.758

KL+: 85% [10/44] 650 100.0 0.1 77.1 5.769

KL+: 90% [12/44] 300 100.0 0.0 81.2 5.675

KL+: 95% [16/44] 350 100.0 0.0 75.0 5.580

Unit Norm Preprocessing

KL+: 80% [9/44] 100 100.0 0.1 79.2 4.874

KL+: 85% [11/44] 40 100.0 0.0 79.2 5.463

KL+: 90% [14/44] 60 100.0 0.0 77.1 6.357

KL+: 95% [19/44] 60 100.0 0.0 81.2 6.051

Zero Mean Preprocessing

KL+: 80% [8/44] 250 100.0 0.0 89.6 5.910

KL+: 85% [10/44] 500 100.0 0.0 83.3 4.474

KL+: 90% [13/44] 300 100.0 0.0 85.4 5.628

KL+: 95% [16/44] 300 100.0 0.0 75.0 5.321

Zero Mean and Unit Norm Preprocessing

KL+: 80% [10/44] 60 100.0 0.0 85.4 6.334

KL+: 85% [12/44] 40 100.0 0.0 81.2 6.193

KL+: 90% [15/44] 60 100.0 0.0 81.2 5.651

KL+: 95% [19/44] 60 100.0 0.0 85.4 6.004

Table 15: KL+ Transformation, 4-NN Runs

Final Report for Period 3/27/92-3/31/95 113

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL+: 80% [8/44] 300 100.0 0.0 81.2 4.733

KL+: 85% [10/44] 500 100.0 0.0 75.0 4.427

KL+: 90% [12/44] 500 100.0 0.0 75.0 3.956

KL+: 95% [16/44] 300 100.0 0.0 72.9 3.367

Unit Norm Preprocessing

KL+: 80% [9/44] 80 100.0 0.0 83.3 4.003

KL+: 85% [11/44] 80 100.0 0.0 75.0 4.380

KL+: 90% [14/44] 40 100.0 0.0 81.2 3.767

KL+: 95% [19/44] 100 100.0 0.0 81.2 4.121

Zero Mean Preprocessing

KL+: 80% [8/44] 350 100.0 0.0 83.3 4.285

KL+: 85% [10/44] 450 100.0 0.0 70.8 3.603

KL+: 90% [13/44] 400 100.0 0.0 77.1 3.697

KL+: 95% [16/44] 500 100.0 0.0 72.9 2.967

Zero Mean and Unit Norm Preprocessing

KL+: 80% [10/44] 100 100.0 0.0 77.1 5.486

KL+: 85% [12/44] 60 100.0 0.0 79.2 5.204

KL+: 90% [15/44] 40 100.0 0.0 79.2 3.650

KL+: 95% [19/44] 140 100.0 0.0 85.4 4.450

Table 16: KL+ Transformation / UNKL Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

KL+: 80% [8/44] 200 100.0 0.0 68.8 3.249

KL+: 85% [10/44] 200 100.0 0.0 72.9 3.744

KL+: 90% [12/44] 250 100.0 0.0 77.1 3.885

KL+: 95% [16/44] 250 100.0 0.0 77.1 3.814

Unit Norm Preprocessing

KL+: 80% [9/44] 160 100.0 0.0 87.5 4.521

KL+: 85% [11/44] 220 100.0 0.0 83.3 5.628

KL+: 90% [14/44] 590 100.0 0.0 83.3 4.803

KL+: 95% [19/44] 310 100.0 0.0 87.5 7.229

Zero Mean Preprocessing

KL+: 80% [8/44] 100 100.0 0.0 72.9 3.838

KL+: 85% [10/44] 150 100.0 0.0 70.8 3.697

KL+: 90% [13/44] 300 100.0 0.0 75.0 2.873

KL+: 95% [16/44] 250 100.0 0.0 85.4 3.720

Zero Mean and Unit Norm Preprocessing

KL+: 80% [10/44] 140 100.0 0.0 83.3 6.051

KL+: 85% [12/44] 540 100.0 0.0 85.4 4.332

KL+: 90% [15/44] 340 100.0 0.0 87.5 5.227

KL+: 95% [19/44] 310 100.0 0.0 89.6 6.664

Table 17: Whitened KL+ Transform Runs

114 Adaptive Neural Networks for Mine Detection

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

SDM: 80% [29/44] 600 100.0 0.0 75.0 2.519

SDM: 85% [32/44] 600 100.0 0.0 68.8 3.132

SDM: 90% [36/44] 650 100.0 0.0 75.0 2.519

SDM: 95% [39/44] 600 100.0 0.0 77.1 3.202

Unit Norm Preprocessing

SDM: 80% [32/44] 400 100.0 0.0 83.3 6.852

SDM: 85% [35/44] 450 100.0 0.0 89.6 6.758

SDM: 90% [38/44] 400 100.0 0.0 87.5 6.805

SDM: 95% [41/44] 550 100.0 0.0 89.6 8.241

Zero Mean Preprocessing

SDM: 80% [30/44] 550 100.0 0.0 89.6 3.767

SDM: 85% [33/44] 600 100.0 0.0 87.5 3.579

SDM: 90% [36/44] 600 100.0 0.0 91.7 3.249

SDM: 95% [40/44] 750 100.0 0.0 83.3 3.085

Zero Mean and Unit Norm Preprocessing

SDM: 80% [31/44] 500 100.0 0.0 85.4 4.780

SDM: 85% [34/44] 450 100.0 0.0 83.3 5.251

SDM: 90% [37/44] 450 100.0 0.0 83.3 5.792

SDM: 95% [40/44] 850 100.0 0.0 83.3 6.499

Table 18: SDM Transformation Runs

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

SDM: 80% [28/44] 500 100.0 0.0 83.3 3.862

SDM: 85% [31/44] 650 100.0 0.0 81.2 2.543

SDM: 90% [35/44] 750 100.0 0.0 79.2 2.567

SDM: 95% [39/44] 550 100.0 0.0 81.2 3.579

Unit Norm Preprocessing

SDM: 80% [32/44] 400 100.0 0.0 89.6 9.395

SDM: 85% [35/44] 450 100.0 0.0 91.7 10.313

SDM: 90% [38/44] 450 100.0 0.0 87.5 8.382

SDM: 95% [41/44] 700 100.0 0.0 89.6 10.713

Zero Mean Preprocessing

SDM: 80% [32/44] 900 100.0 0.0 85.4 2.873

SDM: 85% [36/44] 700 100.0 0.0 87.5 4.238

SDM: 90% [42/44] 800 100.0 0.0 85.4 3.909

SDM: 95% [43/44] 800 100.0 0.0 85.4 3.909

Zero Mean and Unit Norm Preprocessing

SDM: 80% [31/44] 750 100.0 0.0 87.5 6.569

SDM: 85% [34/44] 700 100.0 0.0 85.4 7.299

SDM: 90% [37/44] 950 100.0 0.0 81.2 6.993

SDM: 95% [40/44] 500 100.0 0.0 87.5 8.806

Table 19: SDM Transformation, 4-NN Runs

Final Report for Period 3/27/92-3/31/95 115

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

SDM: 80% [29/44] 350 100.0 0.0 79.2 2.826

SDM: 85% [32/44] 650 100.0 0.0 83.3 3.014

SDM: 90% [36/44] 400 100.0 0.0 79.2 3.132

SDM: 95% [39/44] 600 100.0 0.0 81.2 3.838

Unit Norm Preprocessing

SDM: 80% [32/44] 100 100.0 0.0 83.3 5.675

SDM: 85% [35/44] 100 100.0 0.0 79.2 4.474

SDM: 90% [38/44] 100 100.0 0.0 83.3 5.510

SDM: 95% [41/44] 100 100.0 0.0 83.3 5.086

Zero Mean Preprocessing

SDM: 80% [30/44] 500 100.0 0.0 72.9 3.555

SDM: 85% [33/44] 350 100.0 0.0 83.3 4.191

SDM: 90% [36/44] 550 100.0 0.0 72.9 3.179

SDM: 95% [40/44] 700 100.0 0.0 83.3 2.896

Table 20: SDM Transformation / UNKL Runs41

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

SDM: 80% [28/44] 500 100.0 0.0 75.0 3.697

SDM: 85% [31/44] 550 100.0 0.0 79.2 3.626

SDM: 90% [35/44] 350 100.0 0.0 79.2 3.814

SDM: 95% [39/44] 400 100.0 0.0 81.2 4.756

Unit Norm Preprocessing

SDM: 80% [32/44] 100 100.0 0.0 89.6 6.569

SDM: 85% [35/44] 50 100.0 0.0 89.6 6.616

SDM: 90% [38/44] 50 100.0 0.0 83.3 6.664

SDM: 95% [41/44] 100 100.0 0.0 83.3 7.158

Zero Mean Preprocessing

SDM: 80% [32/44] 600 100.0 0.0 85.4 4.921

SDM: 85% [36/44] 600 100.0 0.0 85.4 4.097

SDM: 90% [42/44] 500 100.0 0.0 81.2 4.285

SDM: 95% [43/44] 500 100.0 0.0 81.2 4.309

Table 21: SDM Transformation, 4-NN / UNKL Runs41

9.5 VQ Algorithm Results

Codebooks of size 100 through 8000 were generated for the six VQ algorithms. The MSE

per pattern is plotted versus the codebook size in Figure 61, and the number of vectors

retained after outlier removal is also plotted versus the codebook size in the same Figure.

Some general observations can be made.

It is evident that in terms of MSE, the C&SL algorithm works best by far. The

FSCL algorithm is second best, and the others are all pretty much the same, with OLVQ1

and OLVQ1C being the worst. In the bottom of the �gure though, we see that MSE has

41The matrix A�T
SDM for Zero Mean and Zero Norm could not be computed since ATSDM was singular.

116 Adaptive Neural Networks for Mine Detection

Flat Data w/ PNN � Training Testing

param = 1.0 �1000 % TP % FP % TP % FP

No Preprocessing

Regular [9,11] 650 100.0 0.0 75.0 4.168

UNKL [9,11] 900 100.0 0.0 77.1 3.932

4-NN Outlier Removal [9,12] 800 100.0 0.0 83.3 4.450

UNKL, 4-NN [9,12] 1000 100.0 0.0 81.2 4.992

Unit Norm Preprocessing

Regular [10,12] 150 100.0 0.0 83.3 4.144

UNKL [10,12] 100 100.0 0.0 83.3 4.827

4-NN Outlier Removal [10,12] 50 100.0 0.0 83.3 4.803

UNKL, 4-NN [10,12] 100 100.0 0.0 85.4 6.428

Table 22: Composite Transform Runs

little to do with the classi�cation ability (nearest neighbor) of the codebook. Here, the LBG

algorithm retains by far the greatest number of vectors, and the C&SL algorithm retains

the fewest. This should indicate that the LBG algorithm will give the best classi�cation

results (which is the case). For reference, the number of vectors retained after deterministic

4-NN and 8-NN outlier removal is also shown on the graph. We see that all of the VQ

algorithms retain more vectors than the deterministic algorithms.

The classi�cation runs were performed with a 12:6:1 neural network, where 1,000,000

iterations per simulation were run, and 10 simulations were run and averaged for every

result reported. An extended mine region of 1 was used, and the data was balanced. All 11

frequencies and 4 S parameters were used in the simulations, giving an input vector size of

44.

The results from the simulations are shown in Table 28. The best results for each

category are tabulated in Table 27. Here we see that the best results are obtained for the

outlier removed data as opposed to the centroid data. This is di�erent from the PNN and

nearest neighbor classi�ers, and indicates that the NN is able to generate more complex

decision boundaries.

We see that only the LBG algorithm outperforms the 4-NN outlier removal, and even

it does not give much better results (the true positive rate is only fractionally better, and

the false positive rate is worse). This is regrettable, but it shows us that the VQ methods do

not improve performance. It does enforce our belief that the 4-NN outlier removal method

is a remarkably good method for its simplicity, however.

Final Report for Period 3/27/92-3/31/95 117

Flat Data w/ Table Training Testing

param = 1.0 # % TP % FP % TP % FP

No Preprocessing

KL 13 100.0 0.0 87.5 3.414

Composite 22 100.0 0.0 85.4 6.428

SDM 20 100.0 0.0 83.3 3.014

KL+ 14 100.0 0.0 81.2 4.733

ESM 7 100.0 0.0 79.2 2.355

Benchmark 5 100.0 0.0 77.1 4.850

Table 23: Summary: No Preprocessing

Flat Data w/ Table Training Testing

param = 1.0 # % TP % FP % TP % FP

Unit Norm Preprocessing

KL 13 100.0 0.0 91.7 5.062

SDM 19 100.0 0.0 91.7 10.313

KL+ 17 100.0 0.0 87.5 4.521

ESM 9 100.0 0.0 87.5 5.086

Benchmark 4 100.0 0.0 85.4 5.604

Table 24: Summary: Unit Norm Preprocessing

Flat Data w/ Table Training Testing

param = 1.0 # % TP % FP % TP % FP

Zero Mean Preprocessing

SDM 18 100.0 0.0 91.7 3.249

KL+ 15 100.0 0.0 89.6 5.910

KL 11 100.0 0.0 87.5 5.910

ESM 7 100.0 0.0 79.2 1.648

Background 4 100.0 0.0 77.1 3.508

Table 25: Summary: Zero Mean Preprocessing

Flat Data w/ Table Training Testing

param = 1.0 # % TP % FP % TP % FP

Zero Mean and Unit Norm Preprocessing

KL+ 17 100.0 0.0 89.6 6.664

KL 11 100.0 0.0 89.6 6.899

ESM 9 100.0 0.0 87.5 5.416

SDM 19 100.0 0.0 87.5 6.569

Benchmark 4 100.0 0.0 83.3 5.580

Table 26: Summary: Zero Mean and Unit Norm Preprocessing

118 Adaptive Neural Networks for Mine Detection

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000

M
S

E
 p

er
 p

at
te

rn

Number of Centroids

Residual MSE

LBG
LVQ1

OLVQ1
OLVQ1C

FSCL
CSL

7000

7200

7400

7600

7800

8000

8200

0 1000 2000 3000 4000 5000 6000 7000 8000

V

ec
to

rs

Number of Centroids

Number of Vectors Retained

LBG
LVQ1

OLVQ1
OLVQ1C

FSCL
CSL

4-NN
8-NN

Figure 61: Codebook MSE/pattern and Number of Training Vectors Retained after Codebook

Construction

Final Report for Period 3/27/92-3/31/95 119

Flat Data w/ Training Testing

param = 1.0 % TP % FP % TP % FP

VQ Algorithm

LBG 99.8 4.706 97.7 8.776

4-NN 99.1 3.341 97.6 7.977

Benchmark 99.4 3.952 96.9 8.398

LVQ1 99.7 4.169 96.9 8.654

8-NN 99.5 4.535 96.9 9.831

FSCL 99.2 4.834 96.5 9.118

OLVQ1 99.5 3.911 95.8 8.089

OLVQ1C 98.6 3.476 95.2 7.617

C&SL 99.5 3.229 95.0 6.574

Table 27: Best VQ Algorithm Results

120 Adaptive Neural Networks for Mine Detection

Flat Data w/ Training Testing

param = 1.0 % TP % FP % TP % FP

Benchmark Run

Benchmark 99.4 3.952 96.9 8.398

4-NN Outlier Removal

4-NN 99.1 3.341 97.6 7.977

8-NN Outlier Removal

8-NN 99.5 4.535 96.9 9.831

LBG Runs (centroids)

1000 95.3 6.555 88.1 8.799

1500 98.5 6.282 89.4 9.047

2000 98.0 6.237 91.5 9.399

2500 99.1 4.684 92.7 8.568

3000 99.2 6.656 94.0 9.424

3500 99.5 6.526 95.4 9.886

LBG Runs (outliers removed)

1000 99.8 4.006 96.7 8.350

1500 99.8 4.307 96.7 7.953

2000 99.7 4.282 96.3 8.176

2500 99.7 4.713 96.7 8.741

3000 99.8 4.706 97.7 8.776

3500 99.7 5.016 97.1 9.015

4000 99.8 3.539 95.2 7.711

LVQ1 Runs (centroids)

1000 93.0 5.786 84.8 8.720

1500 97.4 4.770 90.0 8.301

2000 98.0 5.077 91.9 8.639

2500 99.4 5.704 92.7 9.566

3000 98.6 5.060 91.9 8.593

LVQ1 Runs (outliers removed)

1000 93.5 5.591 89.6 9.073

1500 97.6 3.238 92.9 7.455

2000 98.5 3.245 94.4 7.138

2500 99.1 5.169 93.8 8.559

3000 99.7 4.169 96.9 8.654

OLVQ1 Runs (centroids)

1000 94.1 7.115 87.5 9.971

1500 96.8 4.758 88.1 8.267

2000 97.1 6.338 90.2 9.435

2500 99.1 4.831 92.3 8.398

3000 98.8 4.576 91.0 7.888

OLVQ1 Runs (outliers removed)

1000 92.3 3.267 88.7 6.584

1500 96.5 4.451 93.1 8.545

2000 98.2 3.834 95.2 7.858

2500 99.5 3.911 95.8 8.089

3000 99.7 4.240 94.2 8.051

Flat Data w/ Training Testing

param = 1.0 % TP % FP % TP % FP

OLVQ1C Runs (centroids)

1000 77.0 6.631 71.2 9.675

1500 96.2 4.205 87.9 7.602

2000 97.6 4.869 90.8 8.068

2500 99.2 5.648 91.9 9.255

3000 98.8 4.887 90.8 8.342

OLVQ1C Runs (outliers removed)

1000 77.3 6.194 73.1 8.849

1500 96.7 5.223 94.6 8.510

2000 98.6 3.476 95.2 7.617

2500 99.4 5.507 94.6 8.713

3000 99.4 5.404 95.2 8.294

FSCL Runs (centroids)

1000 91.5 7.476 85.4 10.221

1500 97.1 5.817 89.4 8.260

2000 98.6 4.637 93.1 7.529

2500 99.2 4.212 90.2 7.820

3000 98.3 4.742 92.9 9.132

FSCL Runs (outliers removed)

1000 93.9 2.910 89.8 6.144

1500 97.9 5.147 93.7 8.379

2000 98.5 5.455 95.2 9.322

2500 99.2 4.834 96.5 9.118

3000 99.7 4.587 94.8 8.793

C & SL Runs (centroids)

1000 88.5 7.190 87.1 9.047

1500 97.4 4.873 91.2 7.765

2000 98.9 4.930 92.7 7.662

2500 97.1 4.566 91.2 7.877

3000 99.4 4.711 94.4 8.041

C & SL Runs (outliers removed)

1000 92.9 5.544 86.0 7.271

1500 98.3 2.705 93.5 6.402

2000 99.1 3.419 94.4 6.830

2500 98.9 3.757 94.0 7.154

3000 99.5 3.229 95.0 6.574

Table 28: Various Algorithm VQ Results

Final Report for Period 3/27/92-3/31/95 121

10 Backpropagation Neural Network Performance

In this section, we summarize the performance achieved by using a backprop neural network

for land mine detection. The e�ect of modifying some of the variable factors in this system

are discussed. Some of the relevant result tables are given here and others are available in

previous reports [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

10.1 Network Architecture

During the course of this contract and its predecessor, U.S. Army Contract DAAK70-89-

K-0001, several di�erent types of network architecture was investigated. These include

fully connected feedforward networks, partially connected or bottlenecked networks, and

recurrent networks. The recurrent networks were found to be too computationally intensive

during training to be very useful [30]. The bottlenecked networks were studied in an attempt

to reduce the number of weights necessary in the network. However, any performance

improvement seen using such a network was outweighed by the di�culty of designing and

choosing the proper network con�guration. Therefore, a fully connected feedforward neural

network was considered the best choice for this work.

In addition to the interconnectivity, the size of the network was also extensively

studied. It was found that a three layer (two hidden layers and one output layer) network

gave the best performance. A two layer network had di�culty modeling the complex rela-

tionship between the input signals and the classi�cation output, and a four layer network

was unnecessarily complex. Through many simulations, the optimum number of neurons to

use in each layer was also established. For the single output case, which was studied most,

three layers consisting of eight neurons in the �rst hidden layer, three neurons in the second

hidden layer, and one neuron in the output layer seemed to work very well. Varying the

number of neurons by a small number in each layer showed only minor di�erences in the

performance characteristics. Dr. Torrieri reported good results for a 12:6:1 con�guration

which was used to test the VQ and NN methods in the previous section. Therefore, a small

range of network size was established as an acceptable network architecture. The 8:3:1

con�guration consistently showed good results using the backprop neural network and is

recommended for continued research. The number of inputs used will be discussed in the

next section.

10.2 Input Data Types

Not only is there a large variety of available network architectures, but the choice of input

signals is also very extensive. As described in Section 1.2, 88 di�erent measurements were

taken at each spatial location in the mine lane. This includes the magnitude and phase of

four di�erent S parameters at 11 separate frequencies.

Initially, all work was done with a spatial window ranging from 7 � 7 to 13 � 13.

122 Adaptive Neural Networks for Mine Detection

These large input windows made it formidable to use more than one or two S parameters or

frequencies in the input vector. For this reason and also to make the system implementation

simpler, we eventually migrated to the 1�1 or minimal window. When using only one spatial

point of data, a more complex mixture of S parameters and frequencies were usable.

Using the minimal window still gives us a possibility of 88 inputs. This is still

too large for the methods used here. Therefore, simulations were conducted to determine

the most vital parameters for mine detection. For a neural network of comparable size

(similar number of weights), it was determined that only seven frequencies (880 MHz to

1120 MHz) was necessary to obtain satisfactory results. Using additional frequencies added

very little to the performance, and using fewer frequencies started to signi�cantly degrade

the performance. In addition, including the phase information reduced the performance of

the network.

From the above results, it can be concluded that a 28 component input vector

consisting of the magnitude components of all four S parameters obtained at the seven

frequencies between 880 MHz and 1120 MHz were su�cient to perform optimum mine

detection.

10.3 E�ects of Preprocessing

The research conducted on preprocessing the input data before using a neural network

proved to be vital for optimum performance. As described in Section 4.1.2, the raw data

originally included some unnatural peculiarities in the form of an underlying \ramp" and

also some \jumps." The removal of these characteristics from the data was able to dra-

matically increase the performance of the neural network mine detector. Furthermore, the

deterministic removal of outliers from the training data set (Section 6) and balancing the

mine data to background data ratio proved to be very bene�cial. These techniques are rec-

ommended in all future studies and implementations of this system. Both the four nearest

neighbor and eight nearest neighbor outlier removal methods work very well, and research

should continue with both methods until one is determined to be signi�cantly better than

the other.

Another class of preprocessing methods which proved to be very promising is the

use of transform methods (Section 7). All of the transform methods studied reduced the

input vector and network sizes and improved performance over the benchmark case. Both

the Karhunen Loeve transform and the Eigenspace Separation Method showed good results.

The KL transform with 28 inputs achieved the best peak performance of 100% mine detec-

tion with only 9.1% false positives. The ESM which only used 16 inputs was able to produce

better average performance than the corresponding 16 input KL transform. In addition, us-

ing ESM, a reduced size network of 6:3:1 was able to achieve comparable performance [46].

Some of these results are given in Table 29. All of these results are given with an extended

mine region of one, and the 4-nearest neighbor outlier removal method was used for all

Final Report for Period 3/27/92-3/31/95 123

of them. Some of the corresponding results obtained using the 8-nearest neighbor outlier

removal method are given in Table 30. The use of these transform methods and possibly

others are a very promising area of future research in neural network mine detection.

10.4 Detection Rate Tradeo�s

When evaluating the performance of a classi�cation system, there are two important criteria:

the true positive rate and the false positive rate. In addition, these two rates are not

independent of each other. In fact, there is a strong correlation between the two measures

and a tradeo� must be made when maximizing the performance of the system. During most

of the research conducted under this contract, emphasis was placed on maximizing the mine

detection (true positive, TP) rate. All the results reported use this method as described in

Section 1.4.4. In many cases, perfect detection or 100% detection was achieved in the test

region. Although the best possible detection rate is achieved, there are cases when the false

positive (FP) rate may be undesirably high. Therefore, the question arises whether some

of the detection performance can be sacri�ced for a better false positive rate.

As an example, we review the case of 28 inputs using the four nearest neighbor

outlier removal method with data balancing. Using the maximum detection criteria, the

peak performance achieved was 100.0% TP with 11.4% FP. An averaged measure over

20 di�erent initial conditions resulted in 96.5% TP and 12.2% FP. However, if we use a

minimum detection rate of 95% as the performance criteria42, the result change slightly.

The best performance now becomes 95.8%TP with 8.1% FP, and the average becomes 95.8%

TP and 10.2% FP. For both the best and averaged result, the mine detection rate and the

false positive rate has decreased. Furthermore, if the minimum detection rate is reduced

to 90%, the best performance becomes 91.7% TP with 6.3% FP, and the averaged result

becomes 92.0% TP and 8.3% FP. Again, there is further reduction in both the detection rate

and the false positive rate. This demonstrates that the tradeo� between the true positive

detection rate and the false positive rate is very complex. These results are tabulated in

Table 31. At this time, it has not been determined what kind of �gures are desirable or

acceptable. This may be best left up to the user of the system.

Other statistical analyses, such as Receiver Operating Characteristic (ROC) anal-

ysis, can be made to determine the tradeo�s and overall performance characteristic of the

classi�cation system [26, 32, 44]. This would be an area of great signi�cance in future

research of the neural network mine detection system.

10.5 Multiple Neural Network Outputs

The majority of the work represented in this report uses a single neural network output

(Section 5.1). However, the latest research shows that using multiple outputs (6 outputs,

42For this new performance criteria, all neural network results with at least a 95% TP rate will be examined

and the one with the lowest FP rate will be chosen as the best result.

124 Adaptive Neural Networks for Mine Detection

one for each mine type and one for background) may also be useful. Preliminary results

show that a peak detection rate of 97.9% with a false positive rate of 11.2% was achieved.

The average detection rate over 10 di�erent initial conditions was 93.3% with a false positive

rate of 9.7%. Furthermore, using the composite transform with 13 inputs (Section 7.3), a

97.9% detection rate was possible with a false positive rate of 8.3%. The average detection

rate was 94.6% with a false positive rate of 9.9%. In order to compare neural networks with a

comparable number of weights, a 15:3:1 network architecture was used with the composite

algorithm, and an 8:3:1 architecture for the non-transformed input case. These results

are very promising. Therefore, future work involving multiple output neural network mine

detectors including special preprocessing procedures to optimize the discrimination between

di�erent mine types is highly recommended.

Final Report for Period 3/27/92-3/31/95 125

Transform Averaged Results (20sims) Peak Performance

Method Training Testing Training Testing

% TP % FP % TP % FP % TP % FP % TP % FP

None 99.2 10.4 96.5 12.2 100.0 8.7 100.0 11.4

KL [28/28] 99.6 8.9 97.4 11.1 100.0 5.8 100.0 9.1

KL [16/28] 98.6 11.4 96.7 12.8 100.0 10.6 100.0 11.4

ESM 99.3 11.1 97.5 12.2 98.5 10.9 100.0 11.7

ESM/UNKL 99.3 11.7 96.9 13.0 100.0 17.7 100.0 15.6

Composite 97.0 12.7 96.6 14.0 98.5 12.1 100.0 12.4

Composite/UNKL 97.3 16.1 97.1 15.6 93.9 11.9 100.0 10.3

Table 29: Mine detection performance comparing transform preprocessing methods using the

4-nearest neighbor outlier removal method.

Transform Averaged Results (20sims) Peak Performance

Method Training Testing Training Testing

% TP % FP % TP % FP % TP % FP % TP % FP

None 99.4 10.5 97.7 12.9 100.0 8.4 100.0 9.8

KL [28/28] 99.5 9.4 98.0 12.7 100.0 11.2 100.0 11.6

KL [16/28] 99.0 10.1 97.3 13.0 98.5 8.1 100.0 9.2

ESM 98.8 11.4 97.8 13.2 100.0 8.2 100.0 9.3

ESM/UNKL 98.6 11.3 97.6 12.5 100.0 8.8 100.0 11.0

Table 30: Mine detection performance comparing transform preprocessing methods using the

8-nearest neighbor outlier removal method.

Performance Averaged Results (20sims) Peak Performance

Criteria Training Testing Training Testing

% TP % FP % TP % FP % TP % FP % TP % FP

Maximum Detection 99.2 10.4 96.5 12.2 100.0 8.7 100.0 11.4

95% Detection 99.8 8.4 95.8 10.2 100.0 8.8 95.8 8.0

90% Detection 99.2 7.2 92.0 8.3 98.5 6.8 91.7 6.3

Table 31: Mine detection and false alarm tradeo�s.

126 Adaptive Neural Networks for Mine Detection

Final Report for Period 3/27/92-3/31/95 127

A Target Locations

This appendix tabulates the locations of all the targets in the \SAS6" data set. They are

organized according to mine type, and sorted by row. The locations are in mine lane grid

coordinates, and indicate the center of the mine.

Mine Type 1

Row Col Rot Num

8.0 20.2 62 0

73.3 9.0 101 1

105.3 9.6 61 2

125.7 12.9 145 3

179.5 16.6 50 4

212.8 24.5 9 5

245.9 11.8 0 6

272.5 5.5 135 7

289.8 8.1 169 8

314.0 23.3 71 9

387.3 4.5 40 10

393.0 19.9 160 11

404.3 8.9 67 12

441.1 6.1 65 13

450.0 21.2 31 14

Mine Type 2

Row Col Rot Num

18.3 11.0 0 15

29.0 19.8 0 16

59.0 8.6 0 17

78.2 23.6 0 18

85.0 4.3 0 19

116.0 20.0 0 20

137.0 24.0 0 21

154.2 6.7 0 22

168.0 24.5 0 23

184.9 6.5 0 24

225.5 10.4 0 25

232.9 23.7 0 26

252.0 24.3 0 27

261.4 3.8 0 28

282.1 23.2 0 29

307.6 15.5 0 30

324.6 4.2 0 31

329.2 24.6 0 32

356.8 10.5 0 33

376.9 19.6 0 34

431.0 2.2 0 35

439.2 18.9 0 36

454.2 2.1 0 37

461.3 25.1 0 38

476.1 8.6 0 39

491.2 10.5 0 40

492.5 24.3 0 41

503.4 2.2 0 42

505.9 17.6 0 43

515.0 24.5 0 44

128 Adaptive Neural Networks for Mine Detection

Mine Type 3

Row Col Rot Num

11.7 3.3 0 45

49.5 6.5 0 46

62.9 20.5 0 47

143.1 7.6 0 48

169.1 3.6 0 49

199.6 24.7 0 50

233.1 5.7 0 51

258.6 12.6 0 52

331.1 11.6 0 53

349.2 6.1 0 54

430.0 23.7 0 55

463.5 12.4 0 56

Mine Type 4

Row Col Rot Num

38.1 9.4 87 57

41.1 19.7 2 58

89.9 19.0 0 59

159.0 19.3 42 60

197.0 10.8 116 61

216.2 6.0 163 62

264.0 24.5 14 63

297.3 19.3 153 64

309.6 5.0 105 65

343.9 20.6 22 66

364.5 22.8 95 67

364.8 9.2 25 68

413.6 19.0 90 69

420.5 5.0 71 70

475.0 21.6 94 71

Mine Type 5

Row Col Rot Num

18.3 21.0 45 72

24.6 6.0 35 73

27.0 26.0 301 74

54.1 19.0 122 75

79.8 14.5 128 76

94.8 6.4 270 77

100.6 22.5 90 78

117.6 5.0 170 79

125.2 18.2 150 80

133.5 6.5 230 81

140.0 14.0 330 82

142.5 26.0 350 83

163.7 10.8 182 84

173.3 10.7 170 85

179.5 20.7 0 86

202.7 21.2 90 87

204.9 4.5 204 88

213.7 15.4 293 89

234.6 14.0 180 90

252.5 9.2 254 91

273.5 15.3 220 92

278.8 18.5 321 93

299.5 7.5 299 94

315.0 5.8 263 95

322.0 16.1 9 96

335.8 11.3 225 97

354.2 21.3 178 98

364.1 4.3 244 99

380.4 8.0 241 100

384.7 21.0 70 101

401.9 15.5 218 102

403.5 22.7 232 103

422.6 19.2 80 104

431.3 13.0 178 105

453.7 15.0 193 106

461.7 4.3 327 107

465.8 19.1 31 108

483.6 17.2 54 109

485.8 3.7 6 110

495.3 16.5 0 111

513.9 7.4 15 112

519.4 16.5 173 113

Final Report for Period 3/27/92-3/31/95 129

The following plot is a \dump" of the mine lane. All 527 rows and 27 columns are displayed.

Each row is identi�ed on the left as being either in the \train"ing section or in the \test"ing

section. Points in the mine lane which correspond with a grid square which has some section

of a mine underneath it are labeled with a number from 1 to 5, corresponding to the type

of the mine. Points corresponding to an extended mine region of 1 are noted with `{', and

points corresponding to an extended mine region of 2 are noted with `='. Purely background

points are noted with `.'.

0: train

1: train

2: train

3: train========...

4: train==------=...

5: train=--1111-=...

6: train=-11111-=...

7: train=-11111-=...

8: train ======.........=-11111-=...

9: train -----=.........=--1111-=...

10: train -333-=.........==------=...

11: train -333-=..........========...

12: train -333-=.....................

13: train -----=.....................

14: train ======.=======...======....

15: train==-----==..=----==...

16: train=--222--=..=-55--=...

17: train=-22222-=..=-555-=...

18: train=-22222-=..=-555-=...

19: train=--222--=..=--55-=...

20: train ..======-----==..==----=...

21: train ..=----=======....======...

22: train ..=-55--=..................

23: train ..=-555-=..............====

24: train ..=-555-=.......========---

25: train ..=--55-=......==-----=--55

26: train ..==----=......=--222-=-555

27: train ...======......=-2222-=-55-

28: train=-2222-=----

29: train=-2222-=====

30: train=--222-=....

31: train==-----=....

32: train=======....

33: train=========..............

34: train=-------=..............

35: train=-44444-=..............

36: train=-44444-=..=========...

37: train=-44444-=..=-------=...

38: train=-44444-=..=-44444-=...

39: train=-44444-=..=-44444-=...

40: train=-------=..=-44444-=...

41: train=========..=-44444-=...

42: train=-44444-=...

43: train=-------=...

44: train=========...

45: train ...======..................

46: train ..==----==.................

47: train ..=--33--=.................

48: train ..=-3333-=.................

49: train ..=-3333-=.................

50: train ..=--33--=......======.....

51: train ..==----==.....==----=.....

52: train ...======......=--55-=.....

53: train=-555-=.....

54: train======....=-555-=.....

55: train==----==...=-----=.....

56: train=--22--=...=======.....

57: train=-2222-=...............

58: train=-2222-=...............

59: train=-2222-=....========...

60: train=--22--=....=------=...

61: train==----==....=-3333-=...

62: train======.....=-3333-=...

63: train=-3333-=...

64: train=------=...

65: train========...

66: train

67: train

68: train=======...............

69: train==-----==..............

70: train=--111--=..............

71: train=-11111-=..............

72: train=-11111-=..............

73: train=-11111-=..............

74: train=-11111-=......========

75: train=-------=......=------=

76: train==============.=-2222-=

77: train==-----=.=-2222-=

78: train=--555-=.=-2222-=

79: train=-5555-=.=--222-=

80: train .======...=-555--=.==-----=

81: train ==----==..=-----==..=======

82: train =--22--=..=======..........

83: train =-2222-=...................

84: train =-2222-=...................

85: train =-2222-=......=========....

86: train =--22--=......=-------=....

87: train ==----==......=-44444-=....

88: train .======.......=-44444-=....

89: train=-44444-=....

90: train ...======.....=-44444-=....

91: train ...=----=.....=-44444-=....

92: train ...=-55-=.....=-------=....

93: train ...=-55-=.....=========....

94: train ...=-55-=..................

95: train ...=-55-=..................

96: train ...=----=..........======..

97: train ...======..........=----=..

98: train=-55-=..

99: train=-55-=..

100: train======.......=-55-=..

101: train==----==......=-55-=..

102: train=--11--==.....=----=..

103: train=-1111--=.....======..

104: train=-11111-=.............

105: train=-11111-=.............

106: train=-1111--=.............

107: train=------==.............

108: train========..............

109: train

110: test

111: test=======....

112: test==-----==...

113: test=--222--=...

130 Adaptive Neural Networks for Mine Detection

114: test .=======.......=-22222-=...

115: test .=-----=.......=-22222-=...

116: test .=-555-=.......=-22222-=...

117: test .=-555-=.......=--222--=...

118: test .=-----=.......==-----==...

119: test .=======........=======....

120: test

121: test=============......

122: test=------=----=......

123: test=-1111---55-=......

124: test=-11111-555-=......

125: test=-11111-555-=......

126: test=-11111-----=......

127: test=--111--=====......

128: test==-----==..........

129: test ...=============...........

130: test ...=----=..................

131: test ...=-55-=..................

132: test ...=-55-=...........=======

133: test ...=-55-=..........==-----=

134: test ...=-55-=..........=--222--

135: test ...=----=..........=-22222-

136: test ...======..======..=-22222-

137: test==----=..=-22222-

138: test=--55-=..=--222--

139: test=======-555-=..==-----=

140: test=-----=-55--=...===----

141: test=-333-=----==.....=-555

142: test=-333-======......=-555

143: test=-333-=...........=----

144: test=-----=...........=====

145: test=======................

146: test

147: test

148: test

149: test

150: test ..========.................

151: test ..=------=.................

152: test ..=-2222-=.................

153: test ..=-2222-=......======.....

154: test ..=-2222-=.....==----==....

155: test ..=--222-=....==--44--==...

156: test ..==-----=....=--4444--=...

157: test ...=======....=-444444-=...

158: test=-444444-=...

159: test=-444444-=...

160: test=========--4444--=...

161: test=------===--44--==...

162: test=-5555-=.==----==....

163: test=-5555-=..===========

164: test=------=......==----=

165: test ==============......=--22--

166: test =-----=.............=-2222-

167: test =-333-=.............=-2222-

168: test =-333-=.............=-2222-

169: test =-333-=.======......=--22--

170: test =-----===----=......==----=

171: test =======---55-=.......======

172: test=-5555-=.............

173: test=-5555-=.............

174: test=------=.............

175: test==============.......

176: test=------=====...

177: test=-1111-----=...

178: test=-11115555-=...

179: test=-11115555-=...

180: test ...======...=-1111-----=...

181: test ..==----==..=------=====...

182: test ..=--22--=..========.......

183: test ..=-2222-=.................

184: test ..=-2222-=.................

185: test ..=-2222-=.................

186: test ..=--22--=.................

187: test ..==----==.................

188: test ...======..................

189: test

190: test

191: test

192: test========.............

193: test=------==............

194: test==-4444--=............

195: test=--44444-=......======

196: test=-444444-=......=----=

197: test=-444444-=......=-33--

198: test=--4444--=...====-333-

199: test==---44-==...=----333-

200: test===----=....=-55-33--

201: test =======.======....=-55----=

202: test =-----==..........=-55-====

203: test =-555--=..........=-55-=...

204: test =-5555-=..........=----=...

205: test =--555-=..........======...

206: test ==-----=...................

207: test .=======...................

208: test=======

209: test======..=------

210: test=----=..=-1111-

211: test ..========.==-55-=..=-1111-

212: test .==------=.=--55-=..=-1111-

213: test .=--4444-=.=-555-=..=-1111-

214: test .=-44444-=.=-555-=..=-1111-

215: test .=-44444-=.=-----=..=------

216: test .=-44444-=.=======..=======

217: test .=-44444-=.................

218: test .=-------=.................

219: test .=========.................

220: train

221: train========.............

222: train=------=.............

223: train=-2222-=.............

224: train=-2222-=.............

225: train=-2222-=.............

226: train=-2222-=.............

227: train=------=.............

228: train========......=======

229: train ..=======..........==-----=

230: train ..=-----=..........=--222-=

231: train ..=-333-=.=======..=-2222-=

232: train ..=-333-=.=-----=..=-2222-=

233: train ..=-333-=.=-555-=..=-2222-=

234: train ..=-----=.=-555-=..=--22--=

235: train ..=======.=-----=..==----==

236: train=======...======.

237: train

238: train

239: train

240: train

241: train========............

242: train=------==...........

243: train=-1111--=...........

244: train=-11111-=...........

245: train=-11111-=...........

246: train=-11111-=...........

247: train=--111--=.....======

248: train====-----==....==----=

249: train=-----====.....=--22--

250: train=-555-=........=-2222-

251: train=-555-=........=-2222-

252: train=--55-=........=-2222-

253: train==-55-=........=--22--

254: train=----====.....==----=

255: train====----==.....======

256: train=--33--=...........

257: train =======.=-3333-=...........

258: train ------=.=-3333-=...........

259: train -2222-=.=--33--=....=======

Final Report for Period 3/27/92-3/31/95 131

260: train -2222-=.==----==....=------

261: train -2222-=..======....==-44444

262: train --222-=............=--44444

263: train =-----=............=-444444

264: train =======............=-44444-

265: train=-44444-

266: train=-------

267: train ..======...........========

268: train .==----==..................

269: train ==--11--==.======..........

270: train =--1111--=.=----==.........

271: train =-111111-=.=-55--=.........

272: train =-111111-=.=-555-=.........

273: train =--1111--=.=-555-=.........

274: train ==--11--==.=--55-=.........

275: train .==----==..==----=====.....

276: train ..======....====-----=.....

277: train=--555-=====.

278: train=-5555-----==

279: train=-555---22--=

280: train=------2222-=

281: train======-2222-=

282: train=-2222-=

283: train=-222--=

284: train=-----==

285: train========.......=======.

286: train ...==------=...............

287: train ...=--1111-=...............

288: train ...=-11111-=...............

289: train ...=-11111-=...............

290: train ...=-11111-=...............

291: train ...=--111--=...............

292: train ...==-----==...========....

293: train=======...==------=....

294: train=--4444-==...

295: train======....=-44444--=...

296: train=----=....=-444444-=...

297: train=-55-=....=-444444-=...

298: train=-55-=....=--4444--=...

299: train=-55-=....==-44---==...

300: train=-55-=.....=----===....

301: train=----=.....======......

302: train======.................

303: train========........

304: train =======....=------=........

305: train =-----===..=-2222-=........

306: train =-444---=..=-2222-=........

307: train =-44444-=..=-2222-=........

308: train =-44444-=..=-2222-=........

309: train =-44444-=..=------=========

310: train =-44444-=..=========------=

311: train =--4444-=.........=--1111-=

312: train ==------=.........=-11111-=

313: train .==-55--=.........=-11111-=

314: train ..=-555-=.........=-11111-=

315: train ..=-555-=.........=--1111-=

316: train ..=-----=.........==------=

317: train ..=======..........========

318: test=======........

319: test=-----=........

320: test =======.....=-555-=........

321: test =-----==....=-555-=........

322: test =-222--=....=-555-=........

323: test =-2222-=....=-----=........

324: test =-2222-=....=======........

325: test =-2222-=............=======

326: test =------=............=------

327: test ===============.....=-2222-

328: test=-----=.....=-2222-

329: test=-333-=.....=-2222-

330: test=-333-=.....=--222-

331: test=-333-=.....==-----

332: test==-----=......======

333: test=-----==............

334: test=-555-=.............

335: test=-555-=.............

336: test=--55-=.............

337: test==----=.............

338: test======..======.....

339: test=----===...

340: test=-44---==..

341: test==-4444--=..

342: test=--44444-=..

343: test=-444444-=..

344: test=-444444-=..

345: test ..=======......=--4444--=..

346: test ..=-----=......==------==..

347: test ..=-333-=.......========...

348: test ..=-333-=..................

349: test ..=-333-=..................

350: test ..=-----=..........======..

351: test ..=======........===----=..

352: test========...=---55-=..

353: test=------=...=-5555-=..

354: test=-2222-=...=-5555-=..

355: test=-2222-=...=------=..

356: test=-2222-=...========..

357: test=-2222-=.............

358: test=------=.............

359: test=========....=======..

360: test ======----===.....=-----===

361: test =------44---==....=-444---=

362: test =-555--4444--=....=-44444-=

363: test =-555-444444-=....=-44444-=

364: test =--55-444444-=....=-44444-=

365: test ==----44444--=....=-44444-=

366: test .====--4444-==....=---444-=

367: test==------=.....===-----=

368: test========.......=======

369: test

370: test

371: test

372: test=======....

373: test==-----=....

374: test=--222-=....

375: test=-2222-=....

376: test======.....=-2222-=....

377: test=----==....=-2222-=....

378: test=-55--=....=--22--=....

379: test=-555-=....==----==....

380: test=-555-=.....=======....

381: test=--55-=......=----==...

382: test .=====----=......=-55--=...

383: test ==----=====......=-555-=...

384: test =--11--=.........=-555-=...

385: test =-1111-=.........=--55-=...

386: test =-1111-=.........==----=...

387: test =-1111-=..........======...

388: test =-1111-=........=======....

389: test =------=.......==-----==...

390: test ========.......=--111--=...

391: test=-11111-=...

392: test=-11111-=...

393: test=-11111-=...

394: test=--111--=...

395: test==-----==...

396: test=======....

397: test

398: test=======.........

399: test=======-----========..

400: test==-----=-555--==----==.

401: test=--111---5555-==-55--=.

402: test=-11111---555-==-555-=.

403: test=-11111-=-----==-555-=.

404: test=-11111-========--55-=.

405: test=-11111-=......==----=.

132 Adaptive Neural Networks for Mine Detection

406: test=-------=.......======.

407: test=========..............

408: test

409: test=========....

410: test=-------=....

411: test=-44444-=....

412: test=-44444-=....

413: test=-44444-=....

414: test=-44444-=....

415: test ..======......=-44444-=....

416: test ===----==.....=-------=....

417: test =---44--=.....=========....

418: test =-44444-=......=======.....

419: test =-44444-=......=-----=.....

420: test =-44444-=......=-555-=.....

421: test =-44444-=......=-555-=.....

422: test =--44---=......=--55-=.....

423: test ==----===......==-55-=.....

424: test .======.........=----=.....

425: test======.....

426: train =====...............=======

427: train ----==..............=-----=

428: train 222--=...=======....=-333-=

429: train 2222-=...=-----=....=-333-=

430: train 2222-=...=-555-=....=-333-=

431: train 2222-=...=-555-=....=-----=

432: train 222--=...=-----=....=======

433: train ----==...=======...........

434: train =====......................

435: train========.....

436: train ..=======.....=------==....

437: train .==-----==....=-2222--=....

438: train .=--111--=....=-22222-=....

439: train .=-11111-=....=-22222-=....

440: train .=-11111-=....=--222--=....

441: train .=-11111-=....==-----==....

442: train .=--1111-=.....=======.....

443: train .==------=.................

444: train ..========.................

445: train========..

446: train==------=..

447: train=--1111-=..

448: train=-11111-=..

449: train=-11111-=..

450: train ======.....======-11111-=..

451: train -----=.....=-------1111-=..

452: train 2222-=.....=-555-=------=..

453: train 2222-=.....=-555-========..

454: train 2222-=.....=-----=.........

455: train 222--=.....=======.........

456: train ----==.....................

457: train =====................======

458: train ========............==-----

459: train =------=.======.....=--2222

460: train =-5555-===----==....=-22222

461: train =-5555-==--33--=....=-22222

462: train =-55---==-3333-======--222-

463: train =----====-3333-=-----=-----

464: train ======..=--33--=-555-======

465: train==----==-555-=.....

466: train=======--55-=.....

467: train==----=.....

468: train======.....

469: train

470: train=========.

471: train======......=-------=.

472: train==----==.....=-44444-=.

473: train=--22--=....==-44444-=.

474: train=-2222-=....=--44444-=.

475: train=-2222-=....=-444444-=.

476: train=-2222-=....=-44444--=.

477: train=--222-=....=-------==.

478: train==-----=....=========..

479: train=======.======........

480: train=----==.......

481: train=-55--=.......

482: train =======......=-555-=.......

483: train ------=......=-555-=.......

484: train -5555-=......=--55-=.......

485: train -5555-=......==----=.......

486: train ---55-=.......======.......

487: train ==----========.............

488: train .======------=......=======

489: train=-2222-=......=------

490: train=-2222-=......=-2222-

491: train=-2222-=......=-2222-

492: train=-2222-========-2222-

493: train=------------==-2222-

494: train=======-5555-==------

495: train=-5555-========

496: train=------=.......

497: train========.......

498: train

499: train ======.....................

500: train -----=.....................

501: train 2222-=........=======......

502: train 2222-=.......==-----=......

503: train 2222-=.......=--222-=......

504: train 222--=.......=-2222-=......

505: train ----==.......=-2222-=......

506: train =====........=-2222-=......

507: train=--22--=......

508: train==----==......

509: train======.......

510: train ...=======...........======

511: train ...=-----==.........==----=

512: train ...=-555--=.........=--22--

513: train ...=-5555-=.........=-2222-

514: train ...=--555-=.........=-2222-

515: train ...==-----=.........=-2222-

516: train=======.=========--22--

517: train=------===----=

518: train=-5555-=.======

519: train=-5555-=.......

520: train=------=.......

521: train========.......

522: train

523: train

524: train

525: train

526: train

Final Report for Period 3/27/92-3/31/95 133

B Derivation of the SDM Transformation

This section essentially duplicates the analysis performed in [24, p 33], but is included here

for completeness, and to introduce the notation necessary for the next section. We de�ne:

�� is the covariance matrix calculated using only the vectors in the mine lane

belonging to the background class.

�+ is the covariance matrix calculated using only the vectors in the mine lane

belonging to mine classes 1-5.

The �rst step of the transform is to whiten �� by:

Y = �
� 1
2�T

X

where � contains, as its columns, the orthonormal eigenvectors of ��, and where � is a

diagonal matrix whose entries are the corresponding eigenvalues of ��. i.e.

��� = �� and �T� = I

Then, �� and �+ are transformed to:

�
� 1
2�T����

� 1
2 = I

�
� 1
2�T�+��

� 1
2 = R

In general, R is not a diagonal matrix, but it is symmetric.

The second step is to apply the orthonormal transformation to diagonalize R:

Z = 	T
Y

where 	 contains, as its columns, the orthonormal eigenvectors of R, and where � is a

diagonal matrix whose entries are the corresponding eigenvalues of R. i.e.

R	 = 	� and 	T	 = I

and:

	T
�
� 1
2�T����

� 1
2	 = I

	T
�
� 1
2�T�+��

� 1
2	 = �

Thus, both matrices are diagonalized.

B.1 Optimization of the algorithm

If a numerical procedure is available which can calculate the eigensystem of a non-symmetric

matrix, then the above discussion can be simpli�ed [24, pp 34-35]. We apply the orthonormal

transformation to diagonalize the matrix: [��]
�1�+:

Y = A
T
X

134 Adaptive Neural Networks for Mine Detection

where A contains, as its columns, the orthonormal eigenvectors of [��]�1�+, and where �

is a diagonal matrix whose entries are the corresponding eigenvalues of [��]�1�+.

We then scale the columns of A such that AT��A = I . i.e. replace each eigenvector

ui in A with:
uiq

u
T

i
��ui

In our implementation, we did not have access to a routine which would calculate

the eigensystem for a non-symmetric matrix, so our implementation followed the derivation

in the previous section.

C Feature Selection with the SDM Transform

This section derives the \feature selection" criterion used to optimally select components

of the SDM transform matrix. We wish to determine which of the vectors of ASDM we can

discard with minimum mean square error in the reconstruction.

The �rst step is to partition AT

SDM
such that the top m rows are the ones we plan to

keep, and the bottom k�m rows are the ones we plan to discard. We desire to determine the

mean square error if the k�m rows are discarded. We can then use this result to evaluate

any such partition, and use the partition which minimizes the MSE while still discarding

k �m components.

We start with some notation. The symbols �, �, and 	 are as de�ned in Appendix B.

A
T = 	T

�
� 1
2�T

A
�T = ��

1
2	

A
T

m = the top m rows of AT

SDM

A
T

k
= the remaining k �m rows of AT

SDM

A
�T
m = the left m columns of A�T

A
�T
k

= the remaining k �m columns of A�T

Y = A
T
X

Yk = A
T

k
X

Ym = A
T
mX

Ik = a (k �m)� (k �m) identity matrix

If X̂ is the reconstruction of X , the reconstruction error is:

e = X � X̂

= A
�T

Y �A
�T
m A

T

mX

= A
�T

Y �A
�T
m Ym

= A
�T
k

Yk

kek2 = < e; e >

Final Report for Period 3/27/92-3/31/95 135

= Y
T

k

h
A
�T
k

iT
A
�T
k

Yk

Now, we concern ourselves with determining the central part of this equation:

h
A
�T
k

i
T

A
�T
k

=

(h
��

1
2	
i " 0

Ik

#)T (h
��

1
2	
i " 0

Ik

#)

=
h
0 Ik

i h
	T

�

1
2�T

i h
��

1
2	
i " 0

Ik

#

=
h
0 Ik

i h
	T

�	
i " 0

Ik

#

=
h
0 Ik

i
K

"
0

Ik

#

= K
0

where K0 is a (k �m) � (k �m) matrix, which is the bottom right corner of [T
�]. In

particular, we note that K0 is not diagonal. So,

E[k e2 k] = E[Y T

k K
0
Yk]

= E[XT
AkK

0
A
T

kX]

= E[XT
K
00
X]

This does not simplify as in the KL case. In order to evaluate it for a given partition

of ASDM , we need to �rst compute ASDM , and then compute K 00 using the known quantities

used when calculating ASDM . Then, we need to make another pass through the training

data to calculate E[XT
K

00
X].

Since K00 is not diagonal, the error induced by deleting one column of ASDM is not

independent of other columns as it was for the KL transform. Thus, all

k

m

!
permutations

of Am need to be considered, to see which rows to discard. Since each time we do this we

need to make a pass through the training data, this is computationally intractable.

C.1 The Computable Method

Instead of trying all combinations of rows from ASDM , we pursue the sub-optimal, but more

tractable approach of minimizing the step-wise error of eliminating one row at a time. This

is the so-called \greedy" approach to optimization. Therefore, we derive the error incurred

by eliminating a single row from ASDM .

We move the row to be eliminated to the bottom of AT . Yk is now a scalar, and

A
�T
k

is a column vector. The reconstruction error is:

kek2 = Y
T

k

h
A
�T
k

i
T

A
�T
k

Yk

136 Adaptive Neural Networks for Mine Detection

Again, we concern ourselves with determining the central part of this equation:

h
A
�1
k

i
T

A
�1
k

=

(h
��

1
2	
i " 0

1

#)T (h
��

1
2	
i " 0

1

#)

=
h
0 1

i h
	T

�

1
2�T

i h
��

1
2	
i " 0

1

#

=
h
0 1

i h
	T

�	
i " 0

1

#

=
h
0 1

i
K

"
0

1

#

= Kk;k

i.e. we are picking the kth diagonal component out of the K matrix, if we delete

the kth row from ASDM . More generally, we pick the ith diagonal component out of the K

matrix if we delete the ith row from ASDM .

E[k e2 k] = E[Y T

k Kk;kYk]

= Kk;kE[YkY
T

k] Since Yk = Y
T

k
as Yk is a scalar:

= Kk;kAkE[XX
T]AT

k

= Kk;kAk�A
T

k

where � is the covariance array calculated for the regular KL transform. More generally,

for the ith component:

E[k e2 k] = Ki;iAi�A
T

i

= Ki;i

h
ASDM�AT

SDM

i
i;i

So, we can compute all of these errors in parallel:

E[k e21 k; k e22 k; : : : k e2k k] =
h
	T

�	
i
i;i

�
h
ASDM�AT

SDM

i
i;i

Final Report for Period 3/27/92-3/31/95 137

D Three Dimensional Jump/No Jump Mesh Plots

This appendix contains the \before and after" plots of the raw `x' data (the `y' data is

similar) in the neighborhood of all the jumps detected by the \Global Jump Search with

Step Detection" routine, run when the threshold was 1.0 standard deviations. In all cases,

the locations near the jumps are greatly improved, and in many instances the jump is

completely eliminated. The data is displayed as three dimensional mesh plots over two

dimensional contour plots.

138 Adaptive Neural Networks for Mine Detection

6-800.S11.mod

0
5

10
15

20
25 0

5
10

15
20

25
30

35

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

col
row

Figure 62: Jump @ Row 14 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25 0

5
10

15
20

25
30

35

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

col
row

Figure 63: Data after Jump @ Row 14 in 800 MHz, s11 Data Removed.

Final Report for Period 3/27/92-3/31/95 139

6-800.S11.mod

0
5

10
15

20
25 54

59
64

69
74

79
84

89

-1.5
-1

-0.5
0

0.5
1

1.5

col
row

Figure 64: Jump @ Row 74 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25 54

59
64

69
74

79
84

89

-3
-2
-1
0
1
2
3

col
row

Figure 65: Data After Jump @ Row 74 in 800 MHz, s11 Data Removed.

140 Adaptive Neural Networks for Mine Detection

6-800.S11.mod

0
5

10
15

20
25 138

143
148

153
158

163
168

173

0

0.5

1

col
row

Figure 66: Jump @ Row 158 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25 138

143
148

153
158

163
168

173

-2
-1
0
1
2
3

col
row

Figure 67: Data After Jump @ Row 158 in 800 MHz, s11 Data Removed.

Final Report for Period 3/27/92-3/31/95 141

6-800.S22.mod

0
5

10
15

20
25

230
235

240
245

250
255

260
265

-2
-1.5

-1
-0.5

0
0.5

1

col
row

Figure 68: Jump @ Row 250 in 800 MHz, s22 Data.

6-800.S22.mod

0
5

10
15

20
25

230
235

240
245

250
255

260
265

-5

0

col
row

Figure 69: Jump @ Row 250 in 800 MHz, s22 Data.

142 Adaptive Neural Networks for Mine Detection

6-800.S11.mod

0
5

10
15

20
25

340
345

350
355

360
365

370
375

-2
-1.5

-1
-0.5

0
0.5

1

col
row

Figure 70: Jump @ Rows 360 and 370 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25

340
345

350
355

360
365

370
375

-3
-2
-1
0
1
2
3
4

col
row

Figure 71: Data After Jumps @ Rows 360 and 370 in 800 MHz, s11 Data Removed.

Final Report for Period 3/27/92-3/31/95 143

6-800.S11.mod

0
5

10
15

20
25 384

389
394

399
404

409
414

419

-2
-1.5

-1
-0.5

0
0.5

col
row

Figure 72: Jump @ Row 414 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25 384

389
394

399
404

409
414

419

-2
-1
0
1
2
3

col
row

Figure 73: Data After Jump @ Row 414 in 800 MHz, s11 Data Removed.

144 Adaptive Neural Networks for Mine Detection

6-800.S11.mod

0
5

10
15

20
25

415
420

425
430

435
440

445
450

-2
-1.5

-1
-0.5

0
0.5

col
row

Figure 74: Jump @ Row 430 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25

415
420

425
430

435
440

445
450

-2
-1
0
1
2
3
4

col
row

Figure 75: Data After Jump @ Row 430 in 800 MHz, s11 Data Removed.

Final Report for Period 3/27/92-3/31/95 145

6-800.S11.mod

0
5

10
15

20
25 445

450
455

460
465

470
475

480

-2

-1

0

1

2

col
row

Figure 76: Jump @ Row 458 in 800 MHz, s11 Data.

6-800.S11.mod

0
5

10
15

20
25 445

450
455

460
465

470
475

480

-2

-1

0

1

2

col
row

Figure 77: Data After Jump @ Row 458 in 800 MHz, s11 Data Removed.

146 Adaptive Neural Networks for Mine Detection

Final Report for Period 3/27/92-3/31/95 147

References

[1] M. Abbasi and M. R. Sayeh, Class of learning algorithms for multilayer percep-

tron, in Proceedings of SPIE - The International Society for Optical Engineering, Ap-

plications of Optical Engineering: Proceedings of OE/Midwest '90, September 1990,

pp. 237{242.

[2] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, Competitive

learning algorithms for vector quantization, Neural Networks, 3 (1990), pp. 277{290.

[3] H. I. Avi-Itzhak, High Accuracy Correlation Based Pattern Recognition, PhD thesis,

Stanford University, Stanford, CA, May 1994.

[4] M. R. Azimi-Sadjadi, Mine detection and classi�cation using neural networks: New

architectures and data reresentation schemes. Contract DAAL03-86-D-0001, Colorado

State University, May 1992.

[5] R. Battiti, First- and second-order methods for learning: Between steepest descent

and newton's method, Neural Computation, 4 (1992), pp. 141{166.

[6] M. S. Bazarra, H. D. Sherali, and C. Shetty, Nonlinear Programming: Theory

and Algorithms, John Wiley and Sons, New York, New York, 1993.

[7] D. A. Bloom, Land mines keep wars from ever coming to an end, The Christian

Science Monitor, 87 (1995), p. 19.

[8] A. Bottoms and H. Bayless, UN secretary general de�nes the land mine crisis;

cites costs in human su�ering; and unfavorable exchange between emplacement and

removal costs, Mine Lines; Topics in the art of mine warfare, 2 (1995), p. 18.

[9] F. R. Clague, Summary of experiments with the separated aperture technique of di-

electric anomaly detection, �nal report. Report number SR-723-29-89, U.S. Army Ft.

Belvoir RD&E Center, Ft. Belvoir, VA, 1989.

[10] D. DeSieno, Adding a conscience to competitive learning, in IEEE International Con-

ference on Neural Networks, vol. 1, New York, 1988, (San Diego 1988), IEEE, pp. 117{

124.

[11] T. Doi and G. Plett, Contractor's progress, status, and management report for

period 3/27/92-6/30/92. Contract DAAK70-93-K-0003, Stanford University, August

1992.

[12] , Contractor's progress, status, and management report for period 7/1/92-9/30/92.

Contract DAAK70-93-K-0003, Stanford University, November 1992.

148 Adaptive Neural Networks for Mine Detection

[13] , Adaptive neural networks for mine detection, annual report for period 4/1/92-

3/31/93. U.S. Army Contract DAAK70-93-K-0003, Stanford University, August 1993.

[14] , Contractor's progress, status, and management report for period 10/1/92-

12/31/92. Contract DAAK70-93-K-0003, Stanford University, January 1993.

[15] , Contractor's progress, status, and management report for period 4/1/93-6/30/93.

Contract DAAK70-93-K-0003, Stanford University, August 1993.

[16] , Contractor's progress, status, and management report for period 7/1/93-9/30/93.

Contract DAAK70-93-K-0003, Stanford University, November 1993.

[17] , Adaptive neural networks for mine detection, annual report for period 4/1/93-

3/31/94. U.S. Army Contract DAAK70-92-K-0003, Stanford University, May 1994.

[18] , Contractor's progress, status, and management report for period 10/1/93-

12/31/93. Contract DAAK70-93-K-0003, Stanford University, January 1994.

[19] , Contractor's progress, status, and management report for period 4/1/94-6/31/94.

Contract DAAK70-93-K-0003, Stanford University, August 1994.

[20] , Contractor's progress, status, and management report for period 7/1/94-9/30/94.

Contract DAAK70-93-K-0003, Stanford University, November 1994.

[21] , Contractor's progress, status, and management report for period 10/1/94-

12/31/94. Contract DAAK70-93-K-0003, Stanford University, February 1995.

[22] R. O. Duda and P. E. Hart, Pattern Classi�cation and Scene Analysis, Wiley, New

York, 1973.

[23] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients,

Computer Journal, 7 (1964), pp. 149{154.

[24] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, New

York, 1972.

[25] A. Gersho and R. Gray, Vector Quantization and Signal Compression, Kluwer

Academic Publishers, Boston, 1992.

[26] D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics, Penin-

sula Publishing, Los Altos, California, 1988.

[27] R. A. Jacobs, Increased rates of convergence through learning rate adaptation, Neural

Networks, 1 (1988), pp. 295{307.

[28] T. Kohonen et al., SOM PAK: The self-organizing map program package v 1.2.

Available via anonymous FTP to: cochlea.hut.� (130.233.168.48), Nov 2, 1992.

Final Report for Period 3/27/92-3/31/95 149

[29] , LVQ PAK: The learning vector quantization program package v 2.1. Available

via anonymous FTP to: cochlea.hut.� (130.233.168.48), Oct 9, 1992.

[30] M. A. Lehr, Adaptive multisource decision-making: Detecting land mines with neural

networks using separated aperture sensor data collected at fort belvoir. Final Report,

U.S. Army Contract DAAK70-89-K-0001, Stanford University, April 1992.

[31] D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-

Wesley, Menlo Park, California, 1984.

[32] M. L. Meistrell and K. A. Spackman, Evaluation of neural network performance

by ROC analysis: Examples from the biotechnology domain, Computer Methods and

Programs in Biomedicine, 32 (1989), pp. 73{80.

[33] M. F. Moller, A scaled conjugate gradient algorithm for fast supervised learning,

Neural Networks, 6 (1993), pp. 525{533.

[34] K. Oehler and R. Gray, Combining image classi�cation and image compression

using vector quantization, in Proceedings of the Data Compression Conference, Los

Alamitos, CA, 1993, (Snowbird, Utah, 1993), IEEE, pp. 2{11.

[35] D. B. Parker, Optimal algorithms for adaptive neural networks: Second order back

propagation, second order direct propagation, and second order hebbian learning, in

Proceedings of the IEEE First International Conference on Neural Networks, vol. II,

San Diego, CA, June 1987, pp. 593{600.

[36] K. Perlmutter, R. Gray, K. Oehler, and R. Olshen, Bayes risk weighted tree-

structured vector quantization with posterior estimation, in Proceedings of the Data

Compression Conference, Los Alamitos, CA, 1994, (Snowbird, Utah, 1994), IEEE,

pp. 274{283.

[37] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes

in C, Cambridge University Press, Cambridge, 1986, ch. 10, pp. 290{323.

[38] , Numerical Recipes in C, Cambridge University Press, Cambridge, 1986, ch. 14,

pp. 523{527.

[39] L. Riggs and C. Amazeen, Research e�orts with the waveguide beyond cuto� or

separated aperture dielectric anomaly detection scheme. Internal Report #2497, U.S.

Army Ft. Belvoir RD&E Center, Ft. Belvoir, VA, 1989.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal repre-

sentations by error propagation, in Parallel Distributed Processing, D. E. Rumelhart

and J. L. McClelland, eds., vol. 1, The MIT Press, Cambridge, MA, 1986, ch. 8.

150 Adaptive Neural Networks for Mine Detection

[41] D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processing,

vol. 1 and 2, The MIT Press, Cambridge, MA, 1986.

[42] J. Sammon, Jr., A nonlinear mapping for data structure analysis, IEEE Transactions

on Computers, C-18 (1969), pp. 401{409.

[43] R. Schalkoff, Pattern Recognition: Statistical, Structural and Neural Approaches,

Wiley, New York, 1992.

[44] K. A. Spackman, Signal detection theory: Valuable tools for evaluating inductive

learning results, in Proceedings of the Sixth International Workshop on Machine Learn-

ing, 1989, pp. 160{163.

[45] D. F. Spect, Probabalistic neural networks, Neural Networks, 3 (1990), pp. 109{118.

[46] D. Torrieri, Personal communication, 1995.

[47] N. Ueda and R. Nakano, A competitive & selective learning method for designing

optimal vector quantizers, in Proceedings of ICNN - IEEE International Conference on

Neural Networks, March 1993, pp. 1444{1450.

[48] P. D. Wasserman, Neural Computing: Theory and Practice, Van Nostrand Reinhold,

New York, 1989.

[49] , Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York,

1993.

[50] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behav-

ioral Sciences, PhD thesis, Harvard University, Cambridge, MA, August 1974.

[51] R. Wesel and R. Gray, Bayes risk weighted vq and learning vq, in Proceedings of

the Data Compression Conference, Los Alamitos, CA, 1994, (Snowbird, Utah, 1994),

IEEE, pp. 400{409.

