
ECE5720: Battery Management and Control 3–1

Battery State Estimation

3.1: Preliminary definitions

■ A battery management system must estimate quantities that

� Describe the present battery pack condition, but

� May not be directly measured.

■ States are quantities that change quickly (e.g., state-of-charge,

diffusion voltage, hysteresis voltage).

■ Parameters are quantities that change slowly (e.g., cell capacities,

resistances, aging effects).

■ These quantities are typically updated in a program loop that looks

something like:

k
e
y
 o

n
: in

itia
liz

e

meas. voltage

loop once each measurement interval while pack is active

current
temperature charge (SOC)

state of
estimate estimate

state of
health (SOH) cells

balance compute
power
limits

k
e
y
 o

ff: s
to

re
 d

a
ta

■ This chapter considers battery state estimation; the next chapter

considers battery health estimation.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–2

State-of-charge (SOC) estimation

■ An estimate of all battery-pack cells’ SOC is an important input to

balancing, energy, and power calculations.

■ While we might be interested in estimating the entire battery-model

state, we first focus on estimating state-of-charge only.

� We’ll see some simple methods that lack robustness.

� Then, we examine methods that estimate the entire battery-model

state, enabling some more advanced applications.

■ Recall, SOC is something like a dashboard fuel gauge that reports a

value from “Empty” (0 %) to “Full” (100 %).

■ But, while there exist sensors to accurately measure a gasoline level

in a tank, there is (presently) no sensor available to measure SOC.

■ Further, accurate SOC estimates provide the following benefits:

Longevity: If a gas tank is over-filled or run empty, the tank is fine.

■ However, over-charging or over-discharging a battery cell may cause

permanent damage and result in reduced lifetime.

■ An accurate SOC estimate may be used to avoid harming cells by not

permitting current to be passed that would cause damage.

Performance: Without a good SOC estimator, one must be overly

conservative when using the battery pack to avoid over/undercharge

due to trusting the poor estimate.

■ With a good estimate, especially one with known error bounds, one

can aggressively use the entire pack capacity.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–3

Reliability: Poor estimators behave differently for different use profiles.

■ A good SOC estimator is consistent and dependable for any driving

profile, enhancing overall power-system reliability.

Density: Accurate SOC and battery state information allows the battery

pack to be used aggressively within the design limits, so the pack

does not need to be over-engineered.

■ This allows smaller, lighter battery packs.

Economy: Smaller battery systems cost less. Warranty service on a

reliable system costs less.

A careful definition of state-of-charge

■ Chapter 1 introduced an electrochemical definition of state-of-charge.

■ We defined the present lithium concentration

stoichiometry as � D

s;avg=
s;max.

■ This stoichiometry is intended to remain between

�

0% and �

100%.

■ Then, cell SOC is computed as:

´

k

D .�

k

� �

0%/=.�100% � �

0%/.

s;max
�

100%

�

0%

■ The issue addressed here is that there is (presently) no direct way to

measure the concentrations that would allow us to calculate the SOC.

■ So, we must infer or estimate the SOC using measurements of only

cell terminal voltage and cell current.

■ We’ve already noticed that while cell OCV is closely related to SOC,

the terminal voltage is a poor predictor of OCV unless the cell is in

electrochemical equilibrium (and hysteresis is negligible).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–4

■ So, how can we know the true SOC to evaluate our estimators? How

can we know true SOC for any other purpose?

KEY POINT: We are aided by some definitions that can calibrate our tests.

DEFINITION: A cell is fully charged when its open circuit voltage (OCV)

reaches v
h

.T /, a manufacturer specified voltage that may be a

function of temperature T .

■ e.g., v
h

.25 ÆC/ D 4:2 V for LMO; v
h

.25 ÆC/ D 3:6 V for LFP.

■ A common method to bring a cell to a fully charged state is to

execute a constant-current charge profile until the terminal voltage

is equal to v

h

.T /, followed by a constant-voltage profile until the

charging current becomes infinitesimal.

■ We define the SOC of a fully charged cell to be 100 %.

DEFINITION: A cell is fully discharged when its OCV reaches v
l

.T /, a

manufacturer specified voltage that may be a function of temperature.

■ e.g., v
l

.25 ÆC/ D 3:0 V for LMO; v
l

.25 ÆC/ D 2:0 V for LFP.

■ A cell may be fully discharged by executing a constant-current

discharge profile until its terminal voltage is equal to v

l

.T /,

followed by a constant-voltage profile until the discharge current

becomes infinitesimal.

■ We define the SOC of a fully discharged cell to be 0 %.

DEFINITION: The total capacity Q of a cell is the quantity of charge

removed from a cell as it is brought from a fully charged state to a

fully discharged state.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–5

■ While the SI unit for charge is coulombs (C), it is more common in

practice to use units of ampere hours (Ah) or milliampere hours

(mAh) to measure the total capacity of a battery cell.

■ The total capacity of a cell is not a fixed quantity: it generally

decays slowly over time as the cell degrades.

DEFINITION: The discharge capacity Q
�rate� of a cell is the quantity of

charge removed from a cell as it is discharged at a constant rate from

a fully charged state until its loaded terminal voltage reaches v
l

.T /.

■ Because the discharge capacity is determined based on loaded

terminal voltage rather than open circuit voltage, it is strongly

dependent on the cell’s internal resistance, which itself is a

function of rate and temperature.

■ Hence, the discharge capacity of a cell is rate dependent and

temperature dependent.

■ Because of the resistive i.t/ �R

0

drop, discharge capacity is less

than total capacity unless the discharge rate is infinitesimal.

■ Likewise, the SOC of the cell is nonzero when the terminal voltage

reaches v
l

.T / at a non-infinitesimal rate.

■ The discharge capacity of a cell at a particular rate and

temperature is not a fixed quantity: it also generally decays slowly

over time as the cell degrades.

DEFINITION: The nominal capacity Qnom of a cell is a manufacturer-

specified quantity that is intended to be representative of the 1C-rate

discharge capacity Q
1C

of a particular manufactured lot of cells at

room temperature, 25 ÆC.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–6

■ The nominal capacity is a constant value.

■ Since the nominal capacity is representative of a lot of cells and

the discharge capacity is representative of a single individual cell,

Qnom ¤ Q

1C

in general, even at beginning of life.

■ Also, since Qnom is representative of a discharge capacity and not

a total capacity, Qnom ¤ Q.

DEFINITION: The residual capacity of a cell is the quantity of charge that

would be removed from a cell if it were brought from its present state

to a fully discharged state.

DEFINITION: The state-of-charge of the cell is the ratio of the residual

capacity to the total capacity of the cell.

■ These definitions are consistent with the relationships

´.t/ D ´.0/�

1

Q

Z

t

0

�.t/i.t/ dt , and ´

kC1

D ´

k

� �

k

i

k

�t=Q

that we have already seen.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–7

3.2: Some approaches to estimate state of charge

Poor, voltage-based methods to estimate SOC

■ Measure cell terminal voltage under load v.t/ and look up on “SOC

versus OCV” curve

� Misses effects of i.t/ �R

0

losses, diffusion voltages, hysteresis

� Wide flat areas of OCV curve dilute accuracy of estimate

■ The “Tino” method assumes a cell model v.t/ D OCV.´.t//� i.t/R

0

and then looks up v.t/C i.t/R

0

on “SOC versus OCV” curve

� Better, but still misses diffusion voltages, hysteresis

■ Example shows that Tino

estimate is very noisy.

■ Filtering helps, but adds delay,

which must be accounted for.

■ Hysteresis is another

complicating factor.
0 100 200 300 400 500

Time (min)

0

20

40

60

80

100

S
O

C
 a

n
d

 e
s
ti
m

a
te

 (
%

)

True SOC and voltage-based estimate

SOC estimate

True SOC

■ Even though its estimates are noisy, we’ll find an application for the

Tino method in the next chapter of notes.

Poor, current-based method to estimate SOC

■ Coulomb counting keeps track of charge in, out of cells via

Ó.t/ D Ó.0/�

1

b

Q

Z

t

0

imeas.�/ d�

imeas.t/ D itrue.t/C inoise.t/C ibias.t/C inonlin.t/C isd.t/C ileakage.t/.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–8

� Okay for short periods of operation when initial conditions are

known or can be frequently “reset”;

� Subject to drift due to current sensor’s fluctuations, current-sensor

bias, incorrect capacity estimate, other losses;

■ Uncertainty/error bounds grow over time, increasing without bound

until estimate is “reset”.

Model-based state estimation

■ An alternative to a voltage-only method or a current-only method is to

somehow combine the approaches.

■ Model-based state estimators implement algorithms that use sensor

measurements to infer the internal hidden state of a dynamic system.

System Model

Measured Output

Predicted Output

Input

Process Noise Sensor Noise

True System

State

State Est.

� A mathematical model of the system is assumed known.

� Same input propagated through true system and model.

� Measured and predicted outputs compared; error used to update

model’s estimate of the true state:

◆ Output error due to: state, measurement, model errors;

◆ Update must be done carefully to account for all of these.

■ Under some specific conditions, the Kalman filter (a special case of

sequential probabilistic inference) gives the optimal state estimate.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–9

■ We will look at the linear Kalman filter and some of its variants

throughout the remainder of this chapter.

Sequential probabilistic inference

■ We start by assuming a general, possibly nonlinear, model

x

k

D f .x

k�1

; u

k�1

; w

k�1

/

y

k

D h.x

k

; u

k

; v

k

/,

where u

k

is a known (deterministic/measured) input signal, w
k

is a

process-noise random input, and v

k

is a sensor-noise random input.

■ We note that f .�/ and h.�/ may be time-varying, but we generally omit

the time dependency from the notation for ease of understanding.

SEQUENTIAL PROBABILISTIC INFERENCE: Estimate the present state x

k

of a dynamic system using all measurements Y
k

D fy

0

; y

1

; � � � ; y

k

g .

x

k�2

x

k�1

x

k

y

k�2

y

k�1

y

k

f

Y jX

.y

k

j x

k

/

f

X jX

.x

k

j x

k�1

/

Observed

Unobserved

■ The observations allow us to “peek” at what is happening in the true

system. Based on observations and our model, we estimate the state.

■ However, process-noise and sensor-noise randomness cause us

never to be able to compute the state exactly.

■ So, to be able to talk about the sequential-probabilistic-inference

solution, we first must look at some topics in vector random variables

and random processes.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–10

3.3: Review of probability

■ By definition, noise is not deterministic—it is random in some sense.

■ So, to discuss the impact of noise on the system dynamics, we must

understand “random variables” (RVs).

� Cannot predict exactly what we will get each time we measure or

sample the random variable, but

� We can characterize the probability of each sample value by the

“probability density function” (pdf).

■ For a brief review, define random vector X and sample vector x
0

as

X D

2

6

6

6

6

4

X

1

X

2

:

:

:

X

n

3

7

7

7

7

5

, x

0

D

2

6

6

6

6

4

x

1

x

2

:

:

:

x

n

3

7

7

7

7

5

,

where X

1

through X

n

are scalar random variables and x

1

through x

n

are scalar constants.

■
X described by (scalar function) joint pdf f

X

.x/ of vector X .

� f

X

.x

0

/ means f
X

.X

1

D x

1

; X

2

D x

2

; � � � ; X

n

D x

n

/.

� That is, f
X

.x

0

/ dx
1

dx
2

� � � dx
n

is the probability that X is between

x

0

and x

0

C dx.

■ Properties of joint pdf f
X

.x/:

1. f
X

.x/ � 0 8 x.

2.

Z

1

�1

Z

1

�1

� � �

Z

1

�1

f

X

.x/ dx
1

dx
2

� � � dx
n

D 1.

3. Nx D E�X� D

Z

1

�1

Z

1

�1

� � �

Z

1

�1

xf

X

.x/ dx
1

dx
2

� � � dx
n

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–11

4. Correlation matrix:

�

X

D E�XX
T

� (outer product)

D

Z

1

�1

Z

1

�1

: : :

Z

1

�1

xx

T

f

X

.x/ dx
1

dx
2

� � � dx
n

.

5. Covariance matrix: Define eX D X � Nx. Then,

�

e

X

D E�.X � Nx/.X � Nx/

T

�

D

Z

1

�1

Z

1

�1

� � �

Z

1

�1

.x � Nx/.x � Nx/

T

f

X

.x/ dx
1

dx
2

� � � dx
n

.

�

e

X

is symmetric and positive-semi-definite (psd). This means

y

T

�

e

X

y � 0 8 y.

■ Notice that correlation D covariance for zero-mean random vectors.

■ The covariance entries have specific meaning:

.�

e

X

/

i i

D �

2

X

i

.�

e

X

/

ij

D �

ij

�

X

i

�

X

j

D .�

e

X

/

j i

.

� The diagonal entries are the variances of each vector component;

� The correlation coefficient �
ij

is a measure of linear dependence

between X

i

and X

j

. j�
ij

j � 1.

■ There are infinite variety in pdfs.

■ However, we use only the

(multivariable) Gaussian pdf

when defining the Kalman filter.

■ All noises and the state vector

itself are assumed to be

Gaussian random vectors.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–12

■ The Gaussian or normal pdf is defined as, where we say

X � N . Nx;�

e

X

/

f

X

.x/ D

1

.2�/

n=2

j
�

e

X

j

1=2

exp

�

�

1

2

.x � Nx/

T

�

�1

e

X

.x � Nx/

�

:

j�

e

X

j D det.�
e

X

/; �

�1

e

X

requires positive-definite �

e

X

.

■ Contours of constant f
X

.x/ are hyper-ellipsoids, centered at Nx,

directions governed by �
e

X

.

Properties of jointly-distributed RVs

INDEPENDENCE: Iff jointly-distributed RVs are independent, then

f

X

.x

1

; x

2

; : : : ; x

n

/ D f

X

1

.x

1

/f

X

2

.x

2

/ � � �f

X

n

.x

n

/.

■ Joint distribution can be split up into the product of individual

distributions for each RV.

� “The particular value of the random variable X

1

has no impact on

what value we would obtain for the random variable X

2

.”

UNCORRELATED: Two jointly-distributed R.V.s X
1

and X

2

are

uncorrelated if their second moments are finite and

cov.X
1

; X

2

/ D E�.X
1

� Nx

1

/.X

2

� Nx

2

/� D 0

which implies �
12

D 0.

■ Uncorrelated means that there is no linear relationship between RVs.

MAIN POINT #1: If jointly-distributed RVs X
1

and X

2

are independent then

they must also be uncorrelated. Independence implies uncorrelation.

However, uncorrelated RVs are not necessarily independent.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–13

MAIN POINT #2: If jointly normally distributed RVs are uncorrelated, then

they are independent. This is a (very) special case.

MAIN POINT #3: We can define a conditional pdf

f

X jY

.xjy/ D

f

X;Y

.x; y/

f

Y

.y/

as the probability that X D x given that Y D y has happened.

NOTE: The marginal probability f
Y

.y/ may be calculated as

f

Y

.y/ D

Z

1

�1

f

X;Y

.x; y/ dx.

For each y, integrate out the effect of X .

DIRECT EXTENSION:

f

X;Y

.x; y/ D f

X jY

.xjy/f

Y

.y/

D f

Y jX

.yjx/f

X

.x/,

Therefore,

f

X jY

.xjy/ D

f

Y jX

.yjx/f

X

.x/

f

Y

.y/

.

■ This is known as Bayes’ rule. It relates the posterior probability to the

prior probability.

■ It forms a key step in the Kalman filter derivation.

MAIN POINT #4: We can define conditional expectation as what we

expect the value of X to be given that Y D y has happened

E�X D xjY D y� D E�X jY � D

Z

1

�1

xf

X jY

.xjY / dx.

■ Note: Conditional expectation is critical. The Kalman filter is an

algorithm to compute E�x
k

j Y
k

�, where we define Y
k

later.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–14

MAIN POINT #5: Central Limit Theorem.

■ If Y D

X

i

X

i

and the X

i

are independent and identically distributed

(IID), and the X

i

have finite mean and variance, then Y will be

approximately normally distributed.

■ The approximation improves as the number of summed RVs gets

large.

■ Since the state of our dynamic system adds up the effects of lots of

independent random inputs, it is reasonable to assume that the

distribution of the state tends to the normal distribution.

■ This leads to the key assumptions for the derivation of the Kalman

filter, as we will see:

� We will assume that the state x

k

is a normally distributed random

vector;

� We will assume that the process noise w

k

is a normally distributed

random vector;

� We will assume that the sensor noise v

k

is a normally distributed

random vector;

� We will assume that w
k

and v

k

are uncorrelated with each other.

■ Even when these assumptions are broken in practice, the Kalman

filter works quite well.

■ Exceptions tend to be with very highly nonlinear systems, for which

particle filters must sometimes be employed to get good estimates.

MAIN POINT #6: A linear combination of Gaussian RVs results in a

Gaussian RV.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–15

3.4: Overview of vector random (stochastic) processes

■ A stochastic or random process is a family of random vectors indexed

by a parameter set (“time” in our case).

� For example, we might refer to a random process X
k

for generic k.

� The value of the random process at any specific time k D m is a

random variable X

m

.

■ Usually assume stationarity.

� The statistics (i.e., pdf) of the RV are time-shift invariant.

� Therefore, E�X
k

� D Nx for all k and E�X
k

1

X

T

k

2

� D R

X

.k

1

� k

2

/.

Properties and important points

1. Autocorrelation: R
X

.k

1

; k

2

/ D E�X
k

1

X

T

k

2

�. If stationary,

R

X

.�/ D E�X
k

X

T

kC�

�.

■ Provides a measure of correlation between elements of the

process having time displacement � .

■
R

X

.0/ D �

2

X

for zero-mean X .

■
R

X

.0/ is always the maximum value of R
X

.�/.

2. Autocovariance: C
X

.k

1

; k

2

/ D E�.X
k

1

� E�X
k

1

�/.X

k

2

� E�X
k

2

�/

T

�. If

stationary,

C

X

.�/ D E�.X
k

� Nx/.X

kC�

� Nx/

T

�.

3. White noise: Some processes have a unique autocorrelation:

(a) Zero mean,

(b) R
X

.�/ D E�X
k

X

T

kC�

� D S

X

Æ.�/ where Æ.�/ is the Dirac delta.

Æ.�/ D 08 � ¤ 0.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–16

■ Therefore, the process is uncorrelated in time.

■ Clearly an abstraction, but proves to be a very useful one.

0 200 400 600 800 1000
−4

−2

0

2

4
White noise

Time

V
a
lu

e

0 200 400 600 800 1000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Correlated noise

Time

V
a
lu

e

4. Shaping filters: We will assume that the noise inputs to the dynamic

systems are white (Gaussian) processes.

■ Pretty limiting assumption, but one that can be easily fixed ➠ Can

use second linear system to “shape” the noise as desired.

■ Therefore, we can drive our linear system with noise that has a

desired characteristics by introducing a shaping filter H.´/ that

itself is driven by white noise.

■ The combined system GH.´/ looks exactly the same as before,

but the system G.´/ is not driven by pure white noise any more.

■ Analysis augments original system model with filter states.

Original system has

x

kC1

D Ax

k

C B

w

w

1;k

y

k

D Cx

k

.

■ Shaping filter with white input and desired output statistics has

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–17

x

s;kC1

D A

s

x

s;k

C B

s

w

2;k

w

1;k

D C

s

x

s;k

.

■ Combine into one system:
"

x

kC1

x

s;kC1

#

D

"

A B

w

C

s

0 A

s

#"

x

k

x

s;k

#

C

"

0

B

s

#

w

2;k

y

k

D

h

C 0

i

"

x

k

x

s;k

#

.

■ Augmented system just a larger-order system driven by white

noise.

5. Gaussian processes: We will work with Gaussian noises to a large

extent, which are uniquely defined by the first- and second central

moments of the statistics ➠ Gaussian assumption not essential.

■ Our filters will always track only the first two moments.

NOTATION: Until now, we have always used capital letters for random

variables. The state of a system driven by a random process is a

random vector, so we could now call it X
k

. However, it is more

common to retain the standard notation x

k

and understand from the

context that we are discussing an RV.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–18

3.5 Sequential-probabilistic-inference solution

■ In the notation that follows,

� The superscript “�” indicates a predicted quantity based only on

past measurements.

� The superscript “C” indicates an estimated quantity based on both

past and present measurements.

� The decoration “O” indicates a predicted or estimated quantity.

� The decoration “Q” indicates an error: the difference between a

true and predicted or estimated quantity.

� The symbol “�” is used to denote the correlation between the two

arguments in its subscript (autocorrelation if only one is given).

�

xy

D E�xy
T

� and �

x

D E�xx
T

�.

� Furthermore, if the arguments are zero mean (as they often are in

the quantities we talk about), then this represents covariance.

�

Qx Qy

D E� Qx Qy
T

�

D E�. Qx � E� Qx�/. Qy � E� Qy�/
T

�,

for zero-mean Qx and Qy.

■ We choose to find a state estimate that minimizes the “mean-squared

error”

Ox

MMSE
k

.Y
k

/ D arg min
Ox

k

�

E

�

x

k

� Ox

C

k

2

2

j Y
k

�

�

D arg min
Ox

k

�

E

�

.x

k

� Ox

C

k

/

T

.x

k

� Ox

C

k

/ j Y
k

��

D arg min
Ox

k

�

E

�

x

T

k

x

k

� 2x

T

k

Ox

C

k

C . Ox

C

k

/

T

Ox

C

k

j Y
k

��

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–19

■ We solve for OxC
k

by differentiating the cost function and setting the

result to zero

0 D

d

d OxC
k

E

�

x

T

k

x

k

� 2x

T

k

Ox

C

k

C . Ox

C

k

/ Ox

C

k

j Y
k

�

.

■ To do so, note the following identities from vector calculus,

d

dX
Y

T

X D Y;

d

dX
X

T

Y D Y; and
d

dX
X

T

AX D .AC A

T

/X .

■ Then,

0 D E

�

� 2.x

k

� Ox

C

k

/ j Y
k

�

D 2 Ox

C

k

� 2E

�

x

k

j Y
k

�

Ox

C

k

D E

�

x

k

j Y
k

�

.

■ We proceed by assuming that all RVs have a Gaussian distribution.

We will find that the result has a predict/correct mechanism.

■ So, with malice aforethought, we define prediction error Qx�
k

D x

k

� Ox

�

k

where Ox

�

k

D E

�

x

k

j Y
k�1

�

.

� Error is always “truth minus prediction” or “truth minus estimate.”

� We can’t compute error in practice, since truth value is not known.

� But, we can prove statistical results using this definition that give

an algorithm for estimating the truth using measurable values.

■ Also, define the measurement innovation (what is new or unexpected

in the measurement) as Qy

k

D y

k

� Oy

k

where Oy

k

D E

�

y

k

j Y
k�1

�

.

■ Both Qx

�

k

and Qy

k

can be shown to be zero mean using the method of

iterated expectation: E
�

E

�

X j Y

��

D E

�

X

�

.

E

�

Qx

�

k

�

D E

�

x

k

�

� E

�

E

�

x

k

j Y
k�1

��

D E

�

x

k

�

� E

�

x

k

�

D 0

E

�

Qy

k

�

D E

�

y

k

�

� E

�

E

�

y

k

j Y
k�1

��

D E

�

y

k

�

� E

�

y

k

�

D 0.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–20

■ Note also that Qx�
k

is uncorrelated with past measurements as they

have already been incorporated into Ox

�

k

E

�

Qx

�

k

j Y
k�1

�

D E

�

x

k

� E

�

x

k

j Y
k�1

�

j Y
k�1

�

D 0 D E

�

Qx

�

k

�

.

■ Therefore, on one hand we can write the relationship

E

�

Qx

�

k

j Y
k

�

D E

�

x

k

j Y
k

�

� �� �

Ox

C

k

�E

�

Ox

�

k

j Y
k

�

� �� �

Ox

�

k

.

■ On the other hand, we can write

E

�

Qx

�

k

j Y
k

�

D E

�

Qx

�

k

j Y
k�1

; y

k

�

D E

�

Qx

�

k

j y

k

�

.

■ So,

Ox

C

k

D Ox

�

k

C E

�

Qx

�

k

j y

k

�

,

which is a predict/correct sequence of steps, as promised.

■ But, what is E

�

Qx

�

k

j y

k

�

? We can show that, generically, when x and y

are jointly Gaussian distributed,

E

�

x j y

�

D E

�

x

�

C�

Qx Qy

�

�1

Qy

�

y � E

�

y

��

.

■ Applying this to our problem, when y

k

D Qy

k

C Oy

k

, we get

E

�

Qx

�

k

j y

k

�

D E

�

Qx

�

k

�

C�

�

Qx Qy;k

�

�1

Qy;k

�

y

k

� E

�

y

k

��

D E

�

Qx

�

k

�

C�

�

Qx Qy;k

�

�1

Qy;k

�

Qy

k

C Oy

k

� E

�

Qy

k

C Oy

k

��

D 0C�

�

Qx Qy;k

�

�1

Qy;k

�

Qy

k

C Oy

k

� .0C Oy

k

/

�

D �

�

Qx Qy;k

�

�1

Qy;k

� �� �

L

k

Qy

k

.

■ Putting all of the pieces together, we get the general update equation:

Ox

C

k

D Ox

�

k

C L

k

Qy

k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–21

■ Note that L
k

is a function of �C

Qx;k

, which may be computed as

�

C

Qx;k

D E

�

.x

k

� Ox

C

k

/.x

k

� Ox

C

k

/

T

�

D E

��

.x

k

� Ox

�

k

/� L

k

Qy

k

	�

.x

k

� Ox

�

k

/� L

k

Qy

k

	

T

�

D E

��

Qx

�

k

� L

k

Qy

k

	�

Qx

�

k

�L

k

Qy

k

	

T

�

D �

�

Qx;k

� L

k

E

�

Qy

k

. Qx

�

k

/

T

�

� �� �

�

Qy;k

L

T

k

�E

�

Qx

�

k

Qy

T

k

�

� �� �

L

k

�

Qy;k

L

T

k

C L

k

�

Qy;k

L

T

k

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

.

Forest and trees

■ To be perfectly clear, the output of this process has two parts:

1. The state estimate. At the end of every iteration, we have

computed our best guess of the present state value, which is Ox

C

k

.

2. The covariance estimate. The covariance matrix �C

Qx;k

gives the

uncertainty of OxC
k

, and can be used to compute error bounds.

■ Summarizing, the generic Gaussian sequential probabilistic inference recursion becomes:

Ox

C

k

D Ox

�

k

C L

k

�

y

k

� Oy

k

�

D Ox

�

k

C L

k

Qy

k

�

C

Qx;k

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

,

where

Ox

�

k

D E
�

x

k

j Y
k�1

�

�

�

Qx;k

DE
�

.x

k

� Ox

�

k

/.x

k

� Ox

�

k

/

T

�

D E
�

. Qx

�

k

/. Qx

�

k

/

T

�

Ox

C

k

D E
�

x

k

j Y
k

�

�

C

Qx;k

DE
�

.x

k

� Ox

C

k

/.x

k

� Ox

C

k

/

T

�

D E
�

. Qx

C

k

/. Qx

C

k

/

T

�

Ó

k

D E
�

´

k

j Y
k�1

�

�

Qy;k

DE
�

.y

k

� Oy

k

/.y

k

� Oy

k

/

T

�

D E
�

. Qy

k

/. Qy

k

/

T

�

L

k

D E
�

.x

k

� Ox

�

k

/.y

k

� Oy

k

/

T

�

�

�1

Qy;k

D�

�

Qx Qy;k

�

�1

Qy;k

.

■ Note that this is a linear recursion, even if the system is nonlinear(!)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–22

3.6: The six-step process

■ Generic Gaussian probabilistic inference solution can be divided into

two main steps, each having three sub-steps.

General step 1a: State prediction time update.

■ Each time step, compute an updated prediction of the present value

of x
k

, based on prior information and the system model

Ox

�

k

D E

�

x

k

j Y
k�1

�

D E

�

f .x

k�1

; u

k�1

; w

k�1

/ j Y
k�1

�

.

General step 1b: Error covariance time update.

■ Determine the predicted state-estimate error covariance matrix ��

Qx;k

based on prior information and the system model.

■ We compute �

�

Qx;k

D E

�

. Qx

�

k

/. Qx

�

k

/

T

�

, where Qx

�

k

D x

k

� Ox

�

k

.

General step 1c: Predict system output y
k

.

■ Predict the system’s output using prior information

Oy

k

D E

�

y

k

j Y
k�1

�

D E

�

h.x

k

; u

k

; v

k

/ j Y
k�1

�

.

General step 2a: Estimator gain matrix L
k

.

■ Compute the estimator gain matrix L
k

by evaluating L

k

D �

�

Qx Qy;k

�

�1

Qy;k

.

General step 2b: State estimate measurement update.

■ Compute the posterior state estimate by updating the prediction using

the L

k

and the innovation y

k

� Oy

k

Ox

C

k

D Ox

�

k

CL

k

.y

k

� Oy

k

/.

General step 2c: Error covariance measurement update.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–23

■ Compute the posterior error covariance matrix

�

C

Qx;k

D E

�

. Qx

C

k

/. Qx

C

k

/

T

�

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

.

KEY POINT: The estimator output comprises the state estimate Ox

C

k

and

error covariance estimate �

C

Qx;k

.

■ That is, we have high confidence that the truth lies within

Ox

C

k

� 3

r

diag
�

�

C

Qx;k

�

.

■ The estimator then waits until the next sample interval, updates k,

and proceeds to step 1a.

Step 1c: Estimate system output

Step 2a: Estimator gain matrix

P
re

d
ic

ti
o
n

C
o
rr

e
c
ti
o
n

Step 1a: State estimate time update

Step 1b: Error covariance time update

Step 2b: State estimate measurement update

Step 2c: Covariance estimate measurement update

Ox

�

k

D E

�

x

k

j Y
k�1

�

D E

�

f .x

k�1

; u

k�1

; w

k�1

/ j Y
k�1

�

.

�

�

Qx;k

D E

�

. Qx

�

k

/. Qx

�

k

/

T

�

D E

�

.x

k

� Ox

�

k

/.x

k

� Ox

�

k

/

T

�.

Oy

k

D E

�

y

k

j Y
k�1

�

D E

�

h.x

k

; u

k

; v

k

/ j Y
k�1

�

.

L

k

D �

�

Qx Qy;k

�

�1

Qy;k

.

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/.

�

C

Qx;k

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–24

Optimal application to linear systems: The Kalman filter

■ In the next section, we take the general solution and apply it to the

specific case where the system dynamics are linear.

■ Linear systems have the desirable property that all pdfs do in fact

remain Gaussian if the stochastic inputs are Gaussian, so the

assumptions made in deriving the filter steps hold exactly.

■ The linear Kalman filter assumes that the system being modeled can

be represented in the “state-space” form

x

k

D A

k�1

x

k�1

C B

k�1

u

k�1

C w

k�1

y

k

D C

k

x

k

CD

k

u

k

C v

k

.

■ We assume that w
k

and v

k

are mutually uncorrelated white Gaussian

random processes, with zero mean and covariance matrices with

known value:

E�w
n

w

T

k

� D

8

<

:

�

e

w

; n D kI

0; n ¤ k:

E�v
n

v

T

k

� D

8

<

:

�

Qv

; n D kI

0; n ¤ k,

and E�w
k

x

T

0

� D 0 for all k.

■ The assumptions on the noise processes w
k

and v

k

and on the

linearity of system dynamics are rarely (never) met in practice, but the

consensus of the literature and practice is that the method still works

very well.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–25

3.7: Deriving the linear Kalman filter

■ We now apply the general solution to the linear case, and derive the

linear Kalman filter.

■ An attempt to aid intuition is also given as we proceed.

KF step 1a: State estimate time update.

■ Here, we compute the predicted state

Ox

�

k

D E

�

f .x

k�1

; u

k�1

; w

k�1

/ j Y
k�1

�

D E

�

A

k�1

x

k�1

C B

k�1

u

k�1

C w

k�1

j Y
k�1

�

D E

�

A

k�1

x

k�1

j Y
k�1

�

C E

�

B

k�1

u

k�1

j Y
k�1

�

C E

�

w

k�1

j Y
k�1

�

D A

k�1

Ox

C

k�1

C B

k�1

u

k�1

,

by the linearity of expectation, noting that w
k�1

is zero-mean.

INTUITION: When predicting the present state given only past

measurements, the best we can do is to use the most recent state

estimate and system model, propagating the mean forward in time.

KF step 1b: Error covariance time update.

■ First, we note that the prediction error is Qx

�

k

D x

k

� Ox

�

k

, so

Qx

�

k

D x

k

� Ox

�

k

D A

k�1

x

k�1

C B

k�1

u

k�1

C w

k�1

� A

k�1

Ox

C

k�1

� B

k�1

u

k�1

D A

k�1

Qx

C

k�1

Cw

k�1

.

■ Therefore, the covariance of the prediction error is

�

�

Qx

k

D E

�

. Qx

�

k

/. Qx

�

k

/

T

�

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–26

D E

�

.A

k�1

Qx

C

k�1

C w

k�1

/.A

k�1

Qx

C

k�1

C w

k�1

/

T

�

D E

�

A

k�1

Qx

C

k�1

. Qx

C

k�1

/

T

A

T

k�1

C w

k�1

. Qx

C

k�1

/

T

A

T

k�1

CA

k�1

Qx

C

k�1

w

T

k�1

C w

k�1

w

T

k�1

�

D A

k�1

�

C

Qx;k�1

A

T

k�1

C�

e

w

.

■ The cross terms drop out of the final result since the white process

noise w

k�1

is not correlated with the state at time k � 1.

INTUITION: When estimating the error covariance of state prediction,

� The best we can do is to use the most recent covariance estimate

and propagate it forward in time.

� For stable systems, A
k�1

�

C

Qx;k�1

A

T

k�1

is contractive, meaning that

the covariance gets “smaller.” The state of stable systems always

decays toward zero in the absence of input, or toward a known

trajectory if u
k

¤ 0. As time goes on, this term tells us that we tend

to get more and more certain of the state estimate.

� On the other hand, �
e

w

adds to the covariance. Unmeasured inputs

add uncertainty to our estimate because they perturb the trajectory

away from the known trajectory based only on u

k

.

KF step 1c: Predict system output.

■ We predict the system output as

Oy

k

D E

�

h.x

k

; u

k

; v

k

/ j Y
k�1

�

D E

�

C

k

x

k

CD

k

u

k

C v

k

j Y
k�1

�

D E

�

C

k

x

k

j Y
k�1

�

C E

�

D

k

u

k

j Y
k�1

�

C E

�

v

k

j Y
k�1

�

D C

k

Ox

�

k

CD

k

u

k

,

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–27

since v

k

is zero-mean.

INTUITION: Oy
k

is our best guess of the system output, given only past

measurements.

� The best we can do is to predict the output given the output

equation of the system model, and our best guess of the system

state at the present time.

KF step 2a: Estimator (Kalman) gain matrix.

■ To compute the Kalman gain matrix, we first need to compute several

covariance matrices: L
k

D �

�

Qx Qy;k

�

�1

Qy;k

. We first find �

Qy;k

.

Qy

k

D y

k

� Oy

k

D C

k

x

k

CD

k

u

k

C v

k

� C

k

Ox

�

k

�D

k

u

k

D C

k

Qx

�

k

C v

k

�

Qy;k

D E

�

.C

k

Qx

�

k

C v

k

/.C

k

Qx

�

k

C v

k

/

T

�

D E

�

C

k

Qx

�

k

. Qx

�

k

/

T

C

T

k

C v

k

. Qx

�

k

/

T

C

T

k

C C

k

Qx

�

k

v

T

k

C v

k

v

T

k

�

D C

k

�

�

Qx;k

C

T

k

C�

Qv

.

■ Again, the cross terms are zero since v

k

is uncorrelated with Qx

�

k

.

■ Similarly,

E� Qx
�

k

Qy

T

k

� D E

�

Qx

�

k

.C

k

Qx

�

k

C v

k

/

T

�

D E

�

Qx

�

k

. Qx

�

k

/

T

C

T

k

C Qx

�

k

v

T

k

�

D �

�

Qx;k

C

T

k

.

■ Combining,

L

k

D �

�

Qx;k

C

T

k

�C

k

�

�

Qx;k

C

T

k

C�

Qv

�

�1.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–28

INTUITION: Note that the computation of L
k

is the most critical aspect

of Kalman filtering that distinguishes it from a number of other

estimation methods.

� The whole reason for calculating covariance matrices is to be able

to update L

k

.

� L

k

is time-varying. It adapts to give the best update to the state

estimate based on present conditions.

� Recall that we use L

k

in the equation Ox

C

k

D Ox

�

k

CL

k

.y

k

� Oy

k

/.

� The first component to L

k

, ��

Qx Qy;k

, indicates relative need for

correction to Ox

k

and how well individual states within Ox

k

are

coupled to the measurements.

� We see this clearly in �

�

Qx Qy;k

D �

�

Qx;k

C

T

k

.

� �

�

Qx;k

tells us about state uncertainty at the present time, which we

hope to reduce as much as possible.

◆ A large entry in �

�

Qx;k

means that the corresponding state is very

uncertain and therefore would benefit from a large update.

◆ A small entry in �

�

Qx;k

means that the corresponding state is very

well known already and does not need as large an update.

� The C

T

k

term gives the coupling between state and output.

◆ Entries that are zero indicate that a particular state has no direct

influence on a particular output and therefore an output

prediction error should not directly update that state.

◆ Entries that are large indicate that a particular state is highly

coupled to an output so has a large contribution to any

measured output prediction error; therefore, that state would

benefit from a large update.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–29

� �

Qy

tells us how certain we are that the measurement is reliable.

◆ If �
Qy

is “large,” we want small, slow updates.

◆ If �
Qy

is “small,” we want big updates.

◆ This explains why we divide the Kalman gain matrix by �
Qy

.

� The form of �
Qy

can also be explained.

◆ The C

k

�

�

Qx

C

T

k

part indicates how error in the state contributes to

error in the output estimate.

◆ The �

Qv

term indicates the uncertainty in the sensor reading due

to sensor noise.

◆ Since sensor noise is assumed independent of the state, the

uncertainty in Qy

k

D y

k

� Oy

k

adds the uncertainty in y

k

to the

uncertainty in Oy

k

.

KF step 2b: State estimate measurement update.

■ This step computes the a posteriori state estimate by updating the a

priori estimate using the estimator gain and the output prediction

error y
k

� Oy

k

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/:

INTUITION: The variable Oy

k

is what we expect the measurement to be,

based on our state estimate at the moment.

� Therefore, y
k

� Oy

k

is what is unexpected or new in the

measurement.

� We call this term the innovation. The innovation can be due to a

bad system model, state error, or sensor noise.

� So, we want to use this new information to update the state, but

must be careful to weight it according to the value of the

information it contains.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–30

� L

k

is the optimal blending factor, as we have already discussed.

KF step 2c: Error covariance measurement update.

■ Finally, we update the error covariance matrix.

�

C

Qx;k

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

D �

�

Qx;k

� L

k

�

Qy;k

�

�T

Qy;k

�

�

�

Qx Qy;k

�

T

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

D .I �L

k

C

k

/�

�

Qx;k

.

INTUITION: The measurement update has decreased our uncertainty

in the state estimate.

� A covariance matrix is positive semi-definite, and L

k

�

Qy;k

L

T

k

is also

a positive-semi-definite form, and we are subtracting this from the

predicted-state covariance matrix; therefore, the resulting

covariance is “lower” than the pre-measurement covariance.

COMMENT: If a measurement is missed for some reason, then skip steps

2a–c for that iteration. That is, set L
k

D 0 and Ox

C

k

D Ox

�

k

and

�

C

Qx;k

D �

�

Qx;k

.

KEY POINT: Repeating from before, recall that the estimator output

comprises the state estimate Ox

C

k

and error covariance estimate �

C

Qx;k

.

■ That is, we have high confidence that the truth lies within

Ox

C

k

� 3

r

diag
�

�

C

Qx;k

�

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–31

3.8: Visualizing the Kalman filter

■ The Kalman filter equations naturally form the following recursion

1a

Initialization

1b

1c

Prediction

2c

2b

2a

Correction

Meas. Meas.

Ox

C

0

, �C

Qx;0

Ox

�

k

D A

k�1

Ox

C

k�1

C B

k�1

u

k�1

�

�

Qx;k

D A

k�1

�

C

Qx;k�1

A

T

k�1

C�

e

w

Oy

k

D C

k

Ox

�

k

CD

k

u

k

L

k

D�

�

Qx;k

C

T

k

�C

k

�

�

Qx;k

C

T

k

C�

Qv

�

�1

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/

�

C

Qx;k

D .I �L

k

C

k

/�

�

Qx;k

y

k

u

k

next time sample: increment k

■ “Simple” to perform on a digital computer. However, note that our cell

models are nonlinear, so we cannot apply the (linear) Kalman filter to

them directly.

■ To demonstrate the KF steps,

we’ll develop and use a crude

cell model

´

kC1

D 1 � ´

k

�

1

3600 �Q

i

k

volt
k

D 3:5C 0:7 � ´

k

�R

0

i

k

.
0 20 40 60 80 100

2.5

3

3.5

4

State of charge (%)

O
p
e
n
­c

ir
c
u
it
 v

o
lt
a
g
e
 (

V
)

OCV versus SOC for four cells at 25°C

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–32

■ Notice that we have linearized the OCV relationship, and omitted the

diffusion and hysteresis voltages.

■ This model still isn’t linear because of the “3.5” in the output equation,

so we debias the measurement via y

k

D volt
k

� 3:5 and use the model

´

kC1

D 1 � ´

k

�

1

3600 �Q

i

k

y

k

D 0:7 � ´

k

�R

0

i

k

.

■ Define state x

k

� ´

k

and input u
k

� i

k

.

■ For the sake of example, we will use Q D 10000=3600 and R

0

D 0:01.

■ This yields a state-space description with A D 1, B D �1 � 10

�4,

C D 0:7, and D D �0:01. We also model �
e

w

D 10

�5, and �

Qv

D 0:1.

■ We assume no initial uncertainty so Ox

C

0

D 0:5 and �

C

Qx;0

D 0.

Iteration 1: (let i
0

D 1, i
1

D 0:5 and v

1

D 3:85)

Ox

�

k

D A

k�1

Ox

C

k�1

C B

k�1

u

k�1

Ox

�

1

D 1 � 0:5 � 10

�4

� 1 D 0:4999

�

�

Qx;k

D A

k�1

�

C

Qx;k�1

A

T

k�1

C�

ew

�

�

Qx;1

D 1 � 0 � 1C 10

�5

D 10

�5

Oy

k

D C

k

Ox

�

k

CD

k

u

k

Oy

1

D 0:7 � 0:4999� 0:01 � 0:5 D 0:34493

L

k

D �

�

Qx;k

C

T

k

�C

k

�

�

Qx;k

C

T

k

C�

Qv

�

�1

L

1

D 10

�5

� 0:7�0:7

2

� 10

�5

C 0:1�

�1

D 6:99966�10

�5

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/

(where y

k

D 3:85� 3:5)

Ox

C

1

D 0:4999C 6:99966�10

�5

.0:35� 0:34493/

D 0:4999004

�

C

Qx;k

D .I �L

k

C

k

/�

�

Qx;k

�

C

Qx;1

D .1� 6:99966�10

�5

� 0:7/ � 10

�5

D 9:9995�10

�6

■ Output: Oq D 0:4999� 3

p

9:9995 � 10

�6

D 0:4999� 0:0094866.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–33

Iteration 2: (let i
1

D 0:5, i
2

D 0:25, and v

2

D 3:84)

Ox

�

k

D A

k�1

Ox

C

k�1

C B

k�1

u

k�1

Ox

�

1

D 0:4999004� 10

�4

� 0:5 D 0:49985

�

�

Qx;k

D A

k�1

�

C

Qx;k�1

A

T

k�1

C�

ew

�

�

Qx;2

D 9:9995�10

�6

C 10

�5

D 1:99995�10

�5

Oy

k

D C

k

Ox

�

k

CD

k

u

k

Oy

2

D 0:7�0:49985� 0:01 � 0:25 D 0:347395

L

k

D �

�

Qx;k

C

T

k

�C

k

�

�

Qx;k

C

T

k

C�

Qv

�

�1

L

2

D 1:99995�10

�5

� 0:7�1:99995�10

�5

� 0:7

2

C 0:1�

�1

D 0:00013998

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/

(where y

k

D 3:84� 3:5)

Ox

C

2

D 0:49985C 0:00013998.0:34� 0:347395/

D 0:499849

�

C

Qx;k

D .I �L

k

C

k

/�

�

Qx;k

�

C

Qx;2

D .1� 0:00013998 � 0:7/ � 1:99995�10

�5

D 1:99976�10

�5

■ Output: Oq D 0:4998� 3

p

1:99976 � 10

�5

D 0:4998� 0:013416.

■ Note that covariance (uncertainty) converges, but it can take time

�

�

Qx;1

D 1�10

�5

�

�

Qx;2

D 1:99995�10

�5

�

�

Qx;3

D 2:99976�10

�5

�

C

Qx;0

D 0 �

C

Qx;1

D 9:99951�10

�6

�

C

Qx;2

D 1:99976�10

�5

�

C

Qx;3

D 2:99931�10

�5

■ Covariance increases during propagation and is then reduced by

each measurement.

■ Covariance still oscillates at steady state between �

�

Qx;ss

and �

C

Qx;ss

.

■ Estimation error bounds are �3
q

�

C

Qx;k

for 99C % assurance of

accuracy of estimate.

■ The plots below show a sample of the Kalman filter operating. We

shall look at how to write code to evaluate this example shortly.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–34

300 400 500 600 700 800 900 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iteration

S
ta

te

True

Estimate

Error

Kalman filter in action

�

�

Qx;k

�

C

Qx;k

�

�

Qx

�

C

Qx

300 400 500 600 700 800 900 1000
1.41

1.42

1.43

1.44

Iteration

C
o

v
a

ri
a

n
c
e

 ×
 1

0
3

Error covariance �

�

Qx;k

and �

C

Qx;k

�

�

Qx

�

C

Qx

■ Note that Kalman filter does not perform especially well since �

Qv

is

quite large.

■ However, these are the best-possible results, since the KF is the

optimum MMSE estimator.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–35

3.9: Matlab code for the Kalman filter steps

■ It is straightforward to convert the Kalman filter steps to MATLAB.

However, great care must be taken to ensure that all “k” and “k C 1”

indices (etc) are kept synchronized.

■ In the example, below, we simulate the true system and implement a

Kalman filter on its input–output data.

■ To simulate the true system, we must be able to create non-zero

mean Gaussian noise with covariance �

e

Y

. How to do so?

■ That is, we want Y � N . Ny;�

e

Y

/ but randn.m returns X � N .0; I /.

■ Try y D Ny C A

T

x where A is square with the same dimension as �
e

Y

;

A

T

A D �

e

Y

. (A is the Cholesky decomposition of positive-definite

symmetric matrix �
e

Y

).
ybar = [1; 2];

covar = [1, 0.5; 0.5, 1];

A = chol(covar);

x = randn([2, 1]);

y = ybar + A'*x;

■ When �

e

Y

is non-positive definite

(but also non-negative definite)

[L,D] = ldl(covar);

x = randn([2,5000]);

y = ybar(:,ones([1 5000]))

+(L*sqrt(D))*x;

−4 −2 0 2 4 6
−1

0

1

2

3

4

5

x coordinate

y
 c

o
o

rd
in

a
te

5000 samples with mean [1;2] and
covar [1,0.5; 0.5,1]

■ The code below is in MATLAB. Coding a KF in another language is no

more challenging, except that you will need to write (or find) code to

do the matrix manipulations.

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–36

SigmaV = 1; % Sensor noise covariance

A = 1; B = 1; C = 1; D = 0; % Plant definition matrices

maxIter = 40;

xtrue = 0; % Initialize true system initial state

xhat = 0; % Initialize Kalman filter initial estimate

SigmaX = 0; % Initialize Kalman filter covariance

u = 0; % Unknown initial driving input: assume zero

% Reserve storage for variables we want to plot/evaluate

xstore = zeros(length(xtrue),maxIter+1); xstore(:,1) = xtrue;

xhatstore = zeros(length(xhat),maxIter);

SigmaXstore = zeros(length(xhat)^2,maxIter);

for k = 1:maxIter,

% KF Step 1a: State estimate time update

xhat = A*xhat + B*u; % use prior value of "u"

% KF Step 1b: Error covariance time update

SigmaX = A*SigmaX*A' + SigmaW;

% [Implied operation of system in background, with

% input signal u, and output signal z]

u = 0.5*randn(1) + cos(k/pi); % for example...

w = chol(SigmaW)'*randn(length(xtrue));

v = chol(SigmaV)'*randn(length(C*xtrue));

ytrue = C*xtrue + D*u + v; % z is based on present x and u

xtrue = A*xtrue + B*u + w; % future x is based on present u

% KF Step 1c: Estimate system output

yhat = C*xhat + D*u;

% KF Step 2a: Compute Kalman gain matrix

SigmaY = C*SigmaX*C' + SigmaV;

L = SigmaX*C'/SigmaY;

% KF Step 2b: State estimate measurement update

xhat = xhat + L*(ytrue - yhat);

% KF Step 2c: Error covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–37

% [Store information for evaluation/plotting purposes]

xstore(:,k+1) = xtrue; xhatstore(:,k) = xhat;

SigmaXstore(:,k) = SigmaX(:);

end

figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter)','k-',...

0:maxIter-1,xhatstore','b--', ...

0:maxIter-1,xhatstore'+3*sqrt(SigmaXstore)','m-.',...

0:maxIter-1,xhatstore'-3*sqrt(SigmaXstore)','m-.'); grid;

legend('true','estimate','bounds');

title('Kalman filter in action');

xlabel('Iteration'); ylabel('State');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)'-xhatstore','b-',...

0:maxIter-1,3*sqrt(SigmaXstore)','m--',...

0:maxIter-1,-3*sqrt(SigmaXstore)','m--'); grid;

legend('Error','bounds',0); title('Error with bounds');

xlabel('Iteration'); ylabel('Estimation Error');

■ The plots below show a sample of the Kalman filter operating for an

example where

x

k

D x

k�1

C u

k

C w

k

y

k

D x

k

C v

k

and �

e

w

D �

Qv

D 1.

0 10 20 30 40

−5

0

5

10

true

estimate

bounds

Iteration

S
ta

te

Kalman filter in action

�

�

Qx

�

C

Qx

0 10 20 30 40

−2

−1

0

1

2

Error

bounds

Iteration

E
s
ti
m

a
ti
o

n
E

rr
o

r

Error with bounds

�

�

Qx

�

C

Qx

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–38

3.10: Practical considerations

Improving numeric robustness

■ Within the filter, the covariance matrices ��

Qx;k

and �

C

Qx;k

must remain

1. Symmetric, and

2. Positive definite (all eigenvalues strictly positive).

■ It is possible for both conditions to be violated due to round-off errors

in a computer implementation.

■ We wish to find ways to limit or eliminate these problems.

Dealing with loss of symmetry

■ The cause of covariance matrices becoming un-symmetric or

non-positive definite must be due to either the time update or

measurement update equations of the filter.

■ Consider first the time update equation:

�

�

Qx;k

D A�

C

Qx;k�1

A

T

C�

e

w

:

� Because we are adding two positive-definite quantities together,

the result must be positive definite.

� A “suitable implementation” of the products of the matrices will

avoid loss of symmetry in the final result.

■ Consider next the measurement update equation:

�

C

Qx;k

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

:

■ Theoretically, the result is positive definite, but due to the subtraction

operation it is possible for round-off errors in an implementation to

result in a non-positive-definite solution.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–39

■ A better solution is the Joseph-form covariance update.

�

C

Qx;k

D �I � L

k

C

k

� �

�

Qx;k

�I � L

k

C

k

�

T

C L

k

�

Qv

L

T

k

:

� This may be proven correct via

�

C

Qx;k

D �I � L

k

C

k

� �

�

Qx;k

�I � L

k

C

k

�

T

C L

k

�

Qv

L

T

k

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

��

�

Qx;k

C

T

k

L

T

k

C L

k

C

k

�

�

Qx;k

C

T

k

L

T

k

CL

k

�

Qv

L

T

k

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

��

�

Qx;k

C

T

k

L

T

k

C L

k

�

C

k

�

�

Qx;k

C

T

k

C�

Qv

�

L

T

k

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

��

�

Qx;k

C

T

k

L

T

k

C L

k

�

Qy;k

L

T

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

��

�

Qx;k

C

T

k

L

T

k

C

�

�

�

Qx;k

C

T

k

�

�1

Qy;k

�

�

Qy;k

L

T

D �

�

Qx;k

� L

k

C

k

�

�

Qx;k

.

■ Because the subtraction occurs in the “squared” term, this form

guarantees a positive definite result.

■ If we still end up with a negative definite matrix (numerics), we can

replace it by the nearest symmetric positive semidefinite matrix.1

■ Omitting the details, the procedure is:

� Calculate singular-value decomposition: � D USV

T .

� Compute H D VSV

T .

� Replace � with .�C�

T

CH CH

T

/=4.

■ However, there are still improvements that may be made. We can:

� Reduce the computational requirements of the Joseph form,

� Increase the precision of the numeric accuracy.

� ECE5550 goes into more detail, incl. “square-root” Kalman filters.

1 Nicholas J. Higham, “Computing a Nearest Symmetric Positive Semidefinite Matrix,”

Linear Algebra and its Applications, vol. 103, pp. 103–118, 1988.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–40

Measurement validation gating

■ Sometimes the systems for which we would like a state estimate have

sensors with intermittent faults.

■ We would like to detect faulty measurements and discard them (the

time update steps of the KF are still implemented, but the

measurement update steps are skipped).

■ The Kalman filter provides an elegant theoretical means to

accomplish this goal. Note:

� The measurement covariance matrix is �
Qy;k

D C

k

�

�

Qx;k

C

T

k

C�

Qv

;

� The measurement prediction itself is Oy

k

D C

k

Ox

�

k

CD

k

u

k

;

� The innovation is Qy

k

D y

k

� Oy

k

.

■ A measurement validation gate can be set up around the

measurement using normalized estimation error squared (NEES)

e

2

k

D Qy

T

k

�

�1

Qy;k

Qy

k

:

■ NEES e

2

k

varies as a Chi-squared distribution with m degrees of

freedom, where m is the dimension of y
k

.

■ If e2
k

is outside of the bounding values from the Chi-squared

distribution for a desired confidence level, then the measurement is

discarded. (See appendix for Chi-squared test.)

■ Note: If a number of measurements are discarded in a short time

interval, it may be that the sensor has truly failed, or that the state

estimate and its covariance has gotten “lost.”

■ It is sometimes helpful to “bump up” the covariance �

�

Qx;k

, which

simulates additional process noise, to help the Kalman filter to

reacquire.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–41

Nonlinear Kalman filters

■ Our cell models are nonlinear, so the standard Kalman-filter recursion

does not apply directly.

■ We now generalize to the nonlinear case, with system dynamics

described as

x

k

D f .x

k�1

; u

k�1

; w

k�1

/

y

k

D h.x

k

; u

k

; v

k

/,

where u

k

is a known (deterministic/measured) input signal, w
k

is a

process-noise random input, and v

k

is a sensor-noise random input.

■ We note that f .�/ and h.�/ may be time-varying, but we generally omit

the time dependency from the notation for ease of understanding.

■ There are three basic generalizations to KF to estimate the state of a

nonlinear system

� Extended Kalman filter (EKF): Analytic linearization of the model at

each point in time. Problematic, but still popular.

� Sigma-point (Unscented) Kalman filter (SPKF/UKF): Statistical/

empirical linearization of the model at each point in time. Much

better than EKF, at same computational complexity.

� Particle filters: The most precise, but often thousands of times

more computations required than either EKF/SPKF. Does not

assume Gaussian distributions but approximates distributions via

histograms and uses Monte-Carlo integration techniques to find

probabilities, expectations, and uncertainties.

■ In this section, we present the EKF and SPKF. Particle filters are

beyond the scope of this course.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–42

3.11: The extended Kalman filter (EKF)

■ The EKF makes two simplifying assumptions when adapting the

general sequential inference equations to a nonlinear system:

� When computing estimates of the output of a nonlinear function,

EKF assumes E�fn.x/� � fn.E�x�/, which is not true in general;

� When computing covariance estimates, EKF uses Taylor-series

expansion to linearize the system equations around the present

operating point.

■ Here, we will show how to apply these approximations and

assumptions to derive the EKF equations from the general six steps.

EKF step 1a: State prediction time update.

■ The state prediction step is approximated as

Ox

�

k

D E�f .x
k�1

; u

k�1

; w

k�1

/ j Y
k�1

�

� f . Ox

C

k�1

; u

k�1

; Nw

k�1

/,

where Nw

k�1

D E�w
k�1

�. (Often, Nw
k�1

D 0.)

■ That is, we approximate the expected value of the new state by

assuming that it is reasonable to simply propagate Ox

C

k�1

and Nw

k�1

through the state equation.

EKF step 1b: Error covariance time update.

■ The covariance prediction step is accomplished by first making an

approximation for Qx�
k

.

Qx

�

k

D x

k

� Ox

�

k

D f .x

k�1

; u

k�1

; w

k�1

/� f . Ox

C

k�1

; u

k�1

; Nw

k�1

/.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–43

■ The first term is expanded as a Taylor series around the prior

operating “point” which is the set of values f OxC
k�1

; u

k�1

; Nw

k�1

g

x

k

� f . Ox

C

k�1

; u

k�1

; Nw

k�1

/C

df .x
k�1

; u

k�1

; w

k�1

/

dx
k�1

�

�

�

�

x

k�1

DOx

C

k�1

� �� �

Defined as O

A

k�1

.x

k�1

� Ox

C

k�1

/

C

df .x
k�1

; u

k�1

; w

k�1

/

dw
k�1

�

�

�

�

w

k�1

D Nw

k�1

� �� �

Defined as O

B

k�1

.w

k�1

� Nw

k�1

/.

■ This gives Qx

�

k

�

�

O

A

k�1

Qx

C

k�1

C

O

B

k�1

f

w

k�1

�

.

■ Substituting this to find the prediction-error covariance:

�

�

Qx;k

D E�. Qx
�

k

/. Qx

�

k

/

T

�

�

O

A

k�1

�

C

Qx;k�1

O

A

T

k�1

C

O

B

k�1

�

e

w

O

B

T

k�1

.

■ Note, by the chain rule of total differentials,

df .x
k�1

; u

k�1

; w

k�1

/ D

�f .x

k�1

; u

k�1

; w

k�1

/

�x

k�1

dx
k�1

C

�f .x

k�1

; u

k�1

; w

k�1

/

�u

k�1

du
k�1

C

�f .x

k�1

; u

k�1

; w

k�1

/

�w

k�1

dw
k�1

df .x
k�1

; u

k�1

; w

k�1

/

dx
k�1

D

�f .x

k�1

; u

k�1

; w

k�1

/

�x

k�1

C

�f .x

k�1

; u

k�1

; w

k�1

/

�u

k�1

du
k�1

dx
k�1

����

0

C

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–44

�f .x

k�1

; u

k�1

; w

k�1

/

�w

k�1

dw
k�1

dx
k�1

����

0

D

�f .x

k�1

; u

k�1

; w

k�1

/

�x

k�1

.

■ Similarly,

df .x
k�1

; u

k�1

; w

k�1

/

dw
k�1

D

�f .x

k�1

; u

k�1

; w

k�1

/

�w

k�1

.

■ The distinction between the total differential and the partial differential

is not critical at this point, but will be in the next section of notes when

we look at parameter estimation using extended Kalman filters.

EKF step 1c: Output estimate.

■ The system output is estimated to be

Oy

k

D E�h.x
k

; u

k

; v

k

/ j Y
k�1

�

� h. Ox

�

k

; u

k

; Nv

k

/,

where Nv

k

D E�v
k

�.

■ That is, it is assumed that propagating Ox

�

k

and the mean sensor noise

is the best approximation to estimating the output.

EKF step 2a: Estimator gain matrix.

■ The output prediction error may then be approximated

Qy

k

D y

k

� Oy

k

D h.x

k

; u

k

; v

k

/ � h. Ox

�

k

; u

k

; Nv

k

/

using again a Taylor-series expansion on the first term.

y

k

� h. Ox

�

k

; u

k

; Nv

k

/C

dh.x
k

; u

k

; v

k

/

dx
k

�

�

�

�

x

k

DOx

�

k

� �� �

Defined as O

C

k

.x

k

� Ox

�

k

/

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–45

C

dh.x
k

; u

k

; v

k

/

dv
k

�

�

�

�

v

k

DNv

k

� �� �

Defined as O

D

k

.v

k

� Nv

k

/.

■ Note, much like we saw in Step 1b,

dh.x
k

; u

k

; v

k

/

dx
k

D

�h.x

k

; u

k

; v

k

/

�x

k

dh.x
k

; u

k

; v

k

/

dv
k

D

�h.x

k

; u

k

; v

k

/

�v

k

.

■ From this, we can compute such necessary quantities as

�

Qy;k

�

O

C

k

�

�

Qx;k

O

C

T

k

C

O

D

k

�

Qv

O

D

T

k

;

�

�

Qx Qy;k

� E�. Qx
�

k

/.

O

C

k

Qx

�

k

C

O

D

k

Qv

k

/

T

�

D �

�

Qx;k

O

C

T

k

.

■ These terms may be combined to get the Kalman gain

L

k

D �

�

Qx;k

O

C

T

k

�

O

C

k

�

�

Qx;k

O

C

T

k

C

O

D

k

�

Qv

O

D

T

k

�

�1

:

EKF step 2b: State estimate measurement update.

■ This step computes the posterior state estimate by updating the

prediction using the estimator gain and the innovation y

k

� Oy

k

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/:

EKF step 2c: Error covariance measurement update.

■ Finally, the updated covariance is computed as

�

C

Qx;k

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–46

3.12: An EKF example, with code

■ Consider an example of EKF in action, with the following dynamics:

x

kC1

D f .x

k

; u

k

; w

k

/ D

p

5C x

k

C w

k

y

k

D h.x

k

; u

k

; v

k

/ D x

3

k

C v

k

with �

e

w

D 1 and �

Qv

D 2.

■ To implement EKF, we must determine O

A

k

, O

B

k

, O

C

k

, and O

D

k

.

O

A

k

D

�f .x

k

; u

k

; w

k

/

�x

k

�

�

�

�

x

k

DOx

C

k

D

�

�

p

5C x

k

C w

k

�

�x

k

�

�

�

�

�

x

k

DOx

C

k

D

1

2

q

5C Ox

C

k

O

B

k

D

�f .x

k

; u

k

; w

k

/

�w

k

�

�

�

�

w

k

D Nw

k

D

�

�

p

5C x

k

C w

k

�

�w

k

�

�

�

�

�

w

k

D Nw

k

D 1

O

C

k

D

�h.x

k

; u

k

; v

k

/

�x

k

�

�

�

�

x

k

DOx

�

k

D

�

�

x

3

k

C v

k

�

�x

k

�

�

�

�

�

x

k

DOx

�

k

D 3. Ox

�

k

/

2

O

D

k

D

�h.x

k

; u

k

; v

k

/

�v

k

�

�

�

�

v

k

DNv

k

D

�

�

x

3

k

C v

k

�

�v

k

�

�

�

�

�

v

k

DNv

k

D 1.

■ The following is some sample code to implement an EKF.

� Note that the steps for calculating the plant and the O

A, O

B , O

C , and

O

D matrices will depend on the nonlinear system underlying the

estimation problem.

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

SigmaV = 2; % Sensor noise covariance

maxIter = 40;

xtrue = 2 + randn(1); % Initialize true system initial state

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–47

xhat = 2; % Initialize Kalman filter initial estimate

SigmaX = 1; % Initialize Kalman filter covariance

u = 0; % Unknown initial driving input: assume zero

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

for k = 1:maxIter,

% EKF Step 0: Compute Ahat, Bhat

% Note: For this example, x(k+1) = sqrt(5+x(k)) + w(k)

Ahat = 0.5/sqrt(5+xhat); Bhat = 1;

% EKF Step 1a: State estimate time update

% Note: You need to insert your system's f(...) equation here

xhat = sqrt(5+xhat);

% EKF Step 1b: Error covariance time update

SigmaX = Ahat*SigmaX*Ahat' + Bhat*SigmaW*Bhat';

% [Implied operation of system in background, with

% input signal u, and output signal y]

w = chol(SigmaW)'*randn(1);

v = chol(SigmaV)'*randn(1);

ytrue = xtrue^3 + v; % y is based on present x and u

xtrue = sqrt(5+xtrue) + w; % future x is based on present u

% EKF Step 1c: Estimate system output

% Note: You need to insert your system's h(...) equation here

Chat = 3*xhat^2; Dhat = 1;

yhat = xhat^3;

% EKF Step 2a: Compute Kalman gain matrix

SigmaY = Chat*SigmaX*Chat' + Dhat*SigmaV*Dhat';

L = SigmaX*Chat'/SigmaY;

% EKF Step 2b: State estimate measurement update

xhat = xhat + L*(ytrue - yhat);

xhat = max(-5,xhat); % don't get square root of negative xhat!

% EKF Step 2c: Error covariance measurement update

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–48

SigmaX = SigmaX - L*SigmaY*L';

[~,S,V] = svd(SigmaX);

HH = V*S*V';

SigmaX = (SigmaX + SigmaX' + HH + HH')/4; % Help to keep robust

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue; xhatstore(k,:) = xhat;

SigmaXstore(k,:) = (SigmaX(:))';

end;

figure(1); clf; t = 0:maxIter-1;

plot(t,xstore(1:maxIter),'k-',t,xhatstore,'b--', ...

t,xhatstore+3*sqrt(SigmaXstore),'m-.',...

t,xhatstore-3*sqrt(SigmaXstore),'m-.'); grid;

legend('true','estimate','bounds');

xlabel('Iteration'); ylabel('State');

title('Extended Kalman filter in action');

figure(2); clf;

plot(t,xstore(1:maxIter)-xhatstore,'b-',t, ...

3*sqrt(SigmaXstore),'m--',t,-3*sqrt(SigmaXstore),'m--');

grid; legend('Error','bounds',0);

title('EKF Error with bounds');

xlabel('Iteration'); ylabel('Estimation error');

0 10 20 30 40
0

1

2

3

4

5

6

7

Iteration

S
ta

te

Extended Kalman filter in action

Truth

EKF estimate

EKF bounds

0 10 20 30 40
−2

−1.5

−1

−0.5

0

0.5

Iteration

E
s
ti
m

a
ti
o
n
 e

rr
o
r

EKF error with bounds

EKF error

EKF bounds

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–49

3.13: Preparing to implement EKF on ESC model

■ To implement the EKF for battery-cell state estimation using the ESC

model, we must know the O

A

k

, O

B

k

, O

C

k

and O

D

k

matrices. We first

examine the components of the state equation to find O

A

k

and O

B

k

.

■ Suppose that the process noise models current-sensor measurement

error. That is, the true cell current is i
k

C w

k

, but we measure i

k

only.

■ Also assume we can simplify model with �

k

D 1, and have adaptivity

of EKF handle the small error introduced by this assumption.

■ Then, the state-of-charge equation can be written as

´

kC1

D ´

k

�

�t

Q

.i

k

C w

k

/ .

■ The two derivatives that we need for this term are:

�´

kC1

�´

k

�

�

�

�

´

k

DÓ

C

k

D 1, and
�´

kC1

�w

k

�

�

�

�

w

k

D Nw

D �

�t

Q

,

remembering that Q is measured in ampere-seconds.

■ If �
j

D exp.��t=.R
j

C

j

//, then the resistor-currents state equation

can be written as

i

R;kC1

D

2

6

4

�

1

0 � � �

0 �

2

:

:

:

:

:

:

3

7

5

� �� �

A

RC

i

R;k

C

2

6

4

1� �

1

1� �

2

:

:

:

3

7

5

� �� �

B

RC

.i

k

C w

k

/ .

■ The two derivatives can be found to be

�i

R;kC1

�i

R;k

�

�

�

�

i

R;k

D

O

i

C

R;k

D A

RC

, and
�i

R;kC1

�w

k

�

�

�

�

w

k

D Nw

D B

RC

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–50

■ If we define A

H;k

D exp

�

�

�

�

�

�

.i

k

C w

k

/
�t

Q

�

�

�

�

�

, then hysteresis state

h

kC1

D A

H;k

h

k

C .A

H;k

� 1/ sgn .i
k

Cw

k

/ .

■ Taking partial with respect to the state and evaluating at the setpoint

(noting that w
k

D Nw is a member of the setpoint),

�h

kC1

�h

k

�

�

�

�

h

k

D

O

h

C

k

w

k

D Nw

D exp

�

�

�

�

�

�

.i

k

C Nw

k

/
�t

Q

�

�

�

�

�

D

N

A

H;k

.

■ Next, we must find �h

kC1

=�w

k

. However, the absolute-value and sign

functions are not differentiable at i
k

C w

k

D 0. Ignoring this detail,

� If we assume that i
k

C w

k

> 0,

�h

kC1

�w

k

D �

�

�

�

�

�t

Q

�

�

�

�

exp

�

�

�

�

�

�

�t

Q

�

�

�

�

j
.i

k

C w

k

/
j

�

.1C h

k

/ .

� If we assume that i
k

C w

k

< 0,

�h

kC1

�w

k

D �

�

�

�

�

�t

Q

�

�

�

�

exp

�

�

�

�

�

�

�t

Q

�

�

�

�

j
.i

k

C w

k

/
j

�

.1 � h

k

/ .

■ Overall, evaluating at Taylor-series linearization setpoint,

�h

kC1

�w

k

�

�

�

�

h

k

D

O

h

C

k

w

k

D Nw

D �

�

�

�

�

�t

Q

�

�

�

�

N

A

H;k

�

1C sgn.i
k

C Nw/

O

h

C

k

�

.

■ The zero-state hysteresis equation is defined as

s

kC1

D

8

<

:

sgn.i
k

C w

k

/;
j
i

k

C w

k

j
> 0;

s

k

; else:

■ If we consider i
k

C w

k

D 0 to be a zero-probability event, then

�s

kC1

�s

k

D 0, and
�s

kC1

�w

k

D 0.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–51

■ We now look at the components that determine O

C

k

and O

D

k

.

■ The ESC-model output equation is

y

k

D OCV.´
k

/CM

0

s

k

CMh

k

�

X

j

R

j

i

R

j

;k

�R

0

i

k

C v

k

,

no longer considering i

k

to have w

k

noise added to it (this would add

correlation between process noise and sensor noise).

■ We have

�y

k

�s

k

�

�

�

�

DM

0

,
�y

k

�h

k

�

�

�

�

DM ,
�y

k

�i

R

j

;k

�

�

�

�

�

D �R

j

,
�y

k

�v

k

�

�

�

�

D 1.

■ We also require

�y

k

�´

k

�

�

�

�

´

k

DÓ

�

k

D

�OCV.´
k

/

�´

k

�

�

�

�

´

k

DÓ

�

k

,

which can be approximated from open-circuit-voltage data. If SOC is

a vector of evenly-spaced SOC points with corresponding OCV,

% Find dOCV/dz at SOC = z from {SOC,OCV} data

function dOCVz = dOCVfromSOC(SOC,OCV,z)

dZ = SOC(2) - SOC(1); % Find spacing of SOC vector

dUdZ = diff(OCV)/dZ; % Scaled forward finite difference

dOCV = ([dUdZ(1) dUdZ] + [dUdZ dUdZ(end)])/2; % Avg of fwd/bkwd diffs

dOCVz = interp1(SOC,dOCV,z); % Could make more efficient than this...

■ The figure shows empirical OCV

derivative relationships for six

different lithium-ion cells.

■ There is a little noise, which

could be filtered (with a

zero-phase filter!), but it’s not

really necessary to do so. 0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

State of charge (%)

∂
O

C
V

/
∂

S
O

C
 (

V
)

Empirical OCV derivative for six cells

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–52

3.14: Implementing EKF on ESC model

■ We refactor the code to better represent a real BMS implementation.

■ There is an initialization routine (initEKF.m), called once at startup.

■ An update routine (iterEKF.m) is called every sample interval.

■ “Wrapper” code, which coordinates the entire simulation process, is:

load CellModel % loads "model" of cell

% Load cell-test data. Contains variable "DYNData" of which the field

% "script1" is of interest. It has sub-fields time, current, voltage, soc.

load('Cell_DYN_P25'); % loads data from cell test

T = 25; % Test temperature

time = DYNData.script1.time(:); deltat = time(2)-time(1);

time = time-time(1); % start time at 0

current = DYNData.script1.current(:); % discharge > 0; charge < 0.

voltage = DYNData.script1.voltage(:);

soc = DYNData.script1.soc(:);

% Reserve storage for computed results, for plotting

sochat = zeros(size(soc));

socbound = zeros(size(soc));

% Covariance values

SigmaX0 = diag([1e-3 1e-3 1e-2]); % uncertainty of initial state

SigmaV = 2e-1; % uncertainty of voltage sensor, output equation

SigmaW = 1e1; % uncertainty of current sensor, state equation

% Create ekfData structure and initialize variables using first

% voltage measurement and first temperature measurement

ekfData = initEKF(voltage(1),T,SigmaX0,SigmaV,SigmaW,model);

% Now, enter loop for remainder of time, where we update the EKF

% once per sample interval

hwait = waitbar(0,'Computing...');

for k = 1:length(voltage),

vk = voltage(k); % "measure" voltage

ik = current(k); % "measure" current

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–53

Tk = T; % "measure" temperature

% Update SOC (and other model states)

[sochat(k),socbound(k),ekfData] = iterEKF(vk,ik,Tk,deltat,ekfData);

% update waitbar periodically, but not too often (slow procedure)

if mod(k,1000)==0, waitbar(k/length(current),hwait); end;

end

close(hwait);

figure(1); clf; plot(time/60,100*sochat,time/60,100*soc); hold on

h = plot([time/60; NaN; time/60],...

[100*(sochat+socbound); NaN; 100*(sochat-socbound)]);

title('SOC estimation using EKF');

xlabel('Time (min)'); ylabel('SOC (%)');

legend('Estimate','Truth','Bounds'); grid on

fprintf('RMS SOC estimation error = %g%%\n',...

sqrt(mean((100*(soc-sochat)).^2)));

figure(2); clf; plot(time/60,100*(soc-sochat)); hold on

h = plot([time/60; NaN; time/60],[100*socbound; NaN; -100*socbound]);

title('SOC estimation errors using EKF');

xlabel('Time (min)'); ylabel('SOC error (%)'); ylim([-4 4]);

legend('Estimation error','Bounds'); grid on

print -deps2c EKF2.eps

ind = find(abs(soc-sochat)>socbound);

fprintf('Percent of time error outside bounds = %g%%\n',...

length(ind)/length(soc)*100);

■ The initialization code is:

function ekfData = initEKF(v0,T0,SigmaX0,SigmaV,SigmaW,model)

% Initial state description

ir0 = 0; ekfData.irInd = 1;

hk0 = 0; ekfData.hkInd = 2;

SOC0 = SOCfromOCVtemp(v0,T0,model); ekfData.zkInd = 3;

ekfData.xhat = [ir0 hk0 SOC0]'; % initial state

% Covariance values

ekfData.SigmaX = SigmaX0;

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–54

ekfData.SigmaV = SigmaV;

ekfData.SigmaW = SigmaW;

ekfData.Qbump = 5;

% previous value of current

ekfData.priorI = 0;

ekfData.signIk = 0;

% store model data structure too

ekfData.model = model;

end

■ The iteration code is:

function [zk,zkbnd,ekfData] = iterEKF(vk,ik,Tk,deltat,ekfData)

model = ekfData.model;

% Load the cell model parameters

Q = getParamESC('QParam',Tk,model);

G = getParamESC('GParam',Tk,model);

M = getParamESC('MParam',Tk,model);

M0 = getParamESC('M0Param',Tk,model);

RC = exp(-deltat./abs(getParamESC('RCParam',Tk,model)))';

R = getParamESC('RParam',Tk,model)';

R0 = getParamESC('R0Param',Tk,model);

eta = getParamESC('etaParam',Tk,model);

if ik<0, ik=ik*eta; end;

% Get data stored in ekfData structure

I = ekfData.priorI;

SigmaX = ekfData.SigmaX;

SigmaV = ekfData.SigmaV;

SigmaW = ekfData.SigmaW;

xhat = ekfData.xhat;

irInd = ekfData.irInd;

hkInd = ekfData.hkInd;

zkInd = ekfData.zkInd;

if abs(ik)>Q/100, ekfData.signIk = sign(ik); end;

signIk = ekfData.signIk;

% EKF Step 0: Compute Ahat[k-1], Bhat[k-1]

nx = length(xhat); Ahat = zeros(nx,nx); Bhat = zeros(nx,1);

Ahat(zkInd,zkInd) = 1; Bhat(zkInd) = -deltat/(3600*Q);

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–55

Ahat(irInd,irInd) = diag(RC); Bhat(irInd) = 1-RC(:);

Ah = exp(-abs(I*G*deltat/(3600*Q))); % hysteresis factor

Ahat(hkInd,hkInd) = Ah;

B = [Bhat, 0*Bhat];

Bhat(hkInd) = -abs(G*deltat/(3600*Q))*Ah*(1+sign(I)*xhat(hkInd));

B(hkInd,2) = Ah-1;

% Step 1a: State estimate time update

xhat = Ahat*xhat + B*[I; sign(I)];

% Step 1b: Error covariance time update

% sigmaminus(k) = Ahat(k-1)*sigmaplus(k-1)*Ahat(k-1)' + ...

% Bhat(k-1)*sigmawtilde*Bhat(k-1)'

SigmaX = Ahat*SigmaX*Ahat' + Bhat*SigmaW*Bhat';

% Step 1c: Output estimate

yhat = OCVfromSOCtemp(xhat(zkInd),Tk,model) + M0*signIk + ...

M*xhat(hkInd) - R*xhat(irInd) - R0*ik;

% Step 2a: Estimator gain matrix

Chat = zeros(1,nx);

Chat(zkInd) = dOCVfromSOCtemp(xhat(zkInd),Tk,model);

Chat(hkInd) = M;

Chat(irInd) = -R;

Dhat = 1;

SigmaY = Chat*SigmaX*Chat' + Dhat*SigmaV*Dhat';

L = SigmaX*Chat'/SigmaY;

% Step 2b: State estimate measurement update

r = vk - yhat; % residual. Use to check for sensor errors...

if r^2 > 100*SigmaY, L(:)=0.0; end

xhat = xhat + L*r;

xhat(hkInd) = min(1,max(-1,xhat(hkInd))); % Help maintain robustness

xhat(zkInd) = min(1.05,max(-0.05,xhat(zkInd)));

% Step 2c: Error covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

% % Q-bump code

if r^2 > 4*SigmaY, % bad voltage estimate by 2 std. devs, bump Q

fprintf('Bumping SigmaX\n');

SigmaX(zkInd,zkInd) = SigmaX(zkInd,zkInd)*ekfData.Qbump;

end

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–56

[~,S,V] = svd(SigmaX);

HH = V*S*V';

SigmaX = (SigmaX + SigmaX' + HH + HH')/4; % Help maintain robustness

% Save data in ekfData structure for next time...

ekfData.priorI = ik;

ekfData.SigmaX = SigmaX;

ekfData.xhat = xhat;

zk = xhat(zkInd);

zkbnd = 3*sqrt(SigmaX(zkInd,zkInd));

end

■ For the following example, the EKF was executed for a test having

dynamic profiles from 100 % SOC down to around 10 % SOC.

� RMS SOC estimation error = 0:46 %

� Percent of time error outside bounds = 0 %.

0 100 200 300 400 500 600
0

20

40

60

80

100

120
SOC estimation using EKF

Time (min)

S
O

C
 (

%
)

Estimate

Truth

Bounds

0 100 200 300 400 500 600
−4

−2

0

2

4
SOC estimation errors using EKF

Time (min)

S
O

C
 e

rr
o
r

(%
)

Estimation error

Bounds

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–57

3.15: Problems with EKF, improved with sigma-point methods

■ The EKF is the best known and most used nonlinear Kalman filter.

■ However, it has serious flaws that can be remedied fairly easily.

ISSUE: How input mean and covariance are propagated through static

nonlinear function to create output mean and covariance estimates.

■ Recall that the EKF, when computing mean estimates in Steps 1a

and 1c, makes the simplification E�fn.x/� � fn.E�x�/.

� This is not true in general, and not necessarily even close to true

(depending on “how nonlinear” the function fn.�/ is).

■ Also, in EKF Steps 1b and 2a, a Taylor-series expansion is performed

as part of the calculation of output-variable covariance.

� Nonlinear terms are dropped, resulting in a loss of accuracy.

■ A simple one-dimensional

example illustrates these two

effects. Consider the figure:

■ The nonlinear function is drawn,

and the input random-variable

PDF is shown on the horizontal

axis, with mean 1.05. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

8

9

10

Nonlinear function

EKF function approximation

 EKF output pdf

 True output pdf

Input pdf

EKF mean, variance approximation

Function input value

F
u

n
c
ti
o

n
 o

u
tp

u
t

v
a

lu
e

■ The straight dotted line is the linearized approximation used by the

EKF to find the output mean and covariance.

■ The EKF-approximated PDF is compared to a Gaussian PDF having

same mean and variance of the true data on the vertical axis.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–58

■ We notice significant differences between the means and variances:

EKF approach is not producing an accurate estimate of either.

■ For a two-dimensional example, consider the following figure.

3σ contour

Input data scatter

Nonlinear

function

➠

 True 3σ contour

EKF 3σ contour

Output data scatter

� Left frame shows a cloud of Gaussian-distributed random points

used as input to this function, and

� Right frame shows the transformed set of output points.

■ The actual 95 % confidence interval (indicative of a contour of the

Gaussian PDF describing the output covariance and mean) is

compared to EKF-estimated confidence interval.

� Again, EKF is very far from the truth.

■ We can improve on mean and covariance propagation through the

state and output equations using a “sigma-point” approach.

Approximating statistics with sigma points

■ We now look at a different approach to characterizing the mean and

covariance of the output of a nonlinear function.

■ We avoid Taylor-series expansion; instead, a number of function

evaluations are performed whose results are used to compute

estimated mean and covariance matrices.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–59

■ This has several advantages:

1. Derivatives do not need to be computed (which is one of the most

error-prone steps when implementing EKF), also implying

2. The original functions do not need to be differentiable, and

3. Better covariance approximations are usually achieved, relative to

EKF, allowing for better state estimation,

4. All with comparable computational complexity to EKF.

■ A set of sigma points X is chosen so that the (possibly weighted)

mean and covariance of the points exactly matches the mean Nx and

covariance �

Qx

of the a priori random variable being modeled.

■ These points are then passed through the nonlinear function,

resulting in a transformed set of points Y .

■ The a posteriori mean Ny and covariance �

Qy

are then approximated by

the mean and covariance of these transformed points Y .

■ Note that the sigma points comprise a fixed small number of vectors

that are calculated deterministically—not like particle filter methods.

■ Specifically, if input RV x has dimension L, mean Nx, and covariance

�

Qx

, then p C 1 D 2LC 1 sigma points are generated as the set

X D

�

Nx; Nx C

p

�

Qx

; Nx �

p

�

Qx

	

;

with members of X indexed from 0 to p, and where the matrix square

root R D

p

� computes a result such that � D RR

T .

� Usually, the efficient Cholesky decomposition is used, resulting in

lower-triangular R. (Take care: MATLAB, by default, returns an

upper-triangular matrix that must be transposed.)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–60

■ The weighted mean and covariance of X are equal to the original

mean and covariance of x for some f
; �.m/

; �

.c/
g if we compute

Nx D

p

X

iD0

�

.m/

i

X
i

and �

Qx

D

p

X

iD0

�

.c/

i

.X
i

� Nx/.X
i

� Nx/

T ,

where X
i

is the i th member of X , and both �

.m/

i

and �

.c/

i

are real

scalars where �

.m/

i

and �

.c/

i

must both sum to one.

� The various sigma-point methods differ only in the choices taken

for these weighting constants.

� Values used by the Unscented Kalman Filter (UKF) and the

Central Difference Kalman Filter (CDKF):

Method
 �

.m/

0

�

.m/

k

�

.c/

0

�

.c/

k

UKF
p

LC �

�

LC �

1

2.LC �/

�

LC �

C .1� �

2

C �/

1

2.LC �/

CDKF h

h

2

�L

h

2

1

2h

2

h

2

�L

h

2

1

2h

2

� D �

2

.LC �/ �L is a scaling parameter, with .10

�2

� � � 1/. Note that this � is different from �

.m/ and �

.c/. � is either 0 or 3 �L.

� incorporates prior information. For Gaussian RVs, � D 2. h may take any positive value. For Gaussian RVs, h D
p

3.

� UKF and CDKF are derived quite differently, but the final methods

are essentially identical.

� CDKF has only one “tuning parameter” h, so implementation is

simpler. It also has marginally higher theoretic accuracy than UKF.

■ Output sigma points are computed: Y
i

D f .X
i

/. Then, the output

mean and covariance are computed as well:

Ny D

p

X

iD0

�

.m/

i

Y
i

and �

Qy

D

p

X

iD0

�

.c/

i

.Y
i

� Ny/.Y
i

� Ny/

T .

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–61

■ The diagram illustrates the overall process, with the sets X and Y

stored compactly with each set member a column in a matrix:

X

Y

Ny

Nx Nx

�

Qy

�

Qx

make

sigma

points

NxC

p

�

Qx

Nx�

p

�

Qx

nonlinear function Y
i

D f .X
i

/

i th sigma point

compute

statistics

■ Before introducing the SPKF

algorithm, we re-examine the

prior 1D/2D examples using

sigma-point methods.

■ In the 1D example, three input

sigma points are needed and

map to the output three sigma

points shown.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

1

2

3

4

5

6

7

8

9

10

Nonlinear function

EKF function approximation

 EKF output pdf

 True output pdf

 SPKF output pdf

Input pdf

EKF vs. SPKF: mean, variance approximation

Function input value

F
u

n
c
ti
o

n
 o

u
tp

u
t

v
a

lu
e

■ The mean and variance of the sigma-point method is shown as a

dashed-line PDF and closely matches the true mean and variance.

■ For the 2D example, five sigma points represent the input

random-variable PDF (on left).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–62

3σ contour

Input data scatter

Nonlinear

function

➠

 SPKF 3σ contour

 True 3σ contour

EKF 3σ contour

Output data scatter

■ These five points are transformed to five output points (frame (b)).

■ We see that the mean and covariance of the output sigma points

(dashed ellipse) closely match the true mean and covariance.

■ Will the sigma-point method always be so much better than EKF?

� The answer depends on the degree of nonlinearity of the state and

output equations—the more nonlinear the better SPKF should be

with respect to EKF.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–63

3.16: The SPKF Steps

■ We now apply the sigma-point approach of propagating statistics

through a nonlinear function to the state-estimation problem.

■ These sigma-points must jointly model all randomness: uncertainty of

the state, process noise, and sensor noise.

■ So we first define an augmented random vector xa
k

that combines

these random factors at time index k.

■ This augmented vector is used in the estimation process as

described below.

SPKF step 1a: State estimate time update.

■ First, form the augmented a posteriori state estimate vector for the

previous time interval: Oxa;C
k�1

D

�

. Ox

C

k�1

/

T

; Nw; Nv

�

T

, and the augmented a

posteriori covariance estimate: �a;C

Qx;k�1

D diag
�

�

C

Qx;k�1

; �

e

w

; �

Qv

�

.

■ These factors are used to generate the pC 1 augmented sigma points

X
a;C

k�1

D

�

Ox

a;C

k�1

; Ox

a;C

k�1

C

q

�

a;C

Qx;k�1

; Ox

a;C

k�1

�

q

�

a;C

Qx;k�1

�

:

■ Can be organized in convenient matrix form:

X
a;C

k�1

Ox

a;C

k�1

Ox

a;C

k�1

�

a;C

Qx;k�1

�

C

Qx;k�1

�

ew

�

Qv

Ox

C

k�1

Nw

Nv

andmake
augmented

sigma

points

Ox

a;C

k�1

C

q

�

a;C

Qx;k�1

Ox

a;C

k�1

�

q

�

a;C

Qx;k�1

x;C

k�1

w;C

k�1

u

k�1

v;C

k�1

x;�

k;i

Df .

x;C

k�1;i

; u

k�1

;

w;C

k�1;i

/

i

k;i

D h.

x;�

k;i

; u

k

;

v;C

k�1;i

/

u

k

x;�

k

k

Ox

�

k

�

�

Qx;k

Oy

k

�

Qy;k

�

�

Qx Qy;k

L

k

Ox

C

k

�

C

Qx;k

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–64

■ Split augmented sigma

points X
a;C

k�1

into state

portion X
x;C

k�1

, process-noise

portion X
w;C

k�1

, and

sensor-noise portion X
v;C

k

.

X
a;C

k�1

Ox

a;C

k�1

�

a;C

Qx;k�1

�

C

Qx;k�1

�

ew

�

Qv

Ox

C

k�1

Nw

Nv

Ox

a;C

k�1

C

q

�

a;C

Qx;k�1

Ox

a;C

k�1

�

q

�

a;C

Qx;k�1

X
x;C

k�1

X
w;C

k�1

u

k�1

X
v;C

k

x;�

k;i

Df .

x;C

k�1;i

; u

k�1

;

w;C

k�1;i

/

i

k;i

D h.

x;�

k;i

; u

k

;

v;C

k�1;i

/

u

k

x;�

k

k

Ox

�

k

�

�

Qx;k

Oy

k

�

Qy;k

�

�

Qx Qy;k

L

k

Ox

C

k

�

C

Qx;k

■ Evaluate state equation using all

pairs of X x;C

k�1;i

and X
w;C

k�1;i

(where

subscript i denotes that the i th

vector is being extracted from

the original set), yielding the a

priori sigma points X
x;�

k;i

.

■ That is, compute

X
x;�

k;i

D f .X
x;C

k�1;i

; u

k�1

;X
w;C

k�1;i

/.

a;C

k�1

Ox

a;C

k�1

�

a;C

Qx;k�1

�

C

Qx;k�1

�

ew

�

Qv

Ox

C

k�1

Nw

Nv

Ox

a;C

k�1

C

q

�

a;C

Qx;k�1

Ox

a;C

k�1

�

q

�

a;C

Qx;k�1

X
x;C

k�1

X
w;C

k�1

u

k�1

v;C

k�1

state eqn: X
x;�

k;i

Df .X
x;C

k�1;i

; u

k�1

;X
w;C

k�1;i

/

i th sigma

point

k;i

D h.

x;�

k;i

; u

k

;

v;C

k�1;i

/

u

k

X
x;�

k

k

Ox

�

k

�

�

Qx;k

Oy

k

�

Qy;k

�

�

Qx Qy;k

L

k

Ox

C

k

�

C

Qx;k

■ Finally, the a priori state estimate is computed as

Ox

�

k

D E

�

f .x

k�1

; u

k�1

; w

k�1

/ j Y
k�1

�

�

p

X

iD0

�

.m/

i

f .X
x;C

k�1;i

; u

k�1

;X
w;C

k�1;i

/

D

p

X

iD0

�

.m/

i

X
x;�

k;i

.

■ Can be computed

with a simple

matrix multiply

operation.

X
x;�

k

Ox

�

k

�

.m/

0

�

.m/

1

�

. /

2

:

:

:

�

.m/

p

SPKF step 1b: Error covariance time update.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–65

■ Using the a priori sigma points from step 1a, the a priori covariance

estimate is computed as

�

�

Qx;k

D

p

X

iD0

�

.c/

i

�

X
x;�

k;i

� Ox

�

k

��

X
x;�

k;i

� Ox

�

k

�

T

.

SPKF step 1c: Estimate system output y
k

.

■ The output y
k

is estimated by

evaluating the model output

equation using the sigma points

describing the state and sensor

noise.

■ First, we compute the points

Y
k;i

D h.X
x;�

k;i

; u

k

;X
v;C

k�1;i

/.

a;C

k�1

Ox

a;C

k�1

�

a;C

Qx;k�1

�

C

Qx;k�1

�

ew

�

Qv

Ox

C

k�1

Nw

Nv

Ox

a;C

k�1

C

q

�

a;C

Qx;k�1

Ox

a;C

k�1

�

q

�

a;C

Qx;k�1

x;C

k�1

w;C

k�1

u

k�1

X
v;C

k�1

x;�

k;i

Df .

x;C

k�1;i

; u

k�1

;

w;C

k�1;i

/

i th sigma

point

output eqn: Y
k;i

D h.X
x;�

k;i

; u

k

;X
v;C

k�1;i

/

u

k

X
x;�

k

Y
k

Ox

�

k

�

�

Qx;k

Oy

k

�

Qy;k

�

�

Qx Qy;k

L

k

Ox

C

k

�

C

Qx;k

■ The output estimate is then

Oy

k

D E

�

h.x

k

; u

k

; v

k

/ j Y
k�1

�

�

p

X

iD0

�

.m/

i

h.X
x;�

k;i

; u

k

;X
v;C

k�1;i

/ D

p

X

iD0

�

.m/

i

Y
k;i

.

■ This can be computed with a simple matrix multiplication, as we did

when calculating Ox

�

k

at the end of step 1a.

SPKF step 2a: Estimator gain matrix L
k

.

■ To compute the estimator gain matrix, we must first compute the

required covariance matrices.

�

Qy;k

D

p

X

iD0

�

.c/

i

�

Y
k;i

� Oy

k

��

Y
k;i

� Oy

k

�

T

�

�

Qx Qy;k

D

p

X

iD0

�

.c/

i

�

X
x;�

k;i

� Ox

�

k

��

Y
k;i

� Oy

k

�

T

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–66

■ These depend on the sigma-point matrices X
x;�

k

and Y
k

, already

computed in steps 1b and 1c, as well as Ox

�

k

and Oy

k

, already computed

in steps 1a and 1c.

■ The summations can be performed using matrix multiplies, as we did

in step 1b.

■ Then, we simply compute L

k

D �

�

Qx Qy;k

�

�1

Qy;k

.

SPKF step 2b: State estimate measurement update.

■ The state estimate is computed as

Ox

C

k

D Ox

�

k

C L

k

.y

k

� Oy

k

/:

SPKF step 2c: Error covariance measurement update.

■ The final step is calculated directly from the optimal formulation:

�

C

Qx;k

D �

�

Qx;k

� L

k

�

Qy;k

L

T

k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–67

3.17: An SPKF example, with code

■ Consider the same example used to illustrate EKF:

x

kC1

D

p

5C x

k

C w

k

y

k

D x

3

k

C v

k

with �

e

w

D 1 and �

e

v

D 2.

■ The following is some sample code to implement SPKF

% Define size of variables in model

Nx = 1; % state = 1x1 scalar

Nxa = 3; % augmented state has also w(k) and v(k) contributions

Ny = 1; % output = 1x1 scalar

% Some constants for the SPKF algorithm. Use standard values for

% cases with Gaussian noises. (These are the weighting matrices

% comprising the values of alpha(c) and alpha(m) organized in a

% way to make later computation efficient).

h = sqrt(3);

Wmx(1) = (h*h-Nxa)/(h*h); Wmx(2) = 1/(2*h*h); Wcx=Wmx;

Wmxy = [Wmx(1) repmat(Wmx(2),[1 2*Nxa])]';

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

SigmaV = 2; % Sensor noise covariance

maxIter = 40;

xtrue = 2 + randn(1); % Initialize true system initial state

xhat = 2; % Initialize Kalman filter initial estimate

SigmaX = 1; % Initialize Kalman filter covariance

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

for k = 1:maxIter,

% SPKF Step 1a: State estimate time update

% 1a-i: Calculate augmented state estimate, including ...

xhata = [xhat; 0; 0]; % process and sensor noise mean

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–68

% 1a-ii: Get desired Cholesky factor

Sigmaxa = blkdiag(SigmaX,SigmaW,SigmaV);

sSigmaxa = chol(Sigmaxa,'lower');

% 1a-iii: Calculate sigma points (strange indexing of xhat to

avoid

% "repmat" call, which is very inefficient in Matlab)

X = xhata(:,ones([1 2*Nxa+1])) + h*[zeros([Nxa 1]), ...

sSigmaxa, -sSigmaxa];

% 1a-iv: Calculate state equation for every element

% Hard-code equation here for efficiency

Xx = sqrt(5+X(1,:)) + X(2,:);

xhat = Xx*Wmxy;

% SPKF Step 1b: Covariance of prediction

Xs = (Xx(:,2:end) - xhat(:,ones([1 2*Nxa])))*sqrt(Wcx(2));

Xs1 = Xx(:,1) - xhat;

SigmaX = Xs*Xs' + Wcx(1)*Xs1*Xs1';

% [Implied operation of system in background, with

% input signal u, and output signal y]

w = chol(SigmaW)'*randn(1);

v = chol(SigmaV)'*randn(1);

ytrue = xtrue^3 + v; % y is based on present x and u

xtrue = sqrt(5+xtrue) + w; % future x is based on present u

% SPKF Step 1c: Create output estimate

% Hard-code equation here for efficiency

Y = Xx.^3 + X(3,:);

yhat = Y*Wmxy;

% SPKF Step 2a: Estimator gain matrix

Ys = (Y(:,2:end) - yhat*ones([1 2*Nxa])) * sqrt(Wcx(2));

Ys1 = Y(:,1) - yhat;

SigmaXY = Xs*Ys' + Wcx(1)*Xs1*Ys1';

SigmaY = Ys*Ys' + Wcx(1)*Ys1*Ys1';

Lx= SigmaXY/SigmaY;

% SPKF Step 2b: Measurement state update

xhat = xhat + Lx*(ytrue-yhat); % update prediction to estimate

% SPKF Step 2c: Measurement covariance update

SigmaX = SigmaX - Lx*SigmaY*Lx';

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–69

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue;

xhatstore(k,:) = xhat;

SigmaXstore(k,:) = (SigmaX(:))';

end

figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter),'k-',...

0:maxIter-1,xhatstore,'b--', ...

0:maxIter-1,xhatstore+3*sqrt(SigmaXstore),'m-.',...

0:maxIter-1,xhatstore-3*sqrt(SigmaXstore),'m-.'); grid;

legend('true','estimate','bounds');

xlabel('Iteration'); ylabel('State');

title('Sigma-point Kalman filter in action');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)-xhatstore,'-',0:maxIter-1, ...

3*sqrt(SigmaXstore),'--',0:maxIter-1,-3*sqrt(SigmaXstore),'--');

grid; legend('Error','bounds',0);

title('SPKF Error with bounds');

xlabel('Iteration'); ylabel('Estimation Error');

0 10 20 30 40
0

2

4

6

8

Iteration

S
ta

te

Sigma−point Kalman filter in action

Truth

SPKF estimate

SPKF bounds

0 10 20 30 40
−2

−1

0

1

2

SPKF error with bounds

Iteration

E
s
ti
m

a
ti
o

n
 e

rr
o

r

SPKF error

EKF error

SPKF bounds

EKF bounds

■ Note the improved estimation accuracy, and greatly improved error

bounds estimates.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–70

3.18: Implementing SPKF on ESC model

■ We refactor the SPKF code much like we did for EKF. The “wrapper”

code is:

load CellModel % loads "model" of cell

% Load cell-test data . Contains variable "DYNData" of which the field

% "script1" is of interest. It has sub-fields time, current, voltage, soc.

load('Cell_DYN_P25'); % loads data

T = 25; % Test temperature

time = DYNData.script1.time(:); deltat = time(2)-time(1);

time = time-time(1); % start time at 0

current = DYNData.script1.current(:); % discharge > 0; charge < 0.

voltage = DYNData.script1.voltage(:);

soc = DYNData.script1.soc(:);

% Reserve storage for computed results, for plotting

sochat = zeros(size(soc));

socbound = zeros(size(soc));

% Covariance values

SigmaX0 = diag([1e-3 1e-3 1e-2]); % uncertainty of initial state

SigmaV = 2e-1; % Uncertainty of voltage sensor, output equation

SigmaW = 1e1; % Uncertainty of current sensor, state equation

% Create spkfData structure and initialize variables using first

% voltage measurement and first temperature measurement

spkfData = initSPKF(voltage(1),T,SigmaX0,SigmaV,SigmaW,model);

% Now, enter loop for remainder of time, where we update the SPKF

% once per sample interval

hwait = waitbar(0,'Computing...');

for k = 1:length(voltage),

vk = voltage(k); % "measure" voltage

ik = current(k); % "measure" current

Tk = T; % "measure" temperature

% Update SOC (and other model states)

[sochat(k),socbound(k),spkfData] = iterSPKF(vk,ik,Tk,deltat,spkfData);

% update waitbar periodically, but not too often (slow procedure)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–71

if mod(k,1000)==0, waitbar(k/length(current),hwait); end;

end

close(hwait);

figure(1); clf; plot(time/60,100*sochat,time/60,100*soc); hold on

h = plot([time/60; NaN; time/60],...

[100*(sochat+socbound); NaN; 100*(sochat-socbound)]);

title('SOC estimation using SPKF');

xlabel('Time (min)'); ylabel('SOC (%)');

legend('Estimate','Truth','Bounds'); grid on

fprintf('RMS SOC estimation error = %g%%\n',...

sqrt(mean((100*(soc-sochat)).^2)));

figure(2); clf; plot(time/60,100*(soc-sochat)); hold on

h = plot([time/60; NaN; time/60],[100*socbound; NaN; -100*socbound]);

title('SOC estimation errors using SPKF');

xlabel('Time (min)'); ylabel('SOC error (%)'); ylim([-4 4]);

legend('Error','Bounds'); grid on

ind = find(abs(soc-sochat)>socbound);

fprintf('Percent of time error outside bounds = %g%%\n',...

length(ind)/length(soc)*100);

■ The SPKF initialization code is

function spkfData = initSPKF(v0,T0,SigmaX0,SigmaV,SigmaW,model)

% Initial state description

ir0 = 0; spkfData.irInd = 1;

hk0 = 0; spkfData.hkInd = 2;

SOC0 = SOCfromOCVtemp(v0,T0,model); spkfData.zkInd = 3;

spkfData.xhat = [ir0 hk0 SOC0]'; % initial state

% Covariance values

spkfData.SigmaX = SigmaX0;

spkfData.SigmaV = SigmaV;

spkfData.SigmaW = SigmaW;

spkfData.Snoise = real(chol(diag([SigmaW; SigmaV]),'lower'));

spkfData.Qbump = 5;

% SPKF specific parameters

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–72

Nx = length(spkfData.xhat); spkfData.Nx = Nx; % state-vector length

Ny = 1; spkfData.Ny = Ny; % measurement-vector length

Nu = 1; spkfData.Nu = Nu; % input-vector length

Nw = size(SigmaW,1); spkfData.Nw = Nw; % process-noise-vector length

Nv = size(SigmaV,1); spkfData.Nv = Nv; % sensor-noise-vector length

Na = Nx+Nw+Nv; spkfData.Na = Na; % augmented-state-vector length

h = sqrt(3); spkfData.h = h; % SPKF/CDKF tuning factor

Weight1 = (h*h-Na)/(h*h); % weighting factors when computing mean

Weight2 = 1/(2*h*h); % and covariance

spkfData.Wm = [Weight1; Weight2*ones(2*Na,1)]; % mean

spkfData.Wc = spkfData.Wm; % covar

% previous value of current

spkfData.priorI = 0;

spkfData.signIk = 0;

% store model data structure too

spkfData.model = model;

end

■ The SPKF iteration code is:

function [zk,zkbnd,spkfData] = iterSPKF(vk,ik,Tk,deltat,spkfData)

model = spkfData.model;

% Load the cell model parameters

Q = getParamESC('QParam',Tk,model);

G = getParamESC('GParam',Tk,model);

M = getParamESC('MParam',Tk,model);

M0 = getParamESC('M0Param',Tk,model);

RC = exp(-deltat./abs(getParamESC('RCParam',Tk,model)))';

R = getParamESC('RParam',Tk,model)';

R0 = getParamESC('R0Param',Tk,model);

eta = getParamESC('etaParam',Tk,model);

if ik<0, ik=ik*eta; end;

% Get data stored in spkfData structure

I = spkfData.priorI;

SigmaX = spkfData.SigmaX;

xhat = spkfData.xhat;

Nx = spkfData.Nx;

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–73

Nw = spkfData.Nw;

Nv = spkfData.Nv;

Na = spkfData.Na;

Snoise = spkfData.Snoise;

Wc = spkfData.Wc;

irInd = spkfData.irInd;

hkInd = spkfData.hkInd;

zkInd = spkfData.zkInd;

if abs(ik)>Q/100, spkfData.signIk = sign(ik); end;

signIk = spkfData.signIk;

% Step 1a: State estimate time update

% - Create xhatminus augmented SigmaX points

% - Extract xhatminus state SigmaX points

% - Compute weighted average xhatminus(k)

% Step 1a-1: Create augmented SigmaX and xhat

[sigmaXa,p] = chol(SigmaX,'lower');

if p>0,

fprintf('Cholesky error. Recovering...\n');

theAbsDiag = abs(diag(SigmaX));

sigmaXa = diag(max(SQRT(theAbsDiag),SQRT(spkfData.SigmaW)));

end

sigmaXa=[real(sigmaXa) zeros([Nx Nw+Nv]); zeros([Nw+Nv Nx]) Snoise];

xhata = [xhat; zeros([Nw+Nv 1])];

% NOTE: sigmaXa is lower-triangular

% Step 1a-2: Calculate SigmaX points (strange indexing of xhata to

% avoid "repmat" call, which is very inefficient in MATLAB)

Xa = xhata(:,ones([1 2*Na+1])) + ...

spkfData.h*[zeros([Na 1]), sigmaXa, -sigmaXa];

% Step 1a-3: Time update from last iteration until now

% stateEqn(xold,current,xnoise)

Xx = stateEqn(Xa(1:Nx,:),I,Xa(Nx+1:Nx+Nw,:));

xhat = Xx*spkfData.Wm;

% Step 1b: Error covariance time update

% - Compute weighted covariance sigmaminus(k)

% (strange indexing of xhat to avoid "repmat" call)

Xs = Xx - xhat(:,ones([1 2*Na+1]));

SigmaX = Xs*diag(Wc)*Xs';

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–74

% Step 1c: Output estimate

% - Compute weighted output estimate yhat(k)

I = ik; yk = vk;

Y = outputEqn(Xx,I,Xa(Nx+Nw+1:end,:),Tk,model);

yhat = Y*spkfData.Wm;

% Step 2a: Estimator gain matrix

Ys = Y - yhat(:,ones([1 2*Na+1]));

SigmaXY = Xs*diag(Wc)*Ys';

SigmaY = Ys*diag(Wc)*Ys';

L = SigmaXY/SigmaY;

% Step 2b: State estimate measurement update

r = yk - yhat; % residual. Use to check for sensor errors...

if r^2 > 100*SigmaY, L(:,1)=0.0; end

xhat = xhat + L*r;

xhat(zkInd)=min(1.05,max(-0.05,xhat(zkInd)));

% Step 2c: Error covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

[~,S,V] = svd(SigmaX);

HH = V*S*V';

SigmaX = (SigmaX + SigmaX' + HH + HH')/4; % Help maintain robustness

% Q-bump code

if r^2>4*SigmaY, % bad voltage estimate by 2-SigmaX, bump Q

fprintf('Bumping sigmax\n');

SigmaX(zkInd,zkInd) = SigmaX(zkInd,zkInd)*spkfData.Qbump;

end

% Save data in spkfData structure for next time...

spkfData.priorI = ik;

spkfData.SigmaX = SigmaX;

spkfData.xhat = xhat;

zk = xhat(zkInd);

zkbnd = 3*sqrt(SigmaX(zkInd,zkInd));

% Calculate new states for all of the old state vectors in xold.

function xnew = stateEqn(xold,current,xnoise)

current = current + xnoise; % noise adds to current

xnew = 0*xold;

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–75

xnew(irInd,:) = RC*xold(irInd,:) + (1-RC)*current;

Ah = exp(-abs(current*G*deltat/(3600*Q))); % hysteresis factor

xnew(hkInd,:) = Ah.*xold(hkInd,:) - (1-Ah).*sign(current);

xnew(zkInd,:) = xold(zkInd,:) - current/3600/Q;

xnew(hkInd,:) = min(1,max(-1,xnew(hkInd,:)));

xnew(zkInd,:) = min(1.05,max(-0.05,xnew(zkInd,:)));

end

% Calculate cell output voltage for all of state vectors in xhat

function yhat = outputEqn(xhat,current,ynoise,T,model)

yhat = OCVfromSOCtemp(xhat(zkInd,:),T,model);

yhat = yhat + M*xhat(hkInd,:) + M0*signIk;

yhat = yhat - R*xhat(irInd,:) - R0*current + ynoise(1,:);

end

% "Safe" square root

function X = SQRT(x)

X = sqrt(max(0,x));

end

end

■ For the following example, the SPKF was executed for the same test

profiles as before.

� RMS SOC estimation error = 0:53 %.

� Percent of time error outside bounds = 0 %.

0 100 200 300 400 500 600
0

20

40

60

80

100

120
SOC estimation using SPKF

Time (min)

S
O

C
 (

%
)

Estimate

Truth

Bounds

0 100 200 300 400 500 600
−4

−2

0

2

4
SOC estimation errors using SPKF

Time (min)

S
O

C
 e

rr
o
r

(%
)

SPKF error

EKF error

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–76

3.19: Real-world issues pertaining to sensors, initialization

Current-sensor bias

■ KF theory assumes that all noises are zero mean.

■ An unknown current-sensor bias can introduce permanent SOC error.

� Accumulated ampere-hours of bias tend to move SOC estimate

faster than measurement updates can correct.

■ Best solution would be to design sensing hardware to eliminate

current-sensor bias, but this can be done only approximately.

■ So, we can also attempt to correct for the (unknown, time-varying)

bias algorithmically by estimating the bias.

■ Using the ESC model as an example, we augment the pack state

´

k

D ´

k�1

� .i

k�1

� i

b

k�1

Cw

k�1

/�t=Q

i

R

j

;k

D A

RC

i

R

j

;k�1

C B

RC

.i

k�1

� i

b

k�1

C w

k�1

/

A

h;k

D exp
�

�

�

�

.i

k�1

� i

b

k�1

Cw

k�1

/
�t=Q

�

�

�

h

k

D A

h;k

h

k�1

C .1� A

h;k

/ sgn.i
k�1

� i

b

k�1

C w

k�1

/

i

b

k

D i

b

k�1

C n

b

k�1

,

where n

b

k

is a fictitious noise source included in the model only that

allows the SPKF to adapt the bias state.

■ The output equation is also modified:

y

k

D OCV.´
k

/CMh

k

�

X

j

R

j

i

R

j

;k

�R

0

.i

k

� i

b

k

/C v

k

;

where v

k

models sensor noise.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–77

Real-world issue: Voltage-sensor faults

■ Consider first a one-output situation (common).

■ Part of the SPKF calculates �
Qy;k

, and we know �

Qy;k

D

p

�

Qy;k

.

■ If the absolute value of Qy
k

is “significantly” greater than �

Qy;k

, then

either our state estimate is way off, or we have a voltage sensor fault.

1. We can skip measurement update of SPKF, and/or

2. We can “bump up” �
Qx;k

by multiplying it by a value greater than 1,

especially if a number of “measurement errors” happen in a row.

■ Both done in practice to aid robustness of a real implementation.

■ For a multi-output model, define ´

k

DM

k

Qy

k

.

� The mean of ´
k

is E�´
k

� D E�M
k

Qy

k

� D 0.

� The covariance of ´
k

is �
Q́ ;k

D E�M
k

Qy

k

Qy

T

k

M

T

k

� DM

k

�

Qy;k

M

T

k

.

� ´

k

is Gaussian (since it is a linear combination of Gaussians).

■ If we define M

k

such that M T

k

M

k

D �

�1

Qy;k

, then

� M

k

is the lower-triangular Cholesky factor of ��1

Qy;k

.

� We also have ´

k

� N .0; I / since

�

Q́ ;k

DM

k

�

M

T

k

M

k

�

�1

M

T

k

DM

k

M

�1

k

M

�T

k

M

T

k

D I .

■ If we further compute normalized estimation error squared (NEES)

e

2

k

D ´

T

k

´

k

D Qy

T

k

�

�1

Qy;k

Qy

k

,

then e

2

k

is the sum of squares of independent N .0; 1/ RVs.

■ Then, e2
k

is a chi-square RV with m degrees of freedom, where m is

the dimension of Qy
k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–78

■ Since it is a sum of squares, it is never negative; it is also asymmetric

about its mean value.

■ The PDF of a chi-square RV X having m degrees of freedom is

f

X

.x/ D

1

2

m=2

�.m=2/

x

.m=2�1/

e

�m=2,

which is tricky, but we never need to evaluate it in real time.

■ Instead, we rely on values precomputed from the distribution.

■ For confidence interval

estimation we need to find

two critical values.

■ For 1 � � confidence of a

valid measurement, want

�=2 area between 0 and �

2

L

and �=2 area above �

2

U

.

■ Figure drawn for � D 0:05.
12.4012 24 39.3641

0

0.01

0.02

0.03

0.04

0.05

0.06

�

2

L

�

2

UP
D

F

f

.

x

/

x

�

2 distribution with 24 degrees of freedom

mean

■ We find �

2

L

from where the inverse CDF of the distribution is equal to

�=2. In MATLAB:

X2L = chi2inv(0.025,24) % Lower critical value X2L = 12.4012

■ We find �

2

U

from where the inverse CDF is equal to 1� �=2. In

MATLAB:

X2U = chi2inv(1-0.025,24) % Upper critical value X2U = 39.3641

■ Note that �2
L

and �

2

U

need to be computed once only, offline.

� They are based on the number of measurements in the output

vector and the desired confidence level 1 � � only.

� They do not need to be recalculated as the EKF or SPKF runs.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–79

■ For hand calculations a �

2-table is available on page 3–96.

■ If a value of Qy
k

< �

2

L

or if Qy
k

> �

2

U

, then the measurement is

discarded. Otherwise, the measurement is kept.

Real-world issue: Other sensor faults

■ Not obvious how to catch temperature- and current-sensor faults.

� Current can change “instantly” from imin to imax.

� Might consider thermal model of cell/module to

1. Reduce number of required temperature sensors, and

2. Catch sensor faults as done above for voltage sensor.

Real-world issue: Initialization

■ If vehicle is off for a “long” time, just assume that cell voltage is

equivalent to OCV:

� Reset SOC estimate based on OCV.

� Set diffusion voltages to zero.

� Keep prior value of hysteresis state.

■ If vehicle has been off for a “short” period of time

� Set up and execute simple time/measurement update (simple KF)

equations for SOC and diffusion voltages.

� Hysteresis voltages do not change.

� Run a single-step Kalman filter to update state estimate based on

total time off.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–80

3.20: Real-world issue: Speed, solved by “bar-delta” filtering

■ We consider again a philosophical question with very important

practical implications:

■ Consider the picture to the right. What is the pack SOC?

� SOC cannot be 0 % because we cannot charge.

� SOC cannot be 100 % because we cannot discharge.

� SOC cannot be the average of the two, 50 %, because

we can neither charge nor discharge.

■ So, battery “pack SOC” is not a helpful concept, by itself.

■ The example is an extreme case, but it is important to estimate the

SOC of all cells even in the typical case.

■ The problem is that the SPKF is computationally complex.

� Running SPKF for one cell is okay, but

� Running 100 SPKFs for 100 cells is probably not okay.

■ In this section we talk about efficient SOC estimation for all individual

cells in a large battery pack.

OBSERVATION: While “pack SOC” does not make sense, the concept of

“pack-average SOC” is a useful one.

■ Since all cells in a series string experience the same current, we

expect their SOC values to

1. Move in the same direction for any given applied current, by

2. A similar amount (but different because of unequal cell capacities).

■ We take advantage of this similarity by creating:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–81

� One algorithm to determine the composite average behavior of all

cells in the battery pack, and

� Another algorithm to determine the individual differences between

specific cells and that composite average behavior.

■ We define pack-average state “x-bar” as Nx

k

D

1

N

s

N

s

X

iD1

x

.i/

k

.

� Note that 0 � min
i

.´

.i/

k

/ � Ń

k

� max
i

.´

.i/

k

/ � 1; therefore, its range is

within the standard SOC range.

■ We can then write an individual cell’s state vector as x
.i/

k

D Nx

k

C�x

.i/

k

where �x

.i/

k

(called “delta-x”) is the difference between the state

vector of cell i and the pack-average state vector.

� The method is called “bar-delta filtering,” as inspired by the “x-bar”

and “delta-x” naming convention.

■ We use one SPKF to estimate the pack-average state, and N

s

SPKFs

(or similar) to estimate the delta states:

Battery pack state estimate
Battery pack current measurement

Battery pack voltage measurement

Battery pack temperature measurement

Cell delta state estimate

Cell current measurement

Cell voltage measurement

Cell temperature measurement

Battery pack state estimate

“bar” filter estimates
pack-average state

pack-average state

“delta” filter estimates
difference between

cell state and

■ It may seem that we have taken a problem of complexity N
s

and

replaced it with a problem of complexity N
s

C 1.

■ However, this is not the case—the three different types of estimator

involved are not of identical computational complexity.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–82

� The bar filter is of the same computational complexity as the

individual state estimators that it uses as a basis (e.g., SPKF).

� However, the delta filters can be made very simple.

� Also, the delta states change much more slowly than the average

state, so the delta filters can be run less frequently, down to 1=N

s

times the rate of the bar filter.

� Overall complexity can be reduced from order N
s

to order 1C.

Ox

.1/

k

Ox

.2/

k

Ox

.3/

k

Ox

.N

s

/

k

x

k

�x

.1/

k

�x

.2/

k

�x

.3/

k

�x

.N

s

/

k

� �� �

N

s

complex filters replaced by
1 complex filter and N

s

simple filters

➠

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–83

3.21: Bar-delta filtering using the ESC cell model

The pack bar filter

■ In the implementation that we describe here, a pack-average SPKF

estimated the following quantities:

� The pack-average state-of-charge, pack-average diffusion

current(s), and the pack-average hysteresis voltage.

■ We model current-sensor bias as

i

b

k

D i

b

k�1

C n

b

k�1

,

where n

b

k

is a fictitious noise source that is included in the model to

allow SPKF to adapt the bias estimate.

■ We now need to find the pack-average-quantity state equations.

■ For example, starting with a single-cell SOC equation

´

.i/

k

D ´

.i/

k�1

� i

k�1

�t=Q

.i/

1

N

s

N

s

X

iD1

´

.i/

k

D

1

N

s

N

s

X

iD1

´

.i/

k�1

�

i

k�1

�t

N

s

N

s

X

iD1

1

Q

.i/

D

1

N

s

N

s

X

iD1

´

.i/

k�1

�

i

k�1

�t

N

s

N

s

X

iD1

Q

.i/

inv

Ń

k

D Ń

k�1

� i

k�1

�t

N

Qinv.

■ Note the new concept of “inverse capacity” to make the equations

simpler. If we are estimating all cells’ capacities, we then have a

time-varying quantity N

Qinv;k�1.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–84

■ And, if we also consider the current-bias state,

Ń

k

D Ń

k�1

� .i

k�1

� i

b

k�1

/�t

N

Qinv;k�1.

■ Similarly, the dynamics of all pack-average states and parameters of

interest may be summarized as:

Ń

k

D Ń

k�1

� .i

k�1

� i

b

k�1

/�t

N

Qinv;k�1

N

i

R

j

;k

D A

RC

N

i

R

j

;k

C B

RC

.i

k�1

� i

b

k�1

/

A

h;k

D exp
�

�

�

�

.i

k�1

� i

b

k�1

/
�t

N

Qinv;k�1

�

�

�

N

h

k

D A

h;k

N

h

k�1

C .1 � A

h;k

/ sgn.i
k�1

� i

b

k�1

/

N

R

0;k

D

N

R

0;k�1

C n

N

R

0

k�1

N

Qinv;k D
N

Qinv;k�1 C n

N

Qinv

k�1

i

b

k

D i

b

k�1

C n

b

k�1

,

where n

N

R

0

k

and n

N

Qinv

k

are fictitious noise sources that allow the SPKF to

adapt the corresponding pack-average parameters.

■ The bar-filter for the pack employs an SPKF that uses this model of

pack-average states and the measurement equation

Ny

k

D OCV. Ń
k

/CM

N

h

k

�

X

j

R

j

N

i

R

j

;k

�

N

R

0;k

.i

k

� i

b

k

/C v

k

;

where v

k

models sensor noise.

The cell delta filters

■ The quantities that we are most interested in estimating at the

individual cell level are: SOC, resistance, and capacity.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–85

■ These all factor into determining pack available power and lifetime

(state-of-health) estimates.

■ We will first consider the delta filter approach to determining cell SOC.

■ Note, from before, �´
.i/

k

D ´

.i/

k

� Ń

k

. Then, using prior equations for

the dynamics of ´
.i/

k

and Ń

k

, we find:

�´

.i/

k

D ´

.i/

k

� Ń

k

D

�

´

.i/

k�1

� .i

k�1

�i

b

k�1

/�tQ

.i/

inv;k�1

�

�

�

Ń

k�1

� .i

k�1

�i

b

k�1

/�t

N

Qinv;k�1

�

D �´

.i/

k�1

� .i

k�1

�i

b

k�1

/�t�Q

.i/

inv;k�1

where �Q

.i/

inv;k
D Q

.i/

inv;k
�

N

Qinv;k.

■ Because �Q

.i/

inv;k
tends to be small, the state �´

.i/

k

does not change

quickly, and can be updated at a slower rate than the pack-average

SOC by accumulating .i

k�1

� i

b

k�1

/�t in-between updates.

■ An output equation suitable for combining with this state equation is

y

.i/

k

D OCV. Ń
k

C�´

.i/

k

/CM

N

h

k

�

X

j

R

j

N

i

R

j

;k

� .

N

R

0;k

C�R

.i/

0;k

/.i

k

� i

b

k

/C v

k

.

■ To estimate �´

.i/

k

, an SPKF is used with these two equations. Since it

is a single-state SPKF, it is very fast.

■ As a preview of parameter estimation (talked about more in the next

chapter. . .) we can similarly make state-space models of the

delta-resistance and delta capacity states.

■ A simple state-space model of the delta-resistance state is:

�R

.i/

0;k

D �R

.i/

0;k�1

C n

�R

0

k�1

y

k

D OCV. Ń
k

C�´

.i/

k

/ � .

N

R

0;k

C�R

.i/

0;k

/.i

k

� i

b

k

/C v

�R

0

k

,

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–86

where �R

.i/

0;k

D R

.i/

0;k

�

N

R

0;k

and is modeled as a constant value with a

fictitious noise process n
�R

0

k

allowing adaptation, y
k

is a crude

estimate of the cell’s voltage, and v

�R

0

k

models estimation error.

■ The dynamics of the delta-resistance state are simple and linear

enough to use a single-state EKF rather than an SPKF.

■ To estimate cell capacity using an EKF, we model

�Q

.i/

inv;k
D �Q

.i/

inv;k�1
C n

�Qinv

k�1

d

k

D .´

.i/

k

� ´

.i/

k�1

/C .i

k�1

� i

b

k�1

/�t �

�

N

Qinv;k�1 C�Q

.i/

inv;k�1

�

C e

k

The second equation is a reformulation of the SOC state equation

such that the expected value of d
k

is equal to zero by construction.

■ As the EKF runs, the computation for d
k

in the second equation is

compared to the known value (zero, by construction), and the

difference is used to update the inverse-capacity estimate.

■ Note that good estimates of present and previous SOCs are required.

� Here, they come from the pack SPKF combined with the cell SPKF.

■ The output of the delta filters is computed by combining the average

battery pack state with the battery cell module delta states produced

by the individual Kalman filters:

´

.i/

k

D Ń

k

C�´

.i/

k

R

.i/

0;k

D

N

R

0;k

C�R

.i/

0;k

Q

.i/

k

D

1

N

Qinv;k C�Q

.i/

inv;k

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–87

3.22: Example of bar-delta, using desktop validation

■ Two basic approaches to algorithm validation

HARDWARE IN THE LOOP (HIL): ■ HIL reveals baseline truth, but it is

sometimes hard/impossible to determine “truth” of all cell states

based on recorded data.

DESKTOP VALIDATION: ■ Use model of cell to create synthetic test data.

■ Allows access to “truth” of all cell and algorithm states.

■ Very useful for tuning algorithms.

■ Validity of results limited by the accuracy of cell model.

■ With desktop validation, we need a “data generation” component:

� Creates synthetic BMS data based on drive cycles and other

initialization parameters.

■ And, we need a “BMS algorithm simulation” component:

� Simulates the SPKF algorithms using the synthetic data as input,

based on various initialization parameters.

Evaluation

Generator
System

PC−Based
Algorithm

Set

BMS

EvaluationData

■ Either way, validation scenarios include: Normal operation, improper

SOC initialization, sensor failures (fault + noise), temperature drift,

new and old cells mixed, different drive cycles, current-sensor bias.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–88

■ Insight and validation via analysis and display of outputs.

Examples of bar-delta accuracy and speed

■ Simulated cycling of a four-cell pack with a UDDS cycle, a rest period,

the same UDDS cycle, and a rest period.

■ The pack cells had true capacities of 6.5, 7.0, 7.5, and 8:0 Ah,

resistances of 2.0, 2.25, 2.5, and 2:75 m�, and initial SOC values of

40, 45, 50, and 55 %. The current-sensor bias was 0:5 A.

■ The algorithms were initialized with all cells having estimated capacity

of 6:2 Ah, estimated resistances of 2:25 m�, estimated current-

sensor bias of 0 A, and initial SOC estimates based on initial voltages.

■ SPKF was used for the bar filter and the SOC delta filters, and EKF

was used for the resistance and capacity-inverse delta filters.

■ Pack current and individual cell voltage profiles for algorithm testing:

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−200

−175

−150

−125

−100

−75

−50

−25

0

25

50

75

100

Time (min)

C
u
rr

e
n
t
(A

)

Battery­pack current

0 5 10 15 20 25 30 35 40 45 50 55 60 65
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Time (min)

V
o
lt
a
g
e
 (

V
)

Battery­pack cell voltages for all cells

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–89

■ Some results showing accuracy of the method:

0 5 10 15 20 25 30 35 40 45 50 55 60 65

35

40

45

50

55

60

Time (min)

C
e

ll
S

O
C

 (
%

)

Total bar­delta SOC estimates for all cells

True SOC

Estimated SOC

0 5 10 15 20 25 30 35 40 45 50 55 60 65
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Time (min)

C
e
ll

re
s
is

ta
n
c
e
 (

m
Ω

)

Total bar­delta estimated resistances for all cells

True resistance

Estimated resistance

■ A different point of view, with SOC estimation errors:

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (min)

E
rr

o
r

in
 p

a
c
k
­a

v
e

ra
g

e
 S

O
C

 (
%

)

Bar filter pack­average SOC estimation error

SOC estimation error

Estimation error bounds

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (min)

E
rr

o
r

in
 c

e
ll

S
O

C
 (

%
)

Total bar­delta SOC estimation error for all cells

Estimation error in SOC

Error bounds

■ Some other estimation accuracies:

0 5 10 15 20 25 30 35 40 45 50 55 60 65
1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Time (min)

P
a

c
k
­a

v
e

ra
g

e
 r

e
s
is

ta
n

c
e

 (
m

Ω
)

Bar filter estimated pack­average resistance

True resistance

Estimated resistance

Estimate error bounds

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

Time (min)

C
u
rr

e
n
t­

s
e
n
s
o
r

b
ia

s
 (

A
)

Bar filter estimated current­sensor bias

True bias

Estimated bias

Estimate error bounds

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–90

■ Capacity estimates evolve in a similar way to resistance estimates.

� However, the time scale of adaptation is much longer, since

capacity is very weakly linked to the output measurement.

� Abrupt changes in capacity will not be tracked very quickly; but,

capacity fade due to normal aging will be tracked very well.

■ Speedup of the method (hand-coded C code, run on G4 processor)

Description of test (for pack comprising 100 cells) CPU time per iteration Speedup

One SPKF per cell 5.272 ms 1.0

One pack bar filter only, no delta filters 0.067 ms 78.7

One pack bar filter, 100 delta filters updated per iteration 0.190 ms 27.7

One pack bar filter, 50 delta filters updated per iteration 0.123 ms 42.9

Where from here?

■ We have seen good and bad ways to estimate SOC for all cells.

■ Model-based methods are preferred; KF-based methods are “optimal”

in some sense.

■ Additionally, KF estimates entire state—not only SOC—therefore can

also be used for degradation predictions. . .

■ Lots of nuances unexplored in this short section of notes. ECE5550

goes into much more depth and breadth of implementation of KF

■ Our next step is to look at state-of-health estimation, which is a form

of parameter estimation.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–91

Appendix: General sequential probabilistic inference solution

General state-space model:
x

k

D f .x

k�1

; u

k�1

; w

k�1

/

y

k

D h.x

k

; u

k

; v

k

/;

where w

k

and v

k

are independent, Gaussian noise processes having covari-

ance matrices �

ew

and �

Qv

, respectively.

Definitions: Let

Qx

�

k

D x

k

� Ox

�

k

; Qy

k

Dy

k

� Oy

k

.

Initialization: For k D 0, set

Ox

C

0

DE
�

x

0

�

�

C

Qx;0

DE
�

.x

0

� Ox

C

0

/.x

0

� Ox

C

0

/

T

�

.

Computation: For k D 1; 2; : : : compute:

State estimate time update: Ox

�

k

DE
�

f .x

k�1

; u

k�1

; w

k�1

/ j Y
k�1

�

.

Error covariance time update: �

�

Qx;k

DE
�

. Qx

�

k

/. Qx

�

k

/

T

�

.

Output estimate: Oy

k

DE
�

h.x

k

; u

k

; v

k

/ j Y
k�1

�

.

Estimator gain matrix: L

k

DE
�

. Qx

�

k

/. Qy

k

/

T

�

�

E
�

. Qy

k

/. Qy

k

/

T

�

�

�1

.

State estimate measurement update: Ox

C

k

D Ox

�

k

C L

k

�

y

k

� Oy

k

�

.

Error covariance measurement update: �C

Qx;k

D�

�

Qx;k

� L

k

�

Qy;k

L

T

k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–92

Appendix: Summary of the linear Kalman filter

Linear state-space model:
x

k

DA

k�1

x

k�1

C B

k�1

u

k�1

C w

k�1

y

k

DC

k

x

k

CD

k

u

k

C v

k

,

where w

k

and v

k

are independent, zero-mean, Gaussian noise processes of

covariance matrices �

ew

and �

Qv

, respectively.

Initialization: For k D 0, set

Ox

C

0

DE�x
0

�

�

C

Qx;0

DE
�

.x

0

� Ox

C

0

/.x

0

� Ox

C

0

/

T

�

.

Computation: For k D 1; 2; : : : compute:

State estimate time update: Ox

�

k

DA

k�1

Ox

C

k�1

C B

k�1

u

k�1

.

Error covariance time update: �

�

Qx;k

DA

k�1

�

C

Qx;k�1

A

T

k�1

C�

ew

.

Output estimate: Oy

k

DC

k

Ox

�

k

CD

k

u

k

.

Estimator gain matrix:� L

k

D�

�

Qx;k

C

T

k

�C

k

�

�

Qx;k

C

T

k

C�

Qv

�

�1.

State estimate measurement update: Ox

C

k

D Ox

�

k

C L

k

�

y

k

� Oy

k

�

.

Error covariance measurement update: �C

Qx;k

D .I � L

k

C

k

/�

�

Qx;k

.

�If a measurement is missed for some reason, then simply skip the measurement update for that

iteration. That is, L
k

D 0 and Ox

C

k

D Ox

�

k

and �

C

Qx;k

D �

�

Qx;k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–93

Appendix: Summary of the nonlinear extended Kalman filter

Nonlinear state-space model:
x

k

D f .x

k�1

; u

k�1

; w

k�1

/

y

k

D h.x

k

; u

k

; v

k

/;

where w

k

and v

k

are independent, Gaussian noise processes of covariance ma-

trices �

ew

and �

Qv

, respectively.

Definitions:

O

A

k

D

df .x
k

; u

k

; w

k

/

dx
k

�

�

�

�

x

k

DOx

C

k

O

B

k

D

df .x
k

; u

k

; w

k

/

dw
k

�

�

�

�

w

k

D Nw

k

O

C

k

D

dh.x
k

; u

k

; v

k

/

dx
k

�

�

�

�

x

k

DOx

�

k

O

D

k

D

dh.x
k

; u

k

; v

k

/

dv
k

�

�

�

�

v

k

DNv

k

.

Initialization: For k D 0, set

Ox

C

0

DE�x
0

�

�

C

Qx;0

DE
�

.x

0

� Ox

C

0

/.x

0

� Ox

C

0

/

T

�

.

Computation: For k D 1; 2; : : : compute:

State estimate time update: Ox

�

k

D f . Ox

C

k�1

; u

k�1

; Nw

k�1

/.

Error covariance time update: �

�

Qx;k

D

O

A

k�1

�

C

Qx;k�1

O

A

T

k�1

C

O

B

k�1

�

ew

O

B

T

k�1

.

Output estimate: Oy

k

D h. Ox

�

k

; u

k

; Nv

k

/.

Estimator gain matrix: L

k

D�

�

Qx;k

O

C

T

k

�

O

C

k

�

�

Qx;k

O

C

T

k

C

O

D

k

�

Qv

O

D

T

k

�

�1.

State estimate measurement update: Ox

C

k

D Ox

�

k

C L

k

�

y

k

� Oy

k

�

.

Error covariance measurement update: �C

Qx;k

D .I �L

k

O

C

k

/�

�

Qx;k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–94

Appendix: Summary of the nonlinear sigma-point Kalman filter

Nonlinear state-space model:
x

k

D f .x

k�1

; u

k�1

; w

k�1

/

y

k

D h.x

k

; u

k

; v

k

/;

where w

k

and v

k

are independent, Gaussian noise processes with

means Nw and Nv and covariance matrices �

ew

and �

Qv

, respectively.

Definitions: Let

x

a

k

D

�

x

T

k

; w

T

k

; v

T

k

�

T

; X a

k

D

�

.X x

k

/

T

; .Xw

k

/

T

; .X v

k

/

T

�

T

; pD 2 � dim.x

a

k

/.

Initialization: For k D 0, set

Ox

C

0

DE
�

x

0

�

�

C

Qx;0

DE
�

.x

0

� Ox

C

0

/.x

0

� Ox

C

0

/

T

�

Ox

a;C

0

DE
�

x

a

0

�

D

�

. Ox

C

0

/

T

; Nw; Nv

�

T

�

a;C

Qx;0

DE
�

.x

a

0

� Ox

a;C

0

/.x

a

0

� Ox

a;C

0

/

T

�

D diag
�

�

C

Qx;0

; �

ew

; �

Qv

�

.

Computation: For k D 1; 2; : : : compute:

State estimate time update: X
a;C

k�1

D

n

Ox

a;C

k�1

; Ox

a;C

k�1

C

q

�

a;C

Qx;k�1

; Ox

a;C

k�1

�

q

�

a;C

Qx;k�1

o

.

X
x;�

k;i

D f .X
x;C

k�1;i

; u

k�1

;X
w;C

k�1;i

/.

Ox

�

k

D

p

X

iD0

�

.m/

i

X
x;�

k;i

.

Error covariance time update: ��

Qx;k

D

p

X

iD0

�

.c/

i

�

X
x;�

k;i

� Ox

�

k

��

X
x;�

k;i

� Ox

�

k

�

T

.

Output estimate: Y
k;i

D h.X
x;�

k;i

; u

k

;X
v;C

k�1;i

/.

Oy

k

D

p

X

iD0

�

.m/

i

Y
k;i

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–95

Computation: (cont):

Estimator gain matrix: �

Qy;k

D

p

X

iD0

�

.c/

i

�

Y
k;i

� Oy

k

��

Y
k;i

� Oy

k

�

T

.

�

�

Qx Qy;k

D

p

X

iD0

�

.c/

i

�

X
x;�

k;i

� Ox

�

k

��

Y
k;i

� Oy

k

�

T

.

L

k

D�

�

Qx Qy;k

�

�1

Qy;k

.

State estimate meas. update: Ox

C

k

D Ox

�

k

C L

k

�

y

k

� Oy

k

�

.

Error covariance meas. update: �

C

Qx;k

D�

�

Qx;k

�L

k

�

Qy;k

L

T

k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

ECE5720, Battery State Estimation 3–96

Appendix: Critical Values of �2

■ For some deg. of freedom, each entry represents the

critical value of �2 for a specified upper tail area �.

0

�

2

U.�;df/

�

1 � �

D
eg

re
es

o
f

U
p
p
er

T
ai

l
A

re
as

F
re

ed
o
m

0
.
9
9
5

0
.
9
9

0
.
9
7
5

0
.
9
5

0
.
9
0

0
.
7
5

0
.
2
5

0
.
1
0

0
.
0
5

0
.
0
2
5

0
.
0
1

0
.
0
0
5

1
0
.
0
0
0

0
.
0
0
0

0
.
0
0
1

0
.
0
0
4

0
.
0
1
6

0
.
1
0
2

1
.
3
2
3

2
.
7
0
6

3
.
8
4
1

5
.
0
2
4

6
.
6
3
5

7
.
8
7
9

2
0
.
0
1
0

0
.
0
2
0

0
.
0
5
1

0
.
1
0
3

0
.
2
1
1

0
.
5
7
5

2
.
7
7
3

4
.
6
0
5

5
.
9
9
1

7
.
3
7
8

9
.
2
1
0

1
0
.
5
9
7

3
0
.
0
7
2

0
.
1
1
5

0
.
2
1
6

0
.
3
5
2

0
.
5
8
4

1
.
2
1
3

4
.
1
0
8

6
.
2
5
1

7
.
8
1
5

9
.
3
4
8

1
1
.
3
4
5

1
2
.
8
3
8

4
0
.
2
0
7

0
.
2
9
7

0
.
4
8
4

0
.
7
1
1

1
.
0
6
4

1
.
9
2
3

5
.
3
8
5

7
.
7
7
9

9
.
4
8
8

1
1
.
1
4
3

1
3
.
2
7
7

1
4
.
8
6
0

5
0
.
4
1
2

0
.
5
5
4

0
.
8
3
1

1
.
1
4
5

1
.
6
1
0

2
.
6
7
5

6
.
6
2
6

9
.
2
3
6

1
1
.
0
7
0

1
2
.
8
3
3

1
5
.
0
8
6

1
6
.
7
5
0

6
0
.
6
7
6

0
.
8
7
2

1
.
2
3
7

1
.
6
3
5

2
.
2
0
4

3
.
4
5
5

7
.
8
4
1

1
0
.
6
4
5

1
2
.
5
9
2

1
4
.
4
4
9

1
6
.
8
1
2

1
8
.
5
4
8

7
0
.
9
8
9

1
.
2
3
9

1
.
6
9
0

2
.
1
6
7

2
.
8
3
3

4
.
2
5
5

9
.
0
3
7

1
2
.
0
1
7

1
4
.
0
6
7

1
6
.
0
1
3

1
8
.
4
7
5

2
0
.
2
7
8

8
1
.
3
4
4

1
.
6
4
6

2
.
1
8
0

2
.
7
3
3

3
.
4
9
0

5
.
0
7
1

1
0
.
2
1
9

1
3
.
3
6
2

1
5
.
5
0
7

1
7
.
5
3
5

2
0
.
0
9
0

2
1
.
9
5
5

9
1
.
7
3
5

2
.
0
8
8

2
.
7
0
0

3
.
3
2
5

4
.
1
6
8

5
.
8
9
9

1
1
.
3
8
9

1
4
.
6
8
4

1
6
.
9
1
9

1
9
.
0
2
3

2
1
.
6
6
6

2
3
.
5
8
9

1
0

2
.
1
5
6

2
.
5
5
8

3
.
2
4
7

3
.
9
4
0

4
.
8
6
5

6
.
7
3
7

1
2
.
5
4
9

1
5
.
9
8
7

1
8
.
3
0
7

2
0
.
4
8
3

2
3
.
2
0
9

2
5
.
1
8
8

1
1

2
.
6
0
3

3
.
0
5
3

3
.
8
1
6

4
.
5
7
5

5
.
5
7
8

7
.
5
8
4

1
3
.
7
0
1

1
7
.
2
7
5

1
9
.
6
7
5

2
1
.
9
2
0

2
4
.
7
2
5

2
6
.
7
5
7

1
2

3
.
0
7
4

3
.
5
7
1

4
.
4
0
4

5
.
2
2
6

6
.
3
0
4

8
.
4
3
8

1
4
.
8
4
5

1
8
.
5
4
9

2
1
.
0
2
6

2
3
.
3
3
7

2
6
.
2
1
7

2
8
.
3
0
0

1
3

3
.
5
6
5

4
.
1
0
7

5
.
0
0
9

5
.
8
9
2

7
.
0
4
2

9
.
2
9
9

1
5
.
9
8
4

1
9
.
8
1
2

2
2
.
3
6
2

2
4
.
7
3
6

2
7
.
6
8
8

2
9
.
8
1
9

1
4

4
.
0
7
5

4
.
6
6
0

5
.
6
2
9

6
.
5
7
1

7
.
7
9
0

1
0
.
1
6
5

1
7
.
1
1
7

2
1
.
0
6
4

2
3
.
6
8
5

2
6
.
1
1
9

2
9
.
1
4
1

3
1
.
3
1
9

1
5

4
.
6
0
1

5
.
2
2
9

6
.
2
6
2

7
.
2
6
1

8
.
5
4
7

1
1
.
0
3
7

1
8
.
2
4
5

2
2
.
3
0
7

2
4
.
9
9
6

2
7
.
4
8
8

3
0
.
5
7
8

3
2
.
8
0
1

1
6

5
.
1
4
2

5
.
8
1
2

6
.
9
0
8

7
.
9
6
2

9
.
3
1
2

1
1
.
9
1
2

1
9
.
3
6
9

2
3
.
5
4
2

2
6
.
2
9
6

2
8
.
8
4
5

3
2
.
0
0
0

3
4
.
2
6
7

1
7

5
.
6
9
7

6
.
4
0
8

7
.
5
6
4

8
.
6
7
2

1
0
.
0
8
5

1
2
.
7
9
2

2
0
.
4
8
9

2
4
.
7
6
9

2
7
.
5
8
7

3
0
.
1
9
1

3
3
.
4
0
9

3
5
.
7
1
8

1
8

6
.
2
6
5

7
.
0
1
5

8
.
2
3
1

9
.
3
9
0

1
0
.
8
6
5

1
3
.
6
7
5

2
1
.
6
0
5

2
5
.
9
8
9

2
8
.
8
6
9

3
1
.
5
2
6

3
4
.
8
0
5

3
7
.
1
5
6

1
9

6
.
8
4
4

7
.
6
3
3

8
.
9
0
7

1
0
.
1
1
7

1
1
.
6
5
1

1
4
.
5
6
2

2
2
.
7
1
8

2
7
.
2
0
4

3
0
.
1
4
4

3
2
.
8
5
2

3
6
.
1
9
1

3
8
.
5
8
2

2
0

7
.
4
3
4

8
.
2
6
0

9
.
5
9
1

1
0
.
8
5
1

1
2
.
4
4
3

1
5
.
4
5
2

2
3
.
8
2
8

2
8
.
4
1
2

3
1
.
4
1
0

3
4
.
1
7
0

3
7
.
5
6
6

3
9
.
9
9
7

2
1

8
.
0
3
4

8
.
8
9
7

1
0
.
2
8
3

1
1
.
5
9
1

1
3
.
2
4
0

1
6
.
3
4
4

2
4
.
9
3
5

2
9
.
6
1
5

3
2
.
6
7
1

3
5
.
4
7
9

3
8
.
9
3
2

4
1
.
4
0
1

2
2

8
.
6
4
3

9
.
5
4
2

1
0
.
9
8
2

1
2
.
3
3
8

1
4
.
0
4
1

1
7
.
2
4
0

2
6
.
0
3
9

3
0
.
8
1
3

3
3
.
9
2
4

3
6
.
7
8
1

4
0
.
2
8
9

4
2
.
7
9
6

2
3

9
.
2
6
0

1
0
.
1
9
6

1
1
.
6
8
9

1
3
.
0
9
1

1
4
.
8
4
8

1
8
.
1
3
7

2
7
.
1
4
1

3
2
.
0
0
7

3
5
.
1
7
2

3
8
.
0
7
6

4
1
.
6
3
8

4
4
.
1
8
1

2
4

9
.
8
8
6

1
0
.
8
5
6

1
2
.
4
0
1

1
3
.
8
4
8

1
5
.
6
5
9

1
9
.
0
3
7

2
8
.
2
4
1

3
3
.
1
9
6

3
6
.
4
1
5

3
9
.
3
6
4

4
2
.
9
8
0

4
5
.
5
5
9

2
5

1
0
.
5
2
0

1
1
.
5
2
4

1
3
.
1
2
0

1
4
.
6
1
1

1
6
.
4
7
3

1
9
.
9
3
9

2
9
.
3
3
9

3
4
.
3
8
2

3
7
.
6
5
2

4
0
.
6
4
6

4
4
.
3
1
4

4
6
.
9
2
8

2
6

1
1
.
1
6
0

1
2
.
1
9
8

1
3
.
8
4
4

1
5
.
3
7
9

1
7
.
2
9
2

2
0
.
8
4
3

3
0
.
4
3
5

3
5
.
5
6
3

3
8
.
8
8
5

4
1
.
9
2
3

4
5
.
6
4
2

4
8
.
2
9
0

2
7

1
1
.
8
0
8

1
2
.
8
7
9

1
4
.
5
7
3

1
6
.
1
5
1

1
8
.
1
1
4

2
1
.
7
4
9

3
1
.
5
2
8

3
6
.
7
4
1

4
0
.
1
1
3

4
3
.
1
9
5

4
6
.
9
6
3

4
9
.
6
4
5

2
8

1
2
.
4
6
1

1
3
.
5
6
5

1
5
.
3
0
8

1
6
.
9
2
8

1
8
.
9
3
9

2
2
.
6
5
7

3
2
.
6
2
0

3
7
.
9
1
6

4
1
.
3
3
7

4
4
.
4
6
1

4
8
.
2
7
8

5
0
.
9
9
3

2
9

1
3
.
1
2
1

1
4
.
2
5
6

1
6
.
0
4
7

1
7
.
7
0
8

1
9
.
7
6
8

2
3
.
5
6
7

3
3
.
7
1
1

3
9
.
0
8
7

4
2
.
5
5
7

4
5
.
7
2
2

4
9
.
5
8
8

5
2
.
3
3
6

3
0

1
3
.
7
8
7

1
4
.
9
5
3

1
6
.
7
9
1

1
8
.
4
9
3

2
0
.
5
9
9

2
4
.
4
7
8

3
4
.
8
0
0

4
0
.
2
5
6

4
3
.
7
7
3

4
6
.
9
7
9

5
0
.
8
9
2

5
3
.
6
7
2

3
1

1
4
.
4
5
8

1
5
.
6
5
5

1
7
.
5
3
9

1
9
.
2
8
1

2
1
.
4
3
4

2
5
.
3
9
0

3
5
.
8
8
7

4
1
.
4
2
2

4
4
.
9
8
5

4
8
.
2
3
2

5
2
.
1
9
1

5
5
.
0
0
3

3
2

1
5
.
1
3
4

1
6
.
3
6
2

1
8
.
2
9
1

2
0
.
0
7
2

2
2
.
2
7
1

2
6
.
3
0
4

3
6
.
9
7
3

4
2
.
5
8
5

4
6
.
1
9
4

4
9
.
4
8
0

5
3
.
4
8
6

5
6
.
3
2
8

3
3

1
5
.
8
1
5

1
7
.
0
7
4

1
9
.
0
4
7

2
0
.
8
6
7

2
3
.
1
1
0

2
7
.
2
1
9

3
8
.
0
5
8

4
3
.
7
4
5

4
7
.
4
0
0

5
0
.
7
2
5

5
4
.
7
7
6

5
7
.
6
4
8

3
4

1
6
.
5
0
1

1
7
.
7
8
9

1
9
.
8
0
6

2
1
.
6
6
4

2
3
.
9
5
2

2
8
.
1
3
6

3
9
.
1
4
1

4
4
.
9
0
3

4
8
.
6
0
2

5
1
.
9
6
6

5
6
.
0
6
1

5
8
.
9
6
4

3
5

1
7
.
1
9
2

1
8
.
5
0
9

2
0
.
5
6
9

2
2
.
4
6
5

2
4
.
7
9
7

2
9
.
0
5
4

4
0
.
2
2
3

4
6
.
0
5
9

4
9
.
8
0
2

5
3
.
2
0
3

5
7
.
3
4
2

6
0
.
2
7
5

3
6

1
7
.
8
8
7

1
9
.
2
3
3

2
1
.
3
3
6

2
3
.
2
6
9

2
5
.
6
4
3

2
9
.
9
7
3

4
1
.
3
0
4

4
7
.
2
1
2

5
0
.
9
9
8

5
4
.
4
3
7

5
8
.
6
1
9

6
1
.
5
8
1

3
7

1
8
.
5
8
6

1
9
.
9
6
0

2
2
.
1
0
6

2
4
.
0
7
5

2
6
.
4
9
2

3
0
.
8
9
3

4
2
.
3
8
3

4
8
.
3
6
3

5
2
.
1
9
2

5
5
.
6
6
8

5
9
.
8
9
3

6
2
.
8
8
3

3
8

1
9
.
2
8
9

2
0
.
6
9
1

2
2
.
8
7
8

2
4
.
8
8
4

2
7
.
3
4
3

3
1
.
8
1
5

4
3
.
4
6
2

4
9
.
5
1
3

5
3
.
3
8
4

5
6
.
8
9
6

6
1
.
1
6
2

6
4
.
1
8
1

3
9

1
9
.
9
9
6

2
1
.
4
2
6

2
3
.
6
5
4

2
5
.
6
9
5

2
8
.
1
9
6

3
2
.
7
3
7

4
4
.
5
3
9

5
0
.
6
6
0

5
4
.
5
7
2

5
8
.
1
2
0

6
2
.
4
2
8

6
5
.
4
7
6

4
0

2
0
.
7
0
7

2
2
.
1
6
4

2
4
.
4
3
3

2
6
.
5
0
9

2
9
.
0
5
1

3
3
.
6
6
0

4
5
.
6
1
6

5
1
.
8
0
5

5
5
.
7
5
8

5
9
.
3
4
2

6
3
.
6
9
1

6
6
.
7
6
6

4
5

2
4
.
3
1
1

2
5
.
9
0
1

2
8
.
3
6
6

3
0
.
6
1
2

3
3
.
3
5
0

3
8
.
2
9
1

5
0
.
9
8
5

5
7
.
5
0
5

6
1
.
6
5
6

6
5
.
4
1
0

6
9
.
9
5
7

7
3
.
1
6
6

5
0

2
7
.
9
9
1

2
9
.
7
0
7

3
2
.
3
5
7

3
4
.
7
6
4

3
7
.
6
8
9

4
2
.
9
4
2

5
6
.
3
3
4

6
3
.
1
6
7

6
7
.
5
0
5

7
1
.
4
2
0

7
6
.
1
5
4

7
9
.
4
9
0

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013–2020, Gregory L. Plett

