Battery-Management-System Requirements

1.1: Introduction and BMS functionality

- This course investigates the proper management and control of battery packs, usually comprising many cells.
- The methods and algorithms we discuss would typically be implemented by a <u>battery-management system</u> or BMS.

- A BMS is an embedded system (purpose-built electronics plus processing to enable a specific application).
 - Protects the safety of the battery operated device's operator. Detects unsafe operating conditions and responds.
 - Protects cells of battery from damage in abuse/failure cases.
 - Prolongs life of battery (normal operating cases).
 - Maintains battery in a state in which it can fulfill its functional design requirements.
 - Informs the application controller how to make the best use of the pack **right now** (*e.g.*, power limits), control charger, etc.
- There is a cost associated with battery management, so not all applications implement all features.
 - Your battery is "cheap enough" if you cannot remember the last time you replaced it.

- Larger battery packs represent greater investment, and motivate better battery management.
- This course will focus on large (*e.g.*, vehicular) battery packs although the methods we discuss are quite general.
- Vehicular applications include:
 - <u>Hybrid-Electric Vehicle</u> (HEV): Motive power provided by battery plus at least one other source (*e.g.*, gasoline engine). Essentially zero all-electric vehicle range.
 - <u>Plug-in Hybrid-Electric Vehicle</u> (PHEV): Larger battery than HEV allows some all-electric range under certain operating conditions.
 - <u>Extended-Range Electric Vehicle</u> (E-REV): Larger battery than PHEV allows some all-electric range under full-load conditions.
 - <u>Electric Vehicle</u> (EV), a.k.a. <u>Battery-Electric Vehicle</u> (BEV): Battery provides only motive power.

- All of these vehicle types employ battery packs that are "large," "high voltage," and "high current."
 - Some distinctions in design, which we will detail when necessary.
 - Commonalities more significant than differences; when distinctions aren't important, we refer to the whole class as <u>xEV</u>.
- Another large-scale application that justifies advanced battery management is for grid-storage and backup.

Battery pack topology

- High-power battery packs deliver high voltage, high current, or both.
- Chemistry of individual cells fixes their voltage range, so for high voltage packs, we must stack cells in series: $V_{\text{pack}} = N_s \cdot V_{\text{cell}}$.
- Cell construction places limits on cell current, so for high current packs, we must wire cells in parallel: $I_{\text{pack}} = N_p \cdot I_{\text{cell}}$.
- The series/parallel design is generally determined by economic and safety factors—modules are usually kept less than 50 V for safety, and packs are kept less than 600 V because power electronics begin to get very expensive at higher voltages.
- Generally want to minimize current to keep wire diameter small and reduce resistive I²R wiring losses.
- Modules also minimize NRE, create reusable design. Extremes:
 - Parallel-cell modules (PCM),
 - Series-cell modules (SCM).
- We can design battery packs and BMS for either—most often use something in between these extremes.
- *e.g.*, a "3P6S" module has 18 cells: 3 in parallel and 6 in series.
 - Module power and energy are both approximately 18× that of a single cell (but not quite, in practice, as we shall find).
- Cells in a module are welded/screwed to a common PCB having local BMS electronics for voltage measurement and cell balancing control—minimizes nightmare of individual wires to hundreds of cells.

BMS Functionality

- BMS is interconnected with all battery-pack components and with vehicle control computer.
- Functionality can be broken down into several categories:
- 1. Sensing and high-voltage control:
 - Measure voltage, current, temperature; control contactor, pre-charge; ground-fault detection, thermal management.
- 2. Protection against:
 - Over-charge, over-discharge, over-current, short circuit, extreme temperatures.
- 3. Interface:
 - Range estimation, communications, data recording, reporting.
- 4. Performance management:
 - State-of-charge (SOC) estimation, power-limit computation, balance/equalize cells.
- 5. Diagnostics:
 - Abuse detection, state-of-health (SOH) estimation, state-of-life (SOL) estimation.
 - In this chapter, we address some of the more basic (but still important) design considerations; later chapters will develop performance management and diagnostic topics in detail.

1.2: Requirements 1a-c: Sensing

1a. Battery-pack sensing: Voltage

- All cell voltages are measured in a lithium-ion pack:
 - Indicator of relative balance of cells.
 - Input to most SOC and SOH estimation algorithms.
- It's also a safety issue:
 - Overcharging a lithium-ion cell can lead to "thermal runaway," so we can't skip measuring any voltages.

- Special chipsets are made to aid high-voltage BMS design.
 - Low-cost "dumb" measurement chips used in modules, proximate to cells; high-cost computational processing in distant master unit.
 - Special chips implement difficult task of highly accurate A2D voltage sensing with high common-mode rejection and fast response in high-EMI, high-heat, high-vibration environments.
 - Can often be placed in parallel for redundant fault-tolerant designs.
- A number of vendors make chipsets, including: Analog Devices, Atmel, Intersil, Maxim, O2Micro, Texas Instruments.
- We consider a specific example (LTC6803) designed in Colorado Springs by Linear Technology.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013, 2015, Gregory L. Plett

- Monitors up to 12 cells in series in a module, 120 cells in a pack.
- Has built-in isolated communications between daisy-chained parts.
- Supports internal or external cell equalization circuitry.
- Can be powered by module itself, or externally.
- Measures up to four temperatures (with some external circuitry).
- Points to be considered in a design:
 - How many cells can each IC monitor?
 - How many cells total can be monitored?
 - Does it support passive/active balancing?
 - What is the measurement accuracy?
 - How many temperature measurements can be made?
 - How many wires to communicate from IC to IC?
 - What is chipset availability and cost, per cell?

1b. Battery-pack sensing: Temperature

- Battery pack operational characteristics and cell degradation rates are very strong functions of temperature.
 - Don't charge at low temperature; control thermal management systems to keep temperature in "safe" region.
 - Unexpected temperature changes can indicate cell failure or impending safety concern.
- Ideally, we measure each cell's internal temperature. But,
 - With accurate pack thermal model, can place sensors external to one or more cells per module and calibrate internal temperatures.

- To measure temperature, must produce a voltage signal indicative of the temperature, which is then measured via an A2D circuit.
 - Thermocouple directly produces a (very small) voltage, which can be amplified and measured — needs "cold junction compensation." Probably best suited for lab tests.
 - Thermistor (NTC/PTC) easier to use in products. Resistance changes significantly with temperature.
- Thermistor can be used in Wheatstone bridge, if resistances are calibrated. Or, using a voltage divider.
- Thermistor data sheet gives resistance as a function of temperature.
- In one example, we have the plotted relationship. If we put this thermistor in lower leg of voltage divider, with a 5 V source, we get:

- In software, we want to convert a measured voltage into the thermistor temperature.
- So, we create an "inverse" table of temperature as a function of voltage: use in table lookup.

1c. Battery-pack sensing: Current

- Battery pack current measurements are required:
 - To ensure safety.
 - To log abuse conditions.
 - By most state-of-charge and state-of-health algorithms.
- There are two basic sensing methods: Shunt and Hall effect.
- Shunt sensor is low-value (*e.g.*, 0.1 mΩ) high-precision resistor in series with battery pack, usually at low-voltage end.
- Current computed by measuring voltage drop: I = V_{shunt}/R_{shunt}.

- Some comments on current-sensing shunts:
 - Power and sense connections must be made separately: <u>four-wire</u> <u>voltage measurement</u> via a <u>Kelvin connection</u>.
 - Current shunts have no offset at zero current, regardless of temperature, so they are good to avoid drift in coulomb counting (but, offset might still be introduced by measurement electronics).
 - Current shunts are not isolated from the pack. If BMS must be isolated from pack, extra circuitry is required.

- Resistance of current shunt changes with temperature, so temperature must be measured and resistance calibrated.
- The shunt itself introduces some energy losses, and generates heat that must be dissipated.
- The sensor produces a tiny signal that must be amplified—any wiring must be protected from EMI.
- Hall-effect sensors measure magnetic field generated by current flowing in a wire.

- Some comments on Hall-effect sensors:
 - Hall-effect sensors are isolated from the pack current and therefore no special isolation circuitry is needed.
 - Feedback circuitry is needed to guard against sensor magnetic hysteresis. Sensors come prepackaged with this circuitry.
 - Even so, Hall-effect sensors suffer from offset at zero current, which changes with temperature.
 - Even if "zeroed" at room temperature, they will report a small current when there isn't one as they change temperature.
 - Frequent calibration is necessary, and may be possible in some applications (*e.g.*, HEV if it it known that there is zero current.)

1.3: Requirement 1d: High-voltage contactor control

- High-voltage battery packs are designed to be completely isolated from chassis ground, for safety reasons.
 - If you were to touch chassis ground and any point in the battery pack, you should be completely safe.
- Similarly, when not in use, the battery pack internal high-voltage bus is completely disconnected from the load at both terminals.
 - This requires two high-current capable relays or "contactors."
 - The load is often capacitive, so if both contactors were simultaneously closed, a huge amount of current would instantly flow, potentially welding the contactors closed or blowing a fuse.
 - So, a third "pre-charge" contactor is used.
- Pack initially at rest; then negative contactor activated.
 - Connects "--" terminal of the load to "--" terminal of battery pack

- Precharge contactor activated next.
 - The precharge resistor limits current flow, and the pack charges up the capacitive load (relatively slowly).
 - Precharge resistor temperature is monitored—if too high, load may have short circuit fault and pack disconnects.
 - Bus voltage and pack voltage are monitored—requires high-impedance voltage dividers and isolated op-amps.
 - If bus and pack voltages don't converge after a specified interval, load may have short-circuit fault: pack disconnects.

Main contactor is activated when bus and pack voltages converge.

- If bus and pack voltages become "close enough" "quickly enough," then BMS closes/ activates the main "+" terminal contactor.
 - Load is now directly connected to pack through low-resistance path.
 - Precharge contactor is disconnected/ opened/ deactivated.

- Procedure to follow on pack shutdown is not as clear.
 - Abrupt disconnection may cause arcing/welding, but capacitive load probably stores enough energy to prevent this.
 - Activating precharge path prior to main contactor disconnect probably wise—still have a current path to prevent welding of main contactor, but could possibly blow precharge resistor.
 - Again, capacitive load probably saves resistor too.

1.4: Requirements 1e-f: Isolation sensing and thermal control

1e. Isolation sensing

- Isolation sensing detects presence of a ground fault.
- Primary concern is safety: Is it safe to touch a battery terminal and chassis ground at the same time?

- Battery "should" be completely isolated from chassis ground, so "should" be no problem.
- FMVSS says isolation is sufficient if less than 2 mA of current will flow when connecting chassis ground to either the positive or negative terminal of the battery pack via a direct short.
- In the circuit diagram, paths between the battery and chassis ground are drawn as red resistors; ideally these have infinite value.

- The "isolation resistance" R_i is the lesser of R_1 and R_2 . So, R_i must be greater than $V_b/0.002 = 500V_b$.
- For the BMS to sense whether the pack is sufficiently isolated from the chassis, it must somehow measure R_i.
- To do so, we measure V_1 and V_2 using a high-impedance measurement circuit, $\geq 10 M\Omega$.
 - This breaks strict isolation, but not enough to worry about.
 - Note polarity of voltmeters—both V_1 and V_2 are positive.

- R_1 and R_2 form a voltage divider. We want to find the smaller of the two resistances. So if $V_2 > V_1$ find R_1 , else find R_2 .
- Note also that $I_1 = I_2$ so $V_1/R_1 = V_2/R_2$. We'll use this identity.

Fault on low side: Find R1

- If the fault is on the low side, we want to solve for R_1 .
- We insert a known (large) resistance R₀ between the battery and chassis ground, via a transistor switch, as shown.

- This again breaks strict isolation, but not enough to worry about if R_0 is "big enough" (*i.e.*, $\gg 500V_b$).
- We measure V'_2 . Note that by KCL, $\frac{V_b V'_2}{R_1} = \frac{V'_2}{R_2} + \frac{V'_2}{R_0}$.
- Substitute $V_b = V_1 + V_2$ and $R_2 = R_1(V_2/V_1)$, $\frac{(V_1 + V_2) - V'_2}{R_1} = \frac{V'_2}{R_2} + \frac{V'_2}{R_0}$ $= \frac{V'_2(V_1/V_2)}{R_1} + \frac{V'_2}{R_0}.$
- Solve for R_1 $\frac{(V_1 + V_2) - V_2' - V_2'(V_1/V_2)}{R_1} = \frac{V_2'}{R_0}$ $R_1 = \frac{R_0}{V_2'}(V_1 + V_2 - V_2' - V_2'(V_1/V_2))$ $= \frac{R_0}{V_2'}\left(1 + \frac{V_1}{V_2}\right)(V_2 - V_2').$
- Isolation is deemed sufficient if $R_i > V_b/0.002$ or $R_2 > 500V_b$.

Fault on high side: Find R₂

- Procedure is similar if V₁ > V₂ except now we want to find R₂.
- Configure as shown, measure V'_1 .
- By KCL,

$$\frac{V_b - V_1'}{R_2} = \frac{V_1'}{R_1} + \frac{V_1'}{R_0}.$$

• Substitute $V_b = V_1 + V_2$ and $R_1 = R_2(V_1/V_2)$

$$\frac{V_1 + V_2 - V_1'}{R_2} = \frac{V_1'(V_2/V_1)}{R_2} + \frac{V_1'}{R_0}$$
$$\frac{V_1 + V_2 - V_1' - V_1'(V_2/V_1)}{R_2} = \frac{V_1'}{R_0}.$$

■ Solve for *R*₂

$$R_{2} = \frac{R_{0}}{V_{1}'} (V_{1} + V_{2} - V_{1}' - V_{1}'(V_{2}/V_{1}))$$
$$= \frac{R_{0}}{V_{1}'} \left(1 + \frac{V_{2}}{V_{1}}\right) \left(V_{1} - V_{1}'\right).$$

• Again, isolation is considered sufficient if $R_i > V_b/0.002$ or $R_2 > 500V_b$.

1f. Thermal control

- Will not go into detailed thermal management control strategy.
- Generally, Li-ion cells last longest if maintained in temperature band from about 10 °C to 40 °C during use.
- Air cooling may be sufficient, especially for EV.

- Liquid/evaporative cooling may be necessary for some aggressive HEV/PHEV/E-REV applications.
- Heating may be necessary in some cases to avoid charging at low temperatures—high risk for cell damage if pack is charged below about 0 °C.
- May also want to measure input/output temperature of coolant for use with battery pack thermal model.

1.5: Requirements 2 and 3: Protection and interface

2. Protection

- BMS must provide monitoring and control to protect:
 - Cells from out-of-tolerance ambient operating conditions.
 - User from consequences of battery failures.
- High-energy storage batteries can be very dangerous:
 - If energy is released in an uncontrolled way (short circuit, physical damage), can have catastrophic consequences;
 - In a short circuit, hundreds of amperes can develop in microseconds; protection circuitry must act quickly.
- Different applications and different cell chemistries require different degrees of protection.
 - Failure in a lithium-ion cell can be very serious: explosion/fire.
 - Protection is indispensable in automotive environment.
- Protection must address following undesirable events or conditions:
 - Excessive current during charging or discharging;
 - Short circuit;
 - Over voltage and under voltage;
 - High ambient temperature, overheating;
 - Loss of isolation;
 - Abuse.
- When possible, fallback protection paths should be implemented

- Red = cell-manufacturer specified region where cells will most likely be subject to permanent damage;
- Anywhere else "okay" but need margin of error;
- Generally design to limit cell's operating conditions to smaller "safe" region, shown here in green;

Femperature

- Safety devices are then specified to constrain cells to safe region.
- White = safety margin.
- Similar for voltage limits:
- But, each protection device added into main current path increases battery impedance, reducing power delivered to load.

Failure Zone

- Examples of protection devices include:
 - Thermal fuse: Opens contactor when $T > T_{\text{limit}}$.
 - Conventional fuse: May not act quickly enough;
 - Active fault detection: BMS monitoring for fault conditions.

3a. Charger control

Battery packs are charged in two ways:

Voltage

- Random charging: Charge is delivered in random unpredictable patterns; *e.g.*, regenerative braking
 - Controlled by providing inverter power limits.
- Plug-in charging: EV/PHEV/E-REV have plug-in modes:
 - Control charger current, voltage, pack equalization;
 - Often do CC/CV but more exotic methods possible;
 - Most Li-Ion cells should not be charged at low temperatures, so heating systems may be required.
- Small print: Passenger vehicles require approx. 200–300 Wh/mile.
 - For 300 mile range, 60–90 kWh capacity, charge in 3 minutes requires a rate of 1.8 MW!
 - Domestic 15 A, 110 V or 1.5 kW service charges pack in 40-60 h
 - Domestic 30 A, 220 V or 6.6 kW service charges pack in 10-15 h

3b. Communication via CAN bus

- Control Area Network (CAN) bus is industry ISO standard for on-board vehicle communications.
- Designed to provide robust communications in the very harsh automotive operating environments with high levels of electrical noise.
- Two-wire serial bus designed to network intelligent sensors and actuators; can operate at two rates:
 - High speed (1M Baud): Used for critical operations such as engine management, vehicle stability, motion control;
 - Low speed (100 kBaud): Simple switching and control of lighting, windows, mirror adjustments, and instrument displays (etc.).

- The protocol defines the following:
 - Method of addressing the devices connected to the bus;
 - Transmission speed and priority settings;
 - Transmission sequence;
 - Error detection and handling;
 - Control signals.

Data frames are transmitted sequentially over the bus.

3c. Log book function

- For warrantee and diagnostic purposes, BMS must store a log of atypical/abuse events
 - Abuse type: out of tolerance, voltage, current, temperature
 - Duration and magnitude of abuse
- Can also store diagnostic information regarding
 - Number of charge/discharge cycles completed
 - SOH estimates at beginning of each driving cycle;
 - And much more...
- Data stored in memory in a "history chip" (*e.g.*, FLASH memory) and downloaded when required.
 - A "silicon serial number" chip can help.

3d. Range estimation

- How far can I drive before pack energy is depleted?
- This is proportional to pack total energy but is heavily influenced by environmental factors:
 - What are the vehicle characteristics?
 - How is the vehicle being driven (gently/aggressively)?
 - Are there a lot of hills, a lot of wind?
 - Is it warm or cold out?
- At present, it appears that each OEM will have their own range-estimation algorithms.
- It is sufficient for the moment to produce the required inputs to those algorithms; esp. how much energy is in the pack.

1.6: Requirement 4a. State-of-charge estimation

What needs to be estimated, and why?

- xEVs need to know two battery quantities:
 - How much energy is available in the battery pack;
 - How much power is available in the immediate future.
- An estimate of energy is most important for EV:
 - Energy tells me how far I can drive.
- An estimate of power is most important for HEV:
 - Power tells me whether I can accelerate or accept braking charge.
- Both are important for E-REV/PHEV.
- To compute energy, we must know (at least) all cell states-of-charge z_k and capacities Q_k .
- To compute power, we must know (at least) all cell states-of-charge and resistances R_k.
- But, we cannot directly measure these parameters—we must estimate them as well.
- Available inputs include all cell voltages, pack current, and temperatures of cells or modules.

- We'll see that there are both good and poor methods to produce estimates: The poor methods are generally simpler to understand, code, and validate, but yield less accurate results.
- The impact of this can be:
 - Abrupt corrections when voltage or current limits exceeded, leading to customer perception of poor drivability, or
 - Over-charge or over-discharge, which damages cells, or
 - Compensating for uncertainty of estimates by over-designing pack.
- All of these have costs in dollars, weight and/or volume.
- A major premise of this course is that investing in good battery management and control algorithms and electronics capable of implementing the algorithms can reduce pack size and end up with a considerable net savings.

What really is state-of-charge (SOC)?

- Charging a cell moves lithium from the positive- to the negative-electrode of the cell; discharge does the opposite.
- Electrochemically, the cell state-of-charge (SOC) is related to average concentration of lithium in the negative-electrode solid particles.
- Define the present lithium concentration stoichiometry as $\theta = c_{s,avg}/c_{s,max}$.

• This stoichiometry is intended to remain between $\theta_{0\%}$ and $\theta_{100\%}$.

• Then, cell SOC is computed as: $z_k = (\theta - \theta_{0\%})/(\theta_{100\%} - \theta_{0\%}).$

- It is reasonable to wonder what is the coupling between SOC and cell voltage? Maybe I can infer SOC by measuring voltage?
- Cell voltage depends on temperature and electrode particle surface concentrations, but SOC depends on particle average concentrations.
 - Surface and average concentrations will not generally be the same.
- Furthermore,
 - Changing temperature changes cell voltage, but not average concentrations, so does not change SOC;
 - Resting a cell changes its voltage but not average concentrations, so does not change SOC;
 - History of cell usage changes steady-state surface concentration versus average concentration (hysteresis).
- In summary, SOC changes only due to passage of current, either charging or discharging the cell due to external circuitry, or due to self-discharge within the cell.
- So, we will find voltage useful as an indirect indicator of SOC, but not as a direct measurement of SOC.
- How about current? SOC is related to cell current via

$$z(t) = z(0) - \frac{1}{Q} \int_0^t \eta i(\tau) \,\mathrm{d}\tau.$$

- Cell current is positive on discharge, negative on charge.
- η is cell coulombic efficiency ≈ 1 but ≤ 1 .
- Q is the cell total capacity in ampere seconds (coulombs).
- Note, total capacity Q is a measure of the number of locations in the electrode structure between $\theta_{0\%}$ and $\theta_{100\%}$ that could hold lithium.

- It is not a function of temperature, rate, etc.
- Estimating SOC via this relationship is called "coulomb counting."
 We'll see in Chap. 3 that this method has some serious limitations.
- One final point here when discussing SOC is the issue of "pack SOC."
- Consider the picture to the right. What is the pack SOC?
 - Should it be 0 % because we cannot discharge?
 - Should it be 100 % because we cannot charge?
 - Should it be the average of the two, 50 %?
- The term "pack SOC" is ill-defined, and should not be used.
- One issue this points out is the need for cell balancing—we'll look at this in Chap. 5.
- Another is to bring up why "pack SOC" might even be something we desire to know.
 - Setpoint control: Average SOC might work for this;
 - Fuel gauge: Real issue is battery pack energy.

1.7: Requirement 4b. Energy and power estimation

Cell total energy versus cell power

- Energy is an ability to do work, and is a total quantity measured in Wh or kWh.
- Power is rate at which energy can be moved without exceeding cell or electronics design limits, and is an instantaneous quantity P = IV in W or kW.
- Dis/charging at too high a power level will accelerate cell degradation and lead to premature battery pack failure.
- We calculate cell power to enforce design limits (*e.g.*, on cell voltage and current), predictive over the next \(\Delta T\) seconds, updating at a faster rate than once every \(\Delta T\) seconds.
- We will talk later about advanced methods to compute cell power.
- In the meantime, we introduce a simple (and commonly used) approach.
- Run cell tests; tabulate cell resistance at different SOC and temperature setpoints.
- We assume a simplified cell model

$$v(t) = \mathsf{OCV}(z(t)) - i(t)R,$$

or

$$i(t) = \frac{\mathsf{OCV}(z(t)) - v(t)}{R}$$

Energy

- To compute a power estimate, we first assume we are concerned only with keeping the terminal voltage between v_{min} and v_{max}.
- For discharge power, set $R = R_{dis,\Delta T}$ and clamp $v(t) = v_{min}$. Then,

$$P_{\text{dis}} = v(t)i(t) = v_{\min} \frac{\text{OCV}(z(t)) - v_{\min}}{R_{\text{dis},\Delta T}}$$

• For charge power, set $R = R_{chg,\Delta T}$ and clamp $v(t) = v_{max}$. Then,

$$P_{chg} = v(t)i(t) = v_{max} \frac{OCV(z(t)) - v_{max}}{R_{chg,\Delta T}}$$

 Note that this quantity is negative. It is customary to report positive discharge and charge power, so we modify this last equation to compute instead

$$P_{\rm chg} = v_{\max} \frac{v_{\max} - {\sf OCV}(z(t))}{R_{{\rm chg},\Delta T}}$$

- We usually de-rate this estimate since the equations assume initial equilibrium condition.
- Cell total energy is equal to

$$E(t) = Q \int_{z_{\min}}^{z(t)} \mathsf{OCV}(\xi) \, \mathrm{d}\xi$$
$$\approx Q V_{\mathrm{nom}} \Delta z.$$

 Note: Total energy is not a function of temperature or rate.

However, it is impossible to get all that energy out at high rates and cold temperatures, which is why we need power estimates as well.

4d. Pack total energy and pack total power

- To compute pack power using the above approximate computation of cell power, simply multiply the lowest power value computed for any cell by the number of cells in the battery pack.
- To compute pack energy, first determine how many Ah will discharge the lowest cell to z_{min}.
- For this many Ah discharged, compute the resulting SOC of all cells:

$$z_{\text{low},k} = z_k(t) - \frac{\text{Ah discharged}}{Q_k}$$

Then, compute

$$E_{\mathsf{pack}}(t) = \sum_{k} Q_k \int_{z_{\mathsf{low},k}}^{z(t)} \mathsf{OCV}(\xi) \, \mathrm{d}\xi.$$

Note: Integrated OCV is stored in table for instant computation.

5. Diagnostics

- The battery management system is generally required to report a "state-of-health" or SOH estimate for the battery pack.
- This is not a precisely defined term.
- Generally, it is a quantification of the cell aging processes.
- Two measurable indicators of cells are its present capacity and resistance. Over life,
 - \bullet Capacity decreases 20 % to 30 %: known as "capacity fade."
 - Resistance increases 50 % to 100 %: known as "power fade."

- Estimating R_k and Q_k as the pack operates will give indicators of life.
 We study this in Chap. 4.
- Some also define a "state-of-life" or SOL metric, which tries to predict how much life remains as a percentage or calendar time.
- The issue is that the future rate of cell abuse may not be the same as the past, so aging may accelerate or decelerate.
- It's more useful to know the state of the internal physical degradation mechanisms instead of only R_k and Q_k , as addressed in Chap. 7.

Where from here?

- The focus of the rest of the course is how to estimate the battery internal state, and how to control battery operation for optimal tradeoff between life and performance.
- All future discussion requires a more detailed understanding of how batteries work and how to represent that mathematically.
 - So, our next step is to review some helpful battery models.
- Note also that many/most of the methods we talk about are patented and owned by EV-related companies.
 - This is true even of methods commonly found in the literature most have been developed by companies for their own use.
 - Strongly motivates research to develop methods that are sufficiently different from those that have been patented, so that they may be implemented freely (or, so that you may patent them!).
 - But, it also means that you may not use these methods commercially without license from the patent owner.