
ECE4710/5710: Modeling, Simulation, and Identification of Battery Dynamics 6–1

Reduced Order Models of Cell Dynamics

6.1: Approach and first steps, leading to Rct and Rs,e

■ We have now seen the approach to convert a continuum-scale PDE

to a discrete-time ODE via finding transfer functions and the DRA.

■ We now find all cell transfer functions, run the DRA, verify results.
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■ Specifically, we have now implemented C̃s,e(s)/J (s), which allows us

to compute lithium surface concentration for a single particle at a

single x location if we know the lithium flux at that point, j (x, t).

■ We have reduced the infinite-order radial pseudo dimension to a

small finite order ODE. However, we still need an infinite set of these

ODEs if we are to solve for what is happening at every x coordinate!

■ We specialize to a 1D cell model, following the approach of Smith et

al. allowing us to solve for any desired set of cell variables at any

desired set of x locations, with a single small finite-order ODE.1

1 Smith, K., Rahn, C.D., and Wang, C-Y, “Control oriented 1D electrochemical model of

lithium ion battery,” Energy Conversion and Management, 48, 2007, pp. 2565–78.
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■ We initially focus on modeling negative-electrode variables. We’ll see

later that it is simple to generalize to the positive electrode.

■ We make two fundamental assumptions when creating the

reduced-order models:

1. We assume linear behavior: We linearize nonlinear equations

using Taylor series;

2. We assume that the reaction flux j (x, s) is decoupled from (not a

function of) the electrolyte concentration ce(x, s).

■ Begin by linearizing the Butler–Volmer kinetic relationship. Recall:

j = k0ce
1−α(cs,max − cs,e)

1−αcs,e
α

{
exp

(
(1 − α)F

RT
η

)
− exp

(
−αF

RT
η

)}
,

where η = φs − φe − Uocp − F Rfilm j .

• Note the new term, F Rfilm j , which models the voltage drop due to

flux through the ionic resistance of the electrode’s surface film.

■ We write, where we define φs-e = φs − φe,

j

k0ce
1−α(cs,max−cs,e)1−αcs,e

α
= exp

(
(1 − α)F

RT

(
φs-e − Uocp − F Rfilm j

))

− exp

(
−

αF

RT

(
φs-e − Uocp − F Rfilm j

))
.

■ Note that j appears on both sides of this expression, and because of

the nonlinear nature of the RHS, we cannot solve for j in general.

■ Our approach is to use Taylor series on both sides of the equation

separately to make a linear approximation.

■ The linearization set-point p∗ is defined as: p∗ = {cs,e = cs,0, ce = ce,0,

φs-e = Uocp(cs,0), j = 0}.
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■ Then, linearizing the LHS, we get:

LHS ≈ LHS(p∗) + ∂LHS

∂cs,e

∣∣∣∣
p∗
(cs,e−cs,0) + ∂LHS

∂ce

∣∣∣∣
p∗
(ce−ce,0) + ∂LHS

∂ j

∣∣∣∣
p∗

j

= 0 + 0 × (cs,e − cs,0) + 0 × (ce − ce,0)

+ 1

k0ce,0
1−α(cs,max − cs,0)1−αcs,0

α
j

= j/j0.

■ Linearizing the RHS, we get:

RHS ≈ RHS(p∗) + ∂RHS

∂φs-e

∣∣∣∣
p∗
(φs-e − Uocp(cs,0)) + ∂RHS

∂cs,e

∣∣∣∣
p∗
(cs,e − cs,0)

+
∂RHS

∂ j

∣∣∣∣
p∗

j

= 0 + F

RT

(
φs-e − Uocp(cs,0)

)
− F

RT

[
∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
(cs,e − cs,0)

−
F2Rfilm

RT
j .

■ Equating the linearized LHS = RHS, and defining c̃s,e = cs,e − cs,0 and

φ̃s-e = φs-e − Uocp(cs,0), we get

j

j0
=

F

RT
φ̃s-e −

F

RT

[
∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
c̃s,e −

F2 Rfilm

RT
j

φ̃s-e =
(

RT

j0F
+ F Rfilm

)
j +

[
∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
c̃s,e

= F(Rct + Rfilm) j +
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
c̃s,e,
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if we define the “charge transfer resistance” Rct =
RT

j0F2
.

■ Before proceeding we take a brief diversion to make a transfer

function for η. Rearranging the prior result gives

j F(Rct + Rfilm) = φs − φe − Uocp(cs,0) −
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
c̃s,e.

■ Notice that the last two terms are a Taylor-series linearization of

Uocp(cs,e), so we re-write as

j F(Rct + Rfilm) = φs − φe − Uocp(cs,e)

j F Rct = φs − φe − Uocp(cs,e) − F Rfilm j = η.

■ So, we have that η(x, t) = F Rct j (x, t),

• This helps explain the “charge transfer resistance”

terminology—it’s the “resistance” of the “activation polarization” of

the Butler–Volmer equation, or the voltage drop beyond OCP over

the interface between solid and electrolyte.

■ We define a solid–electrolyte surface resistance Rs,e = Rct + Rfilm.

Then,

j F Rs,e = φs-e − Uocp(cs,0) −
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
c̃s,e.

■ We’ll keep these results in our back pocket for now, and proceed to

look at the cell potentials φs and φe.
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6.2: Next steps, leading to impedance ratio ν2(s)

■ Our first step is to define a dimensionless spatial variable z = x/L,

where L is the electrode thickness.

• The location z = 0 represents the current collector interface;

• The location z = 1 represents the separator interface.

■ Recall the solid-phase charge conservation equation, with normalized

variable z,
σeff

L2

∂2

∂z2
φs = as F j ,

with boundary conditions
σeff

L

∂φs

∂z

∣∣∣∣
z=0

=
−iapp

A
and

∂φs

∂z

∣∣∣∣
z=1

= 0.

■ Also recall the electrolyte-phase charge conservation equation, also

normalized
κeff

L2

∂2

∂z2
φe +

κD,eff

L2

∂2

∂z2
ln ce = −as F j ,

with boundary conditions

κeff

∂φe

∂z
+ κD,eff

∂ ln ce

∂z

∣∣∣∣
z=0

= 0

κeff

L

∂φe

∂z
+ κD,eff

L

∂ ln ce

∂z

∣∣∣∣
z=1

=
−iapp

A
.

■ By assumption 2, we ignore the electrolyte concentration, giving

κeff

L2

∂2

∂z2
φe = −as F j ,

with boundary conditions
∂φe

∂z

∣∣∣∣
z=0

= 0 and
κeff

L

∂φe

∂z

∣∣∣∣
z=1

=
−iapp

A
.

■ We subtract these two PDEs to arrive at a single static PDE for phase

potential difference φs-e = φs − φe,
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∂2

∂z2
φs-e = as F L2

(
1

σeff

+ 1

κeff

)
j

with boundary conditions
σeff

L

∂φs-e

∂z

∣∣∣∣
z=0

= −κeff

L

∂φs-e

∂z

∣∣∣∣
z=1

=
−iapp

A
.

■ We would like to be able to write a homogeneous PDE in terms of φs-e

by eliminating j .

■ Recall our earlier result: φ̃s-e = F Rs,e j +
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
c̃s,e.

■ Proceeding by taking Laplace transforms (and noticing that all signals

are functions of both time and space),

8̃s-e(z, s) = F Rs,e J (z, s) +
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
C̃s,e(z, s).

■ To treat the rightmost term, write

C̃s,e(z, s) = C̃s,e(z, s)

J (z, s)
J (z, s).

■ We have already determined the transfer function C̃s,e(s)/J (s) for a

single spatial location from the Jacobsen–West paper.

■ But, in the solid, we are assuming that diffusion happens only along

the r dimension (not the z dimension), so transfer functions at every

location z = z0 has the same form as every other, and we can write

C̃s,e(z, s)/J (z, s) = C̃s,e(s)/J (s).

■ This gives (remembering that β = Rs

√
s/Ds)

8̃s-e(z, s) =
(

F Rs,e +
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
C̃s,e(s)

J (s)

)
J (z, s)

= F

(
Rs,e +

[
∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
Rs

F Ds

[
1

1 − β coth(β)

])
J (z, s).
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■ Note that since φ̃s-e = φs-e − Uocp(cs,0), we also have
∂2φ̃s-e

∂z2
=

∂2φs-e

∂z2
,

so we can write

∂2φ̃s-e(z, t)

∂z2
= as F L2

(
1

σeff

+
1

κeff

)
j (z, t)

∂28̃s-e(z, s)

∂z2
= as F L2

(
1

σeff

+
1

κeff

)
J (z, s)

= as L2

(
1

σeff

+
1

κeff

)
×

(
Rs,e +

[
∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
Rs

F Ds

[
1

1 − β coth(β)

])−1

8̃s-e(z, s)

with boundary conditions

σeff

L

∂8̃s-e(z, s)

∂z

∣∣∣∣
z=0

= −κeff

L

∂8̃s-e(z, s)

∂z

∣∣∣∣
z=1

=
−Iapp(s)

A
.

■ For convenience of notation, we define dimensionless variable ν(s) as

ν(s) = L

√
as

σeff

+
as

κeff

/√√√√Rs,e +
[

∂Uocp

∂cs,e

∣∣∣∣
cs,0

]
Rs

F Ds

[
1

1−β coth(β)

]
.

■ Note that ν2(s) is a (unitless) ratio of impedances:

• Numerator is parallel impedance to electronic and ionic current of

solid and electrolyte in x dimension

• Denominator is impedance across solid–electrolyte boundary and

due to diffusion in r dimension.
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6.3: Negative-electrode transfer functions

■ Substituting ν(s) gives us the homogeneous PDE

∂28̃s-e(z, s)

∂z2
− ν2(s)8̃s-e(z, s) = 0.

■ The generic solution to this PDE is

8̃s-e(z, s) = k1 cosh(ν(s)z) + k2 sinh(ν(s)z),

where k1 and k2 are chosen to satisfy the boundary conditions.

■ As our boundary conditions are written as gradients, we differentiate

∂8̃s-e(z, s)

∂z
= k1ν(s) sinh(ν(s)z) + k2ν(s) cosh(ν(s)z).

■ From the first boundary condition, we have

σeff

L

∂8̃s-e(z, s)

∂z

∣∣∣∣
z=0

=
σeff

L
k2ν(s) =

−Iapp(s)

A

k2 =
−Iapp(s)L

Aσeffν(s)
.

■ From the second boundary condition, we have

−κeff

L

∂8̃s-e(z, s)

∂z

∣∣∣∣
z=1

=
−κeff

L

[
k1ν(s) sinh(ν(s)) +

−Iapp(s)L

Aσeff

cosh(ν(s))

]

−Iapp(s)

A
=

−κeff

L

[
k1ν(s) sinh(ν(s)) +

−Iapp(s)L

Aσeff

cosh(ν(s))

]

k1ν(s) sinh(ν(s)) =
Iapp(s)L

Aκeff

[
1 + κeff

σeff

cosh(ν(s))

]

k1 =
Iapp(s)L

Aν(s) sinh(ν(s))

[
1

κeff

+
1

σeff

cosh(ν(s))

]
.

■ Substituting these values of k1 and k2 into 8̃s-e(z, s) gives
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8̃s-e(z, s) =
Iapp(s)L

Aν(s) sinh(ν(s))

[
1

κeff

+
1

σeff

cosh(ν(s))

]
cosh(ν(s)z)

+
−Iapp(s)L

Aσeffν(s)
sinh(ν(s)z)

8̃s-e(z, s)

Iapp(s)
=

L

Aν(s) sinh(ν(s))

[
1

κeff

cosh(ν(s)z) +
1

σeff

cosh(ν(s)) cosh(ν(s)z)

− 1

σeff

sinh(ν(s)) sinh(ν(s)z)

]
.

■ Some trigonometric manipulations give us the following final form

8̃
neg
s-e (z, s)

Iapp(s)
=

Lneg
[
σ

neg

eff cosh(νneg(s)z) + κ
neg

eff cosh(νneg(s)(z − 1))
]

Aσ
neg

eff κ
neg

eff νneg(s) sinh(νneg(s))
.

■ Finding 8̃s-e(z, s)/Iapp(s) is key to unlocking all other transfer

functions.

■ We now proceed to find all other negative-electrode transfer functions

very quickly.

■ We can now write

J (z, s)

Iapp(s)
=

J (z, s)

8̃s-e(z, s)

8̃s-e(z, s)

Iapp(s)
=

ν2(s)

as F L2

(
1

κeff
+ 1

σeff

) 8̃s-e(z, s)

Iapp(s)
.

■ Expanding gives,

J neg(z, s)

Iapp(s)
= νneg(s)

σ
neg

eff cosh(νneg(s)z) + κ
neg

eff cosh(νneg(s)(z − 1))

a
neg
s F Lneg A(κ

neg

eff + σ
neg

eff ) sinh(νneg(s))
.

■ Using this result, we can also write

C̃s,e(z, s)

Iapp(s)
= C̃s,e(z, s)

J (z, s)

J (z, s)

Iapp(s)
= Rs

Ds

[
1

1 − Rs

√
s/Ds coth(Rs

√
s/Ds)

]
J (z, s)

Iapp(s)
.
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■ Expanding, we get our final form:

C̃
neg
s,e (z, s)

Iapp(s)
=
[

σ
neg

eff cosh(νneg(s)z) + κ
neg

eff cosh(νneg(s)(z − 1))

a
neg
s F Lneg AD

neg
s (κ

neg

eff + σ
neg

eff ) sinh(νneg(s))

]
×




R
neg
s νneg(s)

1 − R
neg
s

√
s/D

neg
s coth(R

neg
s

√
s/D

neg
s )


 .

■ Finally, we wish to develop a transfer function for φs(z, t).

■ Recall the differential equation that governs φs:

σeff

L2

∂2

∂z2
φs = as F j .

• Taking Laplace transforms, we expect to have to perform a double

integral of J (z, s) to arrive at the transfer function we want.

• We must also add back in any constants that may have

disappeared from the original relationship via differentiation.

■ We begin by defining is(z, t) [A m−2] to be the electronic current that

flows through the solid at any z location.

• The PDE for is(z, t) is: − 1

L

εs∂is(z, t)

∂z
= as F j (z, t).

• We have limiting cases εsis(0, t) = iapp(t)/A and is(1, t) = 0.

■ The transfer function for Is(z, s) with respect to the input current can

then be found as:

εs

Is(z, s)

Iapp(s)
=

1

A
− as F L

∫ z

0

J (z′, s)

Iapp(s)
dz′
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= σeff (sinh(ν(s)) − sinh(zν(s))) − κeff sinh((z − 1)ν(s))

A(κeff + σeff) sinh(ν(s))
,

where we have solved the integral using Mathematica.

■ As a test, note that εs

Is(0, s)

Iapp(s)
= 1

A
and

Is(1, s)

Iapp(s)
= 0, as we expect.

■ We now wish to find φs(z, t) from is(z, t).

• The differential equation we wish to use annihilates the value of

φs(0, t) which cannot be solved by directly integrating is(z, t).

• So, we define φ̃s(z, t) = φs(z, t) − φs(0, t) and proceed.

■ We compute φ̃s(z, t) by integrating is(z, t):

8̃s(z, s)

Iapp(s)
= −

Lεs

σeff

∫ z

0

Is(ζ, s)

Iapp(s)
dζ .

■ We again lean very heavily on Mathematica to find

8̃
neg
s (z, s)

Iapp(s)
= −Lneg

[
κ

neg

eff

(
cosh(νneg(s)) − cosh((z − 1)νneg(s))

)

Aσ
neg

eff (κ
neg

eff + σ
neg

eff )νneg(s) sinh(νneg(s))

+
σ

neg

eff

(
1 − cosh(zνneg(s)) + zνneg(s) sinh(νneg(s))

)

Aσ
neg

eff (κ
neg

eff + σ
neg

eff )νneg(s) sinh(νneg(s))

]
.

■ As a test, note that
8̃s(0, s)

Iapp(s)
= 0, as we expect.

■ Because, for a cell, we define φs(x, t)|x=0 = 0, φ̃s(z, t) = φs(z, t) for the

negative electrode.

■ It’s slightly more complicated for the positive electrode, as we will see.
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6.4: Positive-electrode transfer functions

■ So far, we have focused on negative-electrode variables.

■ We now derive transfer functions for the positive-electrode variables.

■ Starting with 8̃s-e(z, s), the derivation for the positive electrode

remains unchanged up until the point where we find that

∂28̃s-e(z, s)

∂z2
− ν2(s)8̃s-e(z, s) = 0.

■ However, the boundary conditions are different. To be careful, we

write them in terms of x rather than z:

σeff

∂8̃s-e(x, s)

∂x

∣∣∣∣
x=L tot

= −κeff

∂8̃s-e(x, s)

∂x

∣∣∣∣
x=L tot−Lpos

=
−Iapp(s)

A
.

■ As with the negative electrode, we define z = 0 at current-collector

boundary and z = 1 at the separator boundary. That gives

x = L tot − zLpos.

■ To re-write these boundary conditions in terms of z, note that

∂8̃s-e

∂z
=

∂8̃s-e

∂x

∂x

∂z
= −Lpos∂8̃s-e

∂x
.

■ This allows us to write

σeff

Lpos

∂8̃s-e(z, s)

∂z

∣∣∣∣
z=0

= −κeff

Lpos

∂8̃s-e(z, s)

∂z

∣∣∣∣
z=1

=
+Iapp(s)

A
.

■ Sign changes cause k1 and k2 to have equal magnitude but opposite

sign from previous result.

■ Therefore, for the positive electrode,

8̃
pos
s-e (z, s)

Iapp(s)
=

−Lpos
[
σ

pos

eff cosh(νpos(s)z) + κ
pos

eff cosh(νpos(s)(z − 1))
]

Aσ
pos

eff κ
pos

eff νpos(s) sinh(νpos(s))
,
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• We can compute 8pos
s-e (z, s) = 8̃pos

s-e (z, s) + U
pos
ocp (c

pos
s,0 ).

■ Likewise, since everything depends on 8̃s-e(z, s),

J pos(z, s)

Iapp(s)
= −νpos(s)

σ
pos

eff cosh(νpos(s)z) + κ
pos

eff cosh(νpos(s)(z − 1))

a
pos
s F Lpos A(κ

pos

eff + σ
pos

eff ) sinh(νpos(s))
.

and

C̃
pos
s,e (z, s)

Iapp(s)
= −

[
σ

pos

eff cosh(νpos(s)z) + κ
pos

eff cosh(νpos(s)(z − 1))

a
pos
s F Lpos AD

pos
s (κ

pos

eff + σ
pos

eff ) sinh(νpos(s))

]
×

[
R

pos
s νpos(s)

1 − R
pos
s

√
s/D

pos
s ) coth(R

pos
s

√
s/D

pos
s )

]
.

• We can compute Cs,e(z, s) = C̃s,e(z, s) + cs,0, where cs,0 is the

linearization set-point value for the positive electrode.

■ Finally,

8̃
pos
s (z, s)

Iapp(s)
= Lpos

[
κ

pos

eff

(
cosh(νpos(s)) − cosh((z − 1)νpos(s))

)

Aσ
pos

eff (κ
pos

eff + σ
pos

eff )νpos(s) sinh(νpos(s))

+
σ

pos

eff

(
1 − cosh(zνpos(s)) + zνpos(s) sinh(νpos(s))

)

Aσ
pos

eff (κ
pos

eff + σ
pos

eff )νpos(s) sinh(νpos(s))

]
.

• We could compute 8s(z, s) = 8̃s(z, s) + 8s(0, s) if we knew what

8s(0, s) was. Unfortunately, we do not, at least so far.

• We do know that it is the overall cell voltage, which we shall learn

how to compute later on.
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■ These transfer functions are mathematically very messy and have an

infinite number of poles and zeros (and we’re just getting started!).

■ But, a small state-space model can very closely approximate them.

■ As a clue that we may be able to do this, we first see some Bode

magnitude plots, which look pretty normal, for the most part.
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■ The DRA from notes Ch. 5 is

able to convert these transfer

functions into a low-order

state-space model that works

very well.
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6.5: A one-dimensional model of ce(x, t): first steps

■ The goal of the next sections is to provide an ODE solution to the

PDE equation of lithium concentration in the electrolyte:

∂εe(x)ce(x, t)

∂t
= ∇ · (De,eff(x)∇ce(x, t)) + as(x)(1 − t0

+) j

where the boundary conditions are,

∂ce(0, t)

∂x
= 0 and

∂ce(L tot, t)

∂x
= 0,

and the initial distribution is ce(x, 0) = ce,0.

ASSUME: We assume that De,eff and εe are uniform (constant) over each

region of the cell, but may have different values in the negative

electrode, separator, and positive electrode.

■ We also define c̃e(x, t) = ce(x, t) − ce,0. This converts the PDE into

one that can be solved via transfer functions
∂εe(x)c̃e(x, t)

∂t
= ∇ · (De,eff(x)∇ c̃e(x, t)) + as(x)(1 − t0

+) j

where the boundary conditions are,

∂ c̃e(0, t)

∂x
= 0 and

∂ c̃e(L tot, t)

∂x
= 0,

and the initial distribution is c̃e(x, 0) = 0.

■ We desire to show that the reduced-order solution involves first-order

ordinary-differential-equation “modes,” each having the form:

d

dt
c̃e,n = −λnc̃e,n(t) + jn(t),

where the electrolyte concentration is the weighted summation:

c̃e(x, t) =
∞∑

n=0

c̃e,n(t)9(x; λn).

■ We then derive a transfer-function C̃e(x, s)/Iapp(s) based on c̃e(x, t).
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Sturm–Liouville problem and Green’s identity

■ In the course of solving for the transfer function, we’ll find that we can

write the PDE in terms of a Sturm–Liouville problem, which is an

ordinary differential equation having the general form

d

dx

[
p(x)

d9(x)

dx

]
+ q(x)9(x) + λw(x)9(x) = 0,

over the finite closed interval [a, b].

• We don’t prove it here, but it is important to note that the solutions

to the Sturm–Liouville problem give real eigenvalues λn that can be

ordered such that λ1 < λ2 < λ3 < · · · < λn < · · · → ∞.

• Corresponding to each eigenvalue λn is a unique (up to a

normalization constant) eigenfunction 9(x; λn) that has exactly

n − 1 zero crossings in (a, b).

• The eigenfunction 9(x; λn) is called the nth fundamental solution

satisfying the regular Sturm–Liouville problem.

• The normalized eigenfunctions form an orthonormal basis with

respect to the weighting function w(x)
∫ b

a

9(x; λn)9(x; λm)w(x) dx = δmn,

where δmn = 0 if m 6= n and δmn = 1 if m = n.

■ Solving Sturm–Liouville problems requires Green’s identity, which can

be proven as follows: Define a linear operator, L,

L ≡
d

dx

[
p(x)

d

dx

]
+ q(x).

■ The Sturm–Liouville can then be rewritten as,

L(9) + λw(x)9 = 0.
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■ For any two functions, v and u, we can write

L(v) =
d

dx

[
p(x)

dv

dx

]
+ q(x)v

L(u) =
d

dx

[
p(x)

du

dx

]
+ q(x)u.

■ Multiplying the first equation by u, the second equation by v , and

subtracting gives,

uL(v) − vL(u) = u
d

dx

(
p

dv

dx

)
+ uqv − v

d

dx

(
p

du

dx

)
− vqu

= u
d

dx

(
p

dv

dx

)
− v

d

dx

(
p

du

dx

)
.

■ We integrate by parts to get
∫ b

a

[
u

d

dx

(
p

dv

dx

)
− v

d

dx

(
p

du

dx

)]
dx

=
∫ b

a

u
d

dx

(
p

dv

dx

)
dx −

∫ b

a

v
d

dx

(
p

du

dx

)
dx

=
[

p
dv

dx
u

∣∣∣∣
b

a

−
∫ b

a

p

(
du

dx

)(
dv

dx

)
dx

]

−
[

p
du

dx
v

∣∣∣∣
b

a

−
∫ b

a

p

(
du

dx

)(
dv

dx

)
dx

]
.

■ The integrals in the RHS cancel, yielding Green’s identity,
∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

a

.

Setting up the solution

■ We use the “separation-of-variables” approach to “solve” the PDE.
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• We first find an infinite series of eigenfunctions and eigenvalues.

• We then use only the first few terms of the expansion.

■ We begin by solving the homogeneous PDE (with j = 0).

• Solving the homogeneous boundary value problem gives the

eigenvalues λn and the eigenfunctions 9(x; λn) that are used for

both the homogeneous and inhomogeneous solutions.

• We then generalize this solution to find the forced PDE solution.

■ The homogeneous problem is given by,

∂ c̃e(x, t)

∂t
=

1

εe(x)

∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
,

with the same boundary conditions and initial conditions as before.

■ There are also internal boundary conditions where the three regions

of the cell join. First, we assume continuity:

c̃e((Lneg)−, t) = c̃e((Lneg)+, t)

c̃e((Lneg + Lsep)−, t) = c̃e((Lneg + Lsep)+, t).

■ We also need to say something about the slope of the concentration

function on either side of an internal boundary.

■ Notice what happens when we use the product rule on the RHS of

the PDE:

∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
= De,eff(x)

∂2c̃e(x, t)

∂x2
+
(

∂ c̃e(x, t)

∂x

)(
∂ De,eff(x)

∂x

)
.

■ There is no physical problem with the first term in this expression, but

the second term has Dirac delta functions at region boundaries in

general because of the discontinuity in De,eff(x).
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■ This doesn’t make physical sense, so we constrain the solution to

zero out these delta functions

∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
= lim

x+−x−→0

De,eff(x+)∂ c̃e(x+,t)
∂x

− De,eff(x−)∂ c̃e(x−,t)
∂x

x+ − x− = 0

at the boundaries where x = Lneg or x = Lneg + Lsep. This gives:

D
neg

e,eff

∂ c̃e((Lneg)−, t)

∂x
= D

sep

e,eff

∂ c̃e((Lneg)+, t)

∂x

D
sep

e,eff

∂ c̃e((Lneg + Lsep)−, t)

∂x
= D

pos

e,eff

∂ c̃e((Lneg + Lsep)+, t)

∂x
.
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6.6: Solution to the homogeneous PDE

■ The separation-of-variables method assumes that the the solution

can be broken up into the product of a function of time only, h(t), and

a function of position only, 9(x):

c̃e(x, t) = h(t)9(x).

■ Substituting the assumed form into the original PDE gives

dh(t)

dt
9(x) = 1

εe(x)

∂

∂x
De,eff(x)h(t)

∂9(x)

∂x
.

■ We separate time-dependent variables on one side, and position

dependent variables on the other,

1

h(t)

dh(t)

dt
= 1

εe(x)9(x)

∂

∂x
De,eff(x)

∂9(x)

∂x
.

■ Since the LHS is a function of time only, and the RHS is a function of

position only, and they are equal for all time and all position, they

must both be equal to a constant.

dh(t)

dt
= −λh(t)

∂

∂x
De,eff

∂9(x)

∂x
= −λεe(x)9(x).

■ Note that there are an infinite number of λ that solve these equations.

■ So, we rethink the notation and change h(t) 7→ h(t; λ) and change

9(t) 7→ 9(t; λ). Rewriting,

dh(t; λ)

dt
= −λh(t; λ)

∂

∂x
De,eff(x)

∂9(x; λ)

∂x
= −λεe(x)9(x; λ).
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■ The solution to the first equation has the form,

h(t; λ) = h(0; λ)e−λt .

■ Each of the eigenfunctions 9(x; λ) is divided into three parts: one for

each cell region.

■ For the negative electrode, we have (where k1 and k2 are (possibly)

functions of λ, but this dependence has been omitted for brevity),

9neg(x; λ) = k1 cos(

√
λε

neg
e /D

neg

e,effx) + k2 sin(

√
λε

neg
e /D

neg

e,effx).

■ The boundary condition at x = 0 eliminates the sin(·) term:

9neg(x; λ) = k1 cos

(√
λε

neg
e /D

neg

e,effx

)
.

■ For the separator, we have

9sep(x; λ) = k3 cos

(√
λε

sep
e /D

sep

e,effx

)
+ k4 sin

(√
λε

sep
e /D

sep

e,effx

)
.

■ For this region, the sin(·) term is not automatically eliminated, and the

two functions must scaled so that the interior boundary conditions are

met automatically.

• For continuity, letting

ω1 = Lneg
√

λε
neg
e /D

neg

e,eff and ω2 = Lneg
√

λε
sep
e /D

sep

e,eff,

we have

k1 cos (ω1) = k3 cos (ω2) + k4 sin (ω2) .

• For the first derivative criterion:

D
neg

e,eff

[
−k1

ω1

Lneg
sin (ω1)

]
= D

sep

e,eff

[
−k3

ω2

Lneg
sin (ω2) + k4

ω2

Lneg
cos (ω2)

]
.
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• We have two equations and two unknowns (k3 and k4), which can

be solved in terms of k1[
cos (ω2) sin (ω2)

−D
sep

e,effω2 sin (ω2) D
sep

e,effω2 cos (ω2)

][
k3

k4

]
= k1

[
cos (ω1)

−D
neg

e,effω1 sin (ω1)

]
.

■ Finally, for the positive electrode, we have

9pos(x; λ) = k5 cos

(√
λε

pos
e /D

pos

e,effx

)
+ k6 sin

(√
λε

pos
e /D

pos

e,effx

)
.

■ For continuity, letting

ω3 = (Lneg + Lsep)

√√√√λε
sep
e

D
sep

e,eff

and ω4 = (Lneg + Lsep)

√√√√λε
pos
e

D
pos

e,eff

,

we have

k3 cos (ω3) + k4 sin (ω3) = k5 cos (ω4) + k6 sin (ω4) .

■ For the first derivative criterion:

D
sep

e,eff

[
−k3

ω3

Lneg + Lsep
sin (ω3) + k4

ω3

Lneg + Lsep
cos (ω3)

]

= D
pos

e,eff

[
−k5

ω4

Lneg + Lsep
sin (ω4) + k6

ω4

Lneg + Lsep
cos (ω4)

]
.

■ We have two equations and two unknowns (k5 and k6), which can be

solved in terms of k3 and k4[
cos (ω4) sin (ω4)

−D
pos

e,effω4 sin (ω4) D
pos

e,effω4 cos (ω4)

][
k5

k6

]

=
[

cos (ω3) sin (ω3)

−D
sep

e,effω3 sin (ω3) D
sep

e,effω3 cos (ω3)

][
k3

k4

]
.

Lecture notes prepared by Gregory L. Plett and J. L. Lee. Copyright c© 2011–2018, Gregory L. Plett and J. L. Lee



ECE4710/5710, Reduced Order Models of Cell Dynamics 6–23

■ So, overall we have

9(x; λ) =





9neg(x; λ), 0 ≤ x < Lneg;

9sep(x; λ), Lneg ≤ x < Lneg + Lsep;

9pos(x; λ), Lneg + Lsep ≤ x ≤ L tot.

■ By Sturm–Liouville theory, we know that we can choose the different

eigenfunctions to be orthonormal with respect to the weighting

function εe(x) by selecting k1 such that
∫ L tot

0

92(x; λ)εe(x) dx = 1.

■ The final boundary condition ∂9(L tot; λ)/∂x = 0 imposes the

condition that allows us to solve for λn.

■ Generally, this cannot be done in

closed form. So, we use numeric

methods to search an interval for

zero crossings of d9(L tot; λ)/dx

as a function of λ. An example is

shown.
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■ We denote the ordered set of eigenvalues as {λn}. Then, the solution

to the homogeneous problem is the superposition,

c̃e(x, t) =
∞∑

n=0

h(0; λn)9 (x; λn) e−λnt .
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6.7: Solution to the forced PDE

■ We now generalize the solution to the inhomogeneous case to solve

∂ c̃e(x, t)

∂t
=

1

εe(x)

∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
+

as(x)(1 − t0
+)

εe(x)
j (x, t).

■ Our approach is to transform c̃e(x, t) into a series expansion using the

eigenfunctions of the homogeneous solution, 9(x; λn) as a basis set.

■ Any piecewise smooth function can be expanded in terms of the

eigenfunctions.

c̃e(x, t) =
∞∑

n=0

c̃e,n(t)9(x; λn),

where c̃e,n(t) are the generalized Fourier coefficients of c̃e(x, t).

■ Taking the partial derivative of this equation with respect to time gives,

∂ c̃e(x, t)

∂t
=

∞∑

n=0

dc̃e,n(t)

dt
9(x; λn).

■ Substituting into the original PDE gives:
∞∑

n=0

dc̃e,n(t)

dt
9(x; λn) =

1

εe(x)

∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
+

as(x)(1 − t0
+)

εe(x)
j (x, t).

■ Therefore, to reduce the LHS of the above equation, we now multiply

both sides by 9(x; λm)εe(x) and integrate from 0 to L tot.
∫ L tot

0

∞∑

n=0

dc̃e,n(t)

dt
9(x; λn)9(x; λm)εe(x) dx

=
∫ L tot

0

9(x; λm)
∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
dx

+
∫ L tot

0

as(x)(1 − t0
+) j (x, t)9(x; λm) dx .
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■ Because

∫ L tot

0

9(x; λn)9(x; λm)εe(x) dx = δmn, the integral on the left

is non-zero only when m = n. Therefore,

dc̃e,n(t)

dt
=
∫ L tot

0

9(x; λn)
∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
dx

+
∫ L tot

0

as(x)(1 − t0
+) j (x, t)9(x; λn) dx . (6.1)

■ We want to simplify the first term on the right hand side, and we do

this by using Green’s identity.

■ Note that 9(x; λ) are the solutions to a Sturm–Liouville problem with

p(x) = 1, q(x) = 0, and w(x) = εe(x).

■ We focus again on the first term:
∫ L tot

0

9(x; λn)
∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
dx .

■ We use Green’s identity with v = 9(x) and let u = c̃e(x, t) and let

p = De,eff(x):
∫ L tot

0

[
c̃e(x, t)

∂

∂x
De,eff(x)

∂9(x)

∂x
− 9(x; λn)

∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x

]
dx

= De,eff(x)

(
c̃e(x, t)

∂9(x; λn)

∂x
− 9(x; λn)

∂ c̃e(x, t)

∂x

)∣∣∣∣
L tot

0

.

■ In our problem, the RHS goes to 0 because of boundary conditions

∂9(x; λn)

∂x

∣∣∣∣
x∈{0,L tot}

=
∂ c̃e(x, t)

∂x

∣∣∣∣
x∈{0,L tot}

= 0.

■ Therefore,
∫ L tot

0

c̃e(x, t)
∂

∂x
De,eff(x)

∂9(x)

∂x
dx =

∫ L tot

0

9(x; λn)
∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
dx .
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■ The LHS can be written as:
∫ L tot

0

c̃e(x, t)
∂

∂x
De,eff(x)

∂9(x)

∂x
dx = −λn

∫ L tot

0

c̃e(x, t)9(x; λn)εe(x) dx ,

because 9 satisfies the homogeneous case:

∂

∂x
De,eff(x)

∂9(x)

∂x
+ λnεe(x)9n = 0.

■ Substituting, we get
∫ L tot

0

9(x)
∂

∂x
De,eff(x)

∂ c̃e(x, t)

∂x
dx = −λn

∫ L tot

0

c̃e(x, t)9(x; λn)εe(x) dx .

■ Using this in Eq. (6.1),

dc̃e,n(t)

dt
= −λn

∫ L tot

0

c̃e(x, t)9(x; λn)εe(x) dx

+
∫ L tot

0

as(x)(1 − t0
+) j (x, t)9n(x) dx

= −λnc̃e,n(t) +
∫ L tot

0

as(x)(1 − t0
+) j (x, t)9n(x) dx

︸ ︷︷ ︸
jn(t)

.

Example of ce(x, t)

■ Consider a cell with the following properties, and apply a step current

to the cell.

Lneg = 128 µm εneg
e = 0.357 D

neg

e,eff = 1.60 × 10−11 m2 s−1

Lsep = 76 µm εsep
e = 0.724 D

sep

e,eff = 4.62 × 10−11 m2 s−1

Lpos = 190 µm εpos
e = 0.444 D

pos

e,eff = 2.22 × 10−11 m2 s−1
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PDE solution

Modal solution for modes 0:10

A transfer-function model for c̃e(x, t)

■ To compute c̃e(x, t) via transfer-function methods, we note that it is

formed from a summation of c̃e,n(t) terms.

■ We can compute c̃e(x, t) if we know c̃e,n(t), so we proceed by finding a

transfer function for c̃e,n(t):

d

dt
c̃e,n(t) = −λnc̃e,n(t) + jn(t)

sC̃e,n(s) = −λnC̃e,n(s) + Jn(s)

C̃e,n(s)

Iapp(s)
=

1

s + λn

Jn(s)

Iapp(s)
,

so we are going to need to find a transfer function for jn(t) first.

■ We begin by writing,

jn(t) =
∫ L tot

0

as(x)(1 − t0
+) j (x, t)9(x; λn) dx

=
∫ Lneg

0

aneg
s (1 − t0

+) j (x, t)9(x; λn) dx
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+
∫ L tot

Lneg+Lsep

apos
s (1 − t0

+) j (x, t)9(x; λn) dx

= jneg
n (t) + jpos

n (t).

■ Looking at the negative electrode first:

jneg
n (t) = aneg

s (1 − t0
+)

∫ Lneg

0

j (x, t)9(x; λn) dx

J
neg
n (s)

Iapp(s)
= aneg

s (1 − t0
+)

∫ Lneg

0

J neg(x/Lneg, s)

Iapp(s)
9(x; λn) dx ,

where

J neg(z, s)

Iapp(s)
=νneg(s)

[
σ

neg

eff cosh(νneg(s)z)+κ
neg

eff cosh(νneg(s)(z−1))

a
neg
s F Lneg A(κ

neg

eff + σ
neg

eff ) sinh(νneg(s))

]
.

■ The transfer function is (computed in Mathematica)

J
neg
n (s)

Iapp(s)
=

k1(1 − t0
+)ω

neg
n sin(ω

neg
n )

(
κ

neg

eff + σ
neg

eff cosh(νneg(s))
)
νneg(s)

AF(κ
neg

eff + σ
neg

eff )
(
(ω

neg
n )2 + (νneg(s))2

)
sinh(νneg(s))

+
k1(1 − t0

+)
(
κ

neg

eff + σ
neg

eff cos(ω
neg
n )

)
(νneg(s))2

AF(κ
neg

eff + σ
neg

eff )
(
(ω

neg
n )2 + (νneg(s))

) ,

where ωneg
n = Lneg

√
λnε

neg
e /D

neg

e,eff.

■ Looking at the positive electrode now,

jpos
n (t) = apos

s (1 − t0
+)

∫ L tot

L tot−Lpos

j (x, t)9(x; λn) dx

J
pos
n (s)

Iapp(s)
= apos

s (1 − t0
+)

∫ L tot

L tot−Lpos

J pos((L tot − x)/Lpos, s)

Iapp(s)
9(x; λn) dx

where (noting negative sign because of positive electrode)

J pos(z, s)

Iapp(s)
=−νpos(s)

[
σ

pos

eff cosh(νpos(s)z)+κ
pos

eff cosh(νpos(s)(z−1))

a
pos
s F Lpos A(κ

pos

eff + σ
pos

eff ) sinh(νpos(s))

]
.
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■ The transfer function is (computed in Mathematica)

J
pos
n (s)

Iapp(s)
=

k5(1−t0
+)ω

pos
n sin(ω

sep
n )

(
κ

pos

eff +σ
pos

eff cosh(νpos(s))
)
νpos(s)

AF(κ
pos

eff + σ
pos

eff )
(
(ω

pos
n )2 + (νpos(s))2

)
sinh(νpos(s))

−
k5(1−t0

+)ω
pos
n sin(ωtot

n )
(
σ

pos

eff + κ
pos

eff cosh(νpos(s))
)
νpos(s)

AF(κ
pos

eff + σ
pos

eff )
(
(ω

pos
n )2 + (νpos(s))2

)
sinh(νpos(s))

−
k5(1−t0

+)
(
σ

pos

eff cos(ω
sep
n ) + κ

pos

eff cos(ωtot
n )
)
(νpos(s))2

AF(κ
pos

eff + σ
pos

eff )
(
(ω

pos
n )2 + (νpos(s))2

)

+
k6(1−t0

+)ω
pos
n cos(ωtot

n )
(
σ

pos

eff + κ
pos

eff cosh(νpos(s))
)
νpos(s)

AF(κ
pos

eff + σ
pos

eff )
(
(ω

pos
n )2 + (νpos(s))2

)
sinh(νpos(s))

−
k6(1−t0

+)ω
pos
n cos(ω

sep
n )

(
κ

pos

eff +σ
pos

eff cosh(νpos(s))
)
νpos(s)

AF(κ
pos

eff + σ
pos

eff )
(
(ω

pos
n )2 + (νpos(s))2

)
sinh(νpos(s))

−
k6(1−t0

+)
(
σ

pos

eff sin(ω
sep
n ) + κ

pos

eff sin(ωtot
n )
)
(νpos(s))2

AF(κ
pos

eff + σ
pos

eff )
(
(ω

pos
n )2 + (νpos(s))2

) ,

where ωpos
n = Lpos

√
λnε

pos
e /D

pos

e,eff,, ωtot
n = L tot

√
λnε

pos
e /D

pos

e,eff,, and

ωsep
n = ωtot

n − ωpos
n .

■ Overall, we have

C̃e,n(s)

Iapp(s)
=

1

s + λn

[
J

neg
n (s)

Iapp(s)
+

J
pos
n (s)

Iapp(s)

]
.

■ Yes, this is a mess. The good news is that we’ll develop tools that

deal with the mess quite nicely.
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6.8: A one-dimensional model of φe(x, t)

■ We now wish to develop an independent transfer function for φe(x, t).

■ We start with the differential equation

∂φe(x, t)

∂x
=

−εeie(x, t)

κeff

+
2RT

F
(1 − t0

+)
∂ ln ce(x, t)

∂x
.

■ We will deal with the two terms of this equation separately.

■ First, we can write an expression for εeie(x, t),

ie(x, t) =





∫ x

0

a
neg
s F jneg(ξ, t)

ε
neg
e

dξ , 0 ≤ x ≤ Lneg;

iapp(t)

ε
sep
e A

, Lneg ≤ x ≤ Lneg+Lsep;

iapp(t)

ε
pos
e A

−
∫ x

Lneg+Lsep

a
pos
s F jpos(ξ, t)

ε
pos
e

dξ , Lneg+Lsep ≤ x ≤ L tot.

■ A transfer function for ie(x, t) in the negative electrode is

Ie(x, s)

Iapp(s)
=

a
neg
s F

ε
neg
e

∫ x

0

J neg(ξ/Lneg, s)

Iapp(s)
dξ ,

=
κ

neg

eff

(
sinh(νneg(s)) − sinh

(
(Lneg−x)νneg(s)

Lneg

))

ε
neg
e A(κ

neg

eff + σ
neg

eff ) sinh(νneg(s))

+
σ

neg

eff sinh
(

xνneg(s)
Lneg

)

ε
neg
e A(κ

neg

eff + σ
neg

eff ) sinh(νneg(s))
.

■ A transfer function for ie(x, t) in the separator is
Ie(x, s)

Iapp(s)
=

1

ε
sep
e A

.

■ A transfer function for ie(x, t) in the positive electrode is

Ie(x, s)

Iapp(s)
= 1

ε
pos
e A

− a
pos
s F

ε
pos
e

∫ x

Lneg +Lsep

J pos((L tot − ξ)/Lpos, s)

Iapp(s)
dξ ,
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=
κ

pos

eff

(
sinh(νpos(s)) − sinh

(
(x−Lneg−Lsep)νpos(s)

Lpos

))

ε
pos
e A(κ

pos

eff + σ
pos

eff ) sinh(νpos(s))

+
σeff sinh

(
(L tot−x)νpos(s)

Lpos

)

ε
pos
e A(κ

pos

eff + σ
pos

eff ) sinh(νpos(s))
.

■ We now integrate the PDE for φe

φe(x, t) − φe(0, t) =
∫ x

0

−εeie(ξ, t)

κeff

+
2RT

F
(1 − t0

+)
∂ ln ce(ξ, t)

∂ξ
dξ .

■ Define φ̃e(x, t) = φe(x, t) − φe(0, t).

■ Then, φ̃e(x, t) comprises two parts:

• The first part,
[
φ̃e(x, t)

]
1
, can be determined via transfer functions

• The second part,
[
φ̃e(x, t)

]
2
, can be determined via known ce(x, t).

■ Let’s continue to look at the first part. In the negative electrode,

[8̃e(x, s)]1

Iapp(s)
=
∫ x

0

−ε
neg
e Ie(ξ, s)

κ
neg

eff Iapp(s)
dξ

=−
Lnegσ

neg

eff

(
cosh

(
x

Lnegν
neg(s)

)
− 1

)

Aκ
neg

eff (κ
neg

eff +σ
neg

eff )νneg(s) sinh(νneg(s))
−

x

A(κ
neg

eff +σ
neg

eff )

−
Lnegκ

neg

eff

(
cosh

(
(Lneg−x)

Lneg νneg(s)
)

− cosh(νneg(s))
)

Aκ
neg

eff (κ
neg

eff + σ
neg

eff )νneg(s) sinh(νneg(s))
.

■ At the negative-electrode/separator boundary we have

[8̃e(Lneg, s)]1

Iapp(s)
=−

Lneg
(
(σ

neg

eff − κ
neg

eff ) tanh
(

νneg(s)
2

))

Aκ
neg

eff (κ
neg

eff +σ
neg

eff )νneg(s)
−

Lneg

A(κ
neg

eff +σ
neg

eff )
.
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■ In the separator, we then have

[8̃e(x, s)]1

Iapp(s)
= −

Lneg
(
(σ

neg

eff − κ
neg

eff ) tanh
(

νneg(s)
2

))

Aκ
neg

eff (κ
neg

eff + σ
neg

eff )νneg(s)

−
Lneg

A(κ
neg

eff + σ
neg

eff )
−

x − Lneg

Aκ
sep

eff

.

■ At the separator/positive-electrode boundary we have

[8̃e(Lneg + Lsep, s)]1

Iapp(s)
= −

Lneg
(
(σ

neg

eff − κ
neg

eff ) tanh
(

νneg(s)
2

))

Aκ
neg

eff (κ
neg

eff + σ
neg

eff )νneg(s)

−
Lneg

A(κ
neg

eff + σ
neg

eff )
−

Lsep

Aκ
sep

eff

.

■ In the positive electrode, we then have

[8̃e(x, s)]1

Iapp(s)
= −

Lneg
(
(σ

neg

eff − κ
neg

eff ) tanh
(

νneg(s)
2

))

Aκ
neg

eff (κ
neg

eff +σ
neg

eff )νneg(s)
−

Lneg

A(κ
neg

eff +σ
neg

eff )

−
Lsep

Aκ
sep

eff

−
Lpos

(
1 − cosh

(
(Lneg+Lsep−x)

Lpos νpos(s)
))

A(κ
pos

eff + σ
pos

eff ) sinh(νpos(s))νpos(s)

−
Lposσ

pos

eff

(
cosh

(
νpos(s)

)
− cosh

(
(L tot−x)

Lpos νpos(s)
))

Aκ
pos

eff (κ
pos

eff + σ
pos

eff ) sinh(νpos(s))νpos(s)

−
(x − Lneg − Lsep)

A(κ
pos

eff + σ
pos

eff )
.

■ At the cell boundary we have

[8̃e(L tot, s)]1

Iapp(s)
= −

Lneg
(
(σ

neg

eff −κ
neg

eff ) tanh
(

νneg(s)
2

))

Aκ
neg

eff (κ
neg

eff + σ
neg

eff )νneg(s)
−

Lneg

A(κ
neg

eff +σ
neg

eff )
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− Lsep

Aκ
sep

eff

−
Lpos

(
(σ

pos

eff − κ
pos

eff ) tanh
(

νpos(s)
2

))

Aκ
pos

eff (κ
pos

eff + σ
pos

eff )νpos(s)

−
Lpos

A(κ
pos

eff + σ
pos

eff )
.

■ Now, we focus on the second term of φ̃e(x, t).

[
φ̃e(x, t)

]
2

=
2RT (1 − t0

+)

F

∫ x

0

∂ ln ce(ξ, t)

∂ξ
dξ

=
2RT (1 − t0

+)

F
[ln ce(x, t) − ln ce(0, t)] .

■ To compute φ̃e(x, t), we must compute its two parts and add them.

■ To recover φe(x, t) from φ̃e(x, t), we must compute φe(0, t):

φe(0, t) = φs(0, t) − φs-e(0, t)

= 0 − (φ̃s-e(0, t) + U
neg
ocp (cs,0))

φe(x, t) = φ̃e(x, t) − φ̃s-e(0, t) − U
neg
ocp (cs,0).

■ Some final Bode magnitude plots, for now:
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6.9: Summary of transfer functions

■ The ROM produced by the DRA algorithm can be requested to

produce any arbitrary set of the (linearized) cell electrochemical

variables at any feasible location across the cell.

■ Electrode-only quantities use a normalized spatial variable z, which

varies from 0 at the current collector to 1 at the separator boundary.

■ Electrolyte quantities use the spatial variable x , which varies from 0 at

the negative-electrode current collector to L tot at the

positive-electrode current collector.

x = 0 x = L totx = Lneg x = Lneg+Lsep

z = 0 z = 1 z = 0z = 1

Negative electrode Positive electrodeSeparator

φneg
s (z, t)

cneg
s,e (z, t)

jneg(z, t)

φneg
s-e (z, t)

φe(x, t)

ce(x, t)

φpos
s (z, t)

cpos
s,e (z, t)

jpos(z, t)

φpos
s-e (z, t)

φe(x, t)

ce(x, t)

φe(x, t)

ce(x, t)

■ The ROM produced by the DRA comprises Â, B̂, Ĉ, and D̂ matrices

such that

x[k + 1] = Âx[k] + B̂iapp[k]

ỹ[k] = Ĉx[k] + D̂iapp[k],

where x[k] is a state vector with no known retained physical

significance, and ỹ[k] comprises the linearized outputs that were

requested by the user when creating the ROM.
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■ Nonlinear corrections are added to the linear outputs to arrive at the

desired electrochemical state variables.

Solid surface concentration: The DRA produces a debiased estimator

c̃s,e(z, t) of the solid surface concentration variable.

■ The nonlinear estimate of cs,e(z, t) is found by adding the equilibrium

concentration to c̃s,e(z, t):

cs,e(z, t) = c̃s,e(z, t) + cs,0.

Potential in solid: The DRA produces a debiased estimator φ̃s(z, t) of

the solid potential variable.

■ In the negative electrode, the nonlinear estimate of φs(z, t) is equal to

the debiased estimate: φs(z, t) = φ̃s(z, t).

■ In the positive electrode, φs(z, t) = φ̃s(z, t) + v(t), where the

calculation of v(t) is discussed shortly.

Concentration in electrolyte: The DRA produces a debiased estimator

c̃e(x, t) of the electrolyte concentration.

■ The nonlinear estimate of ce(x, t) is found by adding the equilibrium

concentration to c̃e(x, t)

ce(x, t) = c̃e(x, t) + ce,0.

Solid–electrolyte potential difference: The DRA produces a debiased

integrator-removed estimator φ̃∗
s-e(z, t) of the solid–electrolyte

potential difference.

■ Note that the transfer function 8̃neg
s-e (z, s)/Iapp(s) has a pole at the

origin, which is removed prior to using the DRA to give the

[8̃neg
s-e (z, s)]∗/Iapp(s) transfer function.
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■ The integrator response could be added back manually, as in

φ̃s-e(t) = φ̃∗
s-e(t) +

(
φ̃res0

s-e

)
xi(t), where xi(t) is the integrator state of the

DRA model, but better performance is obtained by looking deeper at

what is actually happening.

■ Recall that

cs,avg(t) =
(
c̃res0

s,e

)
xi(t) + cs,0

and note that

φ̃res0
s-e =

∂Uocp

∂cs,e

∣∣∣∣
cs,0

× c̃res0
s,e

because

φ̃s-e(t) = φ̃∗
s-e(t) +

[
∂Uocp

∂cs,e

∣∣∣∣
cs,0

· c̃res0
s,e

]
xi(t).

■ Therefore, since φs-e = φ̃s-e + Uocp(cs,0), we can write

φneg
s-e = [φ̃neg

s-e ]∗ +


U neg

ocp (c
neg
s,0 ) +


 ∂U

neg
ocp

∂c
neg
s,e

∣∣∣∣∣
c

neg
s,0



(

cneg
s,avg − c

neg
s,0

)

 ,

where the second term on the right-hand side is equal to the first two

terms of the Taylor series expansion of U neg
ocp (cneg

s,avg) around the starting

average concentration c
neg
s,0 .

■ Therefore, we find that we achieve more accurate results if we

implement [8̃neg
s-e (z, s)]∗/Iapp(s) and then compute

φneg
s-e (0, t) = [φ̃neg

s-e (0, t)]∗ + U neg
ocp (cneg

s,avg(t)).

Potential in electrolyte: The electrolyte potential φe(x, t) uses two DRA

terms:
[
φ̃e(x, t)

]
1
, and ce(x, t) as computed above:

Lecture notes prepared by Gregory L. Plett and J. L. Lee. Copyright c© 2011–2018, Gregory L. Plett and J. L. Lee



ECE4710/5710, Reduced Order Models of Cell Dynamics 6–37

φe(x, t) =
[
φ̃e(x, t)

]
1
− φs-e(0, t) +

2RT (1 − t0
+)

F
ln

(
ce(x, t)

ce(0, t)

)

︸ ︷︷ ︸[
φ̃e(x,t)

]
2

.

Reaction flux: Outputs j (z, t) from the DRA are a linearized

approximation to the true j (z, t). There is no additional correction to

this variable.

Overpotential: If we assume that the charge-transfer coefficient α = 0.5,

as is often the case, we can then write

j = 2k0

√
ce(cs,max − cs,e)cs,e sinh

(
F

2RT
η

)
.

■ This can be inverted to solve for the overpotential

ηpos(z, t) = 2RT

F
asinh




jpos(z, t)

2k
pos
0

√
ce(z, t)(c

pos
s,max − c

pos
s,e (z, t))c

pos
s,e (z, t)




ηneg(z, t) =
2RT

F
asinh




jneg(z, t)

2k
neg
0

√
ce(z, t)(c

neg
s,max − c

neg
s,e (z, t))c

neg
s,e (z, t)


 .
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6.10: Cell voltage

■ We wish to be able to use our prior results to compute the terminal

voltage of the cell, v(t) = φs(L tot, t) − φs(0, t).

■ Recall that η = φs − φe − Uocp − F Rfilm j , so we can write

v(t) = ηpos(0, t) + φe(L tot, t) + U
pos
ocp (cpos

s,e (0, t)) + F R
pos

film jpos(0, t)

− ηneg(0, t) − φe(0, t) − U
neg
ocp (cneg

s,e (0, t)) − F R
neg

film jneg(0, t).

• Note that some like-looking parameter values have been

separated as a reminder that Rct and Rfilm, for example, might have

different values in the negative and positive electrodes.

• We have seen how to compute the linear terms via transfer

functions, and how to compute the nonlinear terms from the linear

terms.

■ Combining like terms:

v(t) = F
(
R

pos

film jpos(0, t) − R
neg

film j (0, t)
)
+
[
φ̃e(L tot, t)

]
1

+
(
ηpos(0, t) − ηneg(0, t)

)
+
[
φ̃e(L tot, t)

]
2

+
(
U

pos
ocp (cpos

s,e (0, t)) − U
neg
ocp (cneg

s,e (0, t))
)
.

■ The linear transfer functions can be grouped together. Define

Vlin(s)

Iapp(s)
= F

(
R

pos

film

J pos(0, s)

Iapp(s)
− R

neg

film

J neg(0, s)

Iapp(s)

)
+

[
φ̃e(L tot, s)

]
1

Iapp(s)
.

■ If this transfer function is implemented in the DRA to produce a single

output vlin(t), then we can write

v(t) = vlin(t) + ηpos(0, t) − ηneg(0, t)
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+
[
φ̃e(L tot, t)

]
2
+
(
U

pos
ocp (cpos

s,e (0, t)) − U
neg
ocp (cneg

s,e (0, t))
)
.

■ This output equation requires implementing a minimum number of

seven transfer functions to be able to compute cell voltage: vlin(t),

j (0, t), j (L tot, t), ce(L tot, t), ce(0, t), cpos
s,e (0, t), and cneg

s,e (0, t).

Frequency response and cell impedance

■ The voltage equation can also be manipulated to form the linearized

small-signal frequency response of the cell, which is the negative of

the impedance spectrum.

■ We linearize the overpotential via η(z, t) ≈ F Rct j (z, t).

■ The remaining nonlinear terms in the voltage equation are
[
φ̃e(L tot, t)

]
2

and
[
U pos

ocp (cpos
s,e (0, t)) − U neg

ocp (cneg
s,e (0, t))

]
.

■ Writing out the first term, we have

[
φ̃e(L tot, t)

]
2
=

2RT (1 − t0
+)

F

[
ln(ce(L tot, t) − ln(ce(0, t))

]
.

■ Linearizing the logarithm via Taylor-series expansion gives

ln(ce) ≈ ln(ce,0) +
[
∂ ln ce

∂ce

∣∣∣∣
ce,0

(ce − ce,0)

= ln(ce,0) +
(

ce − ce,0

ce,0

)
= ln(ce,0) +

c̃e

ce,0

.

■ So,
[
φ̃e(L tot, t)

]
2
≈

2RT (1 − t0
+)

F

[
c̃e(L tot, t) − c̃e(0, t)

ce,0

]
.
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■ Using a similar means, the open-circuit-potential relationships can be

linearized

Uocp(cs,e) ≈ Uocp(cs,0) +
[
∂Uocp(cs,e)

∂cs,e

∣∣∣∣
cs,0

(cs,e − cs,0)

= Uocp(cs,0) +
[
∂Uocp(cs,e)

∂cs,e

∣∣∣∣
cs,0

c̃s,e.

■ So, a linearized model of cell voltage is then

v(t) ≈ F Rpos
s,e jpos(0, t) − F Rneg

s,e jneg(0, t) +
[
φ̃e(L tot, t)

]
1

+
2RT (1 − t0

+)

F

[
c̃e(L tot, t) − c̃e(0, t)

ce,0

]

+
[
U pos

ocp (c
pos
s,0 ) − U neg

ocp (c
neg
s,0 )

]

+
[

∂U
pos
ocp (c

pos
s,e )

∂c
pos
s,e

∣∣∣∣∣
c

pos
s,0

c̃pos
s,e (0, t) −

[
∂U

neg
ocp (c

neg
s,e )

∂c
neg
s,e

∣∣∣∣∣
c

neg
s,0

c̃neg
s,e (0, t).

■ We define a debiased voltage

ṽ(t) = v(t) −
[
U pos

ocp (c
pos
s,0 ) − U neg

ocp (c
neg
s,0 )

]
.

■ Then, the transfer function from applied current to variations in cell

voltage around its equilibrium setpoint (with the open-circuit voltage

offset removed) is

Ṽ (s)

Iapp(s)
= F Rpos

s,e

J pos(0, s)

Iapp(s)
− F Rneg

s,e

J neg(0, s)

Iapp(s)
+

[8̃e(L tot, s)]1

Iapp(s)

+
2RT (1 − t0

+)

Fce,0

[
C̃e(L tot, s)

Iapp(s)
−

C̃e(0, s)

Iapp(s)

]

+
[
∂U

pos
ocp (c

pos
s,e )

∂c
pos
s,e

∣∣∣∣∣
c

pos
s,0

C̃
pos
s,e (0, s)

Iapp(s)
−
[
∂U

neg
ocp (c

neg
s,e )

∂c
neg
s,e

∣∣∣∣∣
c

neg
s,0

C̃
neg
s,e (0, t)

Iapp(s)
,
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where the individual transfer functions are as defined earlier in this

chapter.

■ Note that since cell voltage is equal to open-circuit voltage minus

current times generalized impedance,

v(t) = OCV(z(t)) − Ziapp(t),

we have ṽ(t) = −Ziapp (t), and

Z(s) = −
Ṽ (s)

Iapp(s)
.

■ This relationship produces the impedance spectrum, which can be

compared with results from laboratory electrochemical impedance

spectroscopy (EIS) tests.

■ Figure shows representative result

comparing physics-based-model

frequency-response fit with

measured data.

0 0.25 0.5 0.75 1 1.25 1.5 1.75
real Z (mΩ)
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a
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Model fit for EIS data, T=25
o
C

100%SOC Truth data

50%SOC Truth data

10%SOC Truth data

100%SOC estimate

50%SOC estimate

10%SOC estimate

■ We see a “bump” in the plot that is not explained by the model

developed to date; it is from a “double-layer capacitor” effect, and

modeling its behavior is beyond the scope of this course.
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6.11: Full cell model

■ It is straightforward to apply the DRA to the full cell model.

• Select which transfer functions you want to implement, at which z

or x locations across the cell;

• Perform DRA steps 1 through 3 on each transfer function to get

discrete-time unit-pulse responses of all variables of interest;

• Stack all unit-pulse responses on top of each other, forming a set

of single-input multi-output Markov parameters;

• Run DRA step 4 to get the state-space system realization.

Diagonalize if desired.

■ We find that we can achieve very good results using only four model

states, plus one integrator state.

■ First, a pictorial overview; then, some specifics.

• Finding the model:

Linearize
model

PDE
model

Transfer
functions

System
ID/tests

Physics
parameters

Execute
DRA

Linear SS
model

L
a
b
 p

ro
c
e
s
s

A
n
a
ly

ti
c
 d

e
ri
v
a
ti
o
n
s

C
o
m

p
u
ta

ti
o
n
a
l 
p
ro

c
e
s
s

D
a
ta

Legend

Step 1:

H(s) to h(t)

Step 2:

h(t) to hstep(t)

Step 3:

hstep(t) to h[n]
Step 4: h[n] to

Â, B̂, Ĉ, D̂

• Simulating the model:
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cell voltage

Computational processDataLegend:Input
current

Initial
state

Linear SS
model

Simulate
linear model

Linearized
physics variables

Physics
parameters

Make nonlinear
corrections

Internal cell
variables AND

■ The state equation can be visualized as

0

1Four general−purpose
states modeling all

non−integral internal
cell dynamics

Integrator state

New

states

0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

00 1

Prior

states

Input

matrix

1

1

1

1

Model input = current

■ The linear output equation can be visualized as

Linear outputs

Model input = current

■ Cell voltage is a nonlinear combination of the linear outputs.

■ The following plots show comparisons between the continuum-scale

cell model predictions and the ROM predictions for a cell excited by

an urban dynamometer driving schedule (UDDS) test.

■ First, we see the Butler–Volmer current density

Lecture notes prepared by Gregory L. Plett and J. L. Lee. Copyright c© 2011–2018, Gregory L. Plett and J. L. Lee



ECE4710/5710, Reduced Order Models of Cell Dynamics 6–44

0 300 600 900 1,200 1,500 
−40

−20

0

20

40

60

80

 

 

FOM

ROM

Flux j at neg.-electrode/separator boundary

Time (s)

F
lu

x
(µ

m
o
lm

−
2

s
−

1
)

0 300 600 900 1,200 1,500 
−80

−60

−40

−20

0

20

40

 

 

FOM

ROM

Flux j at pos.-electrode/separator boundary

Time (s)

F
lu

x
(µ

m
o
lm

−
2

s
−

1
)

■ Next, we see solid and electrolyte phase potential:
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■ Next, we see solid surface concentration and electrolyte

concentration of lithium
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■ Finally, we see vcell comparisons. RMS error of around 1 mV.
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6.12: Model blending

■ The ROM we’ve developed to this point was derived by linearizing the

PDE model around a specific operational setpoint.

■ However, as model dynamics can vary with temperature and SOC,

we find that a single model is often not sufficient.

■ In order to model the cell over a wide range of both temperature and

SOC, we use a model-blending approach.

IDEA: Precompute ROMs at multiple temperature and SOC setpoints.

Then, during operation, use them to generate a best “average” ROM

specialized for the present instantaneous temperature and SOC.

Blending the models

■ Individual reduced-order models are generated a priori using the

DRA over the expected operating range of temperatures and SOCs.

■ For simplicity, we assume that the

setpoints fall on a rectangular (z,T ) grid.

■ These precomputed models are blended

in real time using bilinear interpolation to

generate a time-varying state-space

model, as illustrated in the figure.

Âk

Â0,0

Â0,1

Â1,0

Â1,1

SOC0 SOC1

T0

T1

T

SOC

■ We define SOC0 ≤ SOC < SOC1, where SOC0 and SOC1 are the

nearest SOC setpoint values among the precomputed models.

■ Similarly, we define T0 ≤ T < T1 to be the nearest temperature

setpoint values bracketing the cell’s present operating temperature.
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■ We then define blending factors θz and θT as

θz = SOC − SOC0

SOC1 − SOC0

and θT = T − T0

T1 − T0

.

■ The value of the time-varying blended Âk matrix is found from

Âk = (1 − θT )
(
(1 − θz) Â0,0 + θz Â1,0

)
+ θT

(
(1 − θz) Â0,1 + θz Â1,1

)
,

where Â0,0 is the Â matrix of the precomputed model at SOC0 and T0,

Â0,1 at SOC0 and T1, Â1,0 at SOC1 and T0, and Â1,1 at SOC1 and T1.

■ The time-varying blended B̂k, Ĉk, and D̂k matrices can be found in

the same manner (although we see some simplifications in the next

section, which make it unnecessary to blend B̂k).

■ The state-space equations are then modified with these time-varying

blended matrices to become

x[k + 1] = Âk x[k] + B̂kiapp[k]

ỹ[k] = Ĉk x[k] + D̂kiapp[k].

■ The figure illustrates the real-time aspect of the overall

model-blending approach.

Internal cell

cell voltage

Legend:

State of charge

variables AND

Input
current

Initial
state

Multiple
linear SS
models

Make blended
model

Simulate
blended model

Linearized
physics variables

Physics
parameters

Make nonlinear
corrections

Data Computational process

■ During operation, the present cell SOC and temperature are used to

generate blended state-space matrices.
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■ State vector x[k] is updated using these time-varying matrices, and

linearized outputs ỹ[k] are computed from the updated state vector.

The SOC calculated at each time step from the internal states is fed

back into the linear model as an input to blending process.

Sorting the model

■ One complication when implementing the model-blending scheme

arises from the fact that state-space models are not unique.

■ An infinite number of different state descriptions with corresponding

{ Â, B̂, Ĉ, D̂} represent the same input–output relationship.

■ This fact poses a potential problem when model blending because for

the method to work all elements of the matrix Â0,0 must be consistent

in meaning with the corresponding elements of the matrices Â1,0,

Â0,1, and Â1,1.

■ If not, unrelated elements will be averaged together, producing a

meaningless result.

■ The DRA algorithm itself does not guarantee that models generated

at different temperature and SOC setpoints will exhibit a consistent

state-space description.

■ There is a simple remedy, however, which is to transform all

precomputed models into a common framework.

■ We do so as follows. We begin by supposing that a linear

discrete-time state-space model produced by the DRA is of the form

x(0)[k + 1] = Â
(0)

x(0)[k] + B̂
(0)

iapp[k]

ỹ[k] = Ĉ
(0)

x(0)[k] + D̂iapp[k].
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■ The superscript “(0)” on several of the model terms indicates that

these matrices and signals arise from the untransformed model

produced directly from the DRA. We will use superscripts “(1),” “(2),”

and “(3)” in the following to indicate different stages of model

transformation.

■ For the first transformation, we define a new state vector x(1)[k], such

that x(0)[k] = T (1)x(1)[k], where T (1) is some square invertible matrix.

■ We have an equivalent input–output relationship between iapp[k] and

y[k] if we write

x(1)[k + 1] = (T (1))−1 Â
(0)

T (1)

︸ ︷︷ ︸
Â

(1)

x(1)[k] + (T (1))−1 B̂
(0)

︸ ︷︷ ︸
B̂

(1)

iapp[k]

ỹ[k] = Ĉ
(0)

T (1)︸ ︷︷ ︸
Ĉ

(1)

x(1)[k] + D̂iapp[k].

■ We have great freedom in choosing the transformation matrix T (1), so

long as it is invertible.

■ Consider first choosing T (1) = V , where V is a matrix whose columns

are the eigenvectors of Â
(0)

.

■ The resulting Â
(1)

matrix will be diagonal.2 The diagonal elements of

Â
(1)

are called the poles of the system, and represent the dynamic

time constants.

2 For this to be possible, the Â
(0)

matrix must be diagonalizable, requiring that the eigen-

vectors in V be linearly independent. In our experience, the output of the DRA has

always resulted in a diagonalizable Â
(0)

matrix; however, we know of no guarantee of

this. In cases where the eigenvectors are linearly dependent, it is always possible to

choose a transformation to put the Â
(1)

matrix into a Jordan form, which is what should

be done instead.
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■ Already, this first transformation has uncovered some physical

meaning in the model. Also,

• Storage requirements of transformed model are reduced, as n × n

matrix Â
(1)

contains only n non-zero values (on its diagonal),

• Computation requirements are reduced, since only the diagonal

elements of the Â matrices need to be blended and fewer

multiplies are needed to implement Â
(1)

x(1)[k] than Â
(0)

x(0)[k].

■ Since eigenvectors are unique only up to a scaling factor, we utilize

this remaining degree of freedom to simplify our matrices further.

■ Here, we elect to normalize the B̂ matrix to have units value elements.

■ This, of course, presupposes that there are no zero elements in B̂,

which is guaranteed if the system is completely controllable.

■ The Ho–Kalman algorithm used in the DRA always produces a

minimal state-space description, so we have this guarantee.

■ Thus, we then apply a second transformation, choosing

T (2) = diag(B̂
(1)

).

■ In the resulting transformed model, B̂
(2)

contains only ones, and Â
(2)

will be unchanged from Â
(1)

.

■ This transformation has resulted in B̂
(2)

and Ĉ
(2)

matrices that are all

scaled in a consistent way.

■ It also reduces storage requirements, as B̂
(2)

is known to always

contain only ones, which do not need to be stored.

■ Computation has also been reduced, as B̂ matrices don’t need to be

blended (they are all the same), and because multiplication B̂kiapp[k]
is simply a repetition of the elements of iapp[k].
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■ Finally, we choose a third transformation T (3) to permute the elements

of Â
(2)

such that Â
(3)

remains diagonal, but its elements appear in

order of ascending magnitude. The B̂
(3)

matrix remains all ones.

■ For any particular temperature and SOC setpoint, we define the final

scaled and sorted precomputed model as having Â = Â
(3)

,

B̂ = B̂
(3) = 1n×1, and Ĉ = Ĉ

(3)
. The model D̂ matrix is unchanged

from the one produced by the DRA.

Where from here?

■ We now have a reduced-order physics-based model of cell dynamics

that agrees very closely with the continuum-scale predictions.

■ When physics-based model parameter values are well tuned, model

matches physical cell performance very well.

■ Results below for Panasonic 25 Ah NMC//graphite cell:
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■ This model executes in very reasonable time, having only five states.

■ What’s missing?

• A thermal model: How does temperature affect dynamics? How do

dynamics affect temperature?
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• How to identify parameters of physics-based models?

• How to model cell degradation?

• How to use these models in an application?

■ We’ll look at the thermal model next; others are topics of follow-on

course(s).
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