State-Space Models and the Discrete-Time Realization Algorithm

5.1: Introduction to state-space models

- The coupled PDEs derived in earlier chapters of notes are too complex to be used in real-time applications.
 - They are “infinite dimensional.” For every point in time t, there are an infinite number of x- and r-dimension variables to solve for.
 - *i.e.*, $c_s(x, r, t)$, $\bar{c}_e(x, t)$, $\bar{\phi}_s(x, t)$, $\bar{\phi}_e(x, t)$, for a pseudo-two dimensional model.

- We desire to create cell-scale ODEs that retain, as much as possible, the fidelity of the continuum-scale PDEs, but which reduce their order from infinite order to some (small) finite order.
 - The result is a small coupled set of ODEs, which can be simulated very easily and quickly.
 - In this chapter, we introduce “state-space” models, which is the final form of the reduced-order models we will develop.
We then preview the approach to generate the state-space models from the PDEs of the variables of interest:

- We start by generating transfer functions for each PDE;
- We then use the “discrete-time realization algorithm” to convert transfer functions to state-space form.

A quick introduction to state-space models

- Transfer functions provide a system’s input-output mapping only:
 \[u[k] \rightarrow G(z) \rightarrow y[k]. \]
- State-space models provide access to what is going on inside the system, in addition to the input-output mapping.
 - What’s going on inside the system is called the system’s “state”.

DEFINITION: The internal state of a system at time \(k_0 \) is the minimum amount of information at \(k_0 \) that, together with the input \(u[k], k \geq k_0 \), uniquely determines the behavior of the system for all \(k \geq k_0 \).

- State-space models describe a system’s dynamics via two equations:
 - The “state equation” describes how the input influences the state;
 - The “output equation” describes how the state and the input both directly influence the output.

- Discrete-time LTI state-space models have the following form:
 \[
 x[k + 1] = Ax[k] + Bu[k] \\
 y[k] = Cx[k] + Du[k],
 \]
 where \(u[k] \in \mathbb{R}^m \) is the input, \(y[k] \in \mathbb{R}^p \) is the output, and \(x[k] \in \mathbb{R}^n \) is the state vector.
Different systems have different n, A, B, C, and D.

A block diagram can help visualize the signal flows:

EXAMPLE: Convert the following single-input single-output difference equation into a discrete-time state-space form,

$$y[k]+a_1 y[k-1]+a_2 y[k-2]+a_3 y[k-3] = b_1 u[k-1]+b_2 u[k-2]+b_3 u[k-3].$$

We’re going to do the conversion by first recognizing that the transfer function of this system is,

$$G(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3} = \frac{Y(z)}{U(z)}.$$

Break up transfer function into two parts. $G_p(z) = V(z)/U(z)$ contains all of the poles:

$$G_p(z) = \frac{1}{z^3 + a_1 z^2 + a_2 z + a_3} = \frac{V(z)}{U(z)}$$

$$\Rightarrow v[k+3] + a_1 v[k+2] + a_2 v[k+1] + a_3 v[k] = u[k].$$

Choose current and advanced versions of $v[k]$ as state (this is a choice: there are other equally valid choices, as we will see)

$$x[k] = \begin{bmatrix} v[k+2] & v[k+1] & v[k] \end{bmatrix}^T.$$

Then

$$x[k+1] = \begin{bmatrix} v[k+3] \\ v[k+2] \\ v[k+1] \end{bmatrix} = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} v[k+2] \\ v[k+1] \\ v[k] \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u[k].$$
We now add zeros, $G(z) = (b_1z^2 + b_2z + b_3) G_p(z)$. Equivalently,

$$Y(z) = \left[b_1z^2 + b_2z + b_3 \right] V(z),$$

or, $y[k] = b_1v[k + 2] + b_2v[k + 1] + b_3v[k]$.

In summary, we have the state-space model:

$$x[k + 1] = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} x[k] + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u[k]$$

$$y[k] = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} x[k] + \begin{bmatrix} 0 \end{bmatrix} u[k].$$

Note: There are many other equally valid state-space models of this particular transfer function. We will soon see how they are related.

Many discrete-time transfer functions are not strictly proper. Solve by polynomial long division, and setting D equal to the quotient.

MATLAB command $[A,B,C,D]=$tf2ss(num,den,Ts) converts a rational-polynomial transfer function form to state-space form.
5.2: Working with state-space systems

State-space to transfer function

- In the prior example, we saw it is possible to convert from a difference equation (or transfer function) to a state-space form quite easily.
- Now, we’ll see that the opposite translation is also straightforward.
- Start with the state equations

\[
x[k + 1] = Ax[k] + Bu[k] \\
y[k] = Cx[k] + Du[k].
\]

- Take the \(z \)-transform of both sides of both equations

\[
zX(z) - zx[0] = AX(z) + BU(z) \\
Y(z) = CX(z) + DU(z),
\]

or

\[
(zI - A)X(z) = BU(z) + zx[0] \\
X(z) = (zI - A)^{-1}BU(z) + (zI - A)^{-1}zx[0].
\]

- This gives,

\[
Y(z) = \left[C(zI - A)^{-1}B + D \right] U(z) + \left[C(zI - A)^{-1}z \right] x[0].
\]

- So,

\[
G(z) = \frac{Y(z)}{U(z)} = C(zI - A)^{-1}B + D.
\]

- Note that \((zI - A)^{-1} = \frac{\text{adj}(zI - A)}{\text{det}(zI - A)} \), so we can write a system’s transfer function as

\[
G(z) = \frac{C \text{adj}(zI - A)B + D \text{det}(zI - A)}{\text{det}(zI - A)}.
\]
Extremely important observation: The poles of the system are where \(\det(zI - A) = 0 \), which (by definition) are the eigenvalues of \(A \).

Transformation

- State-space representations of a particular system’s dynamics are not unique. Selection of state \(x[k] \) is somewhat arbitrary.

- To see this, analyze the transformation of

\[
x[k + 1] = Ax[k] + Bu[k]
\]

\[
y[k] = Cx[k] + Du[k],
\]

where we let \(x[k] = Tw[k] \), where \(T \) is an invertible (similarity) transformation matrix. Then,

\[
(Tw[k + 1]) = A (Tw[k]) + Bu[k]
\]

\[
y[k] = C (Tw[k]) + Du[k].
\]

- Multiplying the first equation by \(T^{-1} \) gives

\[
 w[k + 1] = \frac{T^{-1}}{\bar{A}} A Tw[k] + \frac{T^{-1}}{\bar{B}} Bu[k]
\]

\[
y[k] = \frac{CT}{\bar{C}} Tw[k] + \frac{DT}{\bar{D}} u[k]
\]

so, \(w[k + 1] = \bar{A}w[k] + \bar{B}u[k] \)

\[
y[k] = \bar{C}w[k] + \bar{D}u[k].
\]

- To show that \(H_1(z) = H_2(z) \),

\[
 H_1(z) = C(zI - A)^{-1}B + D
\]

\[
 = CTT^{-1}(zI - A)^{-1}TT^{-1}B + D
\]
\[= (CT)[T^{-1}(zI - A)T]^{-1}(T^{-1}B) + D \]
\[= \tilde{C}(zI - \tilde{A})^{-1}\tilde{B} + \tilde{D} = H_2(z). \]

- Transfer function not changed by similarity transform

CONCLUSION: Can arrive at state-space representations having identical input-output relationship but different \((A, B, C, D)\) matrices.

EXAMPLE: Consider transforming the system

\[
A = \begin{bmatrix}
-a_1 & -a_2 & -a_3 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \quad \text{with} \quad T = T^{-1} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\]

\[
C = \begin{bmatrix}
b_1 & b_2 & b_3
\end{bmatrix}, \quad D = \begin{bmatrix}
0
\end{bmatrix}
\]

- Note that multiplying on the right by \(T\) flips the original entries left-to-right; multiplying on the left flips the original entries top-to-bottom.

- So, for this transformation matrix, we get:

\[
\tilde{A} = T^{-1}AT = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
-a_1 & -a_2 & -a_3 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_3 & -a_2 & -a_1
\end{bmatrix}
\]

\[
\tilde{B} = T^{-1}B = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
1
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]
\[\tilde{C} = CT = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} b_3 & b_2 & b_1 \end{bmatrix} \]

\[\tilde{D} = D = 0. \]

We can find the transfer function of this new form as

\[
G(z) = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B} + \tilde{D}
\]

\[
= \begin{bmatrix} b_3 & b_2 & b_1 \end{bmatrix} \left(\begin{bmatrix} z & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & z \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_3 & -a_2 & -a_1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 0
\]

\[
= \begin{bmatrix} b_3 & b_2 & b_1 \end{bmatrix} \left(\begin{bmatrix} z & -1 & 0 \\ 0 & z & -1 \\ a_3 & a_2 & z + a_1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} b_3 & b_2 & b_1 \end{bmatrix} \begin{bmatrix} z^2 + a_1z + a_2 & a_1 + z & 1 \\ -a_3 & z + a_1z & z^2 \\ -a_3z & -a_2z - a_3 & z \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

\[
= \frac{b_1z^2 + b_2z + b_3}{z^3 + a_1z^2 + a_2z + a_3},
\]

which was the transfer function we started with before transformation.
5.3: Discrete-time Markov parameters

- It turns out that the discrete unit-pulse response of a state-space system has a special form that is important to us later.

- For example, let’s look at the unit-pulse response of a single-input state-space system. (Note that, by definition, \(x[0] = 0\) when finding a unit-pulse response).

- We find that

\[
\begin{align*}
y[0] &= Cx[0] + Du[0] = D, \\
&\vdots \\
y[k] &= CA^{k-1}B, \\
\end{align*}
\]

- These unit-pulse-response values, \(\{D, CB, CAB, CA^2B, CA^3B, \ldots\}\) are called the Markov parameters of the system.

- This turns out to be of critical importance to realizing our transfer functions, as we will see.

- Specifically, we define the Markov parameters to be:

\[
g_k = \begin{cases}
D, & k = 0; \\
CA^{k-1}B, & k > 0.
\end{cases}
\]

CLARITY ISSUE: ■ For SISO systems, the Markov parameters are scalars.

■ For a single-input multi-output (SIMO) system the Markov parameters are (column) vectors.
• The \(i \)th entry (row) of each Markov parameter is computed as the unit-pulse response from the input to the \(i \)th output.
• Equivalently, the entire vector Markov parameter is the unit-pulse response from the input to the vector output.

For multi-input single-output (MISO) systems, the Markov parameters are row vectors.

• The \(j \)th entry (column) of each Markov parameter is computed via the unit-pulse response from the \(j \)th input to the output.

For multi-input multi output (MIMO) systems, the Markov parameters are matrices.

• The \((i, j)\)th entries yield the unit-pulse response from the \(j \)th input to the \(i \)th output.
• Equivalently, the \(j \)th column of each Markov parameter is vector (as in the SIMO case) which is computed via the unit-pulse response from the \(j \)th input to the vector output.

EXAMPLE: Given the following discrete-time system, with zero initial condition, find the unit-pulse response:

\[
A = \begin{bmatrix} 0.5 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \end{bmatrix}, \quad D = 0.
\]

The Markov parameters are given by

\[
g_k = \{ D, CB, CAB, CA^2B, \ldots \} = \{0, 1, 0.5, 0.25, \ldots \}.
\]
MATLAB's `impulse.m` command confirms this result:

```matlab
A = [0.5 0; 0 1];
B = [1 ; 0];
C = [1 -1]; D = 0;
sys = ss(A,B,C,D,-1);
y = impulse(sys,0:15);
stem(0:15,y,'filled');
```

Before proceeding...

- We have now quickly previewed state-space models, with the claim that there will be a method to represent our battery models in that particular form.

- We now begin to investigate that claim—the first step is to create transfer-function models for the variables of interest.

- In this chapter, we look at representing c_s as a transfer function; in the next chapter we look at the remainder of the model equations.

 - Note that in chapter 3 we used symbols without an over-line to indicate point-wise values for variables of interest: *i.e.*, c_s, c_e, ϕ_s, ϕ_e.

 - In chapter 4 we used symbols with an over-line to indicate volume average versions of these point-wise variables: *i.e.*, \bar{c}_e, $\bar{\phi}_s$, and $\bar{\phi}_e$.

 - We now drop the over-line notation, because otherwise the equations get so highly decorated that they are impossible to parse. We are still talking about the volume-average quantities of chapter 4.
5.4: Equations describing the solid dynamics

Finding the transfer function $\tilde{C}_{s,e}(s)/J(s)$

- To find the transfer function for c_s, we follow the approach by Jacobsen and West\(^1\)

- We start with the underlying partial-differential equation,

$$\frac{\partial c_s(r, t)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(D_s r^2 \frac{\partial c_s(r, t)}{\partial r} \right),$$

with standard boundary conditions,

$$D_s \frac{\partial c_s(0, t)}{\partial r} = 0, \quad \text{and} \quad D_s \frac{\partial c_s(R_s, t)}{\partial r} = -j(t), \quad t \geq 0,$$

and with initial equilibrium concentration,

$$c_s(r, 0) = c_{s,0}, \quad 0 \leq r \leq R_s.$$

- Note that we run into problems solving this PDE directly if $c_{s,0} \neq 0$.

- So, to enforce a homogeneous PDE in later steps, we define $\tilde{c}_s(r, t) = c_s(r, t) - c_{s,0}$. The “tilde” notation denotes the difference between an absolute quantity and its equilibrium set-point.

- If we assume constant D_s, the differential equations become:

$$\frac{\partial \tilde{c}_s(r, t)}{\partial t} = \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \tilde{c}_s(r, t)}{\partial r} \right),$$

with boundary conditions,

$$D_s \frac{\partial \tilde{c}_s(0, t)}{\partial r} = 0, \quad \text{and} \quad D_s \frac{\partial \tilde{c}_s(R_s, t)}{\partial r} = -j(t), \quad t \geq 0,$$

and with initial equilibrium concentration,

$$\tilde{c}_s(r, 0) = 0, \quad 0 \leq r \leq R_s.$$

We continue by taking the Laplace transform of the PDE:

\[
s\widetilde{C}_s(r, s) - \tilde{c}_0 = \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \widetilde{C}_s(r, s) \right)
\]

\[
s\widetilde{C}_s(r, s) = \frac{D_s}{r^2} \left(2r \frac{\partial}{\partial r} \widetilde{C}_s(r, s) + r^2 \frac{\partial^2}{\partial r^2} \widetilde{C}_s(r, s) \right).
\]

This is a 2nd-order ordinary differential equation in \(r \), which may be written

\[
\frac{\partial^2 \widetilde{C}_s(r, s)}{\partial r^2} + \frac{2}{r} \frac{\partial \widetilde{C}_s(r, s)}{\partial r} - \frac{s}{D_s} \widetilde{C}_s(r, s) = 0.
\]

This homogeneous differential equation has a solution of the form

\[
\widetilde{C}_s(r, s) = \frac{A}{r} \exp \left(r \sqrt{\frac{s}{D_s}} \right) + \frac{B}{r} \exp \left(-r \sqrt{\frac{s}{D_s}} \right)
\]

\[
= \frac{A}{r} \exp(\beta(r)) + \frac{B}{r} \exp(-\beta(r)),
\]

where we define \(\beta(r) = r \sqrt{s/D_s} \). We note that \(\beta(r) \) is also a function of \(s \), but we omit this dependence in the notation for compactness.

The constants \(A \) and \(B \) are chosen to satisfy the boundary conditions.

Consider first the outer boundary condition at \(r = R_s \), which is

\[
D_s \left. \frac{\partial \widetilde{c}_s(r, t)}{\partial r} \right|_{r=R_s} = -j(t).
\]

The equivalent Laplace-domain boundary condition is

\[
D_s \left. \frac{\partial \widetilde{C}_s(r, s)}{\partial r} \right|_{r=R_s} = -J(s).
\]

To substitute this in, we will need to compute \(\frac{\partial \widetilde{C}_s(r, s)}{\partial r} \)

\[
\frac{\partial \widetilde{C}_s(r, s)}{\partial r} = \frac{A \sqrt{\frac{s}{D_s}} r \exp(\beta(r)) - B \exp(-\beta(r))}{r^2}
\]
\[
\begin{align*}
A \exp(\beta(r)) + B \sqrt{s/D_s} r \exp(-\beta(r)) \\
- \frac{r^2}{D_s} \\
\end{align*}
\]

\[
= \frac{A(\beta(r) - 1) \exp(\beta(r)) - B(1 + \beta(r)) \exp(-\beta(r))}{r^2}.
\]

- We substitute \(r = R_s\) and the boundary condition

\[
\begin{align*}
\frac{\partial \tilde{C}_s(r, s)}{\partial r} \bigg|_{r=R_s} &= \frac{A(\beta(R_s) - 1) \exp(\beta(R_s)) - B(1 + \beta(R_s)) \exp(-\beta(R_s))}{R_s^2} \\
- \frac{J(s)}{D_s} &= \frac{A(\beta(R_s) - 1) \exp(\beta(R_s)) - B(1 + \beta(R_s)) \exp(-\beta(R_s))}{R_s^2}.
\end{align*}
\]

- This gives us an expression for \(J(s)\),

\[
J(s) = -\frac{D_s}{R_s^2} \left(A(\beta(R_s) - 1) \exp(\beta(R_s)) - B(1 + \beta(R_s)) \exp(-\beta(R_s)) \right).
\]

- If we immediately substitute the second boundary condition at \(r = 0\), we run into some divide-by-zero issues.

- So, instead, we substitute \(r = r_\delta\), which we think of as a very small value. We will then later take the limit as \(r_\delta \to 0\).

\[
0 = \frac{A(\beta(r_\delta) - 1) \exp(\beta(r_\delta)) - B(1 + \beta(r_\delta)) \exp(-\beta(r_\delta))}{r_\delta^2}.
\]

- This allows us to write

\[
\frac{A(\beta(r_\delta) - 1) \exp(\beta(r_\delta))}{r_\delta^2} = \frac{B(1 + \beta(r_\delta)) \exp(-\beta(r_\delta))}{r_\delta^2}.
\]

\[
A = B \frac{(1 + \beta(r_\delta)) \exp(-\beta(r_\delta))}{(\beta(r_\delta) - 1) \exp(\beta(r_\delta))}.
\]

- We now take the limit as \(r_\delta \to 0\), and find that \(A = -B\).

- We are now ready to construct the transfer function \(\tilde{C}_s(s, r)/J(s)\)
\[
\frac{\tilde{C}_s(r, s)}{J(s)} = \frac{-R_s^2}{D_s r} \left[\frac{A \exp(\beta(r)) + B \exp(-\beta(r))}{A(\alpha(R_s) - 1) \exp(\beta(R_s)) - B(1 + \beta(R_s)) \exp(-\beta(R_s))} \right]
\]

\[
= \frac{-R_s^2}{D_s r} \left[\frac{A}{-A} \right] \left[\frac{\exp(\beta(r)) - \exp(-\beta(r))}{(1 - \beta(R_s)) \exp(\beta(R_s)) - (1 + \beta(R_s)) \exp(-\beta(R_s))} \right]
\]

\[
= \frac{R_s^2}{D_s r} \left[\frac{\exp(\beta(r)) - \exp(-\beta(r))}{(1 - \beta(R_s)) \exp(\beta(R_s)) - (1 + \beta(R_s)) \exp(-\beta(R_s))} \right].
\]

- This expression can be used to determine the lithium concentration anywhere within the particle.

- However, we are most interested in determining the concentration at the surface of the particle, where \(r = R_s \). So, we substitute \(r = R_s \)

\[
\frac{\tilde{C}_{s,e}(s)}{J(s)} = \frac{R_s}{D_s} \left[\frac{\exp(\beta(R_s)) - \exp(-\beta(R_s))}{(1 - \beta(R_s)) \exp(\beta(R_s)) - (1 + \beta(R_s)) \exp(-\beta(R_s))} \right].
\]

- To compact the notation yet again, write \(\beta(R_s) \) as simply \(\beta \),

\[
\tilde{C}_{s,e}(s) = \frac{R_s}{D_s} \left[\frac{\exp(\beta) - \exp(-\beta)}{(1 - \beta) \exp(\beta) - (1 + \beta) \exp(-\beta)} \right]
\]

\[
= \frac{R_s}{D_s} \left[\frac{\exp(\beta) - \exp(-\beta)}{\exp(\beta) - \exp(-\beta) - \beta [\exp(\beta) + \exp(-\beta)] - \beta} \right]
\]

\[
= \frac{R_s}{D_s} \left[\frac{\tanh(\beta)}{\tanh(\beta) - \beta} \right] = \frac{R_s}{D_s} \left[\frac{1}{1 - \beta \coth(\beta)} \right].
\]

- To recap to this point, re-expanding notation, where \(\beta(s, r) = r \sqrt{s/D_s} \),

\[
\tilde{C}_{s,e}(s) = \frac{R_s}{D_s} \left[\frac{1}{1 - \beta(s, R_s) \coth(\beta(s, R_s))} \right] J(s).
\]
5.5: Removing the integrator pole

- While not immediately obvious by looking at the transfer function, it turns out that $\tilde{C}_{s,e}(s)/J(s)$ is unstable: There is a pole at $s = 0$.
 - This is intuitively clear, however, because we know that a step input will result in ever-increasing concentration.
 - This will be important when we look at how to convert the transfer function to a state-space model.

- To make a stable transfer function, define
 \[\Delta \tilde{C}_{s,e}(s) = \tilde{C}_{s,e}(s) - \tilde{C}_{s,\text{avg}}(s), \]
 where $\tilde{C}_{s,\text{avg}}(s)$ is the bulk (average) concentration in the solid, less $c_{s,0}$.

- Note that we can write $\tilde{c}_{s,\text{avg}}(t_1)$ for some arbitrary point in time t_1 as
 \[\tilde{c}_{s,\text{avg}}(t_1) = \int_0^{t_1} \frac{\text{Influx of Li, [mol s}^{-1}]}{\text{Volume of particle [m}^3]} \, dt. \]

- Note two things:
 - The volume of a sphere of radius R_s is $\frac{4}{3} \pi R_s^3$ [m3];
 - The influx of lithium is $-j(t)$ [mol m$^{-2}$ s$^{-1}$], occurring over the surface area $4\pi R_s^2$ [m2].

- This gives
 \[\tilde{c}_{s,\text{avg}}(t_1) = \int_0^{t_1} \frac{-j(t) \cdot 4\pi R_s^2}{\frac{4}{3} \pi R_s^3} \, dt \]
 \[= -\frac{3}{R_s} \int_0^{t_1} j(t) \, dt \]
 \[\frac{d}{dt} \tilde{c}_{s,\text{avg}}(t) = -\frac{3}{R_s} j(t). \]
Note that this result is perfectly general. We made no assumptions on how the lithium concentration is distributed inside the particle.

Taking Laplace transforms, we find:
\[
\frac{\tilde{C}_{s,\text{avg}}(s)}{J(s)} = -\frac{3}{R_s}s.
\]

Therefore,
\[
\frac{\Delta \tilde{C}_{s,e}(s)}{J(s)} = \frac{\tilde{C}_{s,e}(s)}{J(s)} - \frac{\tilde{C}_{s,\text{avg}}(s)}{J(s)} = \frac{R_s}{D_s} \left[\frac{\tanh(\beta)}{\tanh(\beta) - \beta} \right] + \frac{3}{R_s}s
\]
\[
= \frac{R_s}{D_s} \left[\frac{\tanh(\beta) + \frac{3D_s}{sR_s^2} (\tanh(\beta) - \beta)}{\tanh(\beta) - \beta} \right]
\]
\[
= \frac{R_s}{D_s} \left[\frac{\tanh(\beta) + \frac{3}{\beta^2} (\tanh(\beta) - \beta)}{\tanh(\beta) - \beta} \right]
\]
\[
= \frac{R_s}{D_s} \left[\frac{\beta^2 \tanh(\beta) + 3 (\tanh(\beta) - \beta)}{\beta^2 (\tanh(\beta) - \beta)} \right]
\]
\[
= \frac{R_s}{D_s} \left[\frac{(\beta^2 + 3) \tanh(\beta) - 3\beta}{\beta^2 (\tanh(\beta) - \beta)} \right].
\]

State-space realization problem

- It turns out that for this specific case, we can find all the poles and zeros using a simple numeric method, and use that information to make a discrete-time state-space model.

- For the transfer functions we develop in the next chapter, however, this cannot be done.

- So, we must turn to alternative implementation approaches.
• One method is to use nonlinear optimization to select poles and residues to attempt to match the frequency response of the transfer functions.

• This is fraught with problems.

• We next introduce another approach, which directly gives us a discrete-time state-space approximate model of our transfer functions.

■ This system-identification problem for state-space systems is sometimes called the “realization problem.”

• That is, we wish to find a realization (a set of A, B, C, and D matrices) that describe a system’s dynamics.
5.6: State-space realization problem: Ho–Kalman method

- For now, we assume that we are able to find the Markov parameters of our transfer functions.

PROBLEM: Given a system’s Markov parameters, find the system dimension \(n \) and \((A, B, C, D)\), up to similarity transforms.

- One of the first (maybe *the* first) state-space realization methods was introduced by Ho and Kalman.\(^2\)

- It is key to the discrete-time realization algorithm we will develop.

- Notice that something curious happens when we multiply the following matrices together:

\[
\begin{bmatrix}
C \\
CA \\
CA^2 \\
\vdots \\
CA^{n-1}
\end{bmatrix}
\begin{bmatrix}
B & AB & A^2B & \cdots & A^{n-1}B \\
\end{bmatrix} =
\begin{bmatrix}
CB & CAB & CA^2B & \cdots & CA^{n-1}B \\
CAB & CA^2B & CA^3B \\
CA^2B & CA^3B & CA^4B \\
\vdots & \vdots & \vdots \\
CA^{n-1}B & \cdots & CA^{2n-2}B
\end{bmatrix}.
\]

- For reasons beyond the scope of our discussion here, \(\mathcal{O}\) is called the “observability matrix” and \(C\) is called the “controllability matrix.”

Notice that we get a Hankel matrix—a matrix having constant skew diagonals (an upside-down Toeplitz matrix).

Note also that the values on the skew diagonals are the Markov parameters of the system (excluding g_0 and g_k for $k > 2n - 1$)

$$\mathcal{H} = \mathcal{OC} = \begin{bmatrix} g_1 & g_2 & \cdots & g_n \\ g_2 & g_3 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ g_n & \cdots & g_{2n-1} \end{bmatrix}. $$

Ho–Kalman assumes that we know the Markov parameters.

- Knowledge of g_0 gives us D directly.
- Knowledge of the rest of the Markov parameters will ultimately result in A, B, and C.

To use Ho–Kalman, we must first form the Hankel matrix \mathcal{H}.

The next step is to factor $\mathcal{H} = \mathcal{OC}$ into its \mathcal{O} and \mathcal{C} components.

The third step is to use \mathcal{O} and \mathcal{C} to find A, B, and C.

ISSUE I: We don’t know n. So, how do we form \mathcal{H} in the first place? That is, when do we stop adding unit-pulse-response values to \mathcal{H}?

PRELIMINARY ANSWER: The rank of \mathcal{H} is equal to n. Keep adding data until the rank doesn’t increase.

ISSUE II: How do we compute A, B, and C from \mathcal{O} and \mathcal{C}?

ANSWER: C is extracted as the first block row of \mathcal{O}; B is extracted as the first block column of \mathcal{C}. We’ll see how to get A shortly.

ISSUE III: How do we do the factoring of \mathcal{H} into \mathcal{O} and \mathcal{C}?
ANSWER: It doesn’t matter, at least in principle. Any matrices \(O \) and \(C \) such that \(OC = H \) are okay.

To see this latter point, consider what happens to \(O \) and \(C \) when the state-space model undergoes a similarity transformation.

- Recall that \(\ddot{A} = T^{-1}AT, \ddot{B} = T^{-1}B, \) and \(\ddot{C} = CT. \)
- The observability and controllability matrices of the new representation are

\[
\ddot{O} = \begin{bmatrix}
\dddot{C} \\
\dddot{CA} \\
\vdots \\
\dddot{CA}^{n-1}
\end{bmatrix} = \begin{bmatrix}
CT \\
CTT^{-1}AT \\
\vdots \\
CT(T^{-1}AT)^{n-1}
\end{bmatrix} = OT
\]

\[
\ddot{C} = \begin{bmatrix}
\dddot{B} \\
\dddot{AB} \\
\dddot{A}^{n-1}B
\end{bmatrix} = \begin{bmatrix}
T^{-1}B \\
T^{-1}ATT^{-1}B \\
\vdots \\
(T^{-1}AT)^{n-1}T^{-1}B
\end{bmatrix} = T^{-1}C.
\]

Therefore, \(\dddot{O}C = (OT)(T^{-1}C) = OC \)

- If we factor \(H \) one way, we end up with a representation that has one set of \(O \) and \(C. \)
- If we factor \(H \) any other way, we end up with a representation that has an alternate set of \(\dddot{O} \) and \(\dddot{C}. \)
- But, these representations are related via a similarity transformation \(T. \)

That is, no matter how we factor \(H, \) we end up with different \(A, B, \) and \(C \) matrices, but the same input-output relationship (same transfer function, same unit-pulse response, but different state descriptions).
• For example, we could choose to let $O = I$, and then $C = H$. This will result in an A, B, and C that are in “observability canonical form.” (cf. ECE5520)

• Or, we could choose to let $C = I$, and then $O = H$. This will result in an A, B, and C that are in “controllability canonical form.”

ISSUE IV: Is there a “best” way to factor H? Yes... enter the SVD.
5.7: Singular value decomposition

FACT: Any rectangular matrix \(A \in \mathbb{R}^{m \times n} \), where \(\text{rank}(A) = r \), can be factored into the form:

\[
A = U \Sigma V^T.
\]

- \(U = [u_1, \ldots, u_r] \in \mathbb{R}^{m \times r} \), and \(U^T U = I \), and \(u_i \) are the left or output singular vectors of \(A \).
- \(V = [v_1, \ldots, v_r] \in \mathbb{R}^{n \times r} \), and \(V^T V = I \), and \(v_i \) are the right or input singular vectors of \(A \).
- \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r) \) where \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \), and \(\sigma_i \) are the (nonzero) singular values of \(A \).

The above is called a compact SVD. Most often, we compute a full SVD, where

- \(U = [u_1, \ldots, u_m] \in \mathbb{R}^{m \times m} \), and \(U^T U = I \),
- \(V = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n} \), and \(V^T V = I \),
- The matrix \(\Sigma \in \mathbb{R}^{m \times n} \) is “diagonal”

\[
\Sigma = \begin{bmatrix}
\sigma_1 & 0 & 0 \\
\vdots & \ddots & 0 \\
0 & \cdots & \sigma_m
\end{bmatrix} \quad \text{or} \quad \Sigma = \begin{bmatrix}
\sigma_1 & 0 \\
\vdots & \ddots \\
0 & \cdots & \sigma_n
\end{bmatrix} \quad \text{or} \quad \Sigma = \begin{bmatrix}
\sigma_1 & 0 \\
0 & \cdots \\
0 & \sigma_n \\
0 & 0 & 0
\end{bmatrix}
\]

when \(m < n \), \(m = n \) and \(m > n \), respectively.
- In this case, \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \), and \(\sigma_i = 0 \) for \(i > r \).
- In MATLAB, \texttt{svd.m} and \texttt{svds.m}

We often write the full SVD as partitioned:
\[A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}, \]

where \(A = U_1 \Sigma_1 V_1^T \) is the compact SVD.

- Note that the singular values are related to matrix norm. In particular, \(\| A \| = \sigma_1 \).
- Can view operation \(y = Ax \) as \(y = (U \Sigma V^T)x \), decomposing the operation into

 - Computing coefficients of \(x \) along the input directions \(v_1, \ldots, v_r \) (rotating by \(V^T \))
 - \(v_1 \) is the most sensitive (highest gain) input direction
 - Scaling the coefficients by \(\sigma_i \) (dilation)
 - Reconstituting along output directions \(u_1, \ldots, u_r \).
 - \(u_1 \) is the highest gain output direction. \(Av_1 = \sigma_1 u_1 \).
- SVD gives a picture of gain as a function of input/output directions.

EXAMPLE: Consider \(A \in \mathbb{R}^{4 \times 4} \) with \(\Sigma = \text{diag}(10, 7, 0.1, 0.05) \).

- Input components along directions \(v_1 \) and \(v_2 \) are amplified (by about 10) and come out mostly along the plane spanned by \(u_1 \) and \(u_2 \).
- Input components along directions \(v_3, v_4 \) are attenuated (by about 10).
- \(\| Ax \| / \| x \| \) can range between 10 and 0.05; \(A \) is nonsingular.
- For some applications you might say that \(A \) is *effectively* rank 2 (this will be important for us later).
Low-rank approximations

- Suppose that \(A \in \mathbb{R}^{m \times n} \) and \(\text{rank}(A) = r \), with SVD

\[
A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T.
\]

- We want to approximate \(A \) by \(\hat{A} \), where \(\text{rank}(\hat{A}) \leq p < r \) such that \(\hat{A} \approx A \) in the sense that \(\|A - \hat{A}\| \) is minimized.

- The optimal rank \(p \) approximator is \(\hat{A} = \sum_{i=1}^{p} \sigma_i u_i v_i^T \) and hence

\[
\|A - \hat{A}\| = \left\| \sum_{i=p+1}^{r} \sigma_i u_i v_i^T \right\| = \sigma_{p+1}
\]

because \(\sigma_{p+1} \) is the maximum remaining singular value.

INTERPRETATION: SVD dyads \(u_i v_i^T \) are ranked in order of ‘importance’; take \(p \) of them to get a rank \(p \) approximant.

APPLICATION: We can use this idea to simplify models (very useful).

Suppose that

- \(y = Ax + v \) where \(A \in \mathbb{R}^{100 \times 30} \) has SVs 10, 7, 2, 0.5, 0.01, \ldots, 0.0001.

- \(\|x\| \) is on the order of 1, and unknown error or noise \(v \) has norm on the order of 0.1.

- Then, the terms \(\sigma_i u_i v_i^T x \) for \(i = 5, \ldots, 30 \) are substantially smaller than the noise term \(v \).

- So, we can approximate \(y = Ax + v \) by the much simplified model

\[
y = \sum_{i=1}^{4} \sigma_i u_i v_i^T x + v.
\]
5.8: Back to Ho–Kalman

- Recall Ho–Kalman “ISSUE 1,” how do we form the Hankel matrix \mathbf{H} if we don’t know the dimension of the system state n?

- To address this issue, consider the infinite, skew-diagonal matrix \mathbf{H}_∞:

$$
\mathbf{H}_\infty = \begin{bmatrix}
g_1 & g_2 & g_3 & g_4 & \cdots \\
g_2 & g_3 & g_4 & g_5 & \cdots \\
g_3 & g_4 & g_5 & g_6 & \cdots \\
g_4 & g_5 & g_6 & g_7 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
$$

where the entries g_k correspond to the Markov parameters for the given system.

- This form is called an infinite Hankel matrix, or Hankel operator.

- We can also define a finite Hankel matrix, formed by the first k rows and l columns of \mathbf{H}

$$
\mathbf{H}_{k,l} = \begin{bmatrix}
g_1 & g_2 & g_3 & \cdots & g_l \\
g_2 & g_3 & g_4 & \cdots & g_{l+1} \\
g_3 & g_4 & g_5 & \cdots & g_{l+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_k & g_{k+1} & g_{k+2} & \cdots & g_{k+l-1}
\end{bmatrix}.
$$

- This finite Hankel matrix factors into $\mathbf{H}_{k,l} = \mathbf{O}_k \mathbf{C}_l$ where:

$$
\mathbf{O}_k = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{k-1}
\end{bmatrix}, \quad \mathbf{C}_l = \begin{bmatrix} B & AB & A^2B & \cdots & A^{l-1}B \end{bmatrix}.
$$

- The approach we will take is to make a $\mathbf{H}_{k,l}$ of larger size than we expect for a hypothesized value of n. That is, $k > n$ and $l > n$.

Therefore $O_k \neq O$ and $C_l \neq C$ even though the matrices have the same general form. We call O_k the extended observability matrix and C_l the extended controllability matrix.

- We then apply the SVD to $H_{k,l}$

$$H_{k,l} = U \Sigma V^T = U \Sigma^{1/2} \Sigma^{1/2} V^T$$

$$= U \Sigma^{1/2} T T^{-1} \Sigma^{1/2} V^T$$

$$= \left(\frac{U \Sigma^{1/2} T}{O_k} \right) \left(\frac{T^{-1} \Sigma^{1/2} V^T}{C_l} \right).$$

- The first n non-zero singular values provide insight into model order.
 - Problem: Noisy data yields more than n non-zero singular values.
 - Need to look at a few and determine when there is a “significant” drop off in the magnitude of the SVDs.

- Note that this approach also gives us O_k and C_l automatically in a “balanced realization”. Solves “ISSUE III” and “ISSUE IV”.
 - T must be invertible, but selection of T is otherwise arbitrary. Usually use $T = I$.

- How to decompose further into (A, B, C) to solve “ISSUE II”?

- Note the shift property of a Hankel matrix. If we shift H up by one block row, we get $H_{k+1,l}^\uparrow = O_k AC_l$.

$$H_{k+1,l}^\uparrow = \begin{bmatrix} g_2 & g_3 & g_4 & \cdots & g_{l+1} \\
g_3 & g_4 & g_5 & \cdots & g_{l+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_k & g_{k+1} & g_{k+2} & \cdots & g_{k+l-1} \\
g_{k+1} & g_{k+2} & g_{k+3} & \cdots & g_{k+l} \end{bmatrix}$$
Using the pseudo-inverse to solve for A gives \(A = \mathcal{O}_k^\dagger \mathcal{H}_{k+1,\ell}^\dagger \mathcal{C}_l^\dagger \).

In MATLAB, we can compute either

\[
\text{Ahat} = \text{pinv}(\text{Ok}) \ast \text{HankelUp} \ast \text{pinv}(\text{Cl});
\]

or

\[
\text{Ahat} = (\text{Ok}\backslash \text{HankelUp})/\text{Cl};
\]

As before, we extract B from the first block column of the controllability matrix we derived via SVD.

Also, extract C from the first block row of the observability matrix we derived via SVD, and set $D = g_0$.

\[
\begin{bmatrix}
CAB & CA^2B & CA^3B & \cdots & CA^lB \\
CA^2B & CA^3B & CA^4B & \cdots & CA^{l+1}B \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
CA^{k-1}B & CA^kB & CA^{k+1}B & \cdots & CA^{k+l-2}B \\
CA^kB & CA^{k+1}B & CA^{k+2}B & \cdots & CA^{k+l-1}B
\end{bmatrix} = \mathcal{O}_{k+1}^\dagger \mathcal{C}_l = \mathcal{O}_k \mathcal{C}_{l+1}^\leftarrow = \mathcal{O}_k AC_l.
5.9: Ho–Kalman summary and example

STEP I: Collect the unit-pulse response values into two Hankel matrices

1. An original finite Hankel matrix
2. A shifted version matrix of the original Hankel matrix (same size)

STEP II: Compute the SVD of the (unshifted) Hankel matrix

- Identify system order from the singular values
- May need to iterate on choice of Hankel matrix (discussed later)

STEP III: Compute the extended observability and controllability matrices

- Use appropriately dimensioned SVD components
- Typically use $T = I_n$

STEP IV: Identify the system matrices (A, B, C). $D = g_0$.

EXAMPLE: Suppose that a unit pulse yields the following response:

$$y = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots).$$

- We recognize this output as the Fibonacci sequence generated by $g_k = g_{k-1} + g_{k-2}$ with initial conditions $g_0 = 0$ and $g_1 = 1$.
- A typical realization for this sequence is given by the state-space system:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0.$$

- We’ll try to come up with an equivalent realization based on only the unit-pulse response.
% Define true system, compute the Markov parameters as "y"
A = [0 1; 1 1]; B = [1; 1]; C = [1 0]; D = 0; dt = 1;
sysTrue = ss(A,B,C,D,dt); % "typical" Fibonacci ss model
y = dt*impulse(sysTrue); % scale by dt to get unit-pulse response

- The Hankel matrices that we will require are:

\[
\mathcal{H}_{4,4} = \begin{bmatrix}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 5 \\
2 & 3 & 5 & 8 \\
3 & 5 & 8 & 13
\end{bmatrix}, \quad \mathcal{H}_{5,4}^\uparrow = \begin{bmatrix}
1 & 2 & 3 & 5 \\
2 & 3 & 5 & 8 \\
3 & 5 & 8 & 13 \\
5 & 8 & 13 & 21
\end{bmatrix}.
\]

% Form \(\mathcal{H}_{4,4} \) and shifted \(\mathcal{H}_{5,4} \). Note: Do not include "zero-th"
% parameter (first element of y), which corresponds to the matrix D.
bigHankel = hankel(y(2:end)); % don't forget to omit h(0) term = y(1)
H = bigHankel(1:4,1:4); % for this example, keep only 4x4 portion
Hup = bigHankel(2:5,1:4); % shifted \(\mathcal{H}_{5,4} \)

- The SVD yields

\[\sigma_1 = 54.56 \quad \sigma_2 = 0.43988 \quad \sigma_i = 0, \ i \geq 3\]

which indicates that \(n = 2 \).

% Compute singular values of Hankel matrix
[U,S,V] = svd(H);

% Identify system order off-line as \(n = 2 \) based on values of S
n = 2;

- We now extract the two left columns of \(U \) and \(V \)

\[
U = V = \begin{bmatrix}
-0.1876 & 0.7947 \\
-0.3035 & -0.4911 \\
-0.4911 & 0.3035 \\
-0.7947 & -0.1876
\end{bmatrix}.
\]
Compute the extended observability and controllability matrices

\[
C_l = \Sigma^{1/2} V^T = \begin{bmatrix}
-0.8507 & -1.3764 & -2.2270 & -3.6034 \\
0.5257 & -0.3249 & 0.2008 & -0.1241
\end{bmatrix}
\]

\[
O_k = U \Sigma^{1/2} = C_l^T.
\]

% Compute extended observability and controllability matrices, sized to % the order for the system inferred by the singular values.
Us = U(:,1:n); Ss = S(1:n,1:n); Vs = V(:,1:n);
Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';

Identify the system matrices \((\hat{A}, \hat{B}, \hat{C})\) up to similarity transform

\[
\hat{A} = O_k^\dagger H_{k+1}^\dagger C_l^\dagger = \begin{bmatrix}
1.6180 & 0 \\
0 & -0.6180
\end{bmatrix}
\]

\[
\hat{B} = C_l(1:n,1:m) = C_l(1:2,1) = \begin{bmatrix}
-0.8057 \\
0.5257
\end{bmatrix}
\]

\[
\hat{C} = O_k(1:p,1:n) = O_k(1,1:2) = \begin{bmatrix}
-0.8057 & 0.5257
\end{bmatrix}
\]

\[
\hat{D} = g_0 = 0.
\]

% Identify system assuming \(p = m = 1\) (SISO), using shifted Hankel matrix
Ahat = (Ok\Hup)/Cl; Bhat = Cl(:,1); Chat = Ok(1,:); Dhat = y(1);
sysEst = ss(Ahat, Bhat, Chat, Dhat, dt);

Now, let’s compare the true and identified (“estimated”) systems

- Same pole-zero mapping (eigenvalues...transfer function)
- Same unit-pulse responses
COMMENTS: Selecting an appropriate amount of output data to store may require iteration ("how big an \mathcal{H} do I need?")

- Until $\text{rank}(\mathcal{H}_{k,l}) = \text{rank}(\mathcal{H}_{k-1,l-1})$, or
- Until the next singular value is "insignificant."

- Interesting to note that $A = A^T$ and that $B = C^T$ for the identified system in the example.
 - This property holds for square Hankel matrices
 - The identification process will work so long as the Hankel matrix dimensions exceed the system order (\mathcal{H} need not be square)

REMAINING QUESTION: From whence come the g_k?

- This is key to making the DRA work.
5.10: Discrete-Time Realization Algorithm (DRA)

- Given a continuous-time transfer function in the Laplace domain, \(H(s) = Y(s)/U(s) \), and a sampling period, \(T_s \), we want to derive a reduced-order discrete-time state-space realization of the form

\[
\begin{align*}
x[k + 1] &= Ax[k] + Bu[k] \\
y[k] &= Cx[k] + Du[k],
\end{align*}
\]

- A sufficient condition for the DRA to operate is that \(H(s) \) be an element of the Hardy space \(\mathcal{H}_\infty \), which implies that it is a strictly stable and proper system.

- This is not a necessary condition, however, as we will later generalize the method to work with systems having isolated pole(s) on the imaginary axis.

- Note that we do not restrict \(H(s) \) to be formulated as a quotient of polynomials in the Laplace variable “s” (for which well-known methods exist to find the discrete-time system).

- We describe the algorithm in four steps, which we preview here, and discuss in more detail in the following subsections.

STEP 1: Sample the continuous-time transfer function \(H(s) \) in the frequency domain at a high rate, and take the inverse discrete Fourier transform (IDFT) of the samples to get an approximation to the continuous-time impulse response \(h(t) \).

STEP 2: Use \(h(t) \) to approximate the continuous-time step response \(h_{\text{step}}(t) \), also sampled at the high rate.
STEP 3: Compute discrete-time unit-pulse response \(g_k \) with inter-sample period \(T_s \) from continuous-time step response \(h_{\text{step}}(t) \), assuming a sample and hold circuit connected to system input.

STEP 4: Generate a discrete-time state-space realization using the deterministic Ho–Kalman algorithm.

- We note that a system having a pole at the origin does not meet the strictly-stable requirement. However, we also show that this pole can be automatically accounted for.

Building the DRA from the end to the beginning

STEP 3: If we have the system’s unit-pulse response, we can use Ho–Kalman to find a state-space representation.

- But, how to find the unit pulse response? Let’s assume that we know the continuous-time step response \(h_{\text{step}}(t) \):

The continuous-time response to a unit pulse of length \(T_s \) seconds is \(h_{\text{pulse}}(t) = h_{\text{step}}(t) - h_{\text{step}}(t - T_s) \).

The discrete-time response is found by sampling: \(g_k = h_{\text{pulse}}(kT_s) \).

STEP 2: If we have the system’s continuous-time step response, we can find a state-space representation.
But, how to find the step response? Let’s assume that we know the continuous-time impulse response $h(t)$. Then,

$$h_{\text{step}}(t) = \int_{0}^{t} h(\tau) \, d\tau.$$

In fact, since the DRA is a numeric algorithm, we can’t deal with continuous time directly. Instead, we select a fast sample frequency F_1 such that $T_1 = \frac{1}{F_1} \ll T_s$.

Then, the finely sampled continuous-time step response is:

$$h_{\text{step}}(kT_1) = T_1 \sum_{i=0}^{k-1} h(iT_1).$$

STEP 1: Given the system’s finely sampled continuous-time impulse response, we can find a state-space representation.

How to find the finely sampled continuous-time impulse response?

We approximate the continuous-time impulse response via a “discrete equivalent” approach (frequency-domain emulation).

We use the bilinear transform to write a high-sample-rate discrete-time approximation to the original continuous-time transfer function

$$H(z) \approx H(s)|_{s = \frac{2}{T_1} \frac{z-1}{z+1}},$$

where T_1 is the same emulation sampling period as before.3

3 In order to arrive at an accurate estimation of the continuous time transfer function, the sampling frequency, $F_1 = 1 / T_1$, must be high enough to capture the system dynamics. As a rule of thumb, the sampling frequency must be at least 20 times the as great as the bandwidth of the system to get an rough approximation in the frequency domain. A higher emulation sampling frequency gives more accurate results.
We now recognize that the discrete Fourier transform (DFT) of a sequence is related to its z-transform via the relationship

$$H[f] = H(z) \bigg|_{z=\exp(j2\pi f/N)} = H(s) \bigg|_{s=\frac{2j}{T_1} \left[\exp(j2\pi f/N - 1) \right]}$$

$$= H(s) \bigg|_{s=\frac{2j}{T_1} \tan(\pi f/N)} , \quad 0 \leq f < N,$$

where N is the number of points chosen for the underlying sequence, and is usually chosen to be a power of 2 for efficient computations.

The inverse DFT of $H[f]$ gives $h(nT_1)$, which is the approximation of the continuous-time impulse response at the emulation sampling period, T_1

$$h(nT_1) = \frac{1}{N} \sum_{f=0}^{N-1} H[f] e^{j2\pi fn/N},$$

which is indexed from $n = 0$ to $n = N - 1$.

Examples of the DRA

- We will ultimately look at three examples to illustrate the DRA.
- The first two are rational-polynomial transfer functions, which we use because we can calculate the exact solution using other methods.
 - We can then compare the exact solutions to the approximate solutions obtained by the DRA.
- The third does not have a closed-form solution, but we can use a 1-D parabolic-elliptic partial differential equation solver to find an accurate near-exact solution against which to compare the DRA solution.
- We find excellent agreement between the exact solutions and DRA solutions in all cases.
5.11: Example 1: Rational polynomial transfer function

- The DRA method is first applied to a simple second-order system.
- We require a discrete-time realization with the a sampling period of $T_s = 0.1$ seconds from the continuous-time transfer function
 \[H_1(s) = \frac{s^2 + 20s + 100}{s^2 + 2s + 8}. \]
- We compute the Bode plot to estimate the system bandwidth.

\[
\text{omega} = \text{logspace}(-1,3,100); % \text{create freq. axis in rad/sec}
\text{s} = 1j*\text{omega}; % \text{create } s = j*\text{omega}
\text{H} = (\text{s} .^2 + 20*\text{s} + 100)./(\text{s} .^2 + 2*\text{s} + 8); % \text{compute cplx. freq. response}
\text{semilogx}([\text{omega}],20*\text{log10}([\text{abs}([\text{H}]))]); % \text{display the magnitude response}
\]

- Poles at $-1 \pm j2.65 \text{ rad s}^{-1}$, two zeros at 10 rad s^{-1}.
- The magnitude response of $H_1(s)$ is shown in the figure.
- The system bandwidth is on the order of 3 rad s^{-1} (about 0.5 Hz).

STEP 1: The sampling frequency is selected as 256 Hz which is (much) greater than 20 times the system bandwidth.

- Transfer function is sampled at discrete frequencies; inverse DFT yields an approximate continuous-time impulse response.

\[
\text{F1} = 256; \text{T1} = 1/\text{F1}; \quad % \text{Interp. freq. of 256 Hz}
\text{minTlen} = 6.5; \quad % \text{min. } h(t) \text{ length in sec.}
\text{N} = 2^{(\text{ceil}(\text{log2}([\text{minTlen}*\text{F1}])))}; \quad % \# \text{ of samples at rate } \text{F1}
\text{f} = 0:\text{N}-1; \quad % \text{normalized freq. vector}
\text{s} = (2j/\text{T1})*\tan(\pi*\text{f}/\text{N}); \quad % \text{substitute to get } H_d[f]
\]
The figure compares the approximate continuous-time impulse response computed via the inverse DFT to the exact continuous-time impulse response of $H_1(s)$.

The solutions are coincident.

STEP 2: The approximation to the continuous-time step response is found by doing a cumulative summation of the impulse response.

The results are shown in the figure and show excellent agreement with the exact step response of the continuous time system.
STEP 3: We now resample the continuous-time approximate step response at the final sample rate T_s, and compute the discrete-time unit-pulse response as $h_{\text{step}}[k] - h_{\text{step}}[k - 1]$

```matlab
Ts = 0.1; tdisc = 0:Ts:6.5; % final time vector
hdisc = [0 diff(interp1(td,hstep,tdisc))]; % h[k]
stem(tdisc,hdisc,'filled'); hold on

[himpDiscTrue,timpDiscTrue] = impulse(c2d(H1,Ts),5); % next line scales IMPULSE in new MATLAB to give unit-pulse resp.
himpDiscTrue = Ts*himpDiscTrue;
plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);
axis([-0.01 5 -1 2.6]);
```

- Note that in new versions of MATLAB, the “impulse” command works differently from old versions for discrete-time systems.
- We need to scale MATLAB’s output by T_s to compute the unit-pulse response that we desire.
- Again, there is excellent agreement between the approximate unit-pulse response and the exact solution, except at single point $t = 0$.
- This is often the case because of some properties of the inverse DFT.
- But it causes no problems since the unit-pulse response value at $t = 0$ is computed differently, using

$$D = g_0 = \lim_{s \to \infty} H(s).$$
STEP 4: The Ho–Kalman algorithm is used to find state-space realization from approximate discrete-time unit-pulse response of Step 3.

- 64 points from the discrete-time unit-pulse response are used, which allows a maximum Hankel matrix of 32×32.
- We first compute and plot the singular values of the Hankel matrix.

```matlab
bigHankel = hankel(hdisc(2:66)); % don't forget to omit h(0) term!
% for this example, keep only 32x32 portion
Hankel = bigHankel(1:32,1:32);
HankelUp = bigHankel(2:33,1:32); % shifted Hankel matrix
[U, S, V] = svd(Hankel); % compute singular values
plot(log10(diag(S)),'bx','markersize',8); axis([0 33 -20 5]);
```

- Hankel-matrix SVD gives insight into the system’s order.
- A log plot of the singular values is shown in the figure.
- The first two are almost three orders of magnitude greater than the third, so we select a reduced-order model dimension $p = 2$.

```matlab
n = 2; % select via singular values
Us = U(:,1:n); % Compute extended observability, controlability
Ss = S(1:n,1:n); % matrices, sized to the order for the system
Vs = V(:,1:n); % inferred by the singular values.
Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';
Ahat = (Ok\HankelUp)/Cl; % calculate A from Ok, Cl
Bhat = Cl(1:n,1); Chat = Ok(1,1:n); % calculate B and C
Dhat = 1; % calculated manually
sysDRA = ss(Ahat,Bhat,Chat,Dhat,Ts); % final DRA ss model
```
Truncating to the first two states only, the Ho–Kalman algorithm gives a state-space realization with the following A, B, and C matrices

$$\hat{A} = \begin{bmatrix} 0.8656 & -0.2367 \\ 0.2367 & 0.8811 \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} -1.624 \\ 0.7692 \end{bmatrix}, \quad \hat{C} = \begin{bmatrix} -1.624 & -0.7692 \end{bmatrix}. $$

The \hat{D} matrix is found from the initial value theorem and, for this example, is $\hat{D} = [1]$.

We compare the true discrete-time unit-pulse response and the final DRA model unit-pulse response:

```matlab
% next line scales IMPULSE in new MATLAB to give unit-pulse resp.
[himpDRA, timpDRA] = impulse(sysDRA, 5); himpDRA = Ts*himpDRA;
stem(timpDRA, himpDRA, 'filled'); hold on
plot(timpDiscTrue, himpDiscTrue, 'r.', 'markersize', 8);
axis([-0.01 5 -1 2.6]);
```

The results agree very well (note that $h[0]$ has been corrected by the correct calculation of the \hat{D} matrix in Step 4).

Because the unit-pulse responses agree very well, the response of the reduced-order model will also agree well with the exact response for any input signal $u[k]$.

5.12: Example 2: Dealing with a pole in $H(s)$ at the origin

- This example has a pole in $H(s)$ at $s = 0$, so is not strictly stable, and violates the necessary conditions that make the DRA work.
- However, it is quite simple to deal with this case.
 - We first subtract the pole at the origin from the transfer function,
 - Then execute the DRA on the residual system,
 - Then compute a final discrete-time state-space model that augments the DRA result with additional dynamics to implement the function of the s-domain pole at the origin.

- A pole at the origin is removed by first calculating the residue of this pole and then subtracting it from the original transfer function.

$$H^*(s) = H(s) - \frac{\text{res}_0}{s} \quad \text{where} \quad \text{res}_0 = \lim_{s \to 0} s H(s).$$

- The remainder of the DRA is executed using $H^*(s)$ instead of $H(s)$.
- To re-incorporate the effect of the pole at $s = 0$ into the final reduced-order model, recall that this pole corresponds to an integrator. The discrete-time equivalent can be implemented as

$$x_i[k + 1] = x_i[k] + T_s u[k].$$

- We combine this with the DRA-produced state-space form

$$\begin{bmatrix} x[k + 1] \\ x_i[k + 1] \end{bmatrix}_{\text{aug}[k+1]} = \begin{bmatrix} \hat{A} & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x[k] \\ x_i[k] \end{bmatrix}_{\text{aug}[k]} + \begin{bmatrix} \hat{B} \\ T_s \end{bmatrix} u[k]$$

$$y[k] = \begin{bmatrix} \hat{C} & \text{res}_0 \end{bmatrix} \begin{bmatrix} x[k] \\ x_i[k] \end{bmatrix}_{\text{aug}[k]} + Du[k]$$
where dotted lines delineate boundaries between block sub-matrices of the overall augmented state-space matrices $\hat{A}_{\text{aug}}, \hat{B}_{\text{aug}},$ and \hat{C}_{aug}.

Example 2: Rational polynomial transfer function with pole at origin

- In this example, we demonstrate how to handle a single pole at the origin. The continuous-time transfer function is given by
 \[
 H_2(s) = \frac{1}{s} \left(\frac{1}{s^2 + 6s + 8} \right).
 \]
- This system has real poles at 0, 2 and 4 rad s$^{-1}$.
- Desire a discrete-time transfer function with sample period $T_s = 0.1$ s.
- Prior to Step 1 we remove the pole at the origin.
- This is accomplished by first calculating the residue for this pole.
- In this example, the residue can be computed analytically as
 \[
 \text{res}_0 = \lim_{s \to 0} s H(s) = 0.125.
 \]
- In general, we find this residue by selecting a very small value for s and numerically computing res_0, or by using a software tool like Mathematica to compute the limit.
- The reduced transfer function, $H_2^*(s)$ with the pole at the origin removed is
 \[
 H_2^*(s) = \frac{1}{s} \left(\frac{1}{s^2 + 6s + 8} \right) - \frac{0.125}{s}.
 \]
- The figures below shows the magnitude plot of the original system and the system with the pole at the origin removed.
STEP 1. $H^*_2(s)$ is sampled at 256 Hz which is (much) more than 50 times greater than the system bandwidth. We could implement either

\[
H_d = \frac{1}{s^3 + 6s^2 + 8s} - 0.125/s; \quad \% H_d[f]
\]

\[
H_d(1) = -6/64; \quad \% \text{analytic solution}
\]

where \(\lim_{s \to 0} H^*_2(s) = -6/64 \), or compute by hand

\[
H^*_2(s) = \frac{1}{s} \left(\frac{1}{s^2 + 6s + 8} \right) - \frac{0.125}{s} \left(\frac{s^2 + 6s + 8}{s^2 + 6s + 8} \right)
\]

\[
= -\frac{0.125}{s} \left(\frac{s^2 + 6s}{s^2 + 6s + 8} \right) = -0.125 \left(\frac{s + 6}{s^2 + 6s + 8} \right),
\]

and implement

\[
H_d = -0.125 \times s + 6)/(s^2 + 6s + 8);
\]

- The approximate continuous-time impulse response is computed and plotted.
STEP 2: The approximation to the continuous-time step response of $H_2^*(s)$ is calculated as in the first example and plotted.

STEP 3: This step response is sampled at $T_s = 0.1$ seconds, and differenced to yield the discrete-time unit-pulse response, plotted in the figure.

STEP 4. The system Hankel matrix is generated from the discrete-time unit-pulse response found in Step 3.

- 64 discrete time points are used, resulting in a 32×32 Hankel matrix.
- The figure depicts the 32 singular values of the system Hankel matrix.
- The first two singular values are two orders of magnitude greater than the third, indicating that $H_2^*(s)$ is a second order system.
The Ho–Kalman algorithm generates the \hat{A}, \hat{B}, and \hat{C} matrices after truncating all but the first two states. We find that

$$\hat{A} = \begin{bmatrix} 0.8617 & -0.0906 \\ 0.0906 & 0.6274 \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} 0.1162 \\ -0.0340 \end{bmatrix}$$

$$\hat{C} = \begin{bmatrix} -0.1162 & -0.0340 \end{bmatrix}.$$

In this example, we also compute $\hat{D} = \lim_{s \to \infty} H_2^*(s) = 0$, which can also be quite easily seen in the high-frequency response of $H_2^*(s)$.

The state-space representation for $H_2^*(s)$ is augmented to include the pole at the origin to create a representation for $H_s(s)$.

```matlab
Aaug = [Ahat, zeros(n,1); zeros(1,n), 1];
Baug = [Bhat; Ts];
Caug = [Chat, res0];
sysDRA = ss(Aaug,Baug,Caug,Dhat,Ts) % final DRA state-space sys.
```

The discrete-time realization of $H_2(s)$ is

$$\hat{A}_{aug} = \begin{bmatrix} 0.8617 & -0.0906 & 0 \\ 0.0906 & 0.6274 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \hat{B}_{aug} = \begin{bmatrix} 0.1162 \\ -0.0340 \\ 0.1 \end{bmatrix}$$

$$\hat{C}_{aug} = \begin{bmatrix} -0.1162 & -0.0340 & 0.125 \end{bmatrix}, \quad \hat{D} = [0].$$

The figure shows close comparison of the unit-pulse response found from the DRA and the exact solution.
5.13: Example 3: Transcendental transfer function

- In the first two examples, we used rational polynomials to illustrate the DRA method where order of the system is known \textit{a priori}, and the exact answer could be calculated analytically.

- We now demonstrate the DRA with an infinite-order distributed-parameter system: Specifically the Jacobsen–West transfer function of lithium diffusion in a single particle, where

\[
H_3(s) = \frac{\tilde{C}_{s,e}(s)}{J(s)} = \frac{R_s}{D_s} \left[\frac{1}{1 - R_s \sqrt{s/D_s} \coth(R_s \sqrt{s/D_s})} \right],
\]

and where the integrator-removed transfer function is

\[
H^*_3(s) = \frac{\Delta \tilde{C}_{s,e}(s)}{J(s)} = \frac{\tilde{C}_{s,e}(s)}{J(s)} - \frac{\tilde{C}_{s,\text{avg}}(s)}{J(s)}
\]

\[
= \frac{s R_s^2}{D_s} + 3 - 3 R_s \sqrt{s/D_s} \coth \left(R_s \sqrt{s/D_s} \right)
\]

\[
= \frac{s R_s \left(1 - R_s \sqrt{s/D_s} \coth \left(R_s \sqrt{s/D_s} \right) \right)}{s R_s \left(1 - R_s \sqrt{s/D_s} \coth \left(R_s \sqrt{s/D_s} \right) \right)},
\]

where we have used the relationship

\[
\frac{\tilde{C}_{s,\text{avg}}(s)}{J(s)} = \frac{\text{res}_0}{s} = \frac{-3/R_s}{s}.
\]

- Parameter values for the transfer functions used in this example are listed in the table, from which we can compute that \(\text{res}_0 = -3 \times 10^5\).

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_s)</td>
<td>Sampling period</td>
<td>1 s</td>
</tr>
<tr>
<td>(R_s)</td>
<td>Particle radius</td>
<td>(10^{-5}) m</td>
</tr>
<tr>
<td>(D_s)</td>
<td>Diffusivity</td>
<td>(10^{-12}) m² s⁻¹</td>
</tr>
<tr>
<td>(c(r, 0))</td>
<td>Initial lithium conc.</td>
<td>(10,000) mol m⁻³</td>
</tr>
</tbody>
</table>

STEP 1. The magnitude responses of \(H_3(s)\) and \(H^*_3(s)\) are shown below:
- $H_3^*(s)$ is sampled at 256 Hz for a total of 256 seconds.

- The frequency vector for $H_3^*(s)$ can be calculated as

  ```matlab
  beta = Rs*sqrt(s/Ds);
  Hd = (Rs/Ds)*(1./(1-beta.*coth(beta))) + (3/Rs)./s;
  Hd(1) = -Rs/(5*D); % analytic solution
  ```

 where MATLAB numerically removes the integrator pole, or as

  ```matlab
  beta = Rs*sqrt(s/Ds);
  Hd = (beta.^2+3-3*beta.*coth(beta))./(s.*Rs.*(1-beta.*coth(beta)));
  Hd(1) = -Rs/(5*D); % analytic solution
  ```

- Note that both computations of H_3^* initially produce NaN for $s = 0$ due to numeric attempts to evaluate zero divided by zero.

- This entry must be manually replaced by a value computed analytically

 $$
 \lim_{s \to 0} H_3^*(s) = \lim_{s \to 0} \frac{sR_s^2}{D_s} + 3 - 3R_s\sqrt{s/D_s} \coth \left(R_s \sqrt{\frac{s}{D_s}} \right) = -\frac{R_s}{5D}.
 $$

- Direct by-hand computation returns 0/0. We must use l'Hôpital's rule repeatedly until an answer is reached.

- When using transcendental transfer functions, we recommend computer tools such as Mathematica for symbolic manipulation.
- The approximate continuous-time impulse response is shown.
- There is no known exact solution against which to compare this result.

STEP 2. The approximate continuous-time step response is calculated by performing a cumulative sum of the impulse response of Step 1.

- The figure shows approximated continuous-time step response.
- Again, there is no known exact solution against which to compare this result.

STEP 3: The approximate continuous-time step response is sampled at $T_s = 1$ second, and differenced to produce the discrete-time unit-pulse response, shown here.
STEP 4. Hankel matrix is formed; singular values are plotted.

- $H_3^*(s)$ represents a distributed-parameter system that actually has an infinite number of poles.
- However, only a few of them are significant to the solution.
- In particular, we choose to use a reduced-order model dimension $n = 2$ in the results we present here, imposing a tradeoff between the complexity and accuracy of the solution.
- The Ho–Kalman algorithm generates the \hat{A}, \hat{B}, and \hat{C} matrices to approximate $H_3^*(s)$ after truncating all but the first two states.

$$\hat{A} = \begin{bmatrix} 0.4695 & 0.3296 \\ 0.3296 & 0.4355 \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} 919.1 \\ -220 \end{bmatrix}$$

$$\hat{C} = \begin{bmatrix} -919.1 & 220 \end{bmatrix}.$$

- In this example, we also compute $\hat{D} = \lim_{s \to \infty} H_3^*(s) = 0$, which can also be quite easily seen in the high-frequency response of $H_3^*(s)$.
- This state-space realization is augmented with the integrator state to give the final third-order model of the diffusion equation $H_3(s)$.

$$\hat{A}_{aug} = \begin{bmatrix} 0.4695 & 0.3296 & 0 \\ 0.3296 & 0.4355 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \hat{B}_{aug} = \begin{bmatrix} 919.1 \\ -220 \\ 1 \end{bmatrix}$$

$$\hat{C}_{aug} = \begin{bmatrix} -919.1 & 220 & -3 \times 10^5 \end{bmatrix}, \quad \hat{D} = [0].$$
We demonstrate the DRA-produced model by simulating a 10 s discharge pulse where the surface lithium flux (leaving the particle) was \(j = 1 \times 10^{-5} \text{ mol m}^{-2} \text{ s}^{-1} \), followed by a 10 s rest.

The augmented state-space model was simulated with this input to produce \(\tilde{c}_{s,e}[k] \), and \(c_{s,e}[k] \) was computed as \(c_{s,e}[k] = \tilde{c}_{s,e}[k] + c_{s,0} \).

\[
\begin{align*}
\text{cs0} &= 10000; \\
\text{uk} &= 1e-5*[\text{ones}(1,10), \text{zeros}(1,10)]; \\
[c\text{seTilde}, t\text{k}] &= \text{lsim} (\text{sysDRA}, \text{uk}); \\
\text{cse} &= \text{cseTilde} + \text{cs0};
\end{align*}
\]

All discrete-time model states are initialized to zero.

The output of this discrete-time realization to a 10 second discharge followed by a 10 second rest is shown.

We compare this result against the “truth” produced by simulating the PDE using MATLAB’s 1-D parabolic-elliptic PDE solver.

```matlab
function [cse, t] = simCsePDE
    dr = 0.1e-6; % Radial resolution = 0.1 micro-meter
    dt = 0.001;  % Time step in simulation, s
    Tfinal = 20; % Length of simulation, s
    Rp = 10e-6; % Radius of particle = 10 micro-meters
    Ds = 1e-12; % Solid diffusivity, m^2/s
    j = 1e-5;  % mol/m^2/s
    x = 0:dr:Rp;  % locations for solution
    t = 0:dt:Tfinal; % time steps for solution
    options = odeset('RelTol',1e-8,'AbsTol',1e-10);
    sol = pdepe(2,@csefun,@cseic,@csebc,x,t,options);
    cse = sol(:,end,1);

function [c,f,s] = csefun(~,~,~,DuDx)
```

![Simulation of Example 3a: Surface Concentration](image.png)
The code comprises nested functions, where the main function initializes variables and calls MATLAB's solver with pointers (function handles) to nested helper functions:

- `csefun` implements the parameter values of the PDE;
- `cseic` implements the initial conditions; and
- `csebc` implements the boundary conditions.

Note that we achieve good results with the PDE solver only if a fine time-step is used: here, we have used a 1 ms step size, which makes the PDE solver execute much more slowly than the DRA-produced model.

Where from here?

- We have now seen the form that the final model will take, and examples of the general methodology to go from the PDE continuum-scale model to the reduced-order model.
- We now proceed to develop transfer functions for all cell variables of interest, and see how well the overall cell model works.