
ECE4710/5710: Modeling, Simulation, and Identification of Battery Dynamics 4–1

Continuum (Porous Electrode) Cell Models

4.1: Chapter goals

■ Mathematical models of physical phenomena are expressed most

readily at the microscopic scale, for homogeneous materials.

■ Accordingly, we have just finished developing microscale models of

mechanisms inside lithium-ion cells.

■ These described, in three dimensions, the charge and mass balance

within the solid particles and within the electrolyte, separately.

■ These models can be used to simulate small volumes inside

electrodes, comprising small clusters of particles, in order to get

ideas of how particle sizes and mixtures of geometries, etc, interact.

■ However, it is infeasible with present technology to simulate an entire

cell using microscale models.
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■ For cell-level models, we require reduced-complexity macro-scale

models that capture the dominant physics of the micro-scale.
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ECE4710/5710, Continuum (Porous Electrode) Cell Models 4–2

■ One approach to creating a macro-scale model is by volume-

averaging microscopic quantities over a finite but small unit of volume.

■ The resultant model is called a “continuum” model.

■ Modeling an object as a continuum assumes that the substance of

the object completely fills the space it occupies.

• Modeling an electrode in this way ignores the fact that it is made of

particles, and so is not continuous;

• Modeling the electrolyte this way ignores the fact that it is filled with

particles, so is not continuous;

• However, on length scales much greater than that of a particle’s

radius, such models are highly accurate.

■ Instead of predicting values of variables at a specific point in a cell,

continuum models tell you the average behavior inside the solid and

electrolyte in the neighborhood of a specific point.

■ Solid and electrolyte “phases” are still considered separately, but their

interactions within the volume must be factored in. Microscale

geometries need not be known—an average geometry is assumed.

■ To make continuum models, we use a volume-averaging approach.

■ When volume averaging, we are no longer

dealing with homogeneous materials.

■ The sample volume is assumed to contain

multiple “phases” of matter.

■ The figure shows a matrix of solid particles

where the voids are filled with electrolyte.
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■ When we compute volume-average equations, we need to take the

multi-phase nature of the sample volume into account.

■ The continuum models that we develop can be used in 3-D, but we

specialize to a 1-D description of cell dynamics, with an added

“pseudo-dimension” that describes activity inside the solid.
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■ The diagram shows, roughly to (typical) scale, the actual geometry of

a lithium-ion cell cross section, the model x dimension, and the model

r pseudo dimension.

Goals: Volume-averaging theorems and continuum cell model

■ Our first goal is to prove the following three theorems:1

1. Volume-averaging theorem 1 for scalar field ψ :

〈∇ψα〉 = ∇ 〈ψα〉 +
1

V

‹

Aαβ

ψαn̂α dA.

2. Volume-averaging theorem 2 for vector field ψ :

〈

∇ · ψα

〉

= ∇ ·
〈

ψα

〉

+
1

V

‹

Aαβ

ψα · n̂α dA.

1 The derivations rely heavily on: W.G. Gray and P.C.Y. Lee, “On the theorems for local

volume averaging of multiphase systems,” Int. J. Multiphase Flow, Vol. 3, pp. 333–40.
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3. Volume-averaging theorem 3 for scalar field ψ :
〈
∂ψα

∂t

〉

=
∂ 〈ψα〉

∂t
−

1

V

‹

Aαβ

ψαvαβ · n̂α dA.

■ Then, we will apply these volume-averaging theorems to the

microscale models from the prior chapter of notes to derive:

1. The volume-average approximation for charge conservation in the

solid phase of the porous electrode, which is

∇ · (σeff∇φ̄s) = as F j̄ .

2. The solid-phase mass-conservation equation,

∂cs

∂t
=

1

r2

∂

∂r

(

Dsr
2∂cs

∂r

)

.

3. The volume-average approximation for charge conservation in the

electrolyte phase of the porous electrode, which is

∇ ·
(

κeff∇φ̄e + κD,eff∇ ln c̄e

)

+ as F j̄ = 0.

4. The volume-average approximation for mass conservation in the

electrolyte phase of the porous electrode, which is

∂(εec̄e)

∂t
= ∇ · (De,eff∇ c̄e)+ as(1 − t0

+) j̄ .

5. The volume-average approximation to the microscopic Butler–

Volmer kinetics relationship, j̄ = j (c̄s,e, c̄e, φ̄s, φ̄e).
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4.2: Indicator and Dirac delta functions

■ We begin by deriving the volume-averaging theorems.

■ The sample volume is divided into two phases: the phase of interest

is denoted α; all other phase(s) are lumped into β.

■ Our goal is to find the average value of some variable in phase α.

■ To help with notation, we define an indicator function for phase α as

γα(x, y, z, t) =







1, if point (x, y, z) is in phase α at time t ;

0, otherwise.

■ We will need to take derivatives of γα, which are zero everywhere

except at the α–β phase boundaries.

■ But, how do we evaluate the derivative right on the boundary?

The Dirac delta function

■ To explore this, we introduce the Dirac delta function δ(x, y, z, t).

■ This function is unusual—it is defined in terms of its properties rather

than by stating exactly its value. These properties are:

δ(x, y, z, t) = 0, (x, y, z) 6= 0.
˚

V

δ(x, y, z, t) dV = 1.

■ This is not an ordinary kind of function. It is a generalized function,

which can have many different but equivalent equations describing it.

■ In one dimension, an example definition is

δ(x) = lim
ǫ→0







1

ǫ
, |x | ≤ ǫ/2;

0, otherwise.

Candidate δ(t)

−ǫ/2 ǫ/2

1/ǫ
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■ This has area 1 for all values of ǫ, and as ǫ → 0 it has zero width.

■ We can compact notation if we define the “pulse function”

5(x) =







1, |x | < 1/2;

0, otherwise.

■ Then, we can write

δ(x) = lim
ǫ→0

1

ǫ
5

(x

ǫ

)

.

Sifting property of the Dirac delta function

■ The Dirac delta function has several important properties.

■ The sifting property states that in one dimension
ˆ ∞

−∞

f (x, t)δ(x − x0, t) dx = f (x0, t).

■ The value of the function at the location of the Dirac delta is “sifted

out,” and the integral of a function is replaced by the value of that

function at a specific point.

■ In three dimensions, using vector form, if x = (x, y, z), and

x0 = (x0, y0, z0) we can write

˚

V

f (x, t)δ(x − x0, t) dV =







f (x0, t), if x0 is inside V ;

0, otherwise.

■ We will sketch a proof of this relationship in one dimension for x0 = 0.

■ Consider using a pulse shape as our candidate Dirac delta function.

We write
ˆ ∞

−∞

f (x)δ(x) dx = lim
ǫ→0

ˆ ∞

−∞

1

ǫ
5

(x

ǫ

)

f (x) dx .
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ǫ

Height: f (0); width ǫ

5
(x

ǫ

)

f (x)

1

ǫ
5

(x

ǫ

)

f (x)
f (x)

Integrand is shaded
area divided by ǫ

■ We see that f (x) is multiplied by zero at nearly every point in the

integral.

■ But, in the ǫ neighborhood of x = 0, it is being multiplied by 1/ǫ.

■ If f (x) is continuous around x0 = 0, then it will approach the constant

value f (0) over the interval −ǫ/2 to ǫ/2.

■ So, the integral becomes f (0) times the ǫ width of the Dirac delta

multiplied by the 1/ǫ height of the Dirac delta. That is,
ˆ ∞

−∞

f (x)δ(x) dx =
1

ǫ
ǫ f (0) = f (0).

■ This proof sketch can be generalized to x0 6= 0 and higher dimensions

quite readily.

■ The bottom line is that an integral involving a Dirac delta drops one

dimension and sifts out the value of the function in the integrand at

the location of the Dirac delta.

■ For example,
˚

V

f (x)δ(x − xαβ) dV =

‹

Aαβ

f (x) dA,

where xαβ is the set of points on the surface Aαβ of the α–β interface.
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4.3: Gradient of an indicator function

Running integral of a Dirac delta function

■ Now, consider integrating a 1-D Dirac delta from −∞ to x .

■ That is, we wish to compute
ˆ x

−∞

δ(χ) dχ.

■ In the figure below, the left frame shows three candidate Dirac delta

functions; the right frame shows corresponding running integrals.

x

1

ǫ
5

(x

ǫ

)

x

ˆ x

−∞

1

ǫ
5

(χ

ǫ

)

dχ

■ In the integral, if point x is to the left of the rectangle, the integral

sums up a lot of zero values, and the result is zero.

■ If point x is to the right of the rectangle, the integral contains the

entire Dirac delta function within its limits, so the result must be one.

■ If point x falls in the middle of the delta function, the result is finite but

undefined (as different candidate delta functions could be used).

■ The more closely the approximate Dirac delta function approaches

the true Dirac delta, the more closely the integral approaches a step

function. In the limit,
ˆ x

−∞

δ(χ) dχ =

{

0, x < 0

1, x > 0.
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■ That is, the running integral of a Dirac delta function is a step function.

■ Also, the derivative of a step function is the Dirac delta function.

Gradient of the indicator function

■ Now, we get to the reason for introducing the Dirac delta function: We

need to be able to represent the gradient of the indicator function.

■ Consider the simple one-dimensional example plotted below:

γα
∂γα

∂x1

x1 x1

β βββ ββ α ααα αα

1

a0 a0a1 a2a2 a3 a4 a4

a1 a3

■ The indicator function γα = 1 for values of x1 in phase α; else it is zero.

■ Its derivative, ∂γα/∂x1, comprises Dirac delta functions.

∂γα(x1, t)

∂x1

= δ
(

x1 − a0(t)
)

− δ
(

x1 − a1(t)
)

+ δ
(

x1 − a2(t)
)

− δ
(

x1 − a3(t)
)

+ δ
(

x1 − a4(t)
)

.

■ If we define a unit normal vector n̂α that points outward from the

α-phase toward the β-phase at all α–β interfaces, we have

∂γα(x1, t)

∂x1

= −

4
∑

k=0

n̂α · î δ
(

x1 − ak(t)
)

,

where î is a unit vector in the positive x1 direction.
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■ Now, consider a two-dimensional

example. In this instance,

∂γα(x1, x2, t)

∂x1

= −n̂α · î δ(x − xαβ, t)

∂γα(x1, x2, t)

∂x2

= −n̂α · ĵ δ(x − xαβ, t),

where x is a position vector, ĵ is a

unit vector in the positive x2

direction, and xαβ is the position

vector of the α–β interface.

■ x1 and x2 partials shown below:

β-phase

α-phase

γα

1

x1 x2

β
-p

ha
se

α-phase

x1 x2

∂γα

x1

β
-phaseα-phase

x1 x2

∂γα

x2

■ We generalize to three dimensions by defining the gradient operator

over some scalar field ψ(x, y, z, t) as

∇ψ(x, y, z, t)
△
=
∂ψ

∂x
î +

∂ψ

∂y
ĵ +

∂ψ

∂z
k̂.

■ Then, ∇γα(x, t) = −n̂αδ(x − xαβ, t).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright c© 2011–2018, Gregory L. Plett



ECE4710/5710, Continuum (Porous Electrode) Cell Models 4–11

4.4: Phase and intrinsic averages

■ When applying averaging techniques to obtain continuum equations,

it is necessary to select an averaging volume that will result in

meaningful averages.

■ This can be met when the characteristic length of the averaging

volume is much greater than the pore openings (between particles),

but much less than the electrode length.

■ Additionally, the orientation, shape,

and size of the averaging volume will

be independent of space and time.

■ We define a local coordinate system

ξ1, ξ2, ξ3, which has axes parallel with

the x1, x2, x3 system, but whose

origin is located at position x.

■ The location of the averaging volume

with respect to the ξ coordinate

system is independent of x. x1 x2

x3

x

ξ1
ξ2

ξ3 n̂

■ For example, we may set the centroid of the averaging volume to the

origin of the ξ system.

■ The phase average 〈ψα〉 of a property ψ over phase α is defined as

〈ψα(x, t)〉 =
1

V

˚

V

ψ(x + ξ , t)γα(x + ξ , t) dVξ ,

where volume V = Vα + Vβ is independent of space and time.

■ However, Vα and Vβ themselves will depend on x and will also depend

on t if the medium is deformable (i.e., the phase boundary moves).
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■ Physically, the phase average is a property of the α-phase only

averaged over the entire volume occupied by both the α- and

β-phases in the averaging volume.

■ Note that we could also write this integral as

〈ψα(x, t)〉 =
1

V

˚

Vα(x,t)

ψ(x + ξ , t) dVξ ,

but this is less useful since the limits of integration depend on spatial

location and on time if the medium deforms.

■ The intrinsic phase average ψ̄α of a property ψ over phase α is

ψ̄α(x, t) =
1

Vα(x, t)

˚

Vα(x,t)

ψ(x + ξ , t) dVξ .

■ It describes a property of the α-phase averaged over that phase only.

■ Comparing the two types of phase average, we see

〈ψα(x, t)〉 = εα(x, t)ψ̄α(x, t), or ψ̄α(x, t) =
1

εα(x, t)
〈ψα(x, t)〉 ,

where the volume fraction of the α-phase is defined as

εα(x, t) =
Vα(x, t)

V
=

1

V

˚

V

γα(x + ξ , t) dVξ .

EXAMPLE: Consider a rock-filled beaker, where εs = 0.5, and a second

electrolyte-filled beaker having salt concentration 1000 mol m−3. We

pour electrolyte into the first beaker until it is full, so εe = 0.5.

■ Taking a phase average of salt concentration in the porous media,

〈ce〉 =
1

V

˚

Ve

ce(x + ξ , t) dVξ = ce

Ve

V
= 0.5ce = 500 mol m−3.

■ Taking an intrinsic phase average of the salt concentration instead

c̄e =
1

Ve

˚

Ve

ce(x + ξ , t) dVξ = ce

Ve

Ve

= ce = 1000 mol m−3.
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■ The phase average tells us, from the perspective of the entire

volume, what is the concentration of salt in the volume.

■ The intrinsic phase average tells us, from the perspective of the

solution within the volume, the concentration of salt in the solution.

■ Intrinsic phase average is directly related to micro-scale models

where physical measurements are made, so is the one we will use.

■ But, we will derive our equations in terms of the phase average

(easier), and convert to intrinsic phase averages when finished.

■ Before proceeding with the averaging theorems, we examine a useful

identity involving the gradient operator.

• Define ∇x to refer to the gradient taken with respect to the x

coordinates, holding ξ1, ξ2, and ξ3 constant;

• Define ∇ξ to refer to the gradient taken with respect to the ξ

coordinates, holding x1, x2, and x3 constant;

• Define ∇ to refer to either ∇x or ∇ξ .

■ If a function is symmetrically dependent on x and ξ (i.e., it depends

on x + ξ rather than on x and ξ ) the gradient in the x-coordinate

system is equal to the gradient in the ξ -coordinate system:

∇xψ(x + ξ , t) = ∇ξψ(x + ξ , t) = ∇ψ(x + ξ , t)

∇xγα(x + ξ , t) = ∇ξγα(x + ξ , t) = ∇γα(x + ξ , t).

PROOF: Consider

∇xψ(x + ξ , t) = ∇xψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

=
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂x1

î
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+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂x2

ĵ

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂x3

k̂

=
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x1 + ξ1)

∂(x1 + ξ1)

∂x1︸ ︷︷ ︸

1

î

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x2 + ξ2)

∂(x2 + ξ2)

∂x2︸ ︷︷ ︸

1

ĵ

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x3 + ξ3)

∂(x3 + ξ3)

∂x3︸ ︷︷ ︸

1

k̂

=
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x1 + ξ1)
î

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x2 + ξ2)
ĵ

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x3 + ξ3)
k̂.

■ Similarly,

∇ξψ(x + ξ , t) = ∇ξψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

=
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂ξ1

î

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂ξ2

ĵ

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂ξ3

k̂
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=
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x1 + ξ1)

∂(x1 + ξ1)

∂ξ1
︸ ︷︷ ︸

1

î

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x2 + ξ2)

∂(x2 + ξ2)

∂ξ2
︸ ︷︷ ︸

1

ĵ

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x3 + ξ3)

∂(x3 + ξ3)

∂ξ3
︸ ︷︷ ︸

1

k̂

=
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x1 + ξ1)
î

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x2 + ξ2)
ĵ

+
∂ψ(x1 + ξ1, x2 + ξ2, x3 + ξ3, t)

∂(x3 + ξ3)
k̂.

■ By comparing the final forms for ∇xψ(x + ξ , t) and ∇ξψ(x + ξ , t), we

see that the two are equal.

■ By the same argument, ∇xγα(x + ξ , t) = ∇ξγα(x + ξ , t).

■ Also, by the same argument,

∇x · ψ(x + ξ , t) = ∇ξ · ψ(x + ξ , t) = ∇ · ψ(x + ξ , t) .
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4.5: Volume-averaging theorems 1 and 2

Volume-averaging theorem 1

■ We wish to show for scalar field ψ , if ψ is continuous in the α phase,

〈∇ψα〉 = ∇ 〈ψα〉 +
1

V

‹

Aαβ

ψαn̂α dA.

■ We start with the definition of phase average for generic quantity θ :

〈θα(x, t)〉 =
1

V

˚

V

θ(x + ξ , t)γα(x + ξ , t) dVξ .

■ Then, letting θ = ∇ψ ,

〈∇ψα(x, t)〉 =
1

V

˚

V

[∇ψ(x + ξ , t)]γα(x + ξ , t) dVξ .

■ Recall the product rule from calculus: ∇(AB) = (∇ A)B + A(∇ B), and

let A = ψ(x + ξ , t) and B = γα(x + ξ , t).

■ Noticing that the integrand is of the form (∇ A)B, we can then write

〈∇ψα(x, t)〉 =
1

V

˚

V

∇[ψ(x + ξ , t)γα(x + ξ , t)] dVξ

−
1

V

˚

V

ψ(x + ξ , t)[∇γα(x + ξ , t)] dVξ .

■ Substituting the known gradient of the indicator function gives

〈∇ψα(x, t)〉 =
1

V

˚

V

∇[ψ(x + ξ , t)γα(x + ξ , t)] dVξ

+
1

V

˚

V

ψ(x + ξ , t)n̂αδ(x + ξ − xαβ, t) dVξ .

■ By the properties of the delta function, the second volume integral

drops to a surface integral over the α–β phase interface
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1

V

˚

V

ψ(x + ξ , t)n̂αδ(x + ξ − xαβ, t) dVξ =
1

V

‹

Aαβ

ψα(x + ξ , t)n̂α dA,

and we get

〈∇ψα(x, t)〉 =
1

V

˚

V

∇[ψ(x + ξ , t)γα(x + ξ , t)] dVξ

+
1

V

‹

Aαβ

ψα(x + ξ , t)n̂α dA.

■ We consider ∇ = ∇x on the RHS, so it may be removed from the

integral because V is independent of x. Thus, we obtain

〈∇ψα〉 = ∇

[
1

V

˚

V

ψ(x + ξ , t)γα(x + ξ , t) dVξ

]

+
1

V

‹

Aαβ

ψα(x + ξ , t)n̂α dA

〈∇ψα〉 = ∇ 〈ψα〉 +
1

V

‹

Aαβ

ψαn̂α dA,

which proves volume averaging theorem 1.

INTERPRETATION: Volume average of gradient = gradient of volume

average plus correction term.

■ Correction sums up scaled vectors pointing away from the α–β

interface. Result points in the direction of largest surface field.

■ By extension, we can find the intrinsic phase average

∇ψα =
1

εα
〈∇ψα〉 =

1

εα

[

∇ 〈ψα〉 +
1

V

‹

Aαβ

ψαn̂α dA

]

=
1

εα

[

∇
(

εαψ̄α
)

+
1

V

‹

Aαβ

ψαn̂α dA

]

.
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■ Rearranging this expression gives

εα∇ψα = ∇
(

εαψ̄α
)

+
1

V

‹

Aαβ

ψαn̂α dA.

■ Be careful to note that εα is inside the gradient operator on the RHS,

which is important if εα is a function of x.

Volume-averaging theorem 2

■ We wish to show for vector field ψ , if ψ is continuous in the α phase,
〈

∇ · ψα

〉

= ∇ ·
〈

ψα

〉

+
1

V

‹

Aαβ

ψα · n̂α dA.

■ We start with the definition of phase average for generic quantity θ

〈θα(x, t)〉 =
1

V

˚

V

θ(x + ξ , t)γα(x + ξ , t) dVξ .

■ Then, if θ = ∇ · ψ ,
〈

∇ · ψα(x, t)
〉

=
1

V

˚

V

[∇ · ψ(x + ξ , t)]γα(x + ξ , t) dVξ .

■ The divergence operator also satisfies a product rule

∇ · (γF) = (∇γ ) · F + γ (∇ · F). Let F = ψ(x + ξ , t) and γ = γα(x + ξ , t).

■ Noticing that the integrand is of the form γ (∇ · F), we can write
〈

∇ · ψα(x, t)
〉

=
1

V

˚

V

∇ · [ψ(x + ξ , t)γα(x + ξ , t)] dVξ

−
1

V

˚

V

ψ(x + ξ , t) · [∇γα(x + ξ , t)] dVξ .

■ Substituting the known gradient of the indicator function gives
〈

∇ · ψα(x, t)
〉

=
1

V

˚

V

∇ · [ψ(x + ξ , t)γα(x + ξ , t)] dVξ

+
1

V

˚

V

ψ(x + ξ , t) · n̂αδ(x + ξ − xαβ, t) dVξ .
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■ As before, the second volume integral drops to a surface integral over

the α–β phase interface

1

V

˚

V

ψ(x+ξ , t) · n̂αδ(x+ξ−xαβ, t) dVξ =
1

V

‹

Aαβ

ψα(x+ξ , t) · n̂α dA,

and we get

〈

∇ · ψα(x, t)
〉

=
1

V

˚

V

∇ · [ψ(x + ξ , t)γα(x + ξ , t)] dVξ

+
1

V

‹

Aαβ

ψα(x + ξ , t) · n̂α dA.

■ We consider ∇· = ∇x · on the RHS, so it may be removed from the

integral because V is independent of x. Thus, we obtain

〈

∇ · ψα

〉

= ∇ ·

[
1

V

˚

V

ψ(x + ξ , t)γα(x + ξ , t) dVξ

]

+
1

V

‹

Aαβ

ψα(x + ξ , t) · n̂α dA

〈

∇ · ψα

〉

= ∇ ·
〈

ψα

〉

+
1

V

‹

Aαβ

ψα · n̂α dA,

which proves volume averaging theorem 2.

INTERPRETATION: Volume average of divergence = divergence of volume

average plus correction term.

■ Correction sums flux out of surface across α–β interface.

■ By extension, the intrinsic phase average is

εα∇ · ψα = ∇ ·
(

εαψ̄α

)

+
1

V

‹

Aαβ

ψα · n̂α dA.
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4.6: Volume-averaging theorem 3

■ We wish to show for scalar field ψ , if ψ is continuous in the α phase,
〈
∂ψα

∂t

〉

=
∂ 〈ψα〉

∂t
−

1

V

‹

Aαβ

ψαvαβ · n̂α dA,

where vαβ is the velocity of displacement of the interface.

■ We start with the definition of phase average for generic quantity θ

〈θα(x, t)〉 =
1

V

˚

V

θ(x + ξ , t)γα(x + ξ , t) dVξ .

■ Then if we let θ = ∂ψ/∂t ,
〈
∂ψα

∂t

〉

=
1

V

˚

V

[∂ψα(x + ξ , t)/∂t]γα(x + ξ , t) dVξ .

■ By calculus product rule, ∂(AB)/∂t = (∂A/∂t)B + A(∂B/∂t). Let

A = ψ(x + ξ , t) and B = γα(x + ξ , t).

■ Noticing that the integrand is of the form (∂A/∂t)B, we can write
〈
∂ψα

∂t

〉

=
1

V

˚

V

∂[ψα(x + ξ , t)γα(x + ξ , t)]/∂t dVξ

−
1

V

˚

V

ψα(x + ξ , t)[∂γα(x + ξ , t)/∂t] dVξ .

■ Because V is independent of time, the order of differentiation or

integration in the first term may be reversed, and we obtain
〈
∂ψα

∂t

〉

=
∂ 〈ψα〉

∂t
−

1

V

˚

V

ψα(x + ξ , t)[∂γα(x + ξ , t)/∂t] dVξ .

■ First note that if the α phase is not deforming, the partial derivative

will be zero, and the integral term goes away.

• This is the case we are concerned about.
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■ It is more complex if the α phase is deforming. Then, γα will be a

function of time, and the second term will be nonzero in general.

■ We will use the fact that the total derivative of γα with respect to time is

dγα

dt
=
∂γα

∂t
+

dx1

dt

∂γα

∂x1

+
dx2

dt

∂γα

∂x2

+
dx3

dt

∂γα

∂x3

=
∂γα

∂t
+

dx

dt
· ∇γα.

■ Note: ∂γα/∂t states how γα changes as a function of time only. dγα/dt

instead states how an observer’s measurement of γα changes as a

function of all variables, including observer’s own velocity dx/dt .

■ To understand this, first suppose that ∂γα/∂t = 0. This means that the

γα function itself is not changing.

■ If we are located at some stationary (x1, x2, x3) point, our velocity

dx/dt = 0, and we will look around and see that nothing is changing,

so the (total) derivative will also be zero.

■ However, if we are moving around the function at some nonzero

velocity dx/dt , then we will experience a change in the value of γα that

we measure, even though the function itself isn’t changing, simply

because we are evaluating it at different points.

• Thus, dγα/dt 6= 0 in general, even when ∂γα/∂t = 0.

• Further, we will get different values for dγα/dt when we move

around the space at different velocities dx/dt .

■ This simplifies when the observation point moves at the same speed

as the α–β phase boundary, dx/dt = vαβ:

∂γα

∂t
=

dγα

dt
− vαβ · ∇γα.
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• For this choice of dx/dt , the total derivative becomes what is

known as a substantial derivative that moves with the interface.

■ An observer “surfing on” the moving interfacial boundary will notice

no change in γα versus time.

■ It remains a step function that shifts with the moving boundary.

■ The value of the function measured by the

observer moving at velocity vαβ doesn’t

vary with time.

γa

vαβ

■ So, the total derivative is zero when dx/dt = vαβ, and we can write

∂γα

∂t
= −vαβ · ∇γα.

■ This yields
〈
∂ψα

∂t

〉

=
∂ 〈ψα〉

∂t
+

1

V

˚

V

ψα(x + ξ , t)vαβ(x + ξ , t) · ∇γα(x + ξ , t) dVξ

=
∂ 〈ψα〉

∂t
+

1

V

˚

V

ψα(x + ξ , t)vαβ(x + ξ , t) · (−n̂αδ(x + ξ − xαβ)) dVξ

〈
∂ψα

∂t

〉

=
∂ 〈ψα〉

∂t
−

1

V

‹

Aαβ

ψαvαβ · n̂α dA.

INTERPRETATION: Volume average of time derivative = time derivative of

volume average plus correction term.

■ Correction accounts for a net dilution of field ψα if Vα is growing, or

a concentration of the field ψa if the Vα is shrinking.

■ By extension

εα

[
∂ψα

∂t

]

=
∂

(

εαψ̄α
)

∂t
−

1

V

‹

Aαβ

ψαvαβ · n̂α dA.
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4.7: Continuum models: Charge conservation in the solid

■ We now apply the volume-averaging theorems to develop continuum

model equivalents of the five microscale model equations.

■ Start with the microscale model of charge conservation in the solid,

∇ · (is) = ∇ · (−σ∇φs) = 0.

■ Using intrinsic averages and volume-averaging theorem 2

εs∇ · (−σ∇φs) = ∇ ·
(

εs(−σ∇φs)
)

+
1

V

‹

Ase

(−σ∇φs) · n̂s dA

0 = ∇ ·
(

εs(−σ∇φs)
)

+
1

V

‹

Ase

(−σ∇φs) · n̂s dA.

■ Let’s look at the integral term first. Note that we are integrating over

the solid-electrolyte boundary.

■ Last chapter, we noted the boundary condition for the charge

conservation equation; namely,

n̂s · σ∇φs = −F j .

ASSUME: That j is homogeneous, and that we can model j using

volume-averaged inputs.

1

V

‹

Ase

(−σ∇φs) · n̂s dA =
1

V

‹

Ase

F j (cs, ce, φs, φe) dA

≈
Ase

V
F j (c̄s,e, c̄e, φ̄s, φ̄e)

≈ as F j (c̄s,e, c̄e, φ̄s, φ̄e) = as F j̄ .

ASSUME: To calculate as, we typically assume spherical particles with

radius Rs and volume fraction εs:
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as =
total surface area of spheres in volume

total volume of a sphere

= εs

4πR2
s

4
3
πR3

s

=
3εs

Rs

.

■ So, we now have the result

0 = ∇ ·
(

εs(−σ∇φs)
)

+ as F j̄

∇ ·
(

εs(−σ∇φs)
)

= −as F j̄ .

■ What to do with the (−σ∇φs) term? We might consider using

volume-averaging theorem 1, but note that we don’t know what φsn̂s is

at the boundary, so are unable to evaluate this term.

ASSUME: Instead, it’s common to model εs(−σ∇φs) ≈ −σeff∇φ̄s.

■ The effective conductivity σeff =
εsσδ

τ
, where δ < 1 is the

constrictivity of the and τ ≥ 1 is the tortuosity of the media.

■ That is, σ is the bulk conductivity of homogeneous materials, and

σeff is the effective conductivity of the solid in the porous media.

■ Note that σeff < σ since there are restrictions to flow of current.

■ It is frequently assumed that σeff = σεbrug
s , where “brug” is

Bruggeman’s coefficient, and is normally assumed to take on the

value of 1.5, although other values may work better.

■ To get better value for σeff, we could do microscale simulations with

realistic particle geometries, or measure directly via experiment.

■ Collecting the above results, we now have the final continuum model

of charge conservation in the solid,

∇ · (−σeff∇φ̄s) = −as F j̄ .
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■ Also note that εs īs = εs(−σ∇φs) = −σeff∇φ̄s.

How well does the Bruggeman relationship work?

■ We now illustrate, by example, how well an effective property in a

volume-average equation can represent the effect of an intrinsic

property in a microscale equation.

■ We use the PDE simulation system COMSOL to help find results

(example is adapted from COMSOL documentation).

■ Consider the simplified microscale electrolyte concentration equation

∂c

∂t
+ ∇ · (−D∇c) = 0,

and the geometry in the figure.

■ The rectangular objects are obstacles, which are similar in a sense to

the solid particles in an electrode.

■ The voids between the rectangular objects are open, much like pores

in an electrode through which electrolyte can move.

■ At t = 0 (left frame), there is a high concentration of material at the

left boundary, and zero concentration elsewhere.
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■ By time 0.1 s (right frame), there is a uniform concentration gradient

established through the porous structure, as indicated by the shading.

■ We’re interested in modeling the flux of material out the right edge. It

is zero at time t = 0, and increases to a steady-state value over time.

■ We simulate the high-fidelity PDE model over the complex geometry;

we also make a one-dimensional continuum model via

ε
∂ c̄

∂t
+ ∇ · (−Deff∇ c̄) = 0,

where Deff = Dεbrug.

■ The microscale solution is

drawn as the solid blue line.

■ Continuum-model solutions are

drawn for brug = 1.58 and

brug = 1.60.
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■ With the correct choice of “brug,” the continuum model gives

predictions that are very close to the exact solution.

• Results are nearly indistinguishable when brug = 1.59.

■ So, this example shows us that representing an effective property as

a constant times the intrinsic property can be very accurate.

■ However, the Bruggeman constant may need to be different from the

commonly used value of 1.5 to achieve the best match.
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4.8: Mass conservation in the solid and electrolyte

Mass conservation in the solid

■ As mentioned earlier, our continuum model has spatial dimension(s)

plus a pseudo dimension.

■ This pseudo dimension represents what is happening at some point

inside a particle that resides at some spatial location.

• We could make a continuum model with three spatial dimensions

plus an additional pseudo dimension, resulting in a

pseudo-four-dimensional model. The math we develop here is

general enough to encompass this case, but

• We ultimately specialize to a model with one spatial dimension

plus the additional pseudo dimension, resulting in a

pseudo-two-dimensional model.

■ We assume that there is a particle centered at any spatial location,

that the particle is spherical, and that the concentration of lithium

within the particle is spherically symmetric.

■ So, to create the continuum equation for mass conservation within the

solid, we don’t need to use any volume-averaging theorems, because

we are not volume averaging! Instead, we’re specializing the

microscale equation to these assumptions.

■ Recall the microscale model,
∂cs

∂t
= ∇ · (Ds∇cs).

■ Recall further that the divergence of a vector field can be written in

spherical coordinates as

∇ · F =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ
.
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ASSUME: Spherical particles, with symmetry in both the θ and φ axes.

This gives

∇ · F =
1

r2

∂(r2Fr)

∂r
.

■ Applying this to the RHS of the microscopic model gives

∂cs

∂t
=

1

r2

∂

∂r

(

Dsr
2∂cs

∂r

)

.

Mass conservation in the electrolyte

■ Recall the microscale equation for mass conservation in the

electrolyte,

∂ce

∂t
= ∇ · (De∇ce)−

ie · ∇t0
+

F
− ∇ · (cev0) ,

where, for simplicity, we have chosen to write

De = D

(

1 −
d ln c0

d ln ce

)

.

ASSUME: We’re going to immediately specialize to the case where we

assume that ∇t0
+ = 0 and v0 = 0. We also assume that the phases do

not deform, so vse = 0.

■ Taking the intrinsic volume average of the LHS using

volume-averaging theorem 3 gives
[
∂ce

∂t

]

=
1

εe

(
∂(εec̄e)

∂t

)

.

■ Taking intrinsic volume average of the RHS using volume-averaging

theorem 2 gives

∇ · (De∇ce) =
1

εe

(

∇ ·
(

εe De∇ce

)

+
1

V

‹

Ase

De∇ce · n̂e dA

)

.
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■ We address the integral in the RHS: where we recall from the

boundary conditions in the prior chapter that n̂e · (De∇ce) = (1 − t0
+) j .

■ Using the same approach as before, we assume uniform flux over the

interface and write
1

V

‹

Ase

De∇ce · n̂e dA =
1

V

‹

Ase

(1 − t0
+) j (cs, ce, φs, φe) dA

=
Ase

V
(1 − t0

+) j̄ = as(1 − t0
+) j̄ .

■ Therefore, the RHS becomes

∇ · (De∇ce) =
1

εe

(

∇ ·
(

εe De∇ce

)

+ as(1 − t0
+) j̄

)

.

■ We now address the ∇ · (εe De∇ce) term. Following the same kind of

reasoning as before, we write this as

∇ · (εe De∇ce) ≈ ∇ · (De,eff∇ c̄e),

where De,eff =
εe Deδ

τ
and we often assume De,eff = Deε

brug
e where

“brug” is generally taken to be 1.5.

■ So, combining all results

1

εe

(
∂(εec̄e)

∂t

)

=
1

εe

(

∇ · (De,eff∇ c̄e)+ as(1 − t0
+) j̄

)

.

■ Rewriting this gives our mass balance equation for the electrolyte,

∂(εec̄e)

∂t
= ∇ · (De,eff∇ c̄e)+ as(1 − t0

+) j̄ .

Commenting on the (1 − t0
+) term,

■ If you have been paying close attention, the (1 − t0
+) term in the above

equation might strike you as odd—none of the other closure terms

include this factor.
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■ Let’s quickly look at an intuitive explanation of what is happening.

■ Consider a volume element having an

interface between a solid particle and

the electrolyte.

■ Lithium flux is out of the particle, across

the red boundary.

Solid particle

Electrolyte
i in
e iout

e

j

■ Per our earlier assumptions, the volume-averaged lithium flux is

as j̄ =
1

V

‹

Ase

j (cs, ce, φs, φe) dA.

■ Not all of the pore-wall flux remains in the volume (increasing ce).

■ Neither does all of the flux escape the

volume (which would keep ce the same).

■ Let λ be the fraction of the flux that

escapes, and 1 − λ be the fraction that

is stored. Electrolyte

Solid particle

i in
e

iout
e

as(1 − λ) j̄ stored

asλ j̄

leaves

as(1 − λ) j̄ PF−
6

■ To maintain macroscopic charge neutrality, as(1 − λ) j̄ negatively

charged PF−
6 ions must be stolen from the neighboring volume.

■ So the fraction of the added current that is carried by the Li+ ion is λ j̄

and the fraction of the added current that is carried by the PF−
6 ion is

(1 − λ) j̄ .

■ By definition of t0
+, then, we must have λ = t0

+.

■ Therefore, the amount of lithium that stays in the local volume and

contributes to changing the local concentration is as(1 − t0
+) j̄ .
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4.9: Charge conservation in electrolyte; Butler–Volmer; BCs

Charge conservation in electrolyte

■ Recall the microscale electrolyte charge-conservation equation,

∇ · ie = ∇ ·

(

−κ∇φe −
2κRT

F

(

1 +
∂ ln f±

∂ ln ce

)
(

t0
+ − 1

)

∇ ln ce

)

= 0.

■ For simplicity, we re-write this as

∇ · ie = ∇ · (−κ∇φe − κD∇ ln ce) = 0,

where we have defined

κD =
2κRT

F

(

1 +
∂ ln f±

∂ ln ce

)
(

t0
+ − 1

)

.

■ Using volume-averaging theorem 2 gives

∇ · ie =
1

εe

(

∇ ·
(

εe īe
)

+
1

V

‹

Ase

ie · n̂e dA

)

.

■ We can compute the value of the integral by recalling that

ie · n̂e = − j F on the interface. Therefore, we approximate the integral

by −as F j̄ .

∇ · ie =
1

εe

(

∇ ·
(

εe īe
)

− as F j̄
)

= 0

0 = ∇ ·
(

εeīe
)

− as F j̄ .

■ Note that

εe īe = εe

(

−κ∇φe + −κD∇ ln ce

)

.

■ As before, we approximate

−εeκ∇φe ≈ −κeff∇φ̄e

−εeκD∇ ln ce ≈ −κD,eff∇ ln c̄e,

where κeff = κεbrug
e and κD,eff = κDε

brug
e .

Lecture notes prepared by Dr. Gregory L. Plett. Copyright c© 2011–2018, Gregory L. Plett



ECE4710/5710, Continuum (Porous Electrode) Cell Models 4–32

• Mathematically, it might be better to approximate ∇ ln ce ≈ εe∇ ln c̄e

by doing a Taylor-series expansion of ln ce around c̄e and keeping

the lower two terms in a volume-average integral.

• This would contribute an extra εe to the result. However this is not

generally done (probably because we can set κD,eff to any value we

want, which might have the extra εe built in already, and probably

because the ln c̄e term tends not to be as large as the φ̄e term).

■ Combining, we get two results:

εeīe = −κeff∇φ̄e − κD,eff∇ ln c̄e,

and

∇ ·
(

κeff∇φ̄e + κD,eff∇ ln c̄e

)

+ as j̄ F = 0.

Lithium movement between the solid and electrolyte phases

■ We have already used this result, but for completeness we recall that

j = k0c1−α
e (cs,max − cs,e)

1−αcαs,e

{

exp

(
(1 − α)F

RT
η

)

− exp

(

−
αF

RT
η

)}

.

■ This shows up in models as:

1

V

‹

Ase

j (cs, ce, φs, φe) dA ≈
Ase

V
j (c̄s,e, c̄e, φ̄s, φ̄e)

≈ as j (c̄s,e, c̄e, φ̄s, φ̄e) = as j̄ .

Boundary conditions for pseudo 2-D model

Charge conservation of the solid

■ The electrical current through the solid at the current collector must

equal the total current entering/exiting the cell. That is,
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εs īs = −σeff∇φ̄s =
Iapp

A
,

where Iapp is the total cell applied current in [A], and A is the

current-collector plate area in [m2].

■ Similarly, the electrical current through the solid at the separator

interface must be zero.

■ For the positive electrode,

∂φ̄s

∂x

∣
∣
∣
∣
x=Lneg+Lsep

= 0, and
∂φ̄s

∂x

∣
∣
∣
∣

x=L tot

=
−Iapp

Aσeff

.

■ For the negative electrode,

φ̄s

∣
∣
x=0

= 0, and
∂φ̄s

∂x

∣
∣
∣
∣

x=Lneg

= 0.

■ It is also true, for the anode, that
∂φ̄s

∂x

∣
∣
∣
∣

x=0

=
−Iapp

Aσeff

, but when all PDEs

of the battery model are integrated together, this condition is

redundant and is not implemented.

Mass conservation of the solid

■ Boundary conditions on the mass conservation equation are:

∂cs

∂r

∣
∣
∣
∣
r=0

= 0, and Ds

∂cs

∂r

∣
∣
∣
∣
r=Rs

= − j̄ ,

where positive j̄ indicates lithium flowing out of the particle.

Mass conservation of the electrolyte

■ There must be no electrolyte flux at the cell boundaries

∂ c̄e

∂x

∣
∣
∣
∣

x=0

=
∂ c̄e

∂x

∣
∣
∣
∣

x=L tot

= 0.
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Charge conservation of the electrolyte

■ The ionic current must be zero at the current collectors. At the

separator boundaries, the ionic current must equal the total current

entering/exiting the cell:

εeīe = −κeff∇φ̄e − κD,eff∇ ln c̄e =
Iapp

A
.

■ So, at the current collector boundaries, we have:

κeff

∂φ̄e

∂x
+ κD,eff

∂ ln c̄e

∂x

∣
∣
∣
∣
x=0

= κeff

∂φ̄e

∂x
+ κD,eff

∂ ln c̄e

∂x

∣
∣
∣
∣
x=L tot

= 0.

■ As before, we have boundary conditions at the separator interfaces,

but these are redundant and not implemented:

−κeff

∂φ̄e

∂x
− κD,eff

∂ ln c̄e

∂x

∣
∣
∣
∣

x=Lneg

= −κeff

∂φ̄e

∂x
− κD,eff

∂ ln c̄e

∂x

∣
∣
∣
∣

x=Lneg+Lsep

=
Iapp

A
.
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4.10: Cell-level quantities; PDE simulation methods

Cell voltage

■ Cell voltage is equal to the positive current-collector’s potential minus

the negative current-collector’s potential.

■ Since the solid phase is in direct electrical contact with the current

collector, we then compute the cell voltage as

v(t) = φ̄s(L
tot, t)− φ̄s(0, t).

■ And, since we have defined φ̄s(0, t) = 0, we can further simplify to

v(t) = φ̄s(L
tot, t).

Cell total capacity

■ Cell total capacity is determined in the same manner as in Chap. 3:

Qneg = AF Lnegεneg
s cneg

s,max |x100% − x0%| /3600Ah

Qpos = AF Lposεpos
s cpos

s,max |y100% − y0%| /3600Ah,

and

Q = min
(

Qneg, Qpos
)

Ah.

Cell state of charge

■ Similarly, cell state of charge is determined in the same manner as in

Chap. 3:

z =
c

neg
s,avg/c

neg
s,max − x0%

x100% − x0%

=
c

pos
s,avg/c

pos
s,max − y0%

y100% − y0%

.
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Model simulations

■ We have the full set of equations for the continuous scale, which is

great, but useless unless we can do something with them.

■ One very important application of the model is to use it in simulation

to help understand how a cell works, and then use that to inform how

a cell should be built, and/or how a cell should be operated.

■ Digital simulation of continuous phenomena require discretizing the

problem in time and space.

FINITE DIFFERENCE: Divide space and time into small segments.

■ Discretize the derivatives in the equations using Euler’s rule or

similar over these segments.

■ Write the resulting system of equations, and solve using a linear

algebra solver at each time step.

■ The linear diffusion example in Chap. 3 introduced this method.

FINITE VOLUME: Divide time into small segments, space into volumes.

■ Flux terms at volume boundaries are evaluated, and

concentrations are updated to reflect the material fluxes.

■ This method enforces mass balance: because the flux entering a

given volume is identical to that leaving the adjacent volume, these

methods are conservative.

■ Another advantage of the finite volume method is that it is easily

formulated to allow for unstructured meshes.

■ The method is used in many CFD packages.

■ The spherical diffusion example in Chap. 3 introduced this method.
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FINITE ELEMENT: Time is discretized as with the other two methods.

■ Space, however, is formulated as a summation over N quadratic or

linear basis or finite-element functions ψm(x) for 1 ≤ m ≤ N .

■ One example is shown below.

■ Each color represents a linear

(triangular-shaped) basis

function such that the

summation of these N = 11

functions is equal to 1 at every x

location.
0 0.2 0.4 0.6 0.8 1

0

0.25

0.5

0.75

1
Example FEM basis functions

Normalized spatial coordinate x/L
V

a
lu

e

■ Then, the variable being studied is written as a weighted sum.

■ For example, if we are interested in some variable θ(x, t), we write it

as

θ(x, t) =

N
∑

m=1

θm(t)ψm(x).

■ This simplifies the problem since the ψm(x) are fixed:

• We convert a two-dimensional problem θ(x, t) into N

one-dimensional problems θm(t).

• These are then evaluated by rewriting the PDEs in vector form for

these one-dimensional variables, and solving.

• The shape and spacing of the elements can be varied to improve

accuracy in specific areas, as long as they always sum to 1.
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4.11: Implementation in COMSOL

■ Each PDE-evaluation method has advantages and disadvantages,

and each has been used to simulate models of battery cells.

■ Here, we introduce COMSOL, a commercial FEM solver code,

primarily because it is driven by a GUI that makes it relatively

straightforward to implement and modify model equations.

■ The schematic to keep in mind is
Negative electrode Positive electrode

C
u

rr
e

n
t
c
o

lle
c
to

r

C
u

rr
e

n
t
c
o

lle
c
to

r

S
e

p
a

ra
to

r

x
r

• Most equations work in one dimension, x , but one works in a

second radial pseudo dimension, as we will see later on.

Charge conservation in the solid

■ The first thing we need to do is to rewrite the PDEs in a manner most

easily digested by COMSOL.

■ The first equation we desire to implement is:

∇ · (σeff∇φ̄s) = as F j̄ .

■ First, we note that the COMSOL implementation normalizes the

lengths of each cell region to 1.
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■ We will use symbol x̄ to represent position with respect to normalized

length, and x to denote actual position.

■ In the negative electrode, x̄ = x/Lneg; in the positive electrode,

x̄ = (x − Lneg − Lsep)/Lpos. Generically x̄ = x/L + cst.

■ Therefore, also,

∂(·)

∂ x̄
=
∂(·)

∂x

∂x

∂ x̄
= L

∂(·)

∂x

∂(·)

∂x
=
∂(·)

∂ x̄

∂ x̄

∂x
=

1

L

∂(·)

∂ x̄
.

■ This changes the equation we wish to implement to:

1

L
∇ ·

(σeff

L
∇φ̄s

)

= as F j̄ .

■ The COMSOL implementation multiplies both sides by L (better

convergence)

∇ · (sigma_eff/L ∗ phi_sx) = L ∗ as ∗ F ∗ j,

where the following variables are defined

σeff as j̄ L φ̄s F

sigma_eff as j L phi_s F

■ Note that in COMSOL syntax,

phi_sx =
d

dx
phi_s,

and COMSOL’s “x” is our normalized dimension “x̄”.

Mass conservation in the solid

■ We desire to implement

∂cs

∂t
=

1

r2

∂

∂r

(

Dsr
2∂cs

∂r

)

.
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■ Note that this equation operates in the “pseudo” dimension, r , instead

of the linear dimension x .

■ That is, at every “x” location, a copy of this radial equation is

operating, representing the radially symmetric concentration profile of

lithium in a representative spherical particle sitting at that “x” location.

■ We also normalize the radial dimension: Let r̄ = r/Rs.

■ Then, r2 = R2
s r̄2 and

∂(·)

∂r
=

1

Rs

∂(·)

∂r̄
. This allows us to re-write our PDE

as
∂cs

∂t
=

(
1

R2
s r̄2

)
1

Rs

∂

∂r̄

(

Ds

(

R2
s r̄2

) 1

Rs

∂cs

∂r̄

)

.

■ Multiply both sides of the equation by r̄2 Rs and rearrange to get what

COMSOL implements

r̄2 Rs

∂

∂t
cs +

∂

∂r̄

(

−Ds

r̄2

Rs

∂cs

∂r̄

)

= 0,

except that COMSOL uses y instead of r̄ .

■ Note that COMSOL implements the all of the spatially adjacent

particles as blocks:

■ In this figure,

• The horizontal dimension is the cell “x” spatial dimension;
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• The vertical dimension is the radial “r” pseudo-dimension (particle

surface is at top, r = Rs; particle center is at bottom, r = 0);

• The left block represents the anode and the right is the cathode;

• Dark red is high concentration; dark blue is low concentration;

• This is a cell at a high SOC that is presently discharging.

■ There is no diffusion of lithium in the horizontal dimension, but there

is diffusion in the “vertical” or radial dimension.

■ This is represented in COMSOL using the equation:

yˆ2 ∗ Rs∗
∂cs

∂t
+ ∇ · (−

[

0, 0

0, yˆ2 ∗ Ds/Rs

]

∗ ∇cs) = 0,

where ∇ =

[
∂

∂x
,
∂

∂y

]

and where the following variables are defined:

Rs Ds

Rs Ds

Charge conservation in the electrolyte

■ We desire to implement

∇ ·
(

κeff∇φ̄e + κD,eff∇ ln c̄e

)

+ as F j̄ = 0.

■ Once again, COMSOL normalizes lengths, which converts the

equation to

1

L
∇ ·

(κeff

L
∇φ̄e +

κD,eff

L
∇ ln c̄e

)

= −as F j̄ .

■ COMSOL implements ∇ ln c̄e as
1

c̄e

∇ c̄e. It also multiplies both sides of

the equation by L (better convergence), so the equation that is
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actually implemented is:

∇ · (kappa_eff/L ∗ (phi_ex+ kappa_D_fact ∗ 1/c_e ∗ c_ex))

= −L ∗ as ∗ F ∗ j.

where the following variables are defined

κeff κD,eff/κeff as j̄ L φ̄e ce F

kappa_eff kappa_D_fact as j L phi_e c_e F

■ Note again that in COMSOL syntax,

phi_ex =
d

dx
phi_e and c_ex =

d

dx
c_e,

and COMSOL’s “x” is our normalized dimension “x̄”.

Mass conservation in the electrolyte

■ We desire to implement

∂(εec̄e)

∂t
= ∇ · (De,eff∇ c̄e)+ as(1 − t0

+) j̄ .

■ Once again, COMSOL normalizes lengths, which converts the

equation to

∂(εec̄e)

∂t
=

1

L
∇ · (De,eff

1

L
∇ c̄e)+ as(1 − t0

+) j̄ .

■ What is actually implemented is

eps_e ∗ L ∗
∂ce

∂t
+ ∇ · (−De_eff/L ∗ ∇ce) = L ∗ as ∗ (1 − t_plus) ∗ j,

where the following variables are defined

De,eff t0
+ as j̄ L εe

De_eff t_plus as j L eps_e
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Butler–Volmer equation

■ Notice that the units of k0 are rather awkward.

• The exponential terms of the Butler–Volmer equation are unitless,

and j has units mol m−2 s−1.

• Therefore, k0 must have units of molα−1 m4−3α s−1.

• COMSOL struggles with units having non-integer powers, so this

poses a problem.

■ A solution is to define a normalized exchange current density

i0 = Fk0c1−α
e (cs,max − cs,e)

1−αcαs,e

= F k0c1−α
e,0 cs,max

︸ ︷︷ ︸

knorm
0

(
ce

ce,0

)1−α (
cs,max − cs,e

cs,max

)1−α (
cs,e

cs,max

)α

,

where ce,0 is the at-rest concentration of lithium in the electrolyte.

■ Re-arranging the exchange current density in this form makes the

terms raised to non-integer powers themselves unitless, and gives

knorm
0 units of mol m−2 s−1, which is much easier to work with.

■ We can rewrite the Butler–Volmer equation as

j = knorm
0

((
ce

ce,0

) (
cs,max − cs,e

cs,max

))1−α (
cs,e

cs,max

)α

×

{

exp

(
(1 − α)F

RT
η

)

− exp

(

−
αF

RT
η

)}

.

■ Also note: most articles that discuss simulation of lithium-ion cells do

not give values for k0. Instead, they give values of i0 that apply at the

beginning of the simulation, from which you must derive k0 or knorm
0 .
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Running COMSOL

■ Here’s a screenshot taken when running COMSOL.

■ It is simulating a rest followed by a charge pulse, followed by a rest,

followed by a discharge pulse, followed by a rest.

Where from here?

■ We’re making excellent progress. We’re now at a point where we can

fairly readily simulate cell performance and behavior.

■ But, the equations are still far too complicated to implement in a

real-time embedded system, as needed for battery controls.

■ So, our next step is to look at ways to reduce the complexity of the

model equations, while still retaining the physics behind them.
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Glossary

■ as(x, y, z, t) [m2 m−3] is the specific interfacial area: the area of the

boundary between solid and electrolyte per unit volume.

■ c̄e(x, y, z, t) [mol m−3] is the intrinsic volume average concentration of

lithium in the electrolyte in the vicinity of a particular location.

■ c̄s,e(x, y, z, t) [mol m−3] is the intrinsic volume average concentration

of lithium at the interface between solid and electrolyte in the vicinity

of a particular location.

■ δ(x, y, z, t) [unitless] is the constrictivity of a porous media in the

vicinity of a point. δ < 1.

■ De,eff(x, y, z, t) [m2 s−1] is a short form for De,eff ≈ Deε
brug
e = Deε

1.5
e .

■ εe(x, y, z, t) [unitless] is the porosity or volume fraction of the

electrolyte phase in an electrode (other phases include the solid

phase and inert-materials phase).

■ εs(x, y, z, t) [unitless] is the volume fraction of the solid phase in an

electrode (other phases include the electrolyte phase and

inert-materials phase).

■ φ(x, y, z, t) [V] is the scalar field representing the electric potential at

a given point.

■ φ̄e(x, y, z, t) [V] is the intrinsic volume averaged scalar field

representing the electric potential in the electrolyte in the vicinity of a

given point.

■ φ̄s(x, y, z, t) [V] is the intrinsic volume averaged scalar field

representing the electric potential in the solid in the vicinity of a given

point.
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■ j (x, y, z, t) [mol m−2 s−1] is the rate of positive charge flowing out of a

particle across a boundary between the solid and the electrolyte.

■ j̄(x, y, z, t) [mol m−2 s−1] is the volume-averaged rate of positive

charge flowing out of a particle across a boundary between the solid

and the electrolyte.

■ κ(x, y, z, t) [S m−1] is a material-dependent parameter of the

electrolyte called the bulk conductivity of homogenous materials

without inclusions in the vicinity of a given point.

■ κeff(x, y, z, t) [S m−1] is the effective conductivity of the electrolyte,

representing a volume averaged conductivity of the electrolyte phase

in a porous media in the vicinity of a given point. We often model

κeff ≈ κεbrug
e = κε1.5

e .

■ κD,eff(x, y, z, t) [A m−1] is a short form for κD,eff ≈ κDε
brug
e = κDε

1.5
e .

■ σ(x, y, z, t) [S m−1] is a material-dependent parameter of the solid

electrode particles called the bulk conductivity of homogenous

materials without inclusions in the vicinity of a given point.

■ σeff(x, y, z, t) [S m−1] is an electrode-dependent parameter called the

effective conductivity, representing a volume averaged conductivity of

the solid matrix in a porous media in the vicinity of a given point. We

often model σeff ≈ σεbrug
s = σε1.5

s .

■ τ(x, y, z, t) [unitless] is the tortuosity of the porous media in the

vicinity of a point. τ ≥ 1.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright c© 2011–2018, Gregory L. Plett


