
ECE5580: Multivariable Control in the Frequency Domain 7–1

Limitations on Performance in MIMO Systems

! In this chapter, we generalize the results of Chapter 5 to MIMO
systems

! Most of the results on fundamental limitations and controllability
analysis for SISO systems also hold for MIMO systems – with the
important consideration of directions

Introduction

! In a MIMO system, the plant gain, RHP-zeros, delays, RHP-poles and
disturbances have directions associated with them due to their matrix
structure

– A multivariable plant may have a RHP-zero and a RHP-pole at the
same location, but their effects may not interact!

! We shall quantify directionality by their output directions:

– yz: output direction of a RHP-zero, i.e., G.z/uz D 0 " yz

– yp: output direction of a RHP-pole, i.e., G.p/up D 1 " yp

– yd : output direction of a disturbance, i.e., yd D 1

kgdk2

gd

– ui : i th output direction (singular vector) of the plant, i.e., Gvi D !iui

! Vectors are usually normalized so that kxk2 D 1
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! Angles between vector directions may be quantified via the inner
product, e.g.,

" D cos$1
ˇ̌
y%

zyp

ˇ̌

Fundamental limitations on sensitivity

! From the identity S C T C I we get

j1 $ N!.S/j & N!.T / & 1 C N!.S/

j1 $ N!.T /j & N!.S/ & 1 C N!.T /

! ) S and T cannot be small simultaneously; N!.S/ is small if and only
if N!.T / is large

Interpolation constraints

! RPH ZERO. If G.s/ has a RHP-zero at z with output direction yz, then
for internal stability,

y%
zT .z/ D 0I y%

zS.z/ D y%
z

! RHP pole. If G.s/ has a RHP-pole at p with output direction yp;then
for internal stability,

S.p/yp D 0I T .p/yp D yp

Sensitivity integrals

! Integral constraints on sensitivity (“waterbed effect”) may be
generalized to MIMO via determinants,

Z 1

0

ln jdet S .j!/j d! D
X

j

Z 1

0

ln !j .S .j!// d! D # "
NpX
iD1

Re .pi/
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Minimum peaks for S and T

! THEOREM 7.1 SENSITIVITY AND COMPLEMENTARY SENSITIVITY

PEAKS. Consider a rational plant G.s/. Let zi be the Nz RHP-zeros of
G.s/ with output zero direction vectors yz;i . Let pi be the Np

RHP-poles of G.s/ with output pole direction vectors yp;i . Then we
have the following tight lower bound on kSk1 and kT k1:

MS;min D MT;min D
r

1 C !2
!
Q

$1=2
z QzpQ

$1=2
p

"

where

ŒQz$ij D
y%

z;iyz;j

zi C Nzj
;

#
Qp

$
ij

D
y%

p;iyp;j

Npi C pj
;

#
Qzp

$
ij

D
y%

z;iyp;j

zi $ pj

One RHP-pole and one RHP-zero

! THEOREM 7.2 WEIGHTED SENSITIVITY. Suppose the plant G.s/ has a
RHP-zero at s D z. Let wp.s/ be any stable scalar weight. Then for
closed-loop stability the weighted sensitivity function must satisfy%%wp.s/S.s/

%%
1 '

ˇ̌
wp.z/

ˇ̌

– In MIMO systems we generally have the freedom to move the
effect of RHP zeros to different outputs by appropriate control

! Theorem 7.3 WEIGHTED COMPLEMENTARY SENSITIVITY. Suppose
the plant G.s/ has a RHP-pole at s D p. Let wT .s/ be any stable
scalar weight. Then for closed-loop stability the weighted
complementaty sensitivity function must satisfy

kwT .s/T .s/k1 ' jwT .p/j
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Limitations imposed by uncertainty

Input and output uncertainty

! In a multiplicative (relative) form, the output and input uncertainties
are given by:

– OUTPUT UNCERTAINTY: G 0 D .I C 4o/ G or 4o D .G 0 $ G/ G$1

– INPUT UNCERTAINTY: G 0 D G .I C 4i / or 4i D G$1 .G 0 $ G/

G

∆i

+
+ +

+

∆o

Uncertainty and the benefits of feedback

! We’ve shown previously that feedback can reduce the effects of
uncertainty

– But, uncertainty can also pose limitations on achievable
performance – especially near crossover frequencies

– We now examine how the magnitude of the sensitivity, N! .S 0/ , is
affected by multiplicative uncertainty as given above

! FEEDBACK CONTROL. With one degree-of-freedom feedback control
the nominal transfer function is y D T r, where T D L.I C L/$1 is the
complementary sensitivity function.

– Ideally, we want T D I

– The change in response with model error is y 0 $ y D .T 0 $ T /r

where
T 0 $ T D S 04oT
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– Thus, y 0 $ y D S 04oT r D S 04oy, and we see that

ı With feedback control the effect of the uncertainty is reduced by
a factor of S 0 relative to that with feedforward control

Effect of uncertainty on feedback sensitivity peak

! We will derive upper bounds on N!.S 0/ which involve the plant and
controller condition numbers:

% .G/ D N! .G/

! .G/
; % .K/ D N! .K/

! .K/

! Factorization of S 0 in terms of the nominal sensitivity S gives,

– OUTPUT UNCERTAINTY:
S 0 D S .I C 4oT /$1

– INPUT UNCERTAINTY:
S 0 D S

&
I C G4iG

$1T
'$1

D SG .I C 4iTi/
$1 G$1

S 0 D
&
I C TK$14iK

'$1
S

D K$1 .I C Ti4i /
$1 KS

! We assume that :

– G 0 and G are both stable

– System is closed-loop stable

! In that case we get that .I C 4oT /$1 and .I C 4iTi/
$1 are stable

! The magnitude of the multiplicative (relative) uncertainty at each
frequency can be bounded in terms of it singular value,
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N! .4i / & jwi j ; N! .4o/ & jwoj

where wi.s/ and wo.s/ are scalar weights.

– Typically, the uncertainty bound jwi j or jwoj is 0:2 at low
frequencies and exceeds 1 at higher frequencies

Upper bound on N! .S 0/ for output uncertainty

! From the output uncertainty expression above we derive

N! .S 0/ & N! .S/ N!
&
.I C 4oT /$1

'
& N! .S/

1 $ jwoj N! .T /
Upper bound on N! .S 0/ for input uncertainty

! The sensitivity function can be much more sensitive to input
uncertainty than output uncertainty – from above we derive

N! .S 0/ & % .G/ N! .S/ N!
&
.I C 4iTi/

$1
'

& % .G/
N! .S/

1 $ jwi j N! .Ti/

N! .S 0/ & % .K/ N! .S/ N!
&
.I C Ti4i /

$1
'

& % .K/
N! .S/

1 $ jwi j N! .Ti/

! The first of these implies if %.G/ ( 1 then the system is insensitive to
input uncertainties, irrespective of the controller

! The second implies that if we use a “round” controller, i.e., %.K/ ( 1 ,
then the sensitivity function is not sensitive to input uncertainty

Lecture notes prepared by M. Scott Trimboli. Copyright c# 2016, M. Scott Trimboli



ECE5580, Limitations on Performance in MIMO Systems 7–7

MIMO Input-Output controllability

! Let’s now summarize the main findings in an analysis procedure for
input-output controllability for MIMO systems

! As expected, the presence of directions in MIMO plants makes things
more difficult than for the SISO case

Controllability analysis procedure

The procedure assumes decisions have already been made on plant
inputs and outputs.

1. SCALE ALL VARIABLES. e.g., scale inputs, outputs, disturbances and
references to obtain a scaled system model

2. OBTAIN A MINIMAL REALIZATION. i.e., all possible pole-zero
cancellations have been made

3. CHECK FUNCTIONAL CONTROLLABILITY.

(a) To control outputs independently, need as many inputs ui as
outputs yi

(b) Need the rank of G.s/ to be equal to the number of outputs

4. COMPUTE THE POLES.

5. COMPUTE THE ZEROS.

6. CALCULATE BOUNDS ON CLOSED-LOOP TRANSFER FUNCTIONS.

(a) Large peaks () 1) for any of S , T , KS , SGd , KSGd , Si , and Ti

indicates poor closed-loop performance or poor robustness
against uncertainty.

Lecture notes prepared by M. Scott Trimboli. Copyright c# 2016, M. Scott Trimboli



ECE5580, Limitations on Performance in MIMO Systems 7–8

7. OBTAIN FREQUENCY RESPONSE OF G.j!/.

(a) Compute RGA matrix ƒ D G * .G&/T

(b) Plants with large RGA elements at crossover frequencies are
difficult to control.

8. COMPUTE SINGULAR VALUES (PRINCIPAL GAINS) OF G.j!/

(a) Pay attention to signal scaling
(b) Plot as functions of frequency (Bode plots)

9. EXAMINE ! .G .j!// .

(a) ! .G .j!// should be as large as possible at frequencies where
control is needed.

(b) If ! .G .j!// < 1 then we cannot (at frequency !) make
independent output changes of unit magnitude by using inputs of
unit magnitude.

10. EXAMINE ELEMENTS OF Gd WITH RESPECT TO DISTURBANCES.

(a) At frequencies where elements are larger than 1, we need control.
(b) Require for each disturbance that S is less than 1=kgd k2 in the

disturbance direction yd . The gd are the columns of Gd .
(c) Must at least require ! .S/ & 1=kgd k2 and may have to require

N!.S/ & 1=kgd k2 .

11. INVESTIGATE DISTURBANCES AND INPUT SATURATION.

(a) Consider the input magnitudes needed for perfect control by
computing G&Gd
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(b) If all elements less than one at all frequencies, input saturation
should not be a problem.

(c) If some elements of G&Gd are larger than one, then perfect control
cannot be achieved at this frequency.

12. CHECK REQUIREMENT COMPATIBILITY.

(a) Look at disturbances, RHP-poles, RHP-zeros, and their associated
directions.

(b) For example, must require for each disturbance and RHP-zero that
jy%

zgd.z/j & 1

13. CONSIDER UNCERTAINTY.

(a) If the condition number % .G/ is small, then should expect no
problems with uncertainty.

(b) If RGA elements are large, expect strong sensitivity to uncertainty.

14. CONSIDER PLANT DIAGONALIZATION.

(a) If plant is unstable, then require a lower-level stabilizing controller
first.

15. EXAMINE PLANT CONDITION NUMBER.

(a) A system’s gain may vary widely with input direction – termed
strong directionality.

(b) Can check this via: i) condition number, and ii) RGA
(c) Large condition number implies plant is ill-conditioned – sensitive

to unstructured input uncertainty.
(d) Condition number may be reduced by scaling the plant.
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Example 7.1

! Perform a controllability analysis for the system whose transfer
function matrix is given by

G.s/ D

2
66664

10

s C 10

1:1

s C 1

10

s C 10
1

3
77775

! Computing the determinant,

det fG .s/g D
(

10

s C 10

)
" 1 $

(
10

s C 10

)
"
(

1:1

s C 1

)

D
(

10

s C 10

)
"
(

1 $ 1:1

s C 1

)

D 10 " .s $ :1/

.s C 10/ .s C 1/

– Poles: p1 D $10, p2 D $1

– Zeros: z1 D C0:1 (RHP)

! Computing the RGA,

ƒ.G/ D G ˝
&
G$1

'T

– After cancelling common poles-zero pairs,

ƒ.G/ D

2
6664

s C 1

s $ 0:1

$1:1

s $ 0:1

$1:1

s $ 0:1

s C 1

s $ 0:1

3
7775
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– Plotting the frequency-dependent RGA magnitudes,

– Here we see that the RGA values are all large for the low
frequency range, but off-diagonals drop to small levels for
! > 1 rad=sec indicating high interaction at low frequencies and
ƒ.G/ ! I at high frequencies

ı However, the non-interacting “high-frequency” range is beyond
the RHP zero value where bandwidth is limited

– Computing the steady-state value of the RGA,

ƒ .G .0// D
"

$10 11

11 $10

#

ı Thus the best pairing for decoupled control is:
!

y1 u2

"
and!

y2 u1

"

! Computing the steady-state value of G.s/,
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G .0/ D
"

1 1:1

1 1

#

– Evaluating its SVD,

G .0/ D
"

$:7245 $:6892

$:6892 :7245

# "
2:0512 0

0 0:0488

# "
$:6892 :7245

$:7245 $:6892

#T

– Hence we can see that the most difficult output direction at
steady-state is

u .0/ D
"

$:6892

:7245

#

as it is associated with the very small gain ! .G/ D 0:0488 .

! Computing and plotting the principal gains,

σ(G)

σ(G)

– Since the maximum singular value is less than about 2 at all
frequencies, there may be some difficulties with control
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! Computing and plotting the characteristic loci,

– CL show no net encirclements of the critical point – since no
open-loop RHP-poles, indicates stability under unity feedback
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