ECE5570: Optimization Methods for Systems and Control 6—1

Linear Quadratic Optimal Control

6.1: Introduction to Linear Quadratic Optimal Control

e In our study of dynamic optimization so far, we've focused on
obtaining a control function # which optimizes a specified cost as a
function of time.

— In the course of solving the optimization, we also obtain x and A.
— So, our optimal u (1) = u™ () is completely pre-determined by the
problem set-up and initial conditions.

e Typically, the problem is solved for a given set of initial conditions in
order to proceed to a specified set of terminal constraints.

e So, provided we stay precisely on the optimal path stipulated by ™ (¢)
all we have to do is check our watch and apply the appropriate
control!

= OPEN-LOOP CONTROL!

e But what do we do if (i) disturbances knock us off the optimal path, or
(ii) we don’t know exactly where we will start from, or (iii) we don'’t
know exactly when we will start?

— EITHER, we must solve a new problem for each different situation,

— OR we can calculate a family of optimal paths so that all possible
starting conditions lie on or very close to one of the paths.
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o In this second case, we can simply look at where we are and
then decide what to do next.

= FEEDBACK CONTROL
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Example: Zermelo’s Problem

e Recall the solution obtained previously:

1
=3 {secO (tan 6 — tan 67) + tan 6 (sec 6, — sec 6)
L tan 6 + sec 6
n
tan 0y + sec Oy

%zsec@—secef

X
h

e S0, given the current x and y positional values, then 6 and 6, can be
calculated:
V(ty—t)
h
— We can thus go backward in time to identify 6, x, and y for any

given 0, = a family of optimal paths

tan 0 = tan 0y —

e Obviously, the problem of generating feedback control solutions using
the techniques suggested above will, in general, be an extremely
tedious one.

— One saving grace: a unique optimal control vector will, in general,
be associated with each point; so we don’t have to worry about
selecting the proper solution from among many alternatives.

— Sitill, the solution process is rather laborious.

e Is there another way? YES = DYNAMIC PROGRAMMING
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6.2: Dynamic Programming

¢ Basis for the approach: if we start from a given point and proceed
optimally to the end, there will be a unique optimal value for the cost
associated with this process (J*)

— This idea is known as Bellman’s Principle of Optimality:

“In place of determining the optimal sequence of decisions from
the fixed state of the system, we wish to determine the optimal
decision to be made at any state of the system. Only if we know
the latter, do we understand the instrinsic structure of the

solution.” *

— Bellman’s ideas were developed in part to compete with the
Pontryagin minimum principle during the same timeframe.

— The central idea is to work backward in time from some desired
goal states.

e Clearly, J* is a function of the initial point; so J* is often referred to as
the OPTIMAL RETURN FUNCTION.

— Using Hamilton-Jacobi theory, the solution of a special partial
differential equation that is satisfied by J* can be used to
determine the optimal feedback control policy.

— Furthermore, this theory has been generalized to include
multistage systems and combinatorial problems by Bellman to
produce the complete Dynamic Programming approach.

' R. Bellman. Dynamic Programming. Princeton University Press, 1957.
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e The complete development of this theory is beyond the scope of this
course, but | do want to highlight the result, an important
interpretation of the result, and the significance of (and difficulties
with) the theory.

e An in-depth treatment of this approach is developed in ECE 5530,
Multivariable Control Systems II.

RESULT: Hamilton-Jacobi-Bellman partial differential equation

e The optimal control policy is given by the solution of

o o
_ _ H* o
o1 (x’ ox t)

. aJ * , aJ*
H |x, —,t)|=minH|x, —, u, t
ax u 0x

— This is an alternative approach to the Calculus of Variations for
solving dynamic optimization problems.

where

— The result is a first-order nonlinear partial differential equation that
must be solved with appropriate boundary conditions.

— The equation states that the optimal ©* minimizes globally the
Hamiltonian H holding x, 3/*/x, and ¢ constant — this is another
statement of Pontryagin’s Minimum Principle.
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INTERPRETATION: The principle of optimality

“An optimal policy has the property that, no matter what the
previous controls have been, the remaining controls must
constitute an optimal policy with regard to the states result-
ing from the previous control”

SIGNIFICANCE:

1. Emphasizes the existence of optimal feedback control laws.

2. Provides a straightforward approach to solving discrete combinatorial
problems (e.g., Bryson & Ho, pp. 136-141); these are multi-stage
optimization problems in which there are only a small number of
possible choices of the control at each stage.

DIFFICULTIES:

e It is not generally feasible to solve the Hamilton-Jacobi-Bellman
partial differential equation for practical nonlinear systems.

— So the development of exact feedback control schemes is typically
out of reach.

— But if we focus on linear dynamic systems and impose quadratic
performance criteria and constraints, appropriate feedback
controllers can be synthesized.

= LINEAR QUADRATIC OPTIMAL CONTROL

— Furthermore, once the LQ techniques have been developed, they
may be applied to nonlinear problems via “perturbation guidance”
= Identify optimal feedback paths in the neighborhood of a
previously-identified nominal optimal path.
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6.3: Linear Quadratic Control Problem

e In this section, we examine the Linear Quadratic Control problem and
develop techniques to generate optimal feedback control laws

e A general continuous-time dynamic system may be written:
x(t)=A(t)x () + B(t)u(t)
y() = Ct)x () + D(t)u(r)
where here we allow for possibly time-varying system matrices.
e For simplicity, we shall assume constant-valued matrices to write:
x(@)=Ax () + Bu (1)
y@)=Cx @)+ Du(r)

— Recall that vector-valued variables u (¢) and y (¢) allow for multiple
inputs and multiple outputs.

e Types of Control Algorithms and Associated Costs:

1. TERMINAL CONTROLLER = designed to bring a system close to
desired conditions at some specified (or unspecified) terminal time

(a) “soft” end constraints

J = %xT(tf)Pfx(tf) + %/t‘f {xT (t) Qx (t) +u’ (¢t) Ru (t)} dt

1o
where P, Q and R are constant-valued, positive definite,

symmetric matrices that introduce weighting into the cost
function.
(b) “hard” end constraints

J = %/tf {x" (1) Ox (t) +u’ (t) Ru (1)} dt

xi(ty) =0; i=1,2,...,¢
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2. REGULATOR = designed to keep a stationary system within an
acceptable deviation from a reference condition using acceptable
amounts of control

1

'f
J = 5/ {x"Ox +u' Ru}dr with (1, —19) > o0
Io

Here, the reference is set to zero, so we start from an initial
condition and wish to return to the equilibrium state.

e We begin our investigation with the simplest form of the linear
quadratic optimal control problem = the “soft” end constraint
problem presented above:

1 1 [
J = 5xT(tf)Pfx(tf) + 5/ {xTQx + uTRu} dt
1o

x = Ax + Bu
Pr>0 0>0 R>0

— For the case where ¢ty — o0, is the soft end constraint necessary?

— The selection of P, Q, and R is based on our desire to obtain
“acceptable” levels for x (¢ ), x (), and u(t), respectively

— Typically, these matrices will be diagonal — some rules of thumb for

selecting these matrices are:
1
1. —
Pr(i,i)
1
2. = (¢4 — ty) * max acceptable value of x/(¢)

0G.i)
1

. — (t; — ty) * max acceptable value of u?(t

= max acceptable value of x7(z /)

3

e How do we solve this optimization problem? Using the Calculus of
Variations

Lecture notes prepared by M. Scott Trimboli. Copyright © 2013-2021, M. Scott Trimboli



ECE5570, Linear Quadratic Optimal Control 69

-1 ‘(1
J :ExJT,Pfxf—i—/ {5 [xTQx—I—uTRu]—I—)LT[Ax—i—Bu—J'c]}dt
lo

§J = x?Pfo(tf) + AT (t0)8x (t9) — AT(tf)Sx(tf)

tf T
—l—/to {[xTQ +ATA+2 ]Sx + [uTR + )LTB] 8u} dt
— Yielding the following equations:
il = —xTQ—-ATA
x = Ax + Bu
u'R+A"B =0
Al(ty) =x [Py

— Rearranging, we have

x = Ax + Bu
A=—-0x—ATA
u=—-R'BTA

x(0) = xg )L(tf)szxf

e We would have gotten the same result using the following equations:

OH _ . OH _ s O _
ou ox oA
dg
Al(ty) =
(tr) Ix (1))

where
1
H = 5 {x"Ox +u" Ru} + 1" {Ax + Bu}

1 7
<p=§fofxf
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e We can solve these equations by augmenting the state vector:

NS N

e NOTE: This matrix is referred to as the HAMILTONIAN matrix, H

— So, we must find the solution to this set of 2n linear homogeneous
differential equations with x(z,) given and A(ts) = Prx s

x(t) — e?—[(z—zo) X(lo) — P (t 7 ) X(to)
A(0) A1) " Ao
x (1) _ | ¢u (t —to) ¢12(t —1o) x (Zo)
A(2) $a1 (t — to) P2 ( — to) A (7o)
x (1) = ¢nx(to) + P12 (%)
A1) = ¢ax(ty) + P22 (1))
e x () and A(zr) are known, but A(#p) and x(z) are not

x(t5) = 11 (ty — to) x (o) + p12 (17 — 10) A (20)
Aty) = ¢or (15 —to) x(t0) + ¢ (t7 — t0) A(to) = Prx(ty)

(Prdii — ¢o1) x (o) = (h22 — Prb12) A(to)
A(ty) = (¢22 — Pf¢12)_1 (Pf¢11 — ¢21) x (1)

e And now that we know x (7)) and A (), we can calculate x(z), A(¢)
and u(t)
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6.4: Linear Quadratic Control Problem Example

Example 6.1

X=u

| 1 [

J = —pxz(tf) + —/ (qx2 + ruz) dt
2 2 Jo

SOLUTION:

e The Hamiltonian is given by

H = l(qr)c2—|—ruz) + Au

2
e Writing the optimality equations gives,

JH A
—=ru+A=0 = u=-——
Ju r

JH . A

= —— = —qx X = ——

0x r

e We can stack the state and co-state equations to write the

augmented form
: |
X 0O — X
. = 7
[ A } —q 0 [ A }

z =Hz

e Using Laplace transforms gives the solution as
sZ (s)—z(0) =HZ (s)
(sI —H)Z (s) =z (0)

Z (s) = (sI —H) 'z (0)

e But we have
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1 1 s ——
(f=4= (52—1/617) —(q sr

e For the diagonal terms,
S A B

Sz—l/qr:s—i—\/q/ir—'_s—\/Q/ir

where solving for A and B gives

A =1/
B =1
and
_1 s . 1 a/rt 1 +/a/rt _
L {Sz—l/qr} —56 +§€ \/_ —COSh( ‘I/rt)
e And for the off-diagonal terms,

1 A B

Sz—l/qr:s—l—\/q/ir—i_s—\/Q/ir

where solving for A and B here gives

1
A=— r/q

and
1 1

—1 — _ /Ir o /rt + /rt\ __ r :
L {Sz—l/qr}_z /q( e 1 +e 1 )—\/ /qSlnh( Q/rt)

e S0 now we can write the state transition matrix as
_ ) _

cosh ( Q/rl) — ( ) sinh ( Q/rt)
e?-[t — /qr

—\/rq sinh ( ‘I/rt) cosh ( (J/rt)
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and the complete solution as

|:x(t):|: - cosh (V) —(qu_r)smh( ) {xo}

A (1) i —./rq sinh ( ‘I/rl) cosh ( Q/rl)

\/lq_r) sinh ( q/rt)
A (t) = —xo/rg sinh (\/671) + Ao cosh ( q/rz)

which gives,
u(t) = xomsinh ( q/rt) — Ao (%) cosh ( Q/rt)

e But how do we find Ay ?

e SO,

x(t) = xocosh ( q/rt) — Ao (

e Substituting r = ¢y we can write,

Xo {p cosh (mff) + /rgsinh (m[f)}
s {Cosh (vl ) + p (\/1_) sinh (Wtf)}

qr

e Solving we obtain,

p + /rq tanh (\/‘Vth)
l+p (ﬁ) tanh (mtf)

e Substituting, we find that u(¢) is a function of x¢, ¢, r, p, tr, and t.

Ap =

X0

— NOTE: In the special case where ¢ = 0 and r = 1, we can use
'Hopital’s rule to find
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6—14

Ao = {ﬁ} xXo=At) = ul)=-

giving constant control input.
— Additionally,

p .
(1 + pty)

X0

X = ——
/ 1 + pty

sothatas p — oo, xy — 0

e The accompanying plots show results for the optimal output and input
for various values of weighting factor ¢; »r = 1 and p = 100 in all
cases shown.

ECE 5570 Example 6.1 Q=0, R=1 ECE 5570 Example 6.1 Q=0, R=1
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ECE 5570 Example 6.1 Q=10, R=1 ECE 5570 Example 6.1 Q=10, R=1
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e One problem with this Calculus of Variations approach to solving this

problem is that u(z) is a function of time and initial conditions.

e From our earlier solution we found,
u(t) =—R'BTA(1)

and the state and co-state in terms of the state transition matrix,

A(t) = ¢ (1 — 19) x(t0) + P2 (2 — to) A(to)
x(t) = @11 (t —1o) x(to) + 12 (f — o) A(fo)

e?—[(t_zo) _ ¢11 ¢12
$21 | P22

where we were able to solve for A (¢y) in terms of x (¢y) as
A(to) = —M(tr)x (1)
M(ty) = {Psd1a—pn}  {Psd11i— i}

e It would be nice, however, to identify u(z) in terms of x(¢r) = this
would give us a FEEDBACK LAW

e Can this be done? YES!
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u(t) =—R'B" {(/521 (1 —to) — ¢ (£ — 10) M(ff)}x(fo)
x (1) = {11 (t —to) — P12 (t —10) M(15)} x(t0)

u(t) = —R'BT {¢p21 — g M} {11 — praM} ' x (1)
=—R'BTP(t)x(t) {A(t) = P(t)x(t)}

— NOTE: this approach is not necessarily the best way to solve for
P(?), but it does demonstrate the construction of P(¢)

e Is this result surprising? NO!

— Since u(t) is a function of x (¢y), the Principle of Optimality
indicates that any time ¢ may be regarded as a new initial time, £,

— So our optimal control will always be a function of the current
states!
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6.5: Feedback Form of the Linear Quadratic Control Problem

e We've seen that the LQ optimal control problem with “soft” end
constraints yields a full-state feedback control law of the form

u(t) = —K(t)x(t)
with a time-varying control law:
K@) =R 'BTP(¢)
e Question: How do we compute the time-varying matrix function P(¢) ?

e Find ¢’ and compute P(¢) using the following relationships:

x(1) = pu(t—t7)xty) +dn(t—17) A (15) SH(-17) b1 P12
At) = ¢ (t—t7)x(ty) + 0t —15) A (15) $21 | P22

A(tr) = Prx(ty)

A1) = (po1 + ¢ Pr)x(ty)  x(t5) = (b + ¢12Ps)” x(1)

A() =g (t —17) + ¢ (t — 1) Py}

x {gn (¢ —t7) + ¢ (t —t7) Py}

x (1)
— Problems:

o ¢’ may be difficult to derive analytically

o Numerical methods may be inaccurate due to different
exponetial growth rates within e’

e Integrate a “matrix Ricatti equation” (the “sweep” method)

Aty =Pt)x(t) =
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A=Px+Px=—-ATA—0QOx
x = Ax — BR'B"A

{P+PA—PBR'B"P}x ={-A"P - 0Q}x
P=-PA—A"P 4+ PBR'B'P-Q P(ty) = Py

— Using a numerical integration method, we can let
T=1r—1 dt = —dt

=
dP = PA+ A"P - PBR'B"P +Q

andlet t gofrom0tos, {P(x =0)= P/}

Example 6.2

e First-order problem done previously withg =0andr =1

e Putting into standard state-space form,
x(@) = [0]x(2) + [1]u(2)

from which we have
A=0
B =1

e Therefore, the Ricatti equation simplifies...
P+ PA+ATP —PBR'BTP =—-0
P—-P*=0

or,
P = p?

Lecture notes prepared by M. Scott Trimboli. Copyright © 2013-2021, M. Scott Trimboli



ECE5570, Linear Quadratic Optimal Control 6-19

e Writing as

and rearanging, we can integrate to obtain

dP !
ty

—P =t-1y
I S
P, P(t) 4
1
o o+ (ty —1)
B p
- l—l—p(tf—t)

e Putting it all together, the state equation can be written,
x(t)=—P()x ()
4
= — x(t
1+ p (lf — t) ®)
or as an ordinary first-order differential equation,

: p _
x(t)+1+p(tf—t)x(t)_0

e Here we can use a standard differential equation solver (e.g.,
Matlab’s ode45) to solve, giving the same results as obtained earlier.

Lecture notes prepared by M. Scott Trimboli. Copyright © 2013-2021, M. Scott Trimboli



ECE5570, Linear Quadratic Optimal Control 6—20
6.6: Linear Requlator Problem

e Remember from the last section that the standard form for the linear
quadratic optimal control problem is:
x = Ax + Bu

1 71
J = 5xT(tf)Pfx(tf) —I—/ E{xTQx + uTRu} dt

)

with
Pr>0 0>0 R>0

e Using the Calculus of Variations, we’ve shown that the optimal control
can be written in state feedback form as:
u(t) = —K@)x(t) =—-R'BT'P(t)x(t)
—u(t) is time-varying (depending on time-to-go)
— P(t) can be identified either by appropriate manipulation of
transition matrices or by integrating a matrix Ricatti equation

e Now, we want to focus on a special subset of this category of
problems: THE REGULATOR PROBLEM

e What is a regulator? A feedback controller designed to keep a
stationary system within an acceptable deviation from a reference
condition using acceptable amounts of control

e Example: a satellite pointing problem
e Assumptions associated with the regulator problem:

— The system is time-invariant (e.g., A and B are constant)
— The QO and R matrices in J are constant

—tf—f0—>OO
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e What are the implications of these assumptions?

— The cost function reduces to

1 [
J = 5/ (x"Ox +u" Ru) dt
lo

e The term 1/2x" (t/) Pyx(t7) in J can be eliminated since the terminal
time is so far into the future; but there must be a running cost on at
least some of the states (i.e., O # 0) for this problem to be feasible

e Under these conditions, a constant, finite solution to the matrix Ricatti
equation exists
P=—-—PA—A"P+ PBR'BTP-0Q =0
= P(t) > Pyasty—1t)— o0
e NOTE: this result assumes:

— [A, B] is stabilizable
— [A, C] is detectable
-0 =pC"C
e S0, the feedback gain matrix, K(¢), will be constant and it can be
shown that the controlled system will be stable if P, > 0
e But how do we find P, ?
—If P = 0, the matrix Ricatti equation becomes an algebraic
equation that can be solved for the constant matrix P

— But since the resulting equation is quadratic in P, more than one
solution will appear = the extraneous solutions can usually be
eliminated using the fact that P, must be positive definite.
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6.7: Linear Requlator Problem: Example

e This example is taken from Bryson & Ho, pg. 168:

, 1 L [~ 5 5
X=—Xx-4u J == (qx +ru)dt
T 2 0

SOLUTION:

e From the state-space equations, we have

1
A=--, B=1
T

and from the cost function,
Q = {, R—=r

e Utilizing our previous solution approach for the infinite-time regulator,
we have

u(t) = —R'BTPyx(t) = —%Pox(t)

where P, is found as the solution to the algebraic Ricatti equation
—PyA—A"Py+ PoBR'BT"Py— 0 =0

Upon subsitutiing for A, B, O and R we have,

2P, P?
0 + 0 —g = 0
T r
giving the quadratic equation,
, 2r
Py + 7P0 —qr =0

and solving, we obtain

r r\?2
P0:——:|:\/(—) + gr
T T

Lecture notes prepared by M. Scott Trimboli. Copyright © 2013-2021, M. Scott Trimboli



ECE5570, Linear Quadratic Optimal Control 6—23
e The quadratic gives two possible solutions... but we are only
interested in the case wherePy > 0 =

/ 72 §
l4+g——1
r
so the optimal input is given by
1 1
w* (1) = — {,/—2 - —} x (1)
T r T

e Another method of finding P, is to integrate the matrix Riccati
equation backwards in time using numerical techniques until P
settles down to a constant

r
Py="-
T

— Although P, = 0, the fact that Q # 0 guarantees the existence of a
nonzero P,

— Unfortunately, this approach is computationally expensive

e Yet another alternative can be found using the Calculus of Variations
approach on a slightly different cost function:
1 0
J = 5/ {x"C"0\Cx +u" Ru} di
0
e Why do this? Because | may only be interested in controlling a subset
of the states (i.e.., the system outputs)

— Note here we define the system outputs via the linear output

equation,
y=Cx

and re-define the weighting matrix Q; to apply weighting to the
outputs contained in output vector y

e Using the Calculus of Variations:
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1
H=_{x"C"0:Cx +u" Ru} + 1" (Ax + Bu)
OH
=" o
0x
x = Ax + Bu
A=—-ATA—-CTQ,Cx
8H -1 T . —1 T
u

e S0, the optimal solution can be obtained by solving a set of
homogeneous, first-order, linear differential equations as was done
earlier, but here with a different interpretation:

z ="Hz

| x . A |-BR'BT
Tl ~ | ZcTo,c| —AT

e This result is especially useful because it can be shown that the 2n
eigenvalues of H are symmetric about both the imaginary the real
axis

— It turns out, this adjoined system has n stable roots and n unstable
roots

— n stable roots are associated with the state vector x and n
unstable roots are associated with the co-state vector A

— For J to remain finite as t — oo, x must approach zero
= The n stable eigenvalues of H must be the closed-

loop poles of the system
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— NOTE: When we optimize a controllable linear system using a
quadratic cost, we will always generate a stable, closed-loop

system!

e Having developed this result, we can now use it to generate the
optimal full-state feedback gains.

e Introducing numbers to our example,
X0 = 1

0=1

we present the optimal solution for R-values ranging from 0.1 to 100.

ECE5570 CH6.7 Example: Q=1 0 ECE5570 CH6.7 Example: Q=1
I I I I—R=O.1 ' ' —R=01
—R=1.0 0.5 —=R=1.0 |(]
R=10 |] R=10
—R=100 —R=100
1F
15
-2
-2.5
. 3 | | . .
0 2 4 6 8 10 0 2 4 6 8 10
time (sec) time (sec)
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6.8: Single-Input-Single-Output Systems: Symmetric Root Locus

¢ In what we have developed so far, we are assuming that all state
variables are available for feedback

= We have n control gains to select — one
for each state.

¢ In general, if we know the optimal pole locations (by looking at the
eigenvalues of H), we can calculate the closed-loop characteristic
equation and equate coefficients to identify the optimal control gains

e For SISO systems, there is an easier way to find the optimal pole
locations than finding the eigenvalues of ‘H

e Beginning from the time-domain state and co-state equations, we
apply Laplace transforms to write,

X = Ax + Bu x = (sI — A" Bu
' T T = 1 T
A = —-AA-C 0,Cx A = —G1—-A4) C'0,Cx

— From the stationarity condition we have
Ru+ B"A =0

and upon introducing from the Laplace transform variables above
we can write

Ru+CT (=sI —AT) ' CTQ,C(sI —A)'Cu=0
e Now since y = Cx, we have in Laplace transormed variables,
Y(s)=CT(sI —A)"'B-U(s)
e From matrix transpose properties, (—sI — AT)_1 = (—sI — A"

e So, if we define
Gis)=CT(sI—A)'B
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we get

[R+GT(~$)01G(5)] U(s) = 0

e For a scalar, non-zero value of u(¢), R + G’ (—s)Q,G(s) is a scalar
2n'" -order polynomial that is symmetric in s and —s and must equal
zero

— This polynomial is, in fact, the characteristic equation for the
Euler-Lagrange equations developed for this problem

— So, this polynomial can be used to identify the optimal closed-loop
poles of the system

e For SISO systems, R and Q, are scalars, thus

O
R
which is in ROOT Locus FORM (with 21/r as the variable gain)

R+G(=5)01G(s) =0 = 1+ G (=5)=G(s) =0

e Root Locus is a technique used primarily in control systems to
indicate graphically the locations of roots of a polynomial as a
constant 'gain’ value is varied.

— So root locus techniques can be used here to find the optimal
closed-loop poles for given ratio Q1/r

— The optimal steady-state control gains can then be found by
equating coefficients in the closed-loop characteristic equation

— For SISO systems, this process should be much easier than
finding the stable eigenvalues of H

e This technique is termed a symmetric root locus because the function
G (s) G (—s) gives rise to doubly-symmetric pole patterns in the
complex plane.
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Example 6.3:

X =—-by+u
y =X
e In this example, our state matrices are
A=-b
B =1
C =1

e So, setting 0| = ¢ and recognizing that y = Cx , we can express the
cost function in terms of the system output y as,
J = —/oo(qy2+ru2)dt
2 Jo
e Furthermore, we construct the system transfer function G (s) per the
foregoing development to write,

Y (s) 1
G pu— Ju—
S TOREEY,
1 q 1
1 = =0
= +—s—|—b r s+b>b

lomerni !
r ((s—»b)(s+b)
¢ Plotting the root locus gives us the closed-loop root locations as the
factor ¢/r varies from 0 — oo
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Figure 6.1 Root Locus Plot

e As expected, the root locus is symmetric about both real and
Imaginary axes; the optimal closed-loop system is described by the
stable root in the left-half of the complex plane.

e Can we identify precisely where the closed-loop pole is located?

— By constructing the characteristic polynomial, we solve analytically
for its roots:

s:—,/bz—l—g
r

— What is the corresponding optimal feedback gain, k?
u=—kx = s+b+k=0

—b—k=— b2+ 1
r
k= b2+% b
r
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e COMMENT: In the case where ¢ = 0 (i.e., no weight on the states), J
will only be a function of the control = We are only trying to
minimize the control effort

—b >0 = open-loop system is stable =  no need to use
control and k = 0

—b <0 = open-loop system is unstable = finite control is
required to stabliize the system and k& = 2|

e COMMENT: What if we increase ¢ ?

— Interpretation: we are trying to tighten our control on the system

— So the system should become more stable (exactly what the root
locus demonstrates)

Example 6.4

e Let’s take a look at another symmetric root locus example, this one
with two states:

[f;;HZzy;}x[li;H;}u

e For this example, we define

0 1 0
A: y B:
—a)20i| |:a)2i|

C=_10]
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e Generating the system transfer function,
G(s)=C(sI—A)'B

0)2

s2 4+ w?

e Formulating the root locus form 1 + (2) G (s)G (—s) =0,
r
q

w? w?
= 1 A A—
+ (—s)> +w? r s?4 w?
q w*

ro(s2+ w2

e We may use this formulation to construct the symmetric root locus.

A

Figure 6.2 Root Locus Plot

CHARACTERISTIC EQUATIONS:

(S2+a)2)2+za)420 = S4+2w252—|—a)4(1—|—2) =0
r r
)2:1 0 1 X1
U = —kix; —kox = =
i 2 X2 —w? (1+ky) —w2k2 X2
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Is] — A||—sI — A| = s* + »° (2—|—2k1 —wzkz)s2+w4(1 +k)*=0

e Here we see that the optimal closed-loop poles appear as a complex
conjugate pair that travel out into the left-half plane along symmetric
asymptotes.

e For a specific set of optimal pole locations, we simply equate
coefficients in this last equation with the characteristic polynomial
corresponding to the desired pole locations obtained upon specific
choice of 4/r.
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6.9: Multiple-Input-Multiple-Output Systems: Eigenvector Analysis

e For MIMO systems, MacFarlane and Potter developed an elegant
eigenvector approach to identify the optimal steady-state feedback
control gains

e Sinceu = —R'BTA,

1=l L3

— and using the eigenvectors of H , we can write

HiGaan

where S, = diag {+s;} (stable eigenvalues) and S_ = diag {—s;}
(unstable eigenvalues), and the columns of W are the
eigenvectors of H

e Now, let’s define a new set of transformed states:

RElt

= i_|_ = S_|_Z+ 2_ = S_Z_

2 | _[ e o 24(7)
2 @) | 0 eS| 2z ()

e Based on this solution, we can now solve for x(¢) and A(¢)
X X_|_ X_ e_S+(tf_t) 0 Z+(tf)
— TZ(Z) = ~S _
A Al A 0 eS| z ()
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— Here, [X., A ] and [X_, A_] represent the eigenvectors
associated with S, and S_ , respectively

x(t) = X+e_8+(’f_’)z+(tf) + X_e_‘s‘([f_’)z_(tf)

A1) = Are Stz (1) + Ae ™S z_(15)

— Furthermore, as ¢ty —t — oo, eSS+t 5 0

x(1) = X_e_‘s—(’f_’)z_(tf)
A1) = Ae Sz (1)

= A() = A_X'x(0)

So=A_X"" = u@t)=—R 'BTA_X"x(1)

e NOTE: For MIMO systems, this algorithm is significantly less
computationally expensive than integrating the matrix Ricatti equation

e So far, we’ve discussed the application of optimal feedback control to
systems with “soft” terminal constraints to perform the task of
regulation (i.e., keeping the states “close” to zero)

e The next section highlights two alternative control problems:

1. Zero Terminal Error
2. Tracking

Lecture notes prepared by M. Scott Trimboli. Copyright © 2013-2021, M. Scott Trimboli



ECE5570, Linear Quadratic Optimal Control 6-35
6.10: Zero Terminal Error Controller

e Consider the following linear quadratic control problem:
x = Ax + Bu, x(ty) = x

1 [
J = 3 {x"Ox +u" Ru} dr
lo

xi(ty) = ci, (=12,....9
— NOTE: A soft constraint on the other n — g states at ¢, could be
used, and the following developments could be modified to handle
this added complexity. But for now, we’ll assume ¢ = 0.
e Standard Calculus of Variations approach:

q
o = Zvi {xi(ty) —ci} H = %{xTQx +u'Ru} + A" {Ax + Bu}
i=1

. T Vi, i=1,2,...,q
A=—-0x—AA, Aitr) =
0, i=qg+1,....n
x = Ax + Bu, x () = xg
xi(tp)=c¢, 1=12,...,¢g
u=—R'B"A

e The solution is obtained by solving the following equations:

NSRS

xi(tp)=c¢;, 1=1,2,...,¢q
Aitr) =0, i=q+1,9g+2,....n
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x(fo) = Xo
— For relatively simple problems, these equations can be solved
using standard linear systems analysis methods

— For more difficult problems, the so-called “sweep” method provides
a practical solution alternative.
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6.11: Tracking Controller

e In this type of problem, we want to develop an optimal control law that
will force the plant to track a desired reference trajectory, r(t), over a
specified time interval

x = Ax + Bu
y=Cx

J = % (Cx(ty)—r(p)) Pr{Cx(ty)—r())

+ % / " (Cx =1 Q'(Cx —r) +uT Ru} dr

e Note here that the running cost penalizes the deviation of the output
variable y () = Cx (¢t) from a time-varying reference trajectory r (¢)

e Likewise, the terminal cost penalizes the distance of the output
variable y (t;) = Cx () from a terminal reference point r (¢ ;)

e The Hamiltonian for this problem is written,
1
H = 3 {(Cx —r) 0 (Cx —r)+ uTRu} + AT (Ax + Bu)
which gives the optimality equations,

. OH\"
A= (_a_) =—-CTQ'Cx —ATA+CTQ'r
X

x = Ax + Bu = Ax — BR"'BTA
u=—R1BT)
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e As before, the state and co-state equations can be stacked in
augmented form to write,

x| A —BR'B" || x o
il | =cToc —a” A cTo |”

e We must account for the modifications introduced by the r term
however

e For this development, we shall assume the input function is of the

form,
u(t)=—K@)x )+ w()

where
K(t)=—-R'BTP (1)

e We shall assume w (¢) is of similar form, i.e.,
w()=—R'BTv (1)

e Therefore, since we know that
u(t)y=—R'B"A (1),

then it’s clear that
A)=P@)x @)+ v (@)

e Subsituting these forms into the equation for A (r), we can write

A=Px+Pi+v=—-A"A-CTQCx+CTQ'r

and thus,
Px = —PAx — PBR'B"Px — PBR'BTv — b

—AT (Px+v)—-CTQ'Cx+CTQ'r
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e Extracting terms, we have a first-order differential equation in v (z),

v=(—A"+ PBR'B ) v+ C"Q'r

e Therefore, we can construct the total solution by solving first, the
matrix Ricatti differential equation for P (¢), and then the differential

equation for v (¢) to obtain the optimal solution,
u*(t) =—R'BT (P () x(t) +v (1))

Example 6.4: Tracking Controller

).61=X2

Xo =2X1—X>+ U

Yy = X1

t
J=(ys— 1)2 + / ! {(y — 1)> 4+ 0.0025u>} dt
0

e The state matrices are given by,

0 1 0
A: y B:
D)=

C=_10]

Q'=2 R=.005 P;=2 r(t)=1

T __ 2 T N/ _ 20
wo-[)] o[ty

P=—-PA—ATP-CTQ'C + PBR'BTP

e Taking the terms of P (¢) one-at-a-time,
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6—40

pui = 2(100p7, —2p1n — 1)
P12 = P21 = 200ppp + pio— Pt —2px»
P2 = 200p3, +2(p — p1o)

where

P () = pu(t) pr2(t)
pi2(t) pxn(t)

P(ff)=|:§ 8}

e It is now possible to use an ordinary differential equation solver (e.g.,

ode45 in MATLAB) to compute the solutions for P (¢), integrating

backward from P (z,) and for v (¢), integrating backward from v (z )

v=(—A"+ PBR'B ) v+ C"Q'r

U1 = (200p12 —2) vy + 2
1.)2 = (200p22 -+ 1) Uy — Uq

o(1y) = { ﬂ

u*(t) = —RIBT (P (1) x (t) + v (1))
= —200{p1ax1 + pax2 + v2}
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