
ECE5570: Optimization Methods for Systems and Control 5–1

Dynamic Systems Optimization

5.1: Disrete-Time Optimization: Single-Stage Systems

� To begin our invesitigation of optimization of dynamic systems, we’ll
focus on the most elementary dynamic problem ) single-stage
discrete-time systems:

f

u[0]

x[0] x[1]

Figure 5.1 Single-stage system

xŒ1� D f .xŒ0�; uŒ0�/

where
J D ' fxŒ1�g C L fxŒ0�; uŒ0�g

� Function ' fxŒ1�g is a cost we may wish to place on the value of x Œ1�
and L fxŒ0�; uŒ0�g defines our performance cost.

� The basic idea can be stated as follows: we wish to optimize some
aspect of system performance across this single stage.

� Dynamic process f .xŒ0�; uŒ0�/ establishes a constraint on the value
of x Œ1� for a given value of u Œ0�.

� So, what are the unknowns in this problem?
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xŒ1�, uŒ0� (xŒ0� is a known initial condition)

� Exactly what control do we have?

uŒ0� (xŒ1� will be fixed by the dynamic constraint once uŒ0� is
known)

Result: This dynamic optimization problem is no more than a
parameter optimization problem with equality constraints!

� So, here we’ll use the Lagrange multiplier technique that we
developed previously in order to attack this problem.

� We start by defining the augmented cost function NJ , where here we’ll
adopt the notation J instead of L to denote these are dynamic
optimizations.

NJ D ' fxŒ1�g C J fxŒ0�; uŒ0�g C �Œ1� ff .xŒ0�; uŒ0�/ � xŒ1�g

� Next, define: H D J C �Tf

NJ D ' fxŒ1�g CH fxŒ0�; uŒ0�; �Œ1�g � �Œ1�xŒ1�

� Now, develop the first variation of NJ :

ı NJ D

�
d'

dxŒ1�
� �Œ1�

�
dxŒ1�C

@H

@uŒ0�
duŒ0�

C
@H

@xŒ0�
dxŒ0�

– This expression tells us how small variations in x Œ0� ; x Œ1� and u Œ0�
affect the augmented cost NJ .

� To find the minimum value of NJ (and hence J ), we set ı NJ D 0

(stationarity condition).
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� Now, by cleverly choosing �Œ1� D
d'

dxŒ1�
, we avoid determining dxŒ1� in

terms of duŒ0�.

� And, since xŒ0� is given ) dxŒ0� D 0.

� Therefore, a stationary point of NJ will be obtained if,

@H

@uŒ0�
D 0

� So the conditions for a stationary point in this single-stage problem
can be stated as:

1.
d'

@xŒ1�
�Œ1� D 0

2.
@H

@uŒ0�
D 0

3. xŒ1� D f fxŒ0�; uŒ0�g

– These conditions provide 2nCm equations in 2nCm unknowns
) enough information to solve the problem!
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5.2: Introduction to Multi-Stage Systems

� An obvious extension of the results above is to consider a system
which changes dynamically over a series of stages:

f0

u[0]

x[0] x[1]
x[1]

u[1]

f1
x[2]

x[1]fN−1

x[N ]

x[N − 1]

u[N − 1]

Figure 5.2 Multi-stage system

J D ' fxŒN �g C

N�1X
kD0

L.k/ fxŒk�; uŒk�g

where � fx ŒN �g is defined as the terminal cost and here L.k/ is
defined as the running cost.

– In addition, for the multi-stage problem, our variable quantities are
now vector-dimensioned for generality.

– NOTE: Both f and L.k/ could change at each stage; for simplicity
however, we will assume here that this does not happen.

� OUR GOAL: Select the parameters fuŒk�I k D 0; 1; : : : ; N � 1g and
identify the corresponding parameters fxŒk�I k D 1; 2; : : : ; N g that
minimize the cost.

� How should we attack this problem? Once again ! LAGRANGE

MULTIPLIERS!

– Remember that we now have a set of N vector constraints (the
dynamic equations) that must be adjoined to the cost:
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J D J C

N�1X
kD0

�T Œk C 1� ff .x Œk� ; u Œk�/ � x Œk C 1�g

– And note, as before, that when constraints are met, NJ D J .

� We’ll now extend the definition of H :
HŒk� D H fxŒk�; uŒk�; �Œk�g D L fxŒk�; uŒk�g

C�T Œk C 1�f fxŒk�; uŒk�g

) NJ D ' fxŒN �g CHŒ0�C

N�1X
kD1

˚
HŒk� � �T Œk�xŒk�

	
� �T ŒN ��ŒN �

� And now, since we’ve introduced Lagrange multipliers, we can take
the first variation of NJ treating uŒk� and xŒk� as if they were
independent:

ı NJ D
@'

@xŒN �
dxŒN �C

N�1X
kD1

�
@HŒk�

@xŒk�
� �T Œk�

�
dxŒk�

C

N�1X
kD1

@HŒk�

@uŒk�
duŒk�C

@HŒ0�

@uŒ0�
duŒ0�

C
@HŒ0�

@xŒ0�
dxŒ0� � �T ŒN �dxŒN �

� Let’s now examine this expression and determine the conditions for a
stationary point ...

� We’ll first simplify the expression,
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– Remember, �T Œk� is arbitrary, so we can choose it as we wish; a
good choice is:

�T ŒN � D
@'

@xŒN �
�T Œk� D

@HŒk�

@xŒk�
; k D 1; 2; : : : ; N � 1

which allows us to write,

ı NJ D

N�1X
kD0

@HŒk�

@uŒk�
duŒk�C

@HŒ0�

@xŒ0�
dxŒ0�

– If initial conditions are given, dxŒ0� D 0 and ı NJ simplifies to

ı NJ D

N�1X
kD0

@HŒk�

@uŒk�
duŒk�

– Thus, a necessary condition for a stationary point is:
@HŒk�

@uŒk�
D 0; k D 0; 1; : : : ; N � 1

� Now that we’ve developed this stationarity condition, how do we solve
the problem?

– Let’s summarize: What are the unknowns involved?

uŒk�I k D 0; 1; : : : ; N � 1 .m �N/

xŒk�I k D 1; 2; : : : ; N .n �N/

�Œk�I k D 0; ; 1; : : : ; N .n �N/C n

– And what are the equations available to solve for these unknowns?

.m �N/ 0 D
@HŒk�

@uŒk�
D

@L

@uŒk�
C �T Œk C 1�

@f

@uŒk�
; k D 0; : : : ; N � 1

.n �N/ �T Œk� D
@HŒk�

@xŒk�
k D 0; : : : ; N � 1
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n �T ŒN � D
@'

@xŒN �

.n �N/ xŒk C 1� D f fxŒk�; uŒk�g D

�
@HŒk�

@�T Œk C 1�

�
; k D 0; : : : ; N � 1

– Therefore, we have N.2nCm/C n equations in N.2nCm/C n

unknowns ) solution exists if the equations are independent!

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Dynamic Systems Optimization 5–8

5.3: Example: Discrete-time Brachistochrone Problem

DESCRIPTION: A bead slides on a frictionless wire in a constant gravity
field. The inclination angle, � , may be changed at constant time intervals
4t .

x

y

θ

Figure 5.3 Brachistochrone Problem

FIND: �Œk� for k D 0; 1; : : : ; N � 1 that maximizes the horizontal distance
x at final time tf with 4t D tf=N .

SOLUTION:

1. The velocity and position along the wire at each corner point can be
identified from:

vŒk C 1� D vŒk�C g sin �Œk�4t

`Œk C 1� D `Œk�C vŒk�4t C
1

2
g sin �Œk�4t2

where g D 9:81 m=sec2 is gravitational acceleration.

(a) N can be introduced into the problem by normalizing the variables:

QvŒk� D
vŒk�

gtf
Q̀Œk� D

`Œk�

gt2f
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) QvŒk C 1� D QvŒk�C
1

N
sin �Œk�

4 Q̀Œk� D Q̀Œk C 1� � Q̀Œk� D
1

N
QvŒk�C

1

2N 2
sin �Œk�

2. Using 4 Q̀, the x and y coordinates of the corner points can be
identified:

QxŒk C 1� D QxŒk�C 4 Q̀Œk� cos �Œk�

QyŒk C 1� D QyŒk�C 4 Q̀Œk� sin �Œk�

3. For this problem, we define the state vector and input as:

xŒk� D

264 QxŒk�

QyŒk�

QvŒk�

375 ; uŒk� D �Œk�

(a) Thus we can express the state equation in the form:

xŒk C 1� D f .xŒk�; uŒk�/ D

2664
QxŒk�C� Q̀Œk� cos .�Œk�/
QyŒk�C� Q̀Œk� sin .�Œk�/

QvŒk�C
1

n
sin .�Œk�/

3775
4. What about the cost?

J D � QxŒN �

(a) Note the minus sign is used because we wish to maximize the final
horizontal position, Qx.

5. Build the augmented cost function using our previous definitions,
� D � QxŒN � and L D 0,

NJ D �xŒN �C

N�1X
kD0

�
�vŒk C 1�

�
QvŒk�C

1

N
sin �Œk�

�
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C�xŒk C 1�
n

QxŒk�C 4 Q̀Œk� cos �Œk�
o

C�yŒk C 1�
n

QyŒk�C 4 Q̀Œk� sin �Œk�
oo

�

NX
kD1

˚
�vŒk� QvŒk�C �xŒk� QxŒk�C �yŒk� QyŒk�

	
(a) Why three �’s? Because we have three “states”; note also

change of index in second summation.

6. So, the equations required to solve this problem are:

(a) Dynamic constraints (3 �N ):
f .xŒk�; uŒk�/ � x Œk C 1� D 0

with intial conditions,
QxŒ0�I D 0 QyŒ0� D 0 QvŒ0� D 0:

(b) Geometric constraint (N ):

4 Q̀Œk� D
1

N
QvŒk�C

1

2N 2
sin �Œk�

(c) Costate equations:

�T Œk� D
@HŒk�

@xŒk�

where

�Œk� D

264 �xŒk��yŒk�

�vŒk�

375
and

�xŒk� D �xŒk C 1�

�yŒk� D �yŒk C 1�
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�vŒŒk� D �vŒk C 1�C �xŒk C 1�

�
1

N

�
cos �Œk�C �yŒk C 1�

�
1

N

�
sin �Œk�

with terminal conditions,
�xŒN � D �1 �yŒN � D 0 �vŒk� D 0:

(d) We can now express the optimality condition:
@HŒk�

@uŒk�
D 0

i. Noting that

H Œk� D �xŒk C 1�
�

QxŒk�C� Q̀Œk� cos .�Œk�/
�

C �yŒk�
�

QyŒk�C� Q̀Œk� sin .�Œk�/
�

C �v Œk C 1�

�
Qvk C

1

N
sin .�Œk�/

�
and from the terminal conditions for �ŒN �,

�xŒk� D �1 k D 1; : : : ; N

�yŒk� D 0 k D 1; : : : ; N

ii. We can write

@HŒk�

@uŒk�
D �

@

@�Œk�

�
� Q̀Œk� cos .�Œk�/

�
C

@

@�Œk�

�
Qvk C

1

N
sin .�Œk�/

�
D � Q̀Œk� sin .�Œk�/ �

1

2N 2
cos2 .� Œk�/C

C �vŒk C 1�

�
1

N

�
cos .�Œk�/ D 0

NOTE: �Œk� is a function of �vŒk C 1� and QvŒk�.
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� Even in this relatively simple example, the number of equations
suggests the solution process could be extremely complicated.

� The existence of non-linear relationships makes the process even
worse! So what can we do? DEVELOP NUMERICAL METHODS.

� What do we have available for use?

1. A set of difference equations that develop forward in time; i.e., the
state equations:

xŒk C 1� D f fxŒk�; uŒk�g xŒ0� D x0

2. A set of difference equations that develop backward in time; i.e.,
the co-state equations:

�Œk� D

�
@f

@xŒk�

�T
�Œk C 1�C

�
@L

@xŒk�

�T
�ŒN � D

�
@'

@xŒN �

�T
� These two difference equations are coupled and define a TWO-POINT

BOUNDARY VALUE PROBLEM.

– The boundary conditions are split between the end points.

– Once �Œk C 1� and xŒk� are known, uŒk� can be computed using
the algebraic equations defined by the optimality condition:

@HŒk�

@uŒk�
D 0

� So, solving a two-point boundary value problem provides a means of
identifying the solution of our dynamic optimization problem.

– Curiosity: Even though we don’t really care about �Œk�, we must
calculate it to identify uŒk�!
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5.4: Solution methods for two-point boundary value problems

� What do we have available for use to solve the multi-stage problem?

1. One set of difference equations that develop forward in time; i.e.,
the state equations:

xŒk C 1� D f fxŒk�; uŒk�g xŒ0� D x0

2. And one set of difference equations that develop backward in time;
i.e., the co-state equations:

�Œk� D

�
@f

@xŒk�

�T
�Œk C 1�C

�
@L

@xŒk�

�T
�ŒN � D

�
@'

@xŒN �

�T
� These two difference equations are coupled and define a TWO-POINT

BOUNDARY VALUE PROBLEM.

– Note the boundary conditions are split between the end points –
half at the start and half and the end.

– Once �Œk C 1� and xŒk� are known, uŒk� can be computed using
the algebraic equations defined by the optimality condition:

@HŒk�

@uŒk�
D 0

� So, solving a two-point boundary value problem provides a means of
identifying the solution of our dynamic optimization problem.

– Curiosity: Even though we don’t really care about �Œk�, we must
calculate it to identify uŒk�!

� A number of methods exist to solve two-point boundary value
problems
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Shooting Method

1. Guess �Œ0�

2. Compute �Œ1� using the co-state difference equations

3. Compute uŒ0� using xŒ0�; �Œ1�, and the stationarity conditions

4. Compute xŒ1� using the state difference equations

5. Continue steps (2) through (4) up to time N

6. If �T ŒN � D
@'

@xŒN �
, the solution is correct; but if �T ŒN � ¤

@'

@xŒN �
, a

new �Œ0� must be chosen and steps (2) through (5) repeated

(a) how do you choose �Œ0� ? It’s an art.

(b) you might try varying each element of �Œ0� individually to observe
the sensitivity of the results to these changes, and then use this
information to select the new �Œ0�

� Problem ) the process is very sensitive to the initial guess; the
solution may not converge unless the first guess is pretty accurate

Gradient Method

1. Guess all of the control variables fuŒk�I k D 0; 1; : : : ; N � 1g

2. Compute xŒk� using the state difference equations

3. Compute �Œk� backwards using the co-state difference equation

4. Stop when all @HŒk�=@uŒk� are sufficiently close to zero

(a) Why? We want to set ı NJ D

N�1X
kD0

@HŒk�=@uŒk�duŒk� D 0 which can only

happen when @HŒk�=@uŒk� D 0
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(b) A useful criterion is the following RMS-type measurement:"�
1

N

� N�1X
kD0

�
@HŒk�

@uŒk�

� �
@HŒk�

@uŒk�

�T#1
2

< �

5. If the stopping criterion is not satisfied, another guess at the control
variables must be made.

(a) This can be done during step (3) by setting

uNEW Œk� D uŒk� �K
@HŒk�

@uŒk�
for someK > 0

(b) Why does this work?

i. if @H=@u > 0, then du < 0 will produce ı NJ < 0 and hence NJ will
decrease.

ii. if @H=@u < 0; then du > 0 will produce ı NJ < 0 and hence NJ will
decrease.

� Problem ) just like the parameter optimization problem, the selection
of K here is tricky.

Solution Example: Gradient Method

� We can apply the gradient method outlined above to the
brachistochrone problem developed previously.

� For this example, we chose the following parameters:
tf D 10 sec
N D 50

� The optimization was carried out using a gain K D 2:0 and a
tolerance � D 10�8:
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� Doing so, we arrive arrive at the following result which gives the cyloid
shape characteristic of the brachistichrone problem.

0 50 100 150 200 250 300
x

-200

-150

-100

-50

0

y

Brachistochrone Problem: Max Distance

Figure 5.4 Brachistochrone Example
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5.5: Continuous-Time: Fixed-Time, No Terminal Constraints

� Dynamic optimization problems for continuous-time systems are
problems of the Calculus of Variations.

� Such problems can be often be considered as limiting cases of
discrete-time systems where the time interval becomes infinitesimally
small.

� Consider the system described by the non-linear vector differential
equation,

Px .t/ D f .x .t/ ; u .t/ ; t/ I x.t0/ D x0I t0 � t � tf

and cost function

J D '
˚
x.tf /; tf

	
C

Z tf

t0

L fx.t/; u.t/; tg dt:

Here, '
˚
x.tf /; tf

	
represents the terminal cost and L fx.t/; u.t/; tg

is the running cost as with the discrete-time formulation.

� GOAL: Minimize J by selecting input u.t/ and determine resulting
state vector x.t/.

� SOLUTION:

� First, define the augmented cost function NJ by adjoining the system
dynamic (state) equation to J with Lagrange multipliers,

NJ D '
˚
x.tf /; tf

	
C

Z tf

t0

˚
L .x .t/ ; u .t/ ; t/C �T .f .x .t/ ; u .t/ ; t/ � Pxt .//

	
dt

� Next, define the continuous-time Hamiltonian function,
H .x.t/; u .t/ ; t/ D L .x .t/ ;u .t//C � .t/T f .x.t/; u .t/ ; t/

� In the subsequent development, we shall occasionally drop the
functional dependence on t to simplify notation.
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� Next, we make use of the following relationship:Z tf

t0

��T .t/ Px .t/ dt D �T .t/x .t/
ˇ̌tf
t0

C

Z tf

t0

P�
T
.t/x .t/ dt

where we have used integration by parts
�Z

udv D uv �

Z
vdu

�
where,

dv D Px .t/ dt v D x .t/

du D � P�
T
.t/ dt u D ��T .t/

� This gives )

NJ D '
˚
x.tf /; tf

	
C�T .t0/x.t0/��

T .tf /x.tf /C

Z tf

t0

�
H C P�

T
.t/x .t/

�
dt

� Now, vary parameters,

ı NJ D
@'

@x.tf /

ˇ̌̌̌
ıx.tf /C �T .t0/ıx.t0/ � �T .tf /ıx.tf /

C

Z tf

t0

��
@H

@x .t/
C P�

T
.t/

�
ıx .t/C

@H

@u .t/
ıu .t/

�
dt

� Here, as before, we choose Lagrange multipliers such that the
coefficients of ıx vanish, giving:

@H

@x .t/
C P�

T
.t/ D 0

and by the boundary conditions at tf we have

@'

@x.tf /
� �T .tf / D 0

� And finally, for an extremum, ıJ must be zero for arbitrary variation
ıu .t/, giving:
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@H

@u .t/
D 0

� The three equations above are called the EULER-LAGRANGE

EQUATIONS of the calculus of variations.

� In summary, to solve for the optimal control input u.t/ that minimizes
the performance function J; we need to solve the following set of
differential equations:

Px .t/ D f .x .t/ ; u .t/ ; t/

P� .t/ D �

�
@f

@x .t/

�T
��

�
@L

@x .t/

�T
where u.t/ is determined by

@H

@u .t/
D 0 or

�
@f

@u .t/

�T
�C

�
@L

@u .t/

�T
D 0

� The boundary conditions are again split – some given for t D t0 and
some given for t D tf :

x.t0/ D x0

�.tf / D

�
@'

@x .t/

�T
� So, again, as in the discrete-time multi-stage problem, we’re faced

with a two-point boundary value problem.
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5.6: Example: Minimum Energy Room Temperature Control

� PROBLEM STATEMENT: We desire to heat a room using the least
possible energy. Let T be the temperature in the room, Ta the
ambient temperature outside (assumed constant) and h.t/ the rate of
heat supplied to the room.

� Simplified dynamic equations may be written,
PT .t/ D �a .T .t/ � Ta/C bh .t/

for some constants a and b which depend on room design and
construction.

� We define the state as
x.t/ � T .t/ � Ta

and the control input as
u.t/ � h.t/

– Thus, we may express the scalar state equation as:
Px .t/ D �ax .t/C bu .t/

� In order to control the room temperature over the time interval
�
t0; tf

�
using least energy, we define the cost function

J D
1

2
k
�
x.tf / � xd

�2
C
1

2

Z tf

t0

u.t/2dt

for some weighting factor, k.

� SOLUTION:

– Define the augmented cost function, NJ

NJ D J C

Z tf

t0

� .t/ .f .x .t/ ; u .t// � Px .t// dt
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– Satisfy Euler-Lagrange equations:
@'

@tf
� �.tf / D 0

@H

@x .t/
C P� .t/ D 0

@H

@u .t/
D 0

and
Px .t/ D �ax .t/C bu .t/

– Recall,
H D L .x.t/; u .t//C � .t/ f .x .t/ ; u .t//

D
1

2
u .t/2 C � .t/ Œ�ax .t/C bu .t/�

so we get !

P� .t/ D a� .t/ �.tf / D k
�
x.tf / � xd

�
Px .t/ D �ax .t/C bu .t/ x.t0/ D 0

u .t/C � .t/ b D 0 ) u .t/ D �b� .t/

– Substituting for u .t/ ;
Px D �ax � b2�

P� D a�

or, writing in matrix form,"
Px .t/

P� .t/

#
D

"
�a �b2

0 a

#"
x .t/

� .t/

#
Pz .t/ D Az .t/
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– Solving, we obtain
z .t/ D eAtz.0/

)

x.t/ D e�atx.0/ �
b2

a
�
1

2

�
eat � e�at

�
�.0/

D e�atx.0/ �
b2

a
sinh.at/�.0/

�.t/ D eat�.0/

� But... we don’t know �.0/

– However,
�.0/ D �.tf /e

�atf

D k
�
x.tf / � xd

�
e�atf

– But where do we get e�atf ?

x.tf / D �
b2

2a

�
eatf � e�atf

�
e�atf �.tf /

D �
b2

2a

�
1 � e�2atf

�
�.tf /

and
�.tf / D k

�
x.tf / � xd

�
� Solving,

x.tf / D
xd

1C
ae
atf

b2k sinh.atf /

�.tf / D
�2xdak

2a � b2k
�
1 � e�2atf

�
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)

u.t/ D
xdabke

at

aeatf C b2k sinh.atf /

x.t/ D
xdb

2k sinh.at/
aeatf C b2k sinh.atf /

� Putting some numbers to the example, let’s let
a D 0:4

b D 0:8

and assume t0 D 0 and tf D 20.

� Further assume Ta D 5 , T0 D Ta; and define a target temperature of
Td D 20.xd D 15/.

� The following plots show resulting temperature and control effort plots
for weightings k D 1; 2; 4; 16.
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Figure 5.5 Room Heating Example
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5.7: Continuous-Time: Fixed-Time, Terminal Constraints

� We’ll now look at a Calculus of Variations approach to solving a
slightly more difficult optimization problem: one with constraints
imposed at the terminal time.

PROBLEM:

Dynamic
System

Px .t/ D

f .x .t/ ; u .t/ ; t/
x.t0/ D x0

Cost
J D '

˚
x
�
tf
�	

CZ tf

t0

L fx .t/ ; u .t/ ; tg dt

Terminal
Constraints

 
˚
x
�
tf
�	

D c  is q � 1; q � n

Goal
Select u.t/ to minimize
J subject to terminal
constraints.

SOLUTION:

� As before, we’ll adjoin the constraints to the cost function using
Lagrange multipliers.

� The difference is that we now have two types of constraints:

– Intermediate dynamic constraints ) Px .t/ D f .x .t/ ; u .t/ ; t/

– Terminal constraints )  
˚
x.tf /

	
D c

� Building the augmented cost function,
NJ D '

˚
x.tf /

	
C �T

˚
 
�
x.tf /

�
� c

	
C

Z tf

t0

˚
L Œx .t/ ; u .t/� ; t C �T .t/ Œf � Px .t/�

	
dt

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Dynamic Systems Optimization 5–25

� Note:

– '
˚
x
�
tf
�	

is an aggregate function of the final states that we want
to make “small” in some sense;

–  
˚
x
�
tf
�	

is a vector function of the final states that we want
“fixed” at constraint c.

� Furthermore, if we define ˆ
˚
x.tf /

	
D ' C �T f � cg, the problem

looks identical to the previous one and can be solved in the same way.

� There are some mathematical distinctions, however:

– System must be controllable so that it is possible to reach the
specified terminal constraints;

– Variation ıu is no longer arbitrary since the only admissible values
are ones which ensure terminal constraints are satisfied.

� Let’s now step through the solution process:

NJ D ˆ
˚
x.tf /

	
C

Z tf

t0

˚
H.x .t/ ; u .t/ ; t/ � �T .t/ Px .t/

	
dt

� Integrating by parts yields:

NJ D ˆ
˚
x.tf /

	
C�T .t0/x0��

T
�
tf
�
x
�
tf
�
C

Z tf

t0

n
H.x .t/ ; u .t/ ; t/C P�

T
.t/x .t/

o
dt

� Taking the first variation of NJ yields:

ı NJ D

�
@ˆ

@x.tf /
� �T

�
tf
��
ıx.tf /C �T .t0/ ıx0 C

@ˆ

@c
ıc

C

Z tf

t0

��
@H

@x .t/
C P�

T
.t/

�
ıx .t/C

@H

@u .t/
ıu .t/

�
dt
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� Eliminate the ıx terms by selecting appropriate Lagrange multipliers,

P� .t/ D �
@H

@x .t/

T

D �
@f

@x .t/

T

� �
@L

@x .t/

T

�T .tf / D
@ˆ

@x.tf /
D

@'

@x.tf /
C �T

@ 

@x.tf /

� Can we ignore ıx0 and ıc ? Normally yes because x0 and c are fixed
) ıx0 D ıc D 0

� We’ve included these terms in ı NJ to make a point about � .t0/ and
� D �@ =̂@cT :

– �0 and � represent the sensitivity of NJ to changes in initial
conditions and terminal constraints respectively.

– So, if we know �0 and �, we can estimate (to first order) changes
in J that would be caused by changing x0 and c.

� Using these results, we can simplify ı NJ to )

ı NJ D

Z tf

t0

@H

@u .t/
ıu .t/ dt

and so ıJ can only be non-negative for admissible ıu .t/ if
@H

@u .t/

T

D
@f

@u .t/

T

� .t/C
@L

@u .t/

T

D 0 Œstationarity conditions�

� The stationarity conditions are a set of algebraic equations that will be
used to define u .t/.

� Finally, we must remember that all constraints must be satisfied:
Px .t/ D f .x .t/ ; u .t/ ; t/; x.t0/ D x0

 
�
x.tf /

�
D c
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� Summarizing:

Unknowns Equations

x.t/ ! n � 1 Px .t/ D f ! n

u.t/ ! m � 1 @H=@u.t/ D 0 ! m

�.t/ ! n � 1 P� .t/ D

�@H=@x.t/T ! n

� ! q � 1  D c ! q

� This is still a difficult two-point boundary value problem – now with
extra parameters � to be identified!
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5.8: Example: Fixed-Time with Terminal Constraints

� This example is taken from Kirk, pg. 313, Problem 5-12.

GIVEN:

� State equations:
Px1 .t/ D x2 .t/

Px2 .t/ D �x2 .t/C u .t/

x1.0/ D x2.0/ D 0

with cost function,

J D
1

2
fx1.2/ � 5g2 C

1

2
fx2.2/ � 2g2 C

1

2

Z 2

0

u .t/2 dt

and terminal constraint,
x1.2/C 5x2.2/ D 15

FIND:

� Optimal control input, u.t/:

SOLUTION:

� Form the augmented cost function:

NJ D
1

2
Œx1 .2/ � 5�2 C

1

2
Œx2 .2/ � 2�2 C � Œx1 .2/C 5x2 .2/ � 15�

C

Z 2

0

�
1

2
u .t/2 C �1 .t/ x2 .t/C �2 .t/ Œ�x2 .t/C u .t/�

��1 .t/ Px1 .t/ � �2 .t/ Px2 .t/g dt

– After integration by parts, we have

NJ D
1

2
Œx1 .2/ � 5�2 C

1

2
Œx2 .2/ � 2�2 C � Œx1 .2/C 5x2 .2/ � 15�
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C�1.0/x1.0/C �2.0/x2.0/ � �1.2/x1.2/ � �2.2/x2.2/

C

Z 2

0

n
H � P�1 .t/ x1 .t/ � P�2 .t/ x2 .t/

o
dt

�
whereH D

1

2
u .t/2 C �1 .t/ x2 .t/C �2 .t/ .�x2 .t/C u .t//

�
� The costate equations are found from:

P� .t/ D
�@H

@x .t/
)

P�1 .t/ D 0

P�2 .t/ D ��1 .t/C �2 .t/

� Solving for �1 .t/,
�1 .t/ D �1 .0/

� Solving for �2 .t/ we’ll use Laplace transforms to write,

sƒ2 .s/ � �2 .0/ D ƒ2 .s/ �
�1 .0/

s

sƒ2 .s/ �ƒ2 .s/ D
�2 .0/ � �1 .0/

s

ƒ2 .s/ D
�2 .0/ s � �1 .0/

s .s � 1/

and using partial fraction expansion, we obtain,

�2 .t/ D �1 .0/C .�2 .0/ � �1 .0// e
t

� From the boundary conditions, we have
@ˆ

@x1.2/
D x1 .t/ � 5C � � �1.2/ D 0

@ˆ

@x2.2/
D x2 .t/ � 2C 5� � �2.2/ D 0
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x1.2/ � 5C � D k1

x2.2/ � 2C 5� D k1
�
1 � e2

�
C k2e

2

� We may express the stationarity condition as
@H

@u .t/
D u .t/C �2 .t/ D 0 ) u .t/ D ��2 .t/

� Solving the state equations we write,

1. Px2 D �x2 � �2 )

.s C 1/X2.s/ � x2 .0/ D �
Œ�2 .0/ s � �1 .0/�

s .s � 1/

.s C 1/X2.s/ D �
Œ�2 .0/ s � �1 .0/�

s .s � 1/
C x2 .0/

X2 .s/ D
��2 .0/ s C �1 .s/C x2 .0/ s .s � 1/

s .s � 1/ .s C 1/

– Using the method of partial fraction expansion (and the fact that
x2 .0/ D 0) gives:

x2.t/ D ��1 .0/ �
1

2
.�1 .0/ � �2 .0// e

t
C
1

2
.�1 .0/C �2 .0// e

�t

or equivalently,
x2 .t/ D ��1 .0/C �1 .0/ cosh .t/ � �2 .0/ sinh .t/ :

Px1 D x2 )

x1.t/ D

Z t

0

x2.�/d�

x1.t/ D ��1 .0/ t C �2 .0/C �1 .0/ sinh .t/ � �2 .0/ cosh .t/

� To finish the problem, we must identify �1 .0/ ; �2 .0/ ; and �
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– Collect boundary conditions )

x1.tf / � 5C � D �1 .0/

x2.tf / � tf C 5� D �1 .0/
�
1 � etf

�
C �2 .0/ e

tf

x1.tf / D �1 .0/
�
�tf � 1=2e�tf C 1=2etf

�
C�2 .0/

�
1 � 1=2e�tf � 1=2etf

�
x2.tf / D �1 .0/

�
�1C 1=2e�tf C 1=2etf

�
C�2 .0/

�
1=2e�tf � 1=2etf

�
x1.tf /C 5x2.tf / D 15

– Substituting values and expressing in matrix form26666664
1 0 1 �1 0

0 1 5 6:3891 �7:3891

1 0 0 �1:6269 2:7622

0 1 0 �2:7622 3:6269

1 5 0 0 0

37777775

26666664
x1.2/

x2.2/

�

�1 .0/

�2 .0/

37777775 D

26666664
5

2

0

0

15

37777775
– Solving gives, 26666664

x1.2/

x2.2/

�

�1 .0/

�2 .0/

37777775 D

26666664
3:0576

2:3885

�0:6553

�2:5976

�2:6369

37777775
– Since u .t/ D ��2 .t/ D ��1 .0/

�
1 � et

�
� �2 .0/ e

t ,

u�.t/ D 2:5976C 0:03927et

– The optimal cost is computed as:

J �
D 1:8864C 0:07546C

1

2

Z 2

0

�
2:5976C 0:03927et

�2
dt D 9:3818
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� The accompanying figure shows the state trajectory for three different
values of tf – note how all arrive exactly at the constraint.
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ECE 5570 Example: FTTC

constraint
tf = 1
tf = 2
tf = 3

Figure 5.6 Example State Trajectory, tf D 1:0; 2:0; 3:0

� Question: What would the cost be if I changed the terminal constraint
to x1.2/C 5x2.2/ D 15:3‹

– First order approximation:
ıJ D ��ıc D �.�:6553/.:3/ D 0:1966 ) J D 9:5784

– Actual: J D 9:5829

� In many instances, the terminal constraints placed on the problem
examined above are not functions of the final states, but rather
constraints on the final states themselves:

 i
˚
x.tf /

	
D xi.tf / D ci ; i D 1; 2; : : : ; qI q � n

– Does this change the general solution process? NO!
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– What does change?

�.tf / D
@ˆ

@x.tf /
) �i.tf / D

8̂̂̂<̂
ˆ̂:

�i i D 1; 2; : : : ; q

@'

@xi.tf /
i D q C 1; : : : ; n

ı NOTE: ' will not be a function of .xi I i D 1; : : : ; q/ because
these states are already constrained

 
˚
x.tf /

	
D c ) xi.tf / D ci

� Let’s now examine the problem with fixed constraints placed on the
terminal states:

J D
1

2

Z 2

0

u2 .t/ dt

x1.2/ D 5

x2.2/ D 2

� H is the same ) �1.t/; �2.t/; x1.t/; x2.t/ same form as before

� The two constraints give rise to 4 unknowns to identify: .�1; �2; k1; k2/

� ... And 4 equations,
�1 D �1 .0/

�2 D �2 .0/

x1
�
tf
�

D
�
�tf C sinh

�
tf
��
�1 .0/C

�
1 � cosh

�
tf
��
�2 .0/

x2
�
tf
�

D
�
�1C cosh

�
tf
��
�1 .0/ � sinh

�
tf
�
�2 .0/

� Substituting values,
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1 0 �1 0

0 1 19:0855 �20:0855

0 0 7:0179 �9:0677

0 0 9:0677 �10:0179

377775
266664

�1

�2

�1 .0/

�2 .0/

377775 D

266664
0

0

5

2

377775
� Solving

�1 D �2:6811

�2 D �1:5832

�1 .0/ D �2:6811

�2 .0/ D �2:6264

with optimal control input
u�.t/ D 7:292 � 1:187et

and optimal cost

J �
D 16:75:

� As before, the accompanying figure shows the resulting state
trajectory for three different values of tf – here all arrive exactly at the
target point.
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ECE 5570 Example: FTTC Fixed Term

Target Point
tf = 1
tf = 2
tf = 3

Figure 5.7 Example State Trajectory, tf D 1:0; 2:0; 3:0

Changing Hard Terminal Constraints to Soft Constraints

� In many situations, the fixed-time terminal constraint problem may be
too difficult to solve analytically so we must resort to numerical
solutions.

– Can the software developed for the no terminal constraint problem
be used here without modification? YES!

– How? Change the hard constraints to soft constraints with
weighting and apply one of the algorithms presented previously,
e.g.,

'.tf / ! '.tf /C
X
i

wi f i � cig
2

– What does this approach imply? That we’ll be satisfied with small
deviations from the terminal constraints.
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5.9: Continuous-Time Optimization: Free Time Problems

� So far, we’ve examined the continuous-time optimization problem
assuming the final time was fixed ; but in many cases, it may be free
and will thus be another parameter to be selected in the optimization.

– Note however that any changes in x.tf / are not independent of
changes in tf !

dx.tf / D ıx.tf /C Px.tf /dtf

x(t)

tf tf + dtf

}δx

} ẋdtf } dx(tf )

Figure 5.8 Free-Time Problem

� So in this problem, we have to worry about both types of change in
x.tf / ) our problem will be slightly more complicated.

� How do we solve it? CALCULUS OF VARIATIONS
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PROBLEM:

Dynamic
System

Px .t/ D

f .x .t/ ; u .t/ ; t/
x.t0/ D x0

Cost
J D '

˚
x
�
tf
�	

CZ tf

t0

L fx .t/ ; u .t/ ; tg dt

Terminal
Constraints

 
˚
x
�
tf
�
; tf

	
D c  is q � 1; q � n

Goal
Select u.t/ and tf to
minimize J subject to
terminal constraints.

SOLUTION:

� Construct the augmented cost function,

NJ D ' C �T f � cg C

Z tf

t0

˚
LC �T .t/ .f � Px .t//

	
dt

D ˆC

Z tf

t0

˚
LC �T .t/ .f � Px .t//

	
dt

� Now, we can take the differential:

d NJ D
@ˆ

@x.tf /
dx.tf /C

@ˆ

@tf
dtf

C
˚
H � �T .t/ Px .t/

	ˇ̌
tf
dtf �

˚
H � �T .t/ Px .t/

	ˇ̌
t0
dt0

C

Z tf

t0

�
@H

@x .t/
ıx .t/C

@H

@u .t/
ıu .t/ � �T .t/ ı Px .t/

�
dt � �T ıc
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)

d NJ D
@ˆ

@x.tf /
dx.tf /C

@ˆ

@tf
dtf

CL.tf /dtf � L.t0/dt0

C

Z tf

t0

��
@H

@x .t/
C P�

T
.t/

�
ıx .t/C

@H

@ut ./
ıu .t/

�
dt

C�T .t0/ıx.t0/ � �T .tf /ıx.tf /

��T ıc

� What is new here?

� Since tf is free, we must account for the fact that the final value of L
may vary

�
L.tf /dtf

�
as well as the fact that x.tf / may vary in two

ways .dx D ıx C Pxdt/

d NJ D

�
@ˆ

@x.tf /
� �T .tf /

�
ıx.tf /C

�
@ˆ

@tf
C

@ˆ

@x.tf /
Px.tf /C L.tf /

�
dtf

C

Z tf

t0

��
@H

@x .t/
C P�

T
.t/

�
ıx .t/C

@H

@u .t/
ıu .t/

�
dt

C�T .t0/ıx.t0/ � �T ıc � L.t0/dt0

� The rest of the process is the same as before:

– Costate Equations: (choose � .t/ to eliminate ıx .t/)

P�
T
.t/ D �

@H

@x .t/
�T .tf / D

@ˆ

@x.tf /

– Stationarity Condition:
@H

@u .t/
D 0

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Dynamic Systems Optimization 5–39

– Constraints:

1. Dynamic ) Px .t/ D f fx .t/ ; u .t/ ; t g

2. Terminal )  
˚
x.tf /; tf

	
D c

– Transversality Condition (introduced because tf is free):
@ˆ

@tf
C

@ˆ

@x.tf /
Px.tf /C L.tf / D 0

– But,

�T .tf / D
@ˆ

@x.tf /
and Px.tf / D f

˚
x.tf /; u.tf /; tf

	
@ˆ

@tf
C
�
LC �T .t/f

�
tf

D 0

or

H.tf / D �
@ˆ

@tf

� Are these results surprising? NO!

1. We can think of the unspecified terminal time problem as a family
of fixed terminal time problems from which we must select the one
which minimizes the cost.

) So all conditions derived previously for the fixed time problem
must still apply.

2. But there must be another condition (Transversality Condition)
available to determine the optimal value of tf .
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5.10: Example: Free-Time Problem

Px1 .t/ D x2 .t/ x1.0/ D x2.0/ D 0

Px2 .t/ D �x2 .t/C u .t/

J D
1

2

˚
x1.tf / � 5

	2
C
1

2

˚
x2.tf / � 2

	2
C
1

2

Z tf

0

u .t/2 dt

x1.tf /C 5x2.tf / D 15

� What equations do we use to solve this problem? Same as before...

�1 D �1 .0/

�2 D �1 .0/
�
1 � et

�
C �2 .0/ e

t

x1.t/ D �1 .0/
�
�t � 1=2e�t

C 1=2et
�

C �2 .0/
�
1 � 1=2e�t

� 1=2et
�

x2.t/ D �1 .0/
�
�1C 1=2e�t

C 1=2et
�

C �2 .0/
�
1=2e�t

� 1=2et
�

u .t/ D ��2 .t/

� which give...

x1.tf / � 5C � D �1 .0/

x2.tf / � 2C 5� D �1 .0/
�
1 � etf

�
C �2 .0/ e

tf

x1.tf / D �1 .0/
�
�tf � 1=2e�tf C 1=2etf

�
C�2 .0/

�
1 � 1=2e�tf � 1=2etf

�
x2.tf / D �1 .0/

�
�1C 1=2e�tf C 1=2etf

�
C�2 .0/

�
1=2e�tf � 1=2etf

�
x1.tf /C 5x2.tf / D 15
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� We have 5 equations but now with tf we have 6 unknowns:

x1
�
tf
�
; x2

�
tf
�
; �1 .0/ ; �2 .0/ �; tf

� The sixth equation is obtain from the transversality condition:

H.tf / D �
@ˆ

@tf
D 0 )

1

2
u
�
tf
�2

C
�
�1
�
tf
�

� �2
�
tf
��
x2
�
tf
�

C �2
�
tf
�
u
�
tf
�

D 0

D
˚
�1.tf / � �2.tf /

	
x2.tf / �

1

2
�22.tf / D 0

� Are these problems easy to solve? In general — NO!

� A variety of numerical techniques exist – but this remains an active
area of research.
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5.11: Continuous Time Optimization: Minimum Time Problems

� A special case of the free terminal time problem is the minimum time
problem.

– The goal is to minimize the elapsed time needed to transfer a
system from a specified initial state to a specified final condition.

– For this problem to make sense, at least one state must be
specified at t D t0 and at least one constraint must be specified at
t D tf (i.e., we must have to do something in minimum time, or we
won’t do anything!)

– This is a constrained, free terminal time problem; so all of the
techniques developed previously apply.

– But what is the cost?

J D tf � t0 D

Z tf

t0

1dt

so; ' D 0 and L D 1

Example: Brachistochrone Problem (“shortest time”)

� This problem is a variant of the discrete-time brachistochrone
problem introduced earlier in the course.

� Like before, a mass m moves in a constant gravity field of magnitude
g starting from rest at the origin.

� In this version, however, we wish to find the minimum time path
(instead of the maximum distance) to reach a specified final point�
xb; yb

�
.

� As before, the control is the tangent angle �:
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x

y

θ

v

yb

xb

Figure 5.9 Brachistochrone Problem: Continous-Time

� Equations of motion are given by,

Px D v cos �
Py D v sin �

� But energy must be conserved, so
1

2
mv2 �mgy D 0

) v D
p
2gy

� For minimum time, the cost is,

J D

Z tf

t0

1dt

� Solving,

NJ D �x
˚
x.tf / � xb

	
C �y

˚
y.tf / � yb

	
C

Z tf

t0

˚
1C �x .v cos � � Px/C �y .v sin � � Py/

	
dt

H D 1C �x .v cos �/C �y .v sin �/
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P�x D �
@H

@x
D 0

P�y D �
@H

@y
D
˚
�x cos � C �y sin �

	 @v
@y

D
g

v

˚
�x cos � C �y sin �

	
@H

@u
D
@H

@�
D ��xv sin � C �yv cos � D 0 )

�y

�x
D tan �

H.tf / D �
@ˆ

@tf
D 0 and

@H

@t
D 0

) H.t/ is constant along the optimal path

� Therefore,
H.t/ D 1C �xv cos � C �y˙v sin � D 0

Px D v cos � x.0/ D y.0/ D 0

Py D v sin �
x.tf / D xb y.tf / D yb

�x.tf / D �x �y.tf / D �y

�y

�x
D tan �

�xv cos � C �yv sin � D �1

9=; ) v cos � C v sin � tan � D
�1

�x

�x D
� cos �
v

�y D
� sin �
v

P�x D
v .sin �/ P� C g=v .cos �/ Py

v2
D 0 .�x is constant/
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) P� D �
g

v2
�
cos �
sin �

� v sin � D �
g

v
cos �

� So, we have equations for Px; Py; P�; and 4 boundary conditions to solve
for x.t/; y.t/; �.t/; and tf ! But it’s messy...

� Instead, let’s treat � as our independent variable.

– �x D constant )

cos �.t/
v.t/

D
cos �f
vf

cos � D
v

vf
� cos �f D

r
y

yb
� cos �f

) y.t/ D yb �
cos2 �
cos2 �f

– Px D v cos � )

dx

d�
� P� D v cos �

dx

d�
D �

v2

g
D �2y

)
dx

d�
D �

2yb

cos2 �f
� cos2 �

x.t/ D

Z �f

�.t/

dx

d�
d�

) x.t/ D xb C
yb

2 cos2 �f

˚
2
�
�f � �

�
C sin 2�f � sin 2�

	
y.0/ D 0 ) �.0/ D 90ı
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x.0/ D 0 ) solve for �f

– if we know x.t/ and y.t/, we can find �.t/. A feedback law!

� Time-to-go can now be calculated by integrating P� D g�x D constant
to obtain

�f � � .t/ D g�x
�
tf � t

�
� Evaluating �x at tf gives

tf � t D

s
2y
�
tf
�

g

 
� .t/ � �f

cos
�
�f
� !

� Two important observations:

– The rate-of-chage of the optimal path angle is a constant

– The initial path angle � .0/ is always 90ı

� The optimal path was computed for the case xb D yb D 10 and is
shown in the accompanying plot.

0 2 4 6 8 10
x

10

8

6

4

2

0

y

Min-Time Brachistochrone

Figure 5.10 Brachistochrone Min-Time Trajectory
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5.12: Minimum-Time Example: Zermelo’s Problem

� Consider a ship travelling through a region of strong currents subject
to the following conditions:

1. Velocity of the current in the x-direction is a linear function of y

2. Velocity of the current in the y-direction is zero

3. Ship has constant speed .v/ , but can change its heading .�/

� Find the minimum time path from a given initial position to a specified
final position.

y

x

θ

v

current velocity

Figure 5.11 Zermelo’s Problem

� Equations of motion:

Px D v cos � C u

Py D v sin �

u D �
v

h
� y

where h is a normalizing constant.
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� Cost is given by,

J D

Z tf

t0

1dt

with terminal condition,
x.tf / D y.tf / D 0:

� Terminal constraint and Hamiltonian are given by,

ˆ D �xx.tf /C �yy.tf /

H D 1C �x

n
v cos � �

v

h
� y
o

C �yv sin �

� The costate equations may be written,

P�x D �
@H

@x
D 0; �x.tf / D �x

P�y D �
@H

@y
D �x �

v

h
; �y.tf / D �y

�x D k1

�y D
k1v

h
� t C k2

� And the state equations,

Px D v cos � �
v

h
� y x.0/ D x0

Py D v sin � y.0/ D y0

� The stationarity condition becomes,

@H

@�
D ��xv sin � C �yv cos � D 0 ) tan � D

�y

�x

� And the transversality condition,
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H.tf / D �
@ˆ

@tf
D 0 ) �x

n
v cos � �

v

h
� y
o

C �yv sin � D �1

� Terminal Constraints:
x.tf / D y.tf / D 0

� It’s a messy process to try to identify everything in terms of t ; so let’s
eliminate t and make � the independent variable.

� Since H is not an explicit function of time, H.t/ D constant,

H.t/ D H.tf / D 024 v cos � �
v

h
� y v sin �

�v sin � v cos �

35" �x
�y

#
D

"
�1

0

#

�x D
� cos �

v
�
1 �

y

h
cos �

� �y D
� sin �

v
�
1 �

y

h
cos �

�
P�x D �

@H

@x
D 0 D

@�x

@�
� P� C

@�x

@y
� Py D 0

P� D

�
@�x

@y

@�x

@�

� Py Py D v sin �

)

P� D
v

h
� cos2 �

Px D v cos � �
v

h
� y D

dx

d�
� P� )

dx

d�
D
.h cos � � y/

cos2 �
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Py D v sin � D
dy

d�
� P� )

dy

d�
D
h sin �
cos2 �Z yf

y

dy D

Z �f

�

h sin �
cos2 �

d� ) y.t/ D h
˚
sec �.t/ � sec �.tf /

	
Z xf

x

dx D

Z �f

�

˚
h sec � � h sec3 � C h sec �f sec2 �

	
d�

Z �f

�

sec �f sec2 �d� D sec �f
˚
tan �f � tan �

	
Z �f

�

sec �d� D ln
�
sec �f C tan �f
sec � C tan �

�
Z �f

�

sec3 �d� D
1

2

sin �
cos2 �

ˇ̌̌̌�f
�

C
1

2

Z �f

�

sec �d�

)

x.t/ D
h

2

˚
sec �.tf /

˚
tan �.t/ � tan �.tf /

	
C tan �.t/

˚
sec �.tf / � sec �.t/

	
C ln

�
tan �.t/C sec �.t/

tan �.tf /C sec �.tf /

��
� So if x.t/ and y.t/ are known, �.t/ and �.tf / can be calculated

� Feedback Control Law:

�x D constant )
cos �.t/

v

�
1 �

y.t/

h
cos �.t/

� D
cos �.tf /

v

)

cos �.t/ D
cos �.tf /

1C
y.t/

h
cos �.tf /
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� The value of �.tf / can be identified using initial conditions, but the
process isn’t easy!

– It is necessary here to solve for �
�
tf
�

and � .0/ simultaneously.

– One approach is to generate a family of paramtetric curves for
various values of �

�
tf
�

and � .0/, a representative plot is shown.

-6 -5 -4 -3 -2
x

0

1

2

3

4

y

Zermelos Problem: Parametric Plot

Figure 5.12 Paramtric Plot for Zermelo’s Problem

– From such a plot, one can read off corresponding values of �
�
tf
�

and � .0/ for given initial x and y values.

� Time-to-go can also be found as:
P� D

v

h
cos2 � )

v

h

�
tf � t

�
D tan �f � tan �

� An example was run using as initial conditions x0 D �4:9 and
y0 D 1:66; h was set equal to one.

� For these values, reading off the parametric plot, it was found that
� .0/ D 4:995 rad

�
�
tf
�

D 1:160 rad
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� Using these values, the optimal trajectory was computed using the
equations obtained above for x .t/ and y .t/; results are shown in the
accompanying plot.

-8 -6 -4 -2 0
x

-2

-1

0

1

2

y

Zermelos Problem: Optimal Trajectory

Figure 5.13 Zermelo’s Problem: Optimal Trajectory
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5.13: Discrete-TIme Optimization: Minimum Time Problem

� As we’ve seen in the previous sections, free-time and minimum-time
problems are difficult to solve analytically; so in many cases, we use
numerical techniques to obtain a solution.

� Here it is helpful to examine a discrete-time version of the min-time
problem with terminal constraints in light of our goal to obtain a
computer algorithm to solve it.

Problem:

For the discrete-time system with time interval � and terminal constraints
 ,

xŒk C 1� D f fxŒk�; uŒk�; �g xŒ0� given

J D N� .N fixed/

 fxŒN �g D c

Find fuŒ0�; uŒ1�; : : : ; uŒN � 1�g and � to minimize J

NOTE:

� As before, at least one terminal condition must be specified to define
the problem (i.e., minimum time to do what?)

� xŒk C 1� will generally be an explicit function of time �:

xŒk C 1� D f .x Œk� ; u Œk� ; �/

� The solution process varies from the one we’ve used so far because
now we want to develop a computer algorithm to solve the problem.
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� First, let’s examine the effects of changing uŒk� and � on each of the
terminal constraints  i .

– First, define a cost associated with each constraint,
Ji D  i � ci

– Next, define a corresponding augmented cost function,

NJi D  i � ci C

N�1X
kD0

�Ti Œk C 1� ff � xŒk C 1�g

� Now, we can take the first variation of NJi :

ı NJi D

�
@ i

@xŒN �
� �Ti ŒN �

�
ıxŒN �

C

N�1X
kD1

�
�Ti Œk C 1�

@f

@xŒk�
� �i Œk�

�
ıxŒk�

C
X
kD0

�Ti Œk C 1�
@f

@uŒk�
ıuŒk�C

N�1X
kD0

�Ti Œk C 1�
@f

@�
ı�

ıJi D

�
@ i

@xŒN �
� �Ti ŒN �

�
ıxŒN �

– Here, �Ti Œk C 1�
@f

@uŒk�
indicates the effect of changing uŒk� on the

i th constraint and �Ti Œk C 1�
@f

@�
indicates the effect of changing �

on the i th constraint.

� The following difference equation defines �i :

�i Œk� D

�
@f

@xŒk�

�T
�i Œk C 1� �i ŒN � D

@ i

@xŒN �

T
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� Having developed expressions for ı NJi , we can adjoin these to the first
variation of the original cost and attempt to set the resulting equation
to zero:

ıJ C

qX
iD1

�iı NJi D Nı�C

"
qX
iD1

�i

(
N�1X
kD0

�Ti Œk C 1�
@f

@�

)#
ı�

C

N�1X
kD0

(
qX
iD1

�i�
T
i Œk C 1�

@f

@uŒk�

)
ıuŒk�

– Or in matrix notation,

ıJ D �T ı NJ D
�
N C �TH�

�
ı�C

N�1X
kD0

�THuŒk�ıuŒk�

where H� is a column vector whose i th element is
N�1X
kD0

�Ti Œk C 1�
@f

@�

and HuŒk� is a matrix whose i throw is �Ti Œk C 1�
@f

@uŒk�
– Using the results above, we now have enough information to

establish and implement a gradient algorithm (as we’ve done
before) to solve the problem:

� STEP 1: Guess � and fuŒk�I k D 0; 1; : : : ; N � 1g

� STEP 2: Compute fxŒk�I k D 1; 2; : : : ; N g using the dynamic
constraints defined by the difference equations:

xŒk C 1� D f fxŒk�; uŒk�; �g xŒ0� given

� STEP 3: Compute f�i Œk�I k D 0; 1; : : : ; N � 1; i D 1; 2; : : : ; qg

using the costate difference equations:
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�i Œk� D

�
@f

@xŒk�

�T
�i Œk C 1� �i ŒN � D

@xi

@xŒN �

T

� STEP 4: Compute H� and fHuŒk�I k D 0; 1; : : : ; N � 1g using
expressions developed previously.

� STEP 5: Based on the available information, update � and
fuŒk�I k D 0; 1; : : : ; N � 1g and return to Step 2.

� How?
ı� D �K�

˚
N C �TH�

	
ıuŒk� D �KuH

T
u Œk��

– K� > 0 and Ku > 0 should be selected based on your physical
understanding of the problem so that ı� and ıuŒk� do not violate
our first-order assumptions.

� Why? If ı� and ıuŒk� are chosen in this manner, then

ıJ C �T ıJ D �K�

�
N C �TH�

�2
�Ku

(
N�1X
kD0

�THuŒk�H
T
u Œk��

)
– So the cost will be reduced by choosing these values for ı� and
ıuŒk�.

� But to compute ı� and ıuŒk� , we need �!

ı NJ D H�ı�C

N�1X
kD0

HuŒk�ıuŒk�

D �K�NH� �K�H�H
T
�� �

N�1X
kD0

KuHuŒk�H
T
u Œk��

D �K�q �K�Q�
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where

q D NH� Q D H�H
T
� C

Ku

K�

N�1X
kD0

HuŒk�H
T
u Œk�

� So,

� D �Q�1

(
q C

@ NJ

K�

)
� What is ı NJ?

NJ D  � c

NJopt D NJ C ı NJ ) ı NJ D � NJ

To determine �, calculate  � c for given xŒN �.

QUESTION: When do we stop?

� Looking at the first variation of the cost, we find that

N C �TH� D 0 �THuŒk� D 0

� So, stop whenˇ̌
N C �TH�

ˇ̌
< �1 and

1

N

(
N�1X
kD0

�THuŒk�H
T
u Œk��

)
< �2
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5.14: Continuous-Time Optimization: Equality Path Constraints

� Up to now, the only constraints that we’ve included in the optimization
process (apart from the dynamic constraints imposed by the system)
have been end point constraints.

� Our goal in this section is to investigate the solution process in which
constraints exist along the entire trajectory or at intermediate points
(so-called “path constraints”)

Integral Equality Contraints

� The first of these problems is the INTEGRAL CONSTRAINT problem:

Px D f fx; u; tg x.0/ D x0

J D '
˚
xf ; tf

	
C

Z tf

t0

L fx; u; tg dt

 
˚
xf ; tf

	
D cZ tf

t0

N fx; u; tg dt D k .NEW constraint/

� To solve this problem, we define a new additional state, xnC1.t/, which
satisfies the following equations:

PxnC1 D N fx; u; tg xnC1.0/ D 0 xnC1.tf / D k

� By augmenting the state vector with this additional state, we can
transform the new integral constraint into a form that we already know
how to handle

� The solution process is now identical to the one we’ve already
developed:
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1. Adjoin the constraints to the cost

NJ D ' C �T f � cg C �qC1

˚
xnC1.tf / � k

	
C

Z tf

t0

˚
LC �T .f � Px/C  .N � PxnC1/

	
dt

2. Take the first variation of NJ (remembering to integrate by parts):

ı NJ D

�
@'

@x.tf /
C �T

@ 

@x.tf /
� �T .tf /

�
ıx.tf /

C
˚
�qC1 � .tf /

	
ıxnC1.tf /

C

Z tf

t0

��
@H

@x
C P�

�
ıx C

�
@H

@xnC1

C P

�
ıxnC1 C

@H

@u
ıu

�
dt

where H D LC �Tf C N

NOTE:
Z tf

t0

�ı Pxdt D �T ıx
ˇ̌tf
t0

�

Z tf

t0

P�
T
ıxdt

3. Set each coefficient in ı NJ to zero to identify the equations required
to solve this problem:

P�
T

D �
@H

@x
; �T .tf / D

@'

@x.tf /
C �T

@ 

@x.tf /

P D �
@H

@xnC1

D 0; .tf / D �qC1

@H

@u
D 0

Px D f .x; u; t / ; x.0/ D x0

 
�
xf ; tf

�
D c
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xnC1.tf / D k

NOTE: 2nCmC q C 1 equations in 2nCmC q C 1 unknowns
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5.15: Maximum Area with Fixed Perimeter: Dido’s Problem

� Dido was the founder of Carthage (present-day Tunisia) who, upon
arriving at the coast in 814 BC, asked for a parcel of land.

� She was granted her request under the condition that the land she
was given could be encompassed by the hide of an ox.

� Giving this some thought, Dido cut the ox-hide into a long thin strip
and used it to encircle the land – which became known as Carthage
and she its Queen.

� The problem that bears her name (“Dido’s Isoperimetric Problem”) is
to find the closed curve which has the maximum area for a given
perimeter length.

Figure 5.14 Dido Purchases Land for the Foundation of Carthage. Engraving by Matthaus Merian the Elder, in Historiche Chronica Frankfurt a.M., 1630.
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PROBLEM SET-UP:

x

y

dx

dy
dℓ

−a a

L

θ

� Independent variable: x (Note that ’dynamic’ type problems do not
require time as the independent variable)

� Dependent variable: y (In this problem both independent and
dependent variables are spatial)

� Control variable: � (In the same spirit as Zermelo’s problem)

� Dynamic constraint:
dy

dx
D tan � [NOTE: ��=2 < � � �=2]

– Constraint defines the ’control input’ for the problem.

� Integral constraint: L D

Z a

�a

1

cos �
dx [dx D d` cos � ]

– Constraint relates the total perimeter length to the input.

� Terminal constraint: y.xf / D y.a/ D y .�a/ D 0

– Constraint ensures area bounds begin and end at the ’coastline’.

� Cost function: J D �

Z a

�a

ydx ) minimize total area, �A

SOLUTION:
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1. Define state:
z .x/ D length

dz .x/

dx
D

1

cos .�/
D sec � z.a/ D L

2. Adjoin constraints to cost function:
NJ D �yy.a/C �z fz.a/ � Lg

C

Z a

�a

�
�y C �y

�
tan � �

dy

dx

�
C 

�
sec � �

dz

dx

��
dx

3. Take the first variation of NJ :

ı NJ D
�
�y � �y

�
ıy.a/C .�z � / ız.a/

C

Z a

�a

��
@H

@y
C P�y

�
ıy C

�
@H

@z
C P

�
ız C

@H

@�
ı�

�
dx

where H D �y C �y tan � C  sec �

4. Identify the equations to be solved:

P�y D 1I �y.a/ D �y ) �y D x C k1

P D 0I .a/ D �z )  D �z

@H

@�
D �y sec2 � C  tan � sec � D 0 ) sin � D �

�y



dy D tan �dx �y D x C k1 D � sin �
dy D � sin �d� x D � sin � � k1

y D  cos � C k2 dx D � cos �d�

Z a

�a

�
1

cos �

�
dx D

Z �f

�i

�d� D �
�
�f � �i

�
D L
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� Unknowns: k1; k2; ; �f ; �i

� Equations:

x.�i/ D �a x.�f / D a

y.�i/ D 0 y.�f / D 0

L D �
�
�f � �i

�
.1/  sin �i C k1 D a

.2/ � sin �f � k1 D a

.3/  cos �i C k2 D 0

.4/  cos �f C k2 D 0

.5/ �
�
�f � �i

�
D L

.3/ & .4/ ! �f D ˙�i ; but .5/ ) �f D ��i I  D
L

2�i
.1/ & .2/ ! k1 D 0I a D  sin �i

)
sin �i
�i

D
2a

L

Since �
�

2
< � <

�

2
, this equation ) P < �a

k1 D 0

 D
L

2�i

�f D ��i

k2 D �
L cos �i
2�i

� What does all of this mean?

x D �
L

2�i
sin � y D

L

2�i
fcos � � cos �ig
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) x2 C

�
y C

L

2�i
cos �i

�2
D

�
L

2�i

�2
– This is the equation of a circle!

� Therefore, the rope forms a circular arc of radius L=2�i centered at:

x D 0

y D �
L

2�i
cos �i

� So far, we’ve examined path constraints by looking at “integral
contraints”.

� We’ll continue the process by looking at equality constraints that must
be satisfied along the entire optimal path.
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5.16: Control- and State-Only Equality Constraints

� The standard (fixed-time, terminal constraint) problem is the same,
but now we add an additional constraint on the controls:

G fu; tg D k to � t � tf

[NOTE: m � 2 or else completely specified by G ]

NJ D ' C �T . � c/C

Z tf

t0

˚
LC �T .f � Px/C �T .G � k/

	
dt

H D LC �Tf C �TG

� Since G is not a function of x, all of the equations developed
previously are valid except

@H

@u
D
@L

@u
C �T

@f

@u
C �T

@G

@u
D 0

G .u; t / D k

� These two sets of equations provide enough information to identify u
and �

Control and State Equality Constraints

� Again, the standard problem is the same, but now our path
constraints take the form:

G fx; u; tg D k

� NJ and H are identical to those shown above for the control-only
equality constraints, so the equations required to solve this problem
are:
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P� D �
@H

@x

T

D �

�
@L

@x
C �T

@f

@x
C �T

@G

@x

�T
�.tf / D

@ˆ

@x.tf /
where ˆ D ' C �T Œ � c�

Px D f .x; u; t /; x.0/ D x0

@H

@u
D
@L

@u
C �T

@f

@u
C �T

@G

@u
D 0

G .x; u; t / D k

 
˚
x.tf /; u; t

	
D c

� Unknowns: x; �; �; �; u

State-Only Equality Constraints

� Once again, the standard problem is the same; but now our path
constraints are a function of x and t only

G .x; t / D k

– This is a somewhat more complicated problem because some of
the elements of x.t/ depend on other elements of x.t/ as well as
the previous x and u.

� There are a number of different ways to solve this problem:

– METHOD 1:

ı Solve for one subset of the states as a function of the remaining
states and time
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ı Reduce the dimension of the state vector using the solution
derived above

ı Problem with this approach ! the choice of state subsets is
not unique, so some choices may produce more difficulties than
others

– METHOD 2:

ı Convert the state-only constraints into control and state
constraints

� Since G .x; t / D k along the optimal path, @G=@t must be zero
along the optimal path

@G

@t
D
@G

@t
C
@G

@x

dx

dt
D
@G

@t
C
@G

@x
f D 0

� In general, f is a function of u, so dG=dt D 0 is a control and
state constraint.

ı But dG=dt D 0 even when G ¤ k, so we must add additional
terminal constraints,

G
˚
x.tf /; tf

	
D k

to ensure tha the proper constraint is applied

ı If dG=dt is not a function of u, additional derivatives can be taken
and additional terminal constraints added.

– METHOD 3: A computational alternative using “soft” constraints

ı Define a new cost function:

NJ D J CK

Z tf

t0

fG � kg
T

fG � kg dt

ı Select K to establish the proper trade-off between the various
elements of the cost.
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5.17: Continuous-Time Optimization: Inequality Constraints

� In many problems, we may not need to force the satisfaction of an
equality constraint but instead may be forced to live with inequality
constraints driven by physical attributes of the problem (e.g., limited
fuel)

– In most instances, these inequality constraints apply only to the
available control variables.

– So, we’ll focus our attention on control-only inequality constrained
problems:

J D ' C

Z tf

t0

Ldt

Px D f .x; u; t/

 
˚
x.tf /; tf

	
D k1

c fu.t/; tg � k2

STANDARD CALCULUS OF VARIATIONS APPROACH

J D ' C �T f � k1g C

Z tf

t0

˚
LC �T .f � Px/C �T .c � k2/

	
dt

H D LC �Tf C �T c

� All of the equations developed previously still apply:

P�
T

D �
@H

@x
�T .tf / D

@ˆ

@x.tf /

Px D f .x; u; t / x.t0/ D x0

@H

@u
D 0

 D k1
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c � k2

NOTE:
� D 0 if constraints are inactive
� > 0 if constraints are active

ALTERNATIVE APPROACH: PONTRYAGIN’S MINIMUM PRINCIPLE

� Russian mathematician Pontryagin demonstrated that the optimal
control must minimize the function

H D �Tf

for all admissable controls.

� So? We already knew that we had to solve @H=@u D 0

– In many inequality constrained problems, finding the u which
minimizes H is almost obvious.

– And Pontryagin proved that this u is the optimal one, so we don’t
need to add the complexities associated with additional Lagrange
multipliers!

Example:

Px1 D x2

Px2 D �x2 C u

J D

Z tf

t0

1

2

�
x21 C u2

�
dt

tf specified x.tf / free

1. No Control Constraints:
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H D
1

2

�
x21 C u2

�
C �1x2 C �2 .u � x2/

P�1 D �x1; �1.tf / D 0

P�2 D �2 � �1; �2.tf / D 0

u D ��2

� So, we augment the states to solve for x and �266664
Px1

Px2
P�1
P�2

377775 D

266664
0 1 0 0

0 �1 0 �1

�1 0 0 0

0 0 �1 �1

377775
266664
x1

x2

�1

�2

377775
– Recall that u D ��2

) z.t/ D L�1
˚
.sI � A/�1

	
z.0/

– And since x1.t0/; x2.t0/; �1.tf /; and �2.tf / are known, �1.0/ and
�2.0/ can be identified and used to describe x.t/, �.t/, and u.t/.

2. Constrained Control: What if juj � 1 ?

H D
1

2

�
x21 C u2

�
C �1x2 C �2u � �2x2

� Using Pontryagin’s Principle, the control that minimizes H is:

u D ��2; provided juj � 1

– What if �2 > 1 ? Pick u D �1 to minimize H

– What if �2 < �1 ? Pick u D C1 to minimize H

– What if �1 < �2 < 1? Pick u D ��2 to minimize H
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� The solution to this problem is not the same as that for the
unconstrained problem because u may not be continuous

– So, we may need to solve the problem in parts by piecing
together constrained and unconstrained arcs.

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Dynamic Systems Optimization 5–73

5.18: Introduction to Linear Constraints

� A special case of the control inequality constraint problem in which
Pontryagin’s Principle plays a very important role occurs when the
dynamic system constraints and the control variable inequality
constraints are all linear :

Px D Ax C Bu � 1 � u.t/ � 1

� We’ll let u be a scalar in the follwing development to keep things
simple, but the ideas are easily extended.

Example: Single-Axis Satellite Attitude Control Using Reaction Jets

T 1

Js

1

s

ω θ

Figure 5.15 Single-Axis Satellite Attitude Control

� Define:
x1 D �

x2 D !

� Equations of motion:

Px1 D x2

Px2 D
1

2
T

where T is the commanded input
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� So, we can write,

Px D

"
0 1

0 0

#
x C

24 0
1

J

35u
u D T and � 1 �

T

Tmax
� 1

� How do we solve this problem? It depends on what we want to do

1. Minimum time )

– Since the system is linear and the performance index is linear,
we should expect that the optimal solution requires a control that
lies on the boundary of the feasible region.

– In addition, one or more changes in control may be required
during operation ! the control may suddently change from
one point on the boundary to another [BANG-BANG CONTROL].

2. Minimum fuel )

– Same linear system, but different linear cost ! now saving
fuel is more important than saving time..

– At certain times, it may be beneficial to turn the reaction jets off
[BANG-OFF-BANG CONTROL].

3. Minimum energy )

– Quadratic cost ! variable control in the feasible region.

� For the reaction jet problem, we have the state equation,"
P�

P!

#
D

"
0 1

0 0

#"
�

!

#
C

24 0
1

J

35T
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where the torque generated by the reaction jets is limited to the range
�Tm � T � Tm .

MINIMUM TIME PROBLEM

J D

Z tf

t0

dt

with terminal constraints ) x.tf / D 0

NJ D �Tx.tf /C

Z tf

t0

˚
1C �T .Ax C Bu � Px/

	
dt

P�
T

D �
@H

@x
D ��TA �T .tf / D

@ˆ

@x.tf /
D �T

Px D Ax C Bu x.0/ D x0

H.tf / D 1C �T .tf /
˚
Ax.tf /C Bu.tf /

	
D �

@ˆ

@tf
D 0

x.tf / D 0

And
@H

@u
D 0 .‹‹‹/

But,
@H

@u
D �TB ¤ 0 .unless �T D 0/

So what does this mean? What do we do?

� The dilemma that has arisen is a direct result of the linear nature of
the problem that we’ve set up

– I the control were unconstrained, this condition .@H=@u D 0/ would
suggest that there is always a ıu that can be selected to reduce
the cost.
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– But remember, our control is constrained.

� To identify the proper u, we’ll use Pontryagin’s Principle,

min
u
H D min

u

˚
1C �TAx C �TBu

	
– I can’t do anything about 1C �TAx, but I can choose u so that
�TBu is as small as possible:

u D �Tmsgn
�
�TA

�
– �TA is a function of time and is often referred to as the “switching

function” since it will determine when u D CTm and u D �Tm

� Additional details of the solution can now be obtained by examining
the remaining equations:

P�
T

D ��TA ) �1 D 0 ) �1 D constant
�2 D ��1 ) �2 D �2.0/ � �1t

�TB D
�2

J
) u.t/ depends on �2.t/

– Note that since �2.t/ is linear, �TA can change signs at most once
) the control, u.t/, will switch at most one time

– Can we get more information about the control? YES

H.tf / D 0 )

�
�2.tf /

J

�
u.tf / D �1

NOTE: x.tf / D 0 by the forced constraints

)

�2.tf / D
�1

Tm
when u.tf / D Tm

�2.tf / D
1

Tm
when u.tf / D �Tm
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� Based on the results above, what possible optimal control strategies
exist?

1. u D �Tm for all t � 0

2. u D �Tm for t < tf I switches to u D CTm for t � tf

3. u D CTm for t < tf I switches to u D �Tm for t � tf

4. u D CTm for all t � 0

– Which of these strategies do we use? ... It depends on � and !

FEEDBACK

P� D !

P! D
u

J
)

d!

d�
D

u

J!

!d! D
u

J
d�

!2 D
2u

J
� C c0

)

!2 D ˙
2Tm

J
� C c0

which gives a family of parabolas
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+Tm

−Tm

Figure 5.16 Family of Parabolas

� Two of these parabolas go through the origin and these are the ones
we want to get on in order to get to x.tf / D 0

1. if ! < 0, � D
J

2Tm
!2

2. if ! > 0, � D �
J

2Tm
!2

� D �
J

2Tm
! j!j switching curve
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∗

u = −Tm

u = +Tmswitch to

Figure 5.17 Switching Curve

� The FEEDBACK LAW is:

1. u D �Tm when � > �
J

2Tm
! j!j or � D �

J

2Tm
! j!j and � < 0

2. u D CTm when � < �
J

2Tm
! j!j or � D �

J

2Tm
! j!j > 0

� Can we solve for the times required to perform this maneuver?

– YES, but using the dynamics of the satellite and knowledge of the
control strategy.

– Assume we start at t D 0 with some initial conditions .�0; !0/.

– Since u is constant from 0 to ts;.

�.ts/ D �0 C !0ts C
u

J

t2s
2
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!.ts/ D !0 C
u

J
ts

u D ˙Tm

– At t�s (just before the switch),

�.ts/ D �
J

2u
!2.ts/

�0 C !0ts C
u

J

t2s
2

D �
J

2u

�
!20 C

2u

J
!0ts C

�u
J

�2
t2s

�
�
J

2u
!20 � !0ts �

u

2J
t2s D �0 C !0ts C

u

2J
t2s

u

J
t2s C 2!0ts C �0 C

J

2u
!20 D 0

t2s C
2J

u
!0ts C

�
J

u

�2
!20 �

�
J

u

�2
!20 C

J

u
�0 C

1

2

�
J

u

�2
!20 D 0

�
ts C

J

u
!0

�2
D

�
J

u

�2 �
!20
2

�
u

J
�0

�

) ts D �
J

u

8<:!0 ˙

s
!20
2

�
u

J
�0

9=;
– After the switch at ts,

!.tf / D !.ts/ �
u

J

�
tf � ts

�
D 0

– But !.tf / D !0 C
u

J
ts )

tf D 2ts C
J

u
!0
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MINIMUM FUEL PROBLEM:

� Same as above except

J D

Z tf

t0

juj dt

Note: tf is specified and tf > tmin !

MINIMUM ENERGY PROBLEM:

� Same as above except

J D

Z tf

t0

u2dt

– Because J is quadratic in u, the standard optimization techniques
may be applied to solve this problem

@H

@u
D 0 ) solve for u

ı But remember, we must ensure that u doesn’t violate its
constraints
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Appendix 5.A: Hamilton’s Principle

� In mechanics, the motion of a conservative system from time t0 to tf
is such that the integral

J D

Z tf

t0

ŒT .t/ � V .t/� dt

has a stationary value.

� Here we define:

T .t/ D kinetic energy
V .t/ D potential energy
x .t/ D Œq1 .t/ ; q2 .t/ ; : : : ; qn .t/� ) vector of generalized coordinates
u .t/ D Œ Pq1 .t/ ; Pq2 .t/ ; : : : ; Pqn .t/� ) vector of generalized velocities

� A dynamic constraint is then given by:

Px .t/ D u .t/

� The Hamiltonian is then
H .t/ D ŒT .t/ � V .t/�C �T .t/u .t/

D L .t/C �T .t/u .t/

� Once again the necessary conditions for stationarity may be written,
@H .t/

@u .t/
D 0

P�
T
.t/ D �

@H .t/

@x .t/
; �.tf / D 0

Px .t/ D u .t/ ; x.0/ D x0

� Now,
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d

dt

�
@H .t/

@u .t/

�
D 0

@H .t/

@u .t/
D
@L .t/

@u .t/
C �T .t/

� So we can write,

d

dt

�
@H .t/

@u .t/

�
D

d

dt

�
@L .t/

@u .t/

�
C P�

T
.t/

D
d

dt

�
@L .t/

@u .t/

�
�
@L .t/

@x .t/
D 0

) Equations of Motion

� Consider,
dH .t/

dt
D
@L .t/

@t
C
@H .t/

@x .t/

@x .t/

@t
C
@H .t/

@u .t/

@u .t/

@t
C P�

T
.t/f .t/

� At the optimal solution,

@H .t/

@u .t/
D 0

@H .t/

@x .t/
D � P�

T
.t/

� If J is not an explicit function of t , then
@L.t/=@t D 0 ) dH.t/=dt D 0 ) H.t/ D constant
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