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c2.u/ D 1 ! u21 ! u22 D 0

" This situation is depicted in Fig 4.1

Example: L(u) = u1+u2
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Figure 4.1: Constrained Optimization Example

" The straight-line contours depict constant values of the objective
function L .u/, with smaller values shown by the darker colors.

" The red dashed curves show the two equality constraints.

" It is apparent, by inspection, that satisfaction of the equality
constraints occurs at two distinct points, which may be found by
solving the constraint equations simultaneously

– Adding c1.u/C c2.u/ gives the polynomial,
u22 C u2 ! 1 D 0

which yields the solutions
u2 D !1:618; 0:618

Lecture notes prepared by M. Scott Trimboli. Copyright c# 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Constrained 4–3

– Since only one of these can give a point on the unit circle, we
subtitute u2 D 0:618 into u21 C u22 D 1 and solve for u1 which gives

u1 D ˙
q
1 ! u22 D ˙0:7862

– Hence both constraints are simultaneously met at points:
u1 D ˙0:7862; u2 D 0:618

" Therefore, the solution to this equality constraint problem reduces to
selecting which of the two points gives the lower value of L .u/ (the
left-hand point, in this case).

" This example demonstrates the important relationship between
numbers of decision variables and the number of constraints.

– In this case, practically all degrees of freedom are used satisfying
constraints!

" This chapter will introduce techniques for solving the equality
constraint problem mathematically.
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4.2: Equality Constraints: Two-Parameter Problem

" Consider the following parameter optimization problem:

– Find the parameter vector u D
h
u1 u2

iT
that minimizes L.u/

subject to the equality constraint c.u/ D !

– QUESTION: why must there be at least two parameters in this
problem?

" From the previous chapter, we know that the change in L .u/ caused
by changes in the parameters u1 and u2 in a neighborhood of the
optimal solution is given (approximately) by:

4L $ @L

@u1

ˇ̌
ˇ̌
%

4u1 C @L

@u2

ˇ̌
ˇ̌
%

4u2 C 1

2
4uT

!
@2L

@u2

"
%

4u

– But as we change the point .u1; u2/ we must ensure the constraint
remains satisfied

– To first order, this means,

4c D @c

@u1

ˇ̌
ˇ̌
%

4u1 C @c

@u2

ˇ̌
ˇ̌
%

4u2 D 0

– So 4u1 (or 4u2 ) is not arbitrary; it depends on 4u2 (or 4u1 )
according to the following relationship:

4u1 D !
#
@c=@u2j%
@c=@u1j%

$
4u2

)
4L $

#
@L

@u2
! @L

@u1

!
@c=@u2
@c=@u1

"$
%

4u2

C1
2

(
@2L

@u22
! 2 @2L

@u1@u2

!
@c=@u2
@c=@u1

"
C @2L

@u21

!
@c=@u2
@c=@u1

"2)

%
4u22
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– But since 4u2 is arbitrary, how do we find the solution?

ı Coefficient of first-order term must be zero
ı Coefficient of second-order term must be greater than or equal

to zero

" Hence we can solve this problem by solving
@L

@u2

ˇ̌
ˇ̌
%

! @L

@u1

!
@c=@u2
@c=@u1

"
D 0

– But this is only one equation in two unknowns; where do we get
the rest of the information required to solve this problem?

ı From the constraint !
c.u1; u2/ D !

" Although the approach outlined above is straightforward for the
2-parameter/1-constraint problem, it becomes difficult to implement as
the dimensions of the problem increase

" For this reason, it would be nice to develop an alternative approach
that can be extended to more difficult problems

" Is this possible?
) YESŠ
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4.3: Lagrange Multipliers: Two-Parameter Problem

" An alternative to the approach considered in the previous section will
now be developed.

" The basic idea is to modify the optimization cost function to
incorporate equality constraints directly.

" Consider the following augmented form of the cost function L .u1; u2/:
NL D L.u1; u2/C # fc.u1; u2/ ! !g

where # is a constant we are free to select

– Since c .u1; u2/ ! ! D 0, this new cost function will be minimized at
precisely the same points as L.u1; u2/

– Therefore, a NECESSARY CONDITION for a local minimum of
L.u1; u2/ is given by

4 NL D 4LC #4c D 0

which may be expressed as,#
@L

@u1
C #

@c

@u1

$
4u1 C

#
@L

@u2
C #

@c

@u2

$
4u2 D 0

– But because of the constraint, 4u1 and 4u2 are not independent
– So now it is conceivable that this result could be true even if the

two coefficients are not zero
– However, # is free to be chosen
– Let

# D
!@L=@u1
@c=@u1

then we may write
@L

@u2
C #

@c

@u2
D 0
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and
c.u1; u2/ D 0

– Thus we have 3 equations and 3 unknowns
) Can find a unique solution

" Comments:

– Is this a new result? No!
) By substituting the expression for # into the second equation,

you get the same result as developed previously!

– So, why do it?

– It turns out these equations are precisely what I would have
obtained if I had assumed 4u1 and 4u2 were independent

@L

@u1
C #

@c

@u1
D 0

@L

@u2
C #

@c

@u2
D 0

– So the use of Lagrange multipliers allows us to develop the
necessary conditions for a constrained minimum using standard
unconstrained parameter optimization techniques

) A great simplification for complicated problems!
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Example 4.1

" Determine the rectangle of maximum area that can be inscribed
inside a circle of radius R.

x

y R

Figure 4.2: Example - Constrained Optimization

" Generate objective function, L.x; y/:
A D 4xy ) L D !4xy

" Formulate constraint equation, c.x; y/:

c.x; y/ D x2 C y2 D R2

" Calculate first-order conditions:
@L

@x
D !4y

@c

@x
D 2x

@L

@y
D !4x

@c

@y
D 2y
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" Compute the Lagrange multiplier:

# D
!@L=@x
@c=@y

D ! .!4y/
2x

D 2
y

x

then,
@L

@y
C #

@c

@y
D !4x C 2

%y
x

&
.2y/

D !4x C 4

'
y2

x

(
D 0

D !4x2 C 4y2 D 0

which gives,
x2 D y2

" Combining with the constraint equation,
x2 C y2 C x2 ! y2 D R2

2x2 D R2

x2 D R2

2

" Thus we arrive at the solution,

x% D Rp
2

y% D Rp
2

with maximizing area
A% D 2R2

" The resulting Lagrange multiplier is # D 2 ) Is this important?
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4.4: Lagrange Multipliers: Multi-Parameter Problem

" The same approach used for the two-parameter problem can also be
applied to the multi-parameter problem

" But now for convenience, we’ll adopt vector notation:

– Cost Function: L.x; u/

– Constraints: c.x; u/ D !, where c is dimension n & 1 (i.e., we have
n constraint equations)

– Here we’ve introduced some new notation:
ı By convention, x will denote the set of dependent variables and

u will denote the set of independent variables in our problem
ı DEPENDENT variables are defined as those whose degrees of

freedom are deployed to satisfy constraints
ı INDEPENDENT variables are those remaining to solve the

minimization
– How many dependent variables appear in the constrained

problem? ) n (why?)
) x ' .n & 1/ u ' .m & 1/

where now the length of our overall parameter vector is mC n

" Employing the METHOD OF FIRST VARIATIONS, we write,

4L $ @L

@x
4x C @L

@u
4u

4c $ @c

@x
4x C @c

@u
4u

) 4x D !
#
@c

@x

$!1 @c

@u
4u
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– NOTE: x must be selected so that matrix @c=@x is nonsingular ; for
well-posed systems, this can always be done.

– Using this expression for 4x, the necessary conditions for a
minimum can now be written:

@L

@u
! @L

@x

#
@c

@x

$!1 @c

@u
D 0

c.x; u/ D !

giving .mC n/ equations in .mC n/ unknowns.

" Using the METHOD OF LAGRANGE MULTIPLIERS, we first construct
the augmented cost function,

NL D L.x; u/C "T fc.x; u/ ! !g

where " is now a .1 & n/ vector of parameters that we are free to pick.

" The change in NL can be written as,

4 NL D
#
@L

@x
C "T

@c

@x

$
4x C

#
@L

@u
C "T

@c

@u

$
4u C fc.x; u/ ! !gT 4"

– Because we’ve introduced the Lagrange multipliers, we can treat
all the parameters as if they were independent.

– So necessary conditions for a minimum are now:
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@ NL
@x

D @L

@x
C "T @c

@x
D 0

@ NL
@u

D @L

@u
C "T @c

@u
D 0

(
@ NL
@"

)T
D c.x; u/ ! ! D 0

which gives .2nCm/ equations in .2nCm/ unknowns.

" NOTE: Solving the first equation for " and substituting this result into
the second equation yields the same result as that derived using the
Method of First Variations.

" Using Lagrange multipliers, we transform the problem from one of
minimizing L subject to c D !, to one of minimizing NL without
constraints.

Sufficient Conditions for a Local Minimum

" Using Lagrange multipliers, we can develop sufficient conditions for a
minimum by expanding 4 NL to second order:

4 NL D NLx4x C NLu4u C 1

2

h
4xT 4uT

i " NLxx
NLxu

NLux
NLuu

#"
4x

4u

#

where

NLxx D @2 NL
@x2

NLuu D @2 NL
@u2

NLxu D @

@u

#
@L

@x

$T
D NLux
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– For a stationary point,
NLx D NLu D 0

and
4x D !c!1

x cu4u C h:o:t:

– Substituting this expression into 4 NL and neglecting terms higher
than second order yields:

4 NL D 1

2
4uT

h
!cTu c

!T
x Im&m

i " NLxx
NLxu

NLux
NLuu

#"
!c!1

x cu

Im&m

#
4u

D 1

2
4uT

h
!cTu c!T

x Im&m
i " ! NLxxc!1

x cu C NLxu
! NLuxc!1

x cu C NLuu

#
4u

D 1

2
4uT

) NLuu ! NLuxc
!1
x cu ! cTu c

!T
x

NLxu C cTu c
!T
x

NLxxc
!1
x cu

*
4u

– Thus we may write

4 NL D 1

2
4uT NL%

uu4u

– So, a sufficient condition for a local minimum is that

NL%
uu is positive definiteŠ
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4.5: Equality Contraints: Examples

Example 4.2

" Returning to the previous problem of a rectangle within a circle, we
have

NLxx D 2# NLyx D !4 cx D 2x

NLxy D !4 NLyy D 2# cy D 2y

" Let y be the independent variable to write,

NL%
yy D 2# ! !4y

x
! !4y

x
C 2#y2

x2

" At the minimum,

x D y D Rp
2

# D 2

) NL%
yy D 16 > 0

Interpretation of Results

" Using first variations and/or Lagrange multipliers, we developed the
following sufficient conditions for a local minimum:

L%
u D Lu ! Lxc!1

x cu D 0 c D !

NL%
uu > 0

" We know that Lu D @L

@u
, holding x constant, and Lx D @L

@x
, holding u

constant

– Do we have a similar interpretation for L%
u ?

YES ) L%
u D @L

@u
; holding c constant
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" So L%
u automatically builds in the constraint relationship between x

and u

" Similarly,

L%
uu D @2L

@u2
; holding c constant

Additional Interpretations of Results:

" By introducing Lagrange multipliers, we found that we could solve
equality constrained optimization problems using unconstrained
optimization techniques

" It turns out that Lagrange multipliers serve another useful purpose as
“cost sensitivity parameters”

– Consider the adjoined cost developed previously,
NL D LC "T .c ! !/

4 NL D @ NL
@x

ˇ̌
ˇ̌
%

4x C @ NL
@u

ˇ̌
ˇ̌
%

4u ! "T ı!

– NOTE: the term ı! is included because we want to determine how
the optimal solution changes when the constraints are changed by
a small amount

– But we know that at a minimum,
@ NL
@x

ˇ̌
ˇ̌
%

D @ NL
@u

ˇ̌
ˇ̌
%

D 0

so any change in the cost, 4 NL (and hence 4L ) is due to "T ı! )

"T D !@Lmin
@!

" Therefore, the Lagrange multipliers describe the rate of change of the
optimal value of L with respect to the constraints
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– Obviously, when the constraints change, the entire solution
changes

– For small changes, we can perform a perturbation analysis to
identify the new solution

– At the original minimum,
NLx D 0 ) 4 NLx D 0

NLu D 0 ) 4 NLu D 0

c D ! ) 4c D ı!

– Expanding these terms in a Taylor series expansion yields:
4 NLx D NLxx4x C NLxu4u C cTx 4" D 0

4 NLu D NLux4x C NLuu4u C cTu 4" D 0

cx4x C cu4u D ı!

) 4x D c!1
x ı! ! c!1

x cu4u 4" D !c!T
x

˚ NLxx4x C NLxu4u
+

and substituting these results into the expression for 4 NLu D 0

yields:

4u D !$ı!
$ D NL%!1

uu

˚ NLux ! cTu c
!T
x

NLxx

+
c!1

x

– NOTE: if NL%
uu exists, neighboring optimal solutions will exist.

Example 4.3

Continuing the previous example,

x D y D Rp
2

NLxx D NLyy D 2# cx D 2x

# D 2 NLxy D NLyx D !4 cy D 2y
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L D !4xy NLyy D 16

L% D !2R2

4! D 4R2 ) changeR2 by 4R2; 4L% D !24R2 D !#Š

" What about 4x, 4y, 4# ?

4x D
#
1

2x
! 1

4x

$
4R2 D 1

4x
4R2

4y D ! 1

16

#
!4 ! 2y

2x
2#

$4R2
2x

D 1

4x
4R2

4# D ! 1

2x

#
2#

4x
! 4

4x

$
4R2 D 0

" Does this agree with reality? To first order, YES!

– # is constant so 4# D 0

x% D y% D R0
p
2

D 1p
2

%p
R2 C 4R2

&

D Rp
2

 r
1C 4R2

R2

!

$ Rp
2

#
1C 1

2

4R2
R2

$

where the last step makes use of the two-term Taylor series expansion of
the square root.

) 4x D 4y D 4R2
2
p
2R

#
D 4R2

4x

$
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Example 4.4

" Consider the two-parameter objective function

L.u/ D 1

2
u21 C 1

2
u22 ! 2u1 ! 2u2

with constraints:
c1.u/ D u1 C u2 D 1

c2.u/ D 2u1 C 2u2 D 6

" A graphic examination of the two constraint equations shows they are
incompatible; i.e. the feasible region is empty.

" Consider a third constraint equation,
c3.u/ D 6u1 C 3u2 D 6

u1 + u2 = 1
2u1 + 2u2 = 6

6u1 + 3u2 = 6

Figure 4.3: Example 4.4

– The combination of constraints c1.u/ and c3.u/ produce a
non-empty feasible region but show the general difficulty when the
number of constrants n equals the number of paramters.
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ı The corresponding geometry is shown in Figure 4.3.

– Solving the constraint equations gives
"
1 1

6 3

#"
u1

u2

#
D
"
1

6

#

u% D
"
1

0

#

" Let’s now solve the general problem L.u/ with single constraint c1.u/.

– This time we have n D 1, giving a single dependent variable which
we’ll identify as u2

" Forming the adjoined objective function we write

NL D 1

2
.u21 C u22/ ! 2.u1 C u2/C #.u1 C u2 ! 1/

" The necessary conditions for a minimum give:
@ NL
@u1

D u1 ! 2C # D 0

@ NL
@u2

D u2 ! 2C # D 0

@ NL
@#

D u1 C u2 ! 1 D 0

– Solving this set of 3 equations in 3 unknowns we get
2
64
1 0 1

0 1 1

1 1 0

3
75
2
64
u1

u2

#

3
75 D

2
64
2

2

1

3
75

u%
1 D 0:5
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u%
2 D 0:5

# D 1:5

" Solving by the First Method of Variations, we use the equations,

@L

@u1
! @L

@u2

!
@c

@u2

"!1 @c

@u1
D 0

c.u1; u2/ D !

to write
.u1 ! 2/ ! .u2 ! 2/ .1/ .1/ D 0

u1 ! 2 ! u2 C 2 D 0

u1 ! u2 D 0

and from the constraint equation,
u1 C u2 D 1

" Solving this set of 2 equations in 2 unknowns we get"
1 !1
1 1

#"
u1

u2

#
D
"
0

1

#

u%
1 D 0:5

u%
2 D 0:5

as before.

" Checking for sufficiency, it is easy to show,
NL%

uu D 2 > 0
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4.6: Numerical Algorithms

" As in the case of unconstrained optimization, the necessary and
sufficient conditions for a local minimum may produce a set of
equations that are too difficult to solve analytically.

– The introduction of constraints complicates the problem much
more quickly!

" So again, we must resort to numerical algorithms which, for the
equality-constrained problem, will be developed by adapting
“steepest-descent” procedures as presented previously

Second Order Gradient Method

" Unlike the unconstrained problem, we now have more to worry about
than simply finding a minimizing parameter vector u% (as if that wasn’t
enough!)

" In addition, we must also find " and x

" Fortunately, we have enough equations available to solve this
problem !

– Given u ) Solve c.x; u/ D ! for x

) Solve
@ NL
@x

D 0 for "

) Solve
@ NL
@u

D 0 for new u

" Practical application of the theory:

– As in the unconstrained problem, we’ll select an initial u (u.k/) that
we’ll assume to be correct.
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– Then, solving for 4x, we can compute an update to x.k/,

c.x; u/ $ c.x.k/; u.k//C @c

@x

ˇ̌
ˇ̌
k

4x D !

) 4x D !
#
@c

@x

ˇ̌
ˇ̌
k

$!1 )
c.x.k/; u.k// ! !

*

x.kC1/ D x.k/ C 4x

– By iterating through this process, we find the value of x which
satisfies the constraints for the given u.

– Notice, however, that we must select an initial x to start the
iteration process.

– Now, solving for " )

@ NL
@x

D @L

@x
C "T

@c

@x
D 0T

) "T D !@L
@x

#
@c

@x

$!1

– If at this point u and x are truly the optimal solution, then @ NL=@u D 0T

– But, if @ NL=@u ¤ 0T , then we can use the following procedure to
iterate for u,

@ NL
@u

T
ˇ̌
ˇ̌
ˇ
cD!;uC4u

D @ NL
@u

T
ˇ̌
ˇ̌
ˇ
cD!;u

C NL%
uu4u D 0

where
NL%

uu D NLuu ! Luxc!1
x cu ! cTu c!T

x
NLxu C cTu c!T

x
NLxxc!1

x cu

) 4u D ! NL%!1
uu

@ NL
@u

T
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– It’s important to exercise care about how you calculate NLuu; NLux;

NLxu; and NLxx:
@ NL
@x

D @L

@x
C "T

@c

@x

) @2 NL
@x2

D @2L

@x2
C

nX
iD1

#i
@2ci

@x2

– Note that our matrix notation has broken down to some extent with
respect to the term

nX
iD1

#i
@2ci

@x2

where the terms
@ci

@x2
are matrix-valued (second derivative of a

scalar by a vector – think Hessian) and the summation comprises
the linear combination of these matrix elements scaled by the
elements of the Lagrange multiplier vector.

First-Order Gradient Method

" The same arguments used to justify the first-order algorithm for the
unconstrained problem also apply here

" So, x and " can be identified using the iterative procedure introduced
above; but u is updated as follows:

4u D !K@
NL
@u

T

where K is a positive scalar when searching for a minimum.

Prototype Algorithm

1. Guess x and u
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2. Compute c ! ! ; If kc ! !k < %1, go to (5.)

3. Compute
@c

@x

4. Update x D x.k/ !
#
@c

@x

$!1
Œc ! !&; go to (2.)

5. Compute L

6. Compute
@L

@x
,
@L

@u
;
@c

@u

7. Compute "T D !@L
@x

#
@c

@x

$!1

8. Compute
@ NL
@u

D @L

@u
C "T

@c

@u
; If

,,,,
@ NL
@u

,,,, < %2, stop!

9. Update u.kC1/ D u.k/ !K@
NL
@u

or u.kC1/ D u.k/ ! NL%!1
uu

@ NL
@u

T

; go to (2.)
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4.7: Inequality-Constraints: Scalar Parameter

" Our goal in the equality constrained parameter optimization problem
discussed in the last section was to find a set of parameters

yT D
h
y1 y2 ( ( ( yp

i

which minimizes L.y/ subject to a set of constraints:
ci.y/ D !i ; i D 1; 2; : : : ; n

where n < p

– Note, if n D p, the problem is completely specified and no
optimization is necessary.

" Now, we want to examine the problem of selecting y to minimize L.y/
subject to a set of inequality constraints:

ci.y/ ) !i ; i D 1; 2; : : : ; n

where n is no longer related to p (i.e., n < p or n * p)

– Why is n not related to p? Because some constraints may be
inactive ) meaning no constraint exists at all.

" To solve this problem, we will not split the parameters into state
(constraint) and decision variables (as done previously) for the simple
reason that it can’t be done for the case where the number of
constraints is greater than the number of parameters.

" We will approach this problem by focusing next on the simplest case
and then generalizing to more complicated situations as was done for
the equality-constrained problem.
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Scalar Parameter / Scalar Constraint

GOAL: Minimize L.y/ subject to the constraint c.y/ ) 0

Case 1: Constraint inactive (i.e., c.y%/ < 0)

" Constraint can be ignored

" So the problem is identical to the unconstrained optimization problem
discussed in the previous section.

y

feasible region

L(y)

c(y)

y
∗

Lmin

Figure 4.4: Constrained Optimization: Scalar Function Case 1

Case 2: Constraint active (i.e., c.y%/ D 0)

" If y% is the optimal solution, then for all admissible perturbations away
from y% the following conditions must exist:

4L $ dL=dyjy% 4y * 0 & 4c $ dc=dyjy% 4y ) 0

) sgn dL=dy D !sgn dc=dy OR dL=dy D 0

" These two conditions can be neatly summarized into a single
relationship using a Lagrange multiplier:

dL=dy C #dc=dy D 0; # * 0
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y

feasible region

L(y)

c(y)

(a)

y

feasible region

L(y)

c(y)

(b)

Figure 4.5: Constrained Optimization: Scalar Function Case 2

dc=dyjy% > 0 ) 4yfeas < 0 dc=dyjy% < 0 ) 4yfeas > 0

4yfeas < 0 ) dL=dyjy% ) 0 4yfeas > 0 ) dL=dyjy% * 0

" In each of these cases, y% occurs at the constraint boundary, and
dL=dy C #dc=dy D 0 for # > 0Š

" The conditions for a minimum in both Case 1 and Case 2 can, in fact,
be handled analytically using the same cost function:

NL D LC #c

– The necessary conditions for a minimum become:
d NL=dy D 0 and c.y/ ) 0

where # * 0 for c.y/ D 0 and # D 0 for c.y/ < 0

– We call the the relationship,
# ( c .y/ D 0

the complimentarity condition.
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Example

" Consider the function L.u/ D 1

2
u2

" Unconstrained minimum:
dL=du D 0 ) u D 0

1. u ) k; k > 0

d NL
du

D 0

) uC # D 0

# D 0 ) u D 0 satisfies constraint

2. u ) k; k < 0

d NL
Lu

D 0

# D 0 ) u D 0 no good

# ¤ 0 ) u D k ) # D !k > 0Š
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4.8: Inequality Constraints: Vector Parameter

Vector Parameter / Scalar Constraint

GOAL: Minimize L.y/ subject to c.y/ ) 0

" For this problem, the results developed above must simply be
reinterpreted:

– For all admissable 4y, 4L $ @L=@y4y * 0

– If y% exists on a constraint boundary, then
4c $ @c=@y4y ) 0 for all admissible 4y

) @L

@y
C #

@c

@y
D 0 .# * 0/

– Thus, either @L=@y D 0 or @L=@y is parallel to @c=@y and in the opposite
direction at y%.

y1

y2

∇L

∇c

L = constant

c = 0

(a) Inactive Constraint

y1

y2

∇L

∇c

c = 0

L = constant

(b) Active Constraint

Figure 4.6

" As for the scalar/scalar case, we can handle this problem analytically
using the following cost function:

NL D LC #c
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– The necessary conditions for a minimum are:
@ NL
@y

D 0 and c.y/ ) 0

where # * 0 for c.y/ D 0 and # D 0 for c.y/ < 0

Example: Package Constraint Problem

" Maximize the volume of a rectangular box under the inequality
dimension constraint: 2 .x C y/C z ) D

x

y

z

Figure 4.7: Example: Package Constraint Problem

" Objective function:
L D !xyz

" Solving,
NL D !xyz C # .2x C 2y C z !D/

@L

@u
D
h

!yz C 2# !xz C 2# !xy C #
i

– # D 0 ) either x D 0 or y D 0 ) volume is not maximized

– # ¤ 0 )
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1. yz D 2#

2. xz D 2#

3. xy D #

4. 2x C 2y C z D D

– Combining (1) and (2) gives x D y

– Combining (3) with this result gives # D x2

– From (2) we get z D 2x

– From (4) we compute x D D=6

) x% D y% D D=6

z% D D=3

Vector Parameter / Vector Constraint

" The problem is still exactly the same as before, but the complexity of
the solution continues to increase.

– If y% is the optimum, then
4L $ @L=@yjy% 4y * 0

for all admissible 4y

– And if y% lies on a constraint boundary, then
4ci $ @ci=@yjy% 4y ) 0 fi D 1; 2; : : : ; qg

– Again, these conditions can be summarized using Lagrange
multipliers (only now we need q of them):

@L=@y C
qX
iD1

#i .@ci=@y/ D 0 #i > 0

or in vector notation,
@L=@y C "T .@c=@y/ D 0 " * 0
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– The last equation above is known as a Kuhn-Tucker condition;
we’ll hear more about this later.

– Interpretation:

1. If no constraints are active, " D 0 and @L=@y D 0

2. If some constraints are active, @L=@y must be a negative linear
combination of the appropriate gradients .@ci=@y/

(a) Physically, this means that !@L=@y must lie inside a cone
formed by the active constraint gradients (i.e., @L=@y at a
minimum must be pointed so that any decrease in L can only
be achieved by violating the constraints).

y1

y2

c1 = 0

c2 = 0

∇L

∇c2
∇c1

Figure 4.8: Vector Parameter / Vector Constraint

" Summary:

– Define: NL D LC "T c

– Necessary conditions for a minimum are:
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@L=@y D 0 ci.y/ ) 0 fi D 1; 2; : : : ; qg

where #i * 0 for ci.y/ D 0 and #i D 0 for ci.y/ < 0

– Question: How many constraints can be active?
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4.9: Linear Programming

" The simplest type of constrained optimization problem occurs when
the objective function and the constraint functions are all linear
functions of u : these are known as Linear Programming problems

" Standard linear programming problem may be stated as:

min
x
f .x/ D cTx

subject to Ax D b; x * 0

" Here, matrix A is dimension .m & n/ and m ) n (usually)

" Coefficients c are often referred to as costs

" Although the standard problem is an equality constrained problem,
inequality constraints may be accommodated by introducing
additional variables.

– For example,
xl D aTi x ! bi

where
xl * 0

" One important feature of linear programming minimization problems
is that they require constraints, since linear objective functions have
no minima!

Example (problem set-up):

minimize x1 C 2x2 C 3x3 C 4x4

subject to x1 C x2 C x3 C x4 D 1

x1 C x3 ! 3x4 D 1=2
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x1 * 0; x2 * 0 x3 * 0; x4 * 0

" For this example, the vectors set up as

cT D
h
1 2 3 4

i

aT1 D
h
1 1 1 1

i

aT2 D
h
1 0 1 !3

i

and

b D
"
1

1=2

#

" In this case, equations Ax D b determine a unique solution, so the
solution is completely determined by the constraints.

" More commonly, m < n

– In this case Ax D b is underdetermined leaving n !m degrees of
freedom

Example

" For the example above, we can rearrange the constraint equation to
give:

x1 D 1

2
! x3 C 3x4

x2 D 1

2
! 4x4

" Or, alternatively we can write:
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x1 D 7

8
! 3

4
x2 ! x3

x4 D 1

8
! 1

4
x2

" The objective function cTx is linear, so it does not contains the
curvature needed to give rise to a minimum point

– A minimum point must be created by the conditions xi * 0

becoming active on the boundary of the feasible region.

" Substituting the second form of these equations into the main
problem statement allows us to write

f .x/ D x1 C 2x2 C 3x3 C 4x4 D 11

8
C 1

4
x2 C 2x3

" Obviously this function has no minimum unless we impose the
bounds x2 * 0 and x3 > 0 ; in this case x2 D x3 D 0 and the minimum
is fmin D 11=8:

Example

" Consider the simple set of conditions:
x1 C 2x2 D 1; x1 * 0; x2 * 0

" The first of these expressions gives the equation of a line:
x2 D !1=2x1 C 1=2
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Figure 4.9: Linear Programming Example

" The feasible region is the line joining points a D Œ0; 1=2& and b D Œ1; 0&

" Whenever the objective function is linear, the solution must occur at
either a or b with x1 D 0 or x2 D 0

– In the case where f .x/ D x1 C 2x2, then any point on the line
segment is a solution (non-unique solution)

" Summarizing:

– A solution of a linear programming problem always exists at one
particular extreme point or vertex of the feasible region

– At least n !m variables have value zero.

– The remaining m variables are determined uniquely from the
equations Ax D b and x * 0.
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4.10 Linear Programming: Simplex Algorithm

" The main challenge in solving linear programming problems is finding
which n !m variables equal zero at the solution.

" One popular method of solution is the SIMPLEX METHOD, which tries
different sets of possibilites in a systematic manner.

– The method generates a sequence of feasible points x.1/; x.2/; : : :

which terminates at a solution.

– Each iterate x.k/ is an extreme point.

" We define:

– The set of nonbasic variables (set N.k/) as the n !m variables
having zero value at x.k/ .

– The set of basic variables (set B.k/) as the remaining m variables
having non-zero value.

" Parameter vector x is partitioned so that the basic variables are the
first m elements:

x D
"

xB

xN

#

" Likewise, we correspondingly partition A W

A D
h
AB AN

i

" Then we can write the constraint equations as:

h
AB AN

i " xB

xN

#
D ABxB C ANxN D b
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" Also, since x
.k/
N D 0; we can write

x.k/ D
"

xB

xN

#.k/
D
"

Ob
0

#

where
Ob D A!1

B b and Ob * 0

Example

" Returning to our previous example, let us choose B D f1; 2g and
N D f3; 4g (i.e., variables x1 and x2 are basic, and x3 and x4 are
nonbasic)

" We then have,

AB D
"
1 1

1 0

#
; AN D

"
1 1

1 !3

#
;

and

Ob D A!1
B b D

"
0 1

1 !1

#"
1

1=2

#
D
"
1=2

1=2

#
* 0

" Since AB is nonsingular and Ob * 0 , this choice of B and N gives a
basic feasible solution

" Solving for the value of the objective function,
Of D cTx.k/ D cTB

Ob

where we have partitioned c as

c D
"

cB

cN

#
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" Since

cB D
"
1

2

#

we compute
Of D 1:5

" Now examine whether or not our basic feasible solution is optimal.

– The essential idea here is to eliminate the basic variables from the
objective function and reduce it to a function of nonbasic variables
only.

– This way we can determine whether an increase in any nonbasic
variable will reduce the objective function further.

" Reducing f .x/ we can write

f .x/ D cTBxB C cTNxN

" Since
ABxB C ANxN D b

ABxB D b ! ANxN

xB D A!1
B b ! A!1

B ANxN

" Substituting xB above, we can write,

f .x/ D cTB
Ob ! cTBA

!1
B ANxN C cTNxN

D cTB
Ob C

)
cTN ! cTBA

!1
B AN

*
xN

D Of C OcTNxN

where (upon transposing) the reduced cost can be written,

OcN D cN ! ATNA!T
B cB
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" Now, with f .x/ in terms of xN it is straightforward to check the
conditions for which f .xN/ can be reduced.

– Note here that although xN D 0 at a basic feasible solution, in
general, xN * 0

– So we define the optimality test:
OcN * 0

– If the optimality test is satisfied, our solution is optimal and we
terminate the algorithm (since xN * 0, f .x/ must increase).

– If it is not satisfied, we have more work to do.

" Denote OcN by

OcN D

2
66664

Oc1
Oc2
Ocq
:::

3
77775

" Choose variables xq for which Ocq < 0 , which implies f .xN/ is
decreased by increasing xq (usually choose most negative Ocq)

– As xq increases, in order to keep Ax D b satisfied, xB changes
according to

xB D A!1
B .b ! ANxN/ D Ob ! A!1

B ANxN

– In general, since xq is the only nonbasic variable changing,

xB D Ob ! A!1
B aqxq;

D Ob ! dxq

where aq is the column of matrix A corresponding to q.
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" In this development, d behaves like a derivative of xB w.r.t. xq

" So, our approach is to increase xq (thereby decreasing f .x/) until
another element of xB reaches 0.

– It is clear that xi becomes 0 when

xq D
Obi

!di
– Since the amount by which xq can be increased is limited by the

first basic variable to become 0 , we can state the ratio test :

Obp
!dp

D min
i2B

Obi
!di

where di < 0 .

– Geometrically, the increase in xq and the corresponding change to
xB causes a move along an edge of the feasible region.

– When a new element xi reaches 0, the new sets N.kC1/ and B.kC1/

are re-ordered and an iteration of the simplex method is complete.

Example

" Finshing our example, we can express f .x/ in terms of the reduced
cost and xN as follows:

f .x/ D Of C OcTNxN

D 1:5C
h
2 !1

i
xN

" Since OcN does not satisfy the optimality test, our basic feasible
solution is not an optimal one

" The negative value of OcN corresponds to q D 4, i.e., Oc4 D !1
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" So, with

a4 D
"
1

!3

#

we can compute

d4 D !A!1
B a4 D !

"
0 1

1 !1

#"
1

!3

#
D
"
3

!4

#

" Therefore,

xB D
"
0:5

0:5

#
C
"
3

!4

#
x4

from which we find that the max value x4 D 1=8 brings the second
element of xB to zero.

" Now, we re-partition:

x D
"

xB

xN

#
D

2
66664

x1

x4

x2

x3

3
77775

A D
h
AB AN

i
D
"
1 1 1 1

1 !3 0 1

#

from which we compute

Ob D
"
0:8750

0:1250

#
* 0

and

OcN D
"
0:25

2:0

#
> 0 ) optimalŠ

Lecture notes prepared by M. Scott Trimboli. Copyright c# 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Constrained 4–44

" Thus, the optimal solution is
x%
1 D 0:5

x%
2 D 0

x%
3 D 0

x%
4 D 0:125

giving an optimal cost f % D 1:0
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4.11: Quadratic Programming

" Quadratic programming is an approach in which the objective function
is quadratic and the constraint functions ci .x/ are linear.

" The general problem statement is:

min
x
q.x/ ' 1

2
xTGu C gTu

subject to aTi x D bi ; i 2 E
aTi x ) bi ; i 2 I

– Here, we assume that a solution x% exists.
– And, if the Hessian matrix G is positive definite, then x% is a unique

minimizing solution.

" First, we’ll develop the equality constrained case, then generalize to
the inequality constrained case using an active set strategy.

" Quadratic programming is different from Linear Programming in that it
is possible to have meaningful problems in which there are no
inequality constraints (due to curvature of the objective function).

Equality Constrained Quadratic Programming

" Problem statement:

min
x
q.x/ ' 1

2
xTGx C gTx

subject to ATx D b

– Assume there are m ) n constraints, and that A has rank m.

" Solution involves using constraints to eliminate variables (as we’ve
done previously).
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– First, define

x D
"

x1

x2

#
; A D

"
A1

A2

#
; g D

"
g1
g2

#
; G D

"
G11 G12

G21 G22

#

– Then we can write the constraint equations as:
AT1 x1 C AT2 x2 D b

which, solving for x1 gives
x1 D A!T

1

-
b ! AT2 x2

.

– Now, substituting into q.x/ yields the equivalent unconstrained
minimization problem:

min
x2
 .x2/

where

 .x2/ D 1

2
xT2
-
G22 !G21A!T

1 AT2 ! A2A!1
1 G12 C A2A

!1
1 G11A

!T
1 AT2

.
x2

C xT2
-
G21 ! A2A!1

1 G11
.
A!T
1 b C 1

2
bTA!1

1 G11A
!T
1 b

C xT2
-
g2 ! A2A!1

1 g1
.

C gT1 A
!T
1 b

" A unique minimizing solution exists if the Hessian in the quadratic
term is positive definite.

" In that case, x%
2 is found by solving the linear system

r .x2/ D 0

and x%
1 is found by substitution.
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Example

" Consider the quadratic programming problem given by:

min
x1; x2; x3

q.x1; x2; x3/ D x21 C x22 C x23

D 1

2
xTGx

subject to x1 C 2x2 ! x3 D 4

x1 ! x2 C x3 D !2
ATx D b

– This corresponds to the general problem with:

G D

2
64
2 0 0

0 2 0

0 0 2

3
75 I g D

2
64
0

0

0

3
75

AT D
"
1 2 !1
1 !1 1

#
I b D

"
4

!2

#

" Partitioning, we write )

AT D
"
1 2 !1
1 !1 2

#
D
h
AT12 A

T
3

i

and

x D

2
64
x1

x2

x3

3
75 D

"
x12

x3

#

" We can invoke constraint equations to express x12 in terms of
element x3 :
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h
AT12 A

T
3

i " x12

x3

#
D b

AT12x12 C AT3 x3 D b

x12 D A!T
12

-
b ! AT3 x3

.

D A!T
12 b ! AT12AT3 x3

which for the present example gives:
"
x1

x2

#
D
"
0

2

#
!
"

1=3

!2=3

#
x3

" Substituting back into q.x/, we have

q.x/ D 1

2

h
xT12 x

T
3

i " G11 G12
G21 G22

#"
x12

x3

#

D 1

2

)
xT12G11x12 C 2xT12G12x3 C x3G22x3

*

D 1

2

h-
A!T
12 b ! AT12AT3 x3

.T
G11

-
A!T
12 b ! AT12AT3 x3

.

C2
-
A!T
12 b ! AT12A3x3

.
G12x3 C x3G22x3

*

" Substituting values for G, A, and b, we obtain a quadratic expression
in element x3 W

 .x3/ D 0:5556x23 C 2:6667x3 C 4

" Since the Hessian
@2 

@x23
D 3:1111 > 0

we conclude the minimizer is unique and found by setting
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r D @ 

@x3
D 0

" This yields the solution
x%
3 D !:8571

and back substitution yields
x%
1 D :2857 x%

2 D 1:4286
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4.12: Quadratic Programming: Method of Lagrange Multipliers

" A more general approach for solving quadratic programming
problems is via the method of Lagrange multipliers as seen
previously.

" Consider the augmented cost function:

NL.x; "/ D 1

2
xTGx C gTx C "T

-
ATx ! b

.

" The stationarity condition is given by the equations:

@ NL
@x

D Gx C g C A" D 0

@ NL
@"

D ATx ! b D 0

" These equations can be rearranged in the form of a linear system to
give, "

G A

AT 0

#"
x

"

#
D !

"
g

b

#

– The matrix on the left is called the Lagrangian Matrix and is
symmetric but not positive definite.

– Several analytical methods of solution make use of the inverse
form of the Lagrangian matrix

" Solving directly we may write:
" D !

-
ATG!1A

. -
b C ATG!1g

.

x D !G!1g !G!1A"

" It is interesting to note that x can be written in the form of two terms:
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x D !G!1g !G!1A " D x0 !G!1A"

where the first term x0 is the global minimum solution to the
unconstrained problem and the second term is a correction due to the
equality constraints.

Example

" Returning to our previous example, the solution without constraints is
given by:

x0 D !G!1g D 0

" Solving for the Lagrange multipliers,

" D !

0
B@
"
1 2 !1
1 !1 1

#2
64
0:5

0:5

0:5

3
75
2
64
1 1

2 !1
!1 1

3
75
1
CA

!1

&

0
B@
"
4

!2

#
C
"
1 2 !1
1 !1 1

#2
64
0:5

0:5

0:5

3
75
2
64
2
64
0

0

0

3
75
3
75
1
CA

giving

" D
"

!1:1429
0:5714

#

" The minimizing solution vector is
2
64
x1

x2

x3

3
75 D

2
64
0

0

0

3
75!

2
64
0:5

0:5

0:5

3
75
2
64
1 1

2 !1
!1 1

3
75
"
1:1429

!:5714

#
D

2
64
0:2857

1:4286

!:8571

3
75
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4.13: Quadratic Programming: Inequality Constraints

" Inequality constrained problems include constraints from the set i 2 I
where the number of inequality constraints could be larger than the
number of decision variables.

" The constraint set, ATx ) b may include both active and inactive
constraints where a constraint aTi x ) bi is said to be active if
aTi x D bi and inactive if aTi x < bi .

Kuhn-Tucker Conditions

" The necessary conditions for satisfaction of this optimization problem
are given by the KUHN-TUCKER conditions:

Gx C g C A" D 0

ATx ! b ) 0

"T
-
ATx ! b

.
D 0

" * 0

" We can express the Kuhn-Tucker conditions in terms of the active
constraints as:

Gx C g C
X
i2A

#iai D 0

aTi x ! bi D 0 i 2 A

aTi x ! bi < 0 i … A

#i * 0 i 2 A

#i D 0 i … A

– In other words, the active constraints are equality constraints.
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" Assuming that ATA and "A are known (where A denotes the active
set), the original problem can be replaced by the corresponding
problem having only equality constraints:

"A D !
-
ATAG

!1AA

.!1 -
bA C ATAG

!1g
.

x D !G!1 .g C AA "A /

Active Set Methods

" Active set methods take advantage of the solution to equality
constraint problems in order to solve more general inequality contraint
problems.

" BASIC IDEA: Define at each algorithm step a set of constraints (called
the working set) that is treated as the active set.

– The working set, W , is a subset of the active set A at the current
point; the vectors ai 2 W are linearly independent.

– The current point is feasible for the working set.

– The algorithm proceeds to an improved point.

– An equality constrained problem is solved at each step.

" If all #i * 0 , the point is a local solution .

" If some #i < 0, then the objective function can be decreased further
by relaxing the corresponding constraint.
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Example [Wang, pg. 60]

" Here we develop a solution to the following problem:

min
x
q.x/ D 1

2
xT

2
64
1

1

1

3
75x C

h
!2 !3 !1

i
x

subject to W x1 C x2 C x3 ) 1

3x1 ! 2x2 ! 3x3 ) 1

x1 ! 3x2 C 2x3 ) 1

" Relevent matrices are:

G D

2
64
1

1

1

3
75 I g D

2
64

!2
!3
!1

3
75 I AT D

2
64
1 1 1

3 !2 !3
1 !3 2

3
75 I b D

2
64
1

1

1

3
75

" A feasible solution of the equality constraints exists since the linear
equations ATx D b are well determined (i.e., AT is full rank)

" Using the three equality constraints as the first working set, we
calculate

" D !
-
ATG!1A

.!1 -
b C ATG!1g

.
D

2
64
1:6873

0:0309

!0:4352

3
75

" Since #3 < 0, we conclude the third constraint equation is inactive,
and omit it from the active set, A

" We then solve the reduced problem,
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min
x
q.x/ D 1

2
xT

2
64
1

1

1

3
75x C

h
!2 !3 !1

i
x

subject to W x1 C x2 C x3 ) 1

3x1 ! 2x2 ! 3x3 ) 1

" Solving now for the remaining Lagrange multipliers,

" D
"
1:6452

!:0323

#

– As before, we see that #2 < 0 , so conclude that the second
constraint equation is inactive, and omit it from A .

" We are now left with an equality constraint problem having just the
single constraint,

x1 C x2 C x3 D 1

" Solving this problem, we obtain
# D 1:6

and compute

x% D

2
64
0:3333

1:3333

!0:6667

3
75
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4.14: Primal-Dual Method

" Active methods are a subset of the primal methods, wherein solutions
are based directly on the decision (i.e., primal) variables.

" Computationally, this method can become burdensome if the number
of contraints is large.

" A dual method can often be used to reach the solution of a primal
method while realizing a computational savings.

" For our present problem, we will identify the Lagrange multipliers as
the dual variables; we derive the dual problem as follows:

– Assuming feasibility, the primal problem is equivalent to:

max
"*0

min
x

!
1

2
xTGx C gTx C "T

-
ATx ! b

."

– The minimum over x is unconstrained and given by
x D !G!1 .g C A"/

– Substituting into the above expression, we write the dual problem
as:

max
"*0

'
!1
2

"TH" ! "TK ! 1

2
gTG!1g

(

where
H D ATG!1A

K D b C ATG!1g

– This is now equivalent to the quadratic programming problem:

min
"*0

'
1

2
"TH" C "TK C 1

2
gTG!1g

(

– Note that this form of the problem may be easier to solve than the
primal problem since the constraints are simpler.
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" A full derivation of the dual form of the quadratic programming
problem appears in Appendix 4.1.
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4.15: Hildreth’s Quadratic Programming Algorithm

" Hildreth’s procedure is a robust and systematic way to solve the dual
quadratic programming problem.

" The basic idea is to vary the Lagrange multiplier vector elements, #i ,
one at a time, and adjust each element such as to minimize the
objective function.

" A single iteration through the cycle may be expresses as:

#
.kC1/
i D max

%
0; w

.kC1/
i

&

where

w
.kC1/
i D ! 1

hii

2
4ki C

i!1X
jD1

hij#
.kC1/
j C

nX
jDiC1

hij#
.m/
j

3
5

– Here, we define hij to be the ij -th element of the matrix H and ki
is the i -th element of the vector K.

" The Hildreth algorithm implements an iterative solution of the linear
equations:

" D !
-
ATG!1A

.!1 -
b C ATG!1g

.

D !H!1K

which can be equivalently expressed as:
H" D !K

" Note that this approach avoids the need to perform a matrix inverse,
which leads to a robust algorithm.

" Once the vector " converges to "%, the solution vector is found as:

x% D !G!1 .g C A"%/
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" A proof of Hildreth algorithm convergence is presented in Appendix
4.2.

Example [Wang, pg. 64]

" Consider the optimization problem

min
x
q.x/ D x21 ! x1x2 C 1

2
x22 ! x1

subject to 3x1 C 2x2 ) 4

x1 * 0

x2 * 0

" In standard form it can be shown that

G D
"
2 !1

!1 1

#
I g D

"
!1
0

#
I AT D

2
64

!1 0

0 !1
3 2

3
75 I b D

2
64
0

0

4

3
75

" The global optimum (unconstrained) minimum is:

x0 D !G!1g D !
"
2 !1

!1 1

#!1 "
!1
0

#
D
"
1

1

#

" It is easily seen from the figure that the optimum solution violates the
inequality constraints (is not within the feasible region).
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Figure 4.10: Quadratic Programming Example: Feasible Region

" In order to implement the Hildreth algorithm, we form the matrices H
and K:

H D ATG!1A D

2
64
1 1 !5
1 2 !7

!5 !7 29

3
75 I K D b C ATG!1g D

2
64
1

1

!1

3
75

" Iteration k D 0

– #.0/1 D #
.0/
2 D #

.0/
3 D 0

" Iteration k D 1

w
.1/
1 C 1 D 0

#
.1/
1 C 2w

.1/
2 C 1 D 0

!5#.1/1 ! 7#.1/2 C 29w
.1/
3 ! 1 D 0

– solving gives:

#
.1/
1 D max

%
0; w

.1/
1

&
D 0
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#
.1/
2 D max

%
0; w

.1/
2

&
D 0

#
.1/
3 D max

%
0; w

.1/
3

&
D :0345

" Iteration k D 2

w
.2/
1 C #

.1/
2 ! 5#.1/3 C 1 D 0

#
.2/
1 C 2w

.2/
2 ! 7#.1/3 C1 D 0

!5#.2/1 ! 7#.2/2 C 29w
.2/
3 !1 D 0

– solving gives:

#
.2/
1 D max

%
0; w

.2/
1

&
D 0

#
.2/
2 D max

%
0; w

.2/
2

&
D 0

#
.2/
3 D max

%
0; w

.2/
3

&
D :0345

– thus, the iterative process has converged

" The optimal solution is given by:
x% D !G!1 .g C A"%/

D !G!1g !G!1A"% D x0 !G!1A"%

D
"
1

1

#
!
"
2 !1

!1 1

#!1 "
!1 0 3

0 !1 2

#2
64

0

0

0:0345

3
75 D

"
0:8276

0:7586

#
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Appendix 4.A

Derivation of the Dual Optimization Problem

" Starting with the primal problem,

L% D max
"*0

min
x

!
1

2
xTGx C xTg C "T .ATx ! b/

"

we solve for the unconstrained minimizer
xo D !G!1.g C A"/

" Subsituting xo into the primal problem, we obtain

L% D max
"*0

#
1

2
.g C A"/T G!1GG!1 .g C A"/

! .g C A"/T G!1g C "T
-
AT

-
!G!1.g C A"/

.
! b

.+

" Expanding and cancelling terms,

D max
"*0

#
1

2

-
"TAT C gT

.
G!1 .g C A"/

!
-
"TAT C gT

.
G!1g C "T

)
!ATG!1 .g C A"/ ! b

*+

D max
"*0

#
1

2

)
"TATG!1 .g C A"/C gTG!1 .g C A"/

*

! "TATG!1g ! gTG!1g C "T
)
!ATG!1g ! ATG!1A" ! b

*+

D max
"*0

#
1

2
"TATG!1g C 1

2
"TATG!1A"

C 1

2
gTG!1g C 1

2
gTG!1A" ! "TATG!1g ! gTG!1g

! "TATG!1g ! "TATG!1A" ! "Tb
+
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" And finally,

L% D max
"*0

#
!"TATG!1g ! 1

2
"TATG!1A" ! 1

2
gTG!1g ! "Tb

$

giving the result.
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Appendix 4.B

Proof of Convergence for the Hildreth Procedure

" We assert here that if matrix P D ATG!1A is positive definite in the
dual optimization problem given by

min
"*0

L D
'
1

2
"TP" C "TK C 1

2
gTG!1g

(
;

where
K D b C ATG!1g;

then the sequence ˚
".m/

+
! "%:

" Let us define by H
-
".m/

.
the Hildreth operator such that

".mC1/ D H
-
".m/

.
:

" We shall first show that
H ."/ D " ) " D "%

" First take any " * 0; " ¤ "%, then
L ."%/ ! J ."/ < 0:

" Now let "% D " C ı, we can now write

L ."%/ D 1

2
." C ı/T P ." C ı/C ." C ı/T K C 1

2
gTG!1g

D 1

2

-
"TP" C 2"T ı C ıTP ı

.
C "TK C ıTK C 1

2
gTG!1g

D
'
1

2
"TP" C "TK C 1

2
gTG!1g

(
C "TP ı C ıTK C 1

2
ıTP ı

D L ."/C "TP ı C ıTK C 1

2
ıTP ı
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– Thus we have,

L ."%/ ! L ."/ D "TP ı C ıTK C 1

2
ıTP ı

D
'
@L

@"

(
ı C 1

2
ıTP ı

– Since the term
1

2
ıTP ı must be positive, it is clear that

'
@L

@"

(
ı

must be negative, since L ."%/ ! L ."/ is negative.
– Hence, L ."/ can be reduced by changing one element of ", and

the operator H will do this.

" Next, we note that the sequence
˚
".m/

+
is contained in the bounded

set
˚
"
ˇ̌
L ."/ ) L

-
".0/

.+
and therefore has a limit.

" Let "1 be a limit and let
˚
"Œr &

+
be a sub-sequence that approaches

"1; we now attempt to show that the conjecture "1 ¤ "% will lead to
a contradiction.

– If"1 ¤ "%, then
L ."1/ ! L .H ."1// D % > 0:

– Continuity of L .#/ in the bounded region containing
˚
".m/

+
assures that for any such % there exsits a ı > 0 such that

k" ! "%k < ı ) jL ."/ ! L ."%/j < %

– From the continuity of the operator H, there exists a positive
integer, R; such that

r > R !
,,"Œr & ! "1,, < ':

– For such an r; say r%; let p% be the index of "Œr
%& in the original

sequence; for such a p%,ˇ̌
ˇL
%
".p%C1/

&
! L .H ."1//

ˇ̌
ˇ < %
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and therefore,
L
%
".p%C1/

&
< L ."1/

which contradicts the definition of
˚
".m/

+
.
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