
ECE5570: Optimization Methods for Systems and Control 3–1

Parameter Optimization: Unconstrained

We will begin our study by developing some tools and concepts
associated with the general optimization process applied to problems
that are independent of time

) These are known as parameter optimization problems

� We shall utilize a useful class of algorithms known as iterative
methods

– Iterative methods generate a sequence of points,
x.1/; x.2/; x.3/; : : : ; or more compactly

˚
x.k/

	
, that converge to a

fixed point x� which is the solution to a given problem

� For example, let us define a line as a set of points x.˛/ D x
0

C ˛s

where x
0

is a fixed point and s is the direction of the line (see a 2-D
representation in Figure 3.1 )

� An iterative scheme might systematically choose new directions s at
each step and then minimize function values along those directions to
generate a sequence of solution points

˚
x.k/

	

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Unconstrained 3–2

Figure 3.1 A line in two dimensions

� An acceptable iterative optimization algorithm exhibits the following
properties:

– iterations x.k/ move steadily toward the neighborhood of a local
minimizer x�

– iterations converge rapidly to the point x�, i.e., for h.k/
D x.k/

� x�;

h.k/
! 0 for some appropriate measure of h.k/

– rate of convergence is an important measure of goodness of the
algorithm

� A method is usually based on a model – an approximation of the
objective function – which enables an estimate of the local minimizer
to be made

– most successful have been quadratic models
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3.1: Unconstrained Optimization: The Basics

� To begin, we must first define the goals we hope to achieve through
optimization

– We introduce an index of performance, or objective function, that
captures the natue of our optimization goal – we’ll call this function
L

ı In general, L will be a function of one, two or many variables;
i.e., L D f .u1; u2; : : : ; um/ , where the ui are scalar parameters

ı NOTE: it’s also customary to use J to denote an objective
function and xk for the independent variables; e,g.,
J D f

�
x1; x2; : : : ; xm

�
– SImply put, our main task will be to select the decision variables

fu1; u2; : : : ; umg such that L is minimized

ı Recall here that maximization can be achieved by simply
switching the sign on a minimization problem

– But what exacly do we mean by a minimum? We generally
consider two definitions:

absolute (or global) minimum
) L.u�

1 C 4u1; u�

2 C 4u2; : : : ; u�

m C 4um/ > L.u�

1; u�

2; : : : ; u�

m/

for all changes 4u1; 4u2; : : : ; 4um

local minimum
) L.u�

1 C 4u1; u�

2 C 4u2; : : : ; u�

m C 4um/ > L.u�

1; u�

2; : : : ; u�

m/

for all infinitesimal changes 4u1; 4u2; : : : ; 4um , where values u�

denote the optimal (minimizing) values of u
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– An optimization problem usually assumes that an optimum solution
u� exists, is unique and can be found, but this ideal situation may
not hold for a number of reasons:

ı L.u/ is unbounded below

ı L.u/ is bounded below

ı u� is not unique

ı local minimum exists that is not a global minimum

ı local minimum exists although L.u/ is unbounded below (see
Figure 3.2)
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Local Minimum for Unbounded Function

Figure 3.2 f .x/ D x3 � 3x

– The conditions for a local minimum are considerably easier to
solve than for a global minimum; we’ll address the local minimum
problem in this course

– NOTE: We will focus on minimizing performance indices (or
objective functions). The problem of maximizing an objective
function fits easily within this framework by simply letting KL D �L
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Conditions for Local Minima

� Along any line u.˛/ D u�
C ˛s through u� , L Œu.˛/� has both zero

slope and non-negative curvature at u� (see Figure 3.3 )

� This is the usual condition derived from a Taylor series for a local
minimum of a function of one variable

Figure 3.3 Zero slope and non-negative curvature at ˛ D 0
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3.2: Unconstrained Optimization: One and Two Parameters

Single Parameter Problem

� Consider the function: L.u/ D .u � 1/2

How do we find the minimum?

dL

du
D 0 D 2.u � 1/ ) u D 1

d 2L

du2
D 2 > 0

� Why does this work?

– if we let u� denote a local minimum of L.u/, then L can be
expanded in a Taylor series about u�:

L.u/ D L.u�/ C
dL

du

ˇ̌̌̌
u�

4u C
1

2

d 2L

du2

ˇ̌̌̌
u�

4u2
C � � �

or

4L D L.u/ � L.u�/ D
dL

du

ˇ̌̌̌
u�

4u C
1

2

d 2L

du2

ˇ̌̌̌
u�

4u2
C � � �

– Since u� is a local minimum, we know two things:

1. L.u/ � L.u�/ > 0 for all u in a neighborhood of u�

2. 4u is an arbitrary, but infinitesimal change in u away from u�
)

higher order terms in Taylor series expansion are insignificant:

) 4L �
dL

du

ˇ̌̌̌
u�

4u

But since 4u is arbitrary,
dL

du

ˇ̌̌̌
u�

¤ 0 ) 4L < 0 for some 4u,

and by deduction,
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) u� can only be a minimum if
dL

du

ˇ̌̌̌
u�

D 0

If
dL

du

ˇ̌̌̌
u�

D 0,

4L �
d 2L

du2

ˇ̌̌̌
u�

4u2

but 4u2 > 0 for all 4u, so 4L > 0 if
d 2L

du2

ˇ̌̌̌
u�

> 0

) u� will be a minimum if
d 2L

du2

ˇ̌̌̌
u�

> 0

Sufficient Conditions For a Local Minimum

dL

du

ˇ̌̌̌
u�

D 0I
d 2L

du2

ˇ̌̌̌
u�

> 0

� What if
d 2L

du2

ˇ̌̌̌
u�

D 0 ?

� Must go to higher order derivatives (odd derivatives must be zero, 1st

even derivatives must be positive)

Necessary Conditions For a Local Minimum

dL

du

ˇ̌̌̌
u�

D 0I
d 2L

du2

ˇ̌̌̌
u�

� 0

QUESTION: What is the difference between necessary and sufficient
conditions?
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Two-Parameter Problem

� Consider the function L.u1; u2/ where L.u�

1; u�

2/ is a local minimum

� We’ll use the same Taylor series arguments as above to develop
conditions for a minimum, but now the Taylor series is more
complicated:

L.u1; u2/ D L.u�

1; u�

2/ C
@L

@u1

ˇ̌̌̌
u�

1 ;u�
2

4u1 C
@L

@u2

ˇ̌̌̌
u�

1 ;u�
2

4u2

C
1

2

�
@2L

@u2
1

ˇ̌̌̌
�

4u2
1 C 2

@2L

@u1@u2

ˇ̌̌̌
�

4u14u2 C
@2L

@u2
2

ˇ̌̌̌
�

4u2
2

�
C � � �

� Clearly,
�
u�

1; u�

2

�
can only be a minimum if the following stationarity

condition is attained:
@L

@u1

ˇ̌̌̌
�

D
@L

@u2

ˇ̌̌̌
�

D 0

– If these conditions are satisfied, then the second-order term in the
Taylor series expansion must be greater than or equal to to zero for�

u�

1; u�

2

�
to be a minimizer

� Let’s re-write the 2nd-order term to see how we can validate this
condition:

1

2

�
@2L

@u2
1

ˇ̌̌̌
�

4u2
1 C 2

@2L

@u1@u2

ˇ̌̌̌
�

4u14u2 C
@2L

@u2
2

ˇ̌̌̌
�

4u2
2

�

D
1

2

h
4u1 4u2

i
2666664

@2L

@u2
1

ˇ̌̌̌
�

@2L

@u1@u2

ˇ̌̌̌
�

@2L

@u2@u1

ˇ̌̌̌
�

@2L

@u2
2

ˇ̌̌̌
�

3777775
"

4u1

4u2

#
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D
1

2
4uT

�
@2L

@u2

�
4u

– NOTE:
@2L

@u2
is the Hessian of L

� This result clearly indicates that the 2nd-order term in the Taylor
series expansion will be greater than or equal to zero if

@2L

@u2
is positive semidefinite

Sufficient Conditions For a Local Minimum

@L

@u
D 0

@2L

@u2
positive definite

Necessary Conditions For a Local Minimum

@L

@u
D 0

@2L

@u2
positive semidefinite

N-Parameter Problem

� The vector notation introduced in the 2-parameter problem above is
ideally suited to the N -parameter problem and leads to precisely the
same necessary and sufficient conditions as those stated above

Example 1

� Consider the following four cases:

1. f .x/ D x2
1 C x2

2

@f

@x
D

h
2x1 2x2

i
D 0
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) x1 D x2 D 0

@2f

@x2
D

"
2 0

0 2

#
> 0

2. f .x/ D �x2
1 C �x2

2

@f

@x
D

h
�2x1 �2x2

i
D 0

) x1 D x2 D 0

@2f

@x2
D

"
�2 0

0 �2

#
< 0

3. f .x/ D x2
1 � x2

2

@f

@x
D

h
2x1 �2x2

i
D 0

) x1 D x2 D 0

@2f

@x2
D

"
2 0

0 �2

#
� indeterminate

4. f .x/ D �x2
1 C x2

2

@f

@x
D

h
�2x1 2x2

i
D 0

) x1 D x2 D 0

@2f

@x2
D

"
�2 0

0 2

#
� indeterminate

� Corresponding function surface graphs are depicted in the following
figures
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Figure 3.4 f .x/ D x2
1 C x2

2 Figure 3.5 f .x/ D �x2
1 � x2

2

Figure 3.6 f .x/ D x2
1 � x2

2 Figure 3.7 f .x/ D �x2
1 C x2

2

Example 2

� Consider the objective function given by:

f .x/ D .x1 � x2 C 2/2
C .x1 C x2 � 4/4

�
@f

@x

�T

D

"
2.x1 � x2 C 2/ C 4.x1 C x2 � 4/3

�2.x1 � x2 C 2/ C 4.x1 C x2 � 4/3

#
D

"
0

0

#

4.x1 � x2 C 2/ D 0

x1 � x2 D �2

x1 C x2 � 4 D 0

x1 C x2 D 4
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)

x D

h
1 3

iT

@2f

@x2
D

264 2 C 12.x1 C x2 � 4/2
�2 C 12.x1 C x2 � 4/2

�2 C 12.x1 C x2 � 4/2 2 C 12.x1 C x2 � 4/2

375
@2f

@x2
D

"
2 C 12.x1 C x2 � 4/2

�2 C 12.x1 C x2 � 4/2

�2 C 12.x1 C x2 � 4/2 2 C 12.x1 C x2 � 4/2

#

D

"
2 �2

�2 2

#
�1 D 4; �2 D 0

Necessary conditions are satisfied; sufficient conditions are not.

f .x/ � 0 8 .x1; x2/

f .x/ D 0 for .1; 3/

) f .1; 3/ is a local minimum

� For many multi-parameter optimization problems, the necessary
condition

@L

@u
D 0

generates a set of equations that are too difficult to solve analytically.

� So what do we do? Compute numerically!
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3.3: Line Search Methods for Unconstrained Optimization

� Here we seek an iterative method for unconstrained optimization, i.e.,
one that iterates u.k/ so that it moves rapidly toward the neighborhood
of a local minimizer u� and converges rapidly to the point u� itself

– Order of convergence is a useful measure of algorithm behavior

ı Define the error vector,
h.k/

D u.k/
� u�

ı Then if h.k/
! 0 (convergence), it may be possible to give local

convergence results: h.kC1/
h.k/

p ! a

where a > 0 implies the order of convergence is pth order.

– Here the notation k�k denotes a vector norm and,

ı p D 1 ) first order or linear convergence

ı p D 2 ) second order or quadratic convergence

Line Search Algorithms

� The basic idea is to search for a minimum function value along
coordinate directions, or in more general directions

� First we generate an initial estimate u.1/ , then for each kth iteration,

1. Determine a direction of search s.k/

2. Find ˛.k/ to minimize L.u.k/
C ˛s.k// with respect to ˛

3. Set u.kC1/
D u.k/

C ˛.k/s.k/

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Unconstrained 3–14

� Different methods correspond to different ways of choosing s.k/ in
step 1

� Step 2 is the line search subproblem and involves sampling L.u/ (and
possibly its derivatives) along the line

– Ideally, an exact minimizing value of ˛.k/ is required, but this is not
practical in a finite number of steps

� It is apparent that the slope of dL=d˛ at ˛.k/ must be zero, which gives

rL.kC1/T s.k/
D 0

Figure 3.8 Exact line search

� Generally, inexact or approximate line searches are used to satisfy
this minimizing condition

� Requirement that L.kC1/ < L.k/ is unsatisfactory by itself because
reductions in L might be negligible

� Aim of a line search is to:
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– find a step ˛.k/ which gives a significant reduction in L on each
iteration

– ensure points are not near the extremes of the interval Œ0; N̨
.k/�,

where N̨
.k/ denotes the least positive value of ˛ for which

L.u.k/
C ˛s.k// D L.u.k//

� Goldstein Conditions meet the above requirements:

– f .˛/ � f .0/ C ˛�f 0.0/

– f .˛/ � f .0/ C ˛.1 � �/f 0.0/

� 2

�
0;

1

2

�
is a fixed parameter; the geometry is illustrated in

accompanying Figure 3.9 .

� The second of these conditions might exclude the minimizing point of
f .˛/, so an alternate condition is often used:

jf 0.˛/j � ��f 0.0/

Figure 3.9 Line search geometry

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Unconstrained 3–16

� If Ǫ is the least value of ˛ > 0 at which the f .˛/ curve intersects the
�-line, and � > �, then it can be shown there exists an interal of
acceptable points satisfying the Goldstein conditions (proof omitted).

� In practice, it is customary to use � D 0:1 and � D 0:01 , though the
behavior is not really too sensitive to choice of �

� Line search algorithm comprises two phases: bracketing and
sectioning:

– Bracketing: iterates ˛i move out to the right in increasingly large
jumps until an acceptable interval is located

– Sectioning: generates a sequence of brackets
�
aj ; bj

�
whose

lengths tend toward zero
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3.4: Line Search Algorithm: Bracketing

Bracketing Algorithm
For i D 1; 2; : : :

1. evaluate f .˛i/

2. if f .˛i/ � fmin ) terminate line search

3. if f .˛i/ > f .0/ C ˛�f 0.0/ or f .˛i/ � f .˛i�1/

(a) ai D ˛i�1

(b) bi D ˛i

) terminate bracket

4. evaluate f 0.˛i/

5. if jf 0.˛i/j � ��f 0.0/ ) terminate line search

6. if f 0.˛i/ � 0

(a) ai D ˛i

(b) bi D ˛i�1

) terminate bracket

7. if � � 2˛i � ˛i�1

(a) ˛iC1 D �

8. else

(a) choose ˛iC1 2 Œ2˛i � ˛i�1; min .�; ˛i C �1 .˛i � ˛i�1//�

end
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� Parameter �1 is preset and governs the size of the jumps; �1 D 9 is a
reasonable choice

� Choice of ˛iC1 can be made in any way, but a sensible choice is to
minimize a cubic polynomial interpolating f .˛i/, f 0.˛i/, f .˛i�1/, and
f 0.˛i�1/.

Example: Bracketing

� Consider the quadratic function

f .˛/ D 0:5 C 2 .˛ � 3/2

Since this is a quadratic, it’s somewhat of a special case. For this
example, we choose the following parameters for the start of the line
search:

˛0 D 0 ˛1 D 1 � D 0:25 � D 0:5

– For simplicity, we select Nf D 0 as an absolute lower bound
(although it’s obviously bounded by 0:5)

� We begin the first iteration of the bracketing algorithm (i D 1)

1. f .˛1/ D 8:5

2. Test: f .˛1/ � Nf No

3. Test: f .˛1/ > f .0/ C ˛i�f 0 .0/

8:5 > 18:5 C .1/ .0:25/ .�12/ D 15:5 No

4. f 0 .˛1/ D �8

5. Test: jf 0 .˛1/j � ��f 0 .0/

j�8j � � .0:5/ .�12/ D 6 No

6. Test: f 0 .˛1/ > 0 No

7. Test: � � 2˛1 � ˛0 No
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) Therefore, choose the next iterate within the interval

˛2 2

h
2; min

�
6:1667; 1 C �1 .˛1 � ˛0/

� i
Subsituting values,

˛2 2

h
2; min

�
6:1667; 1 C 9 .1 � 0/

� i
D

h
2; 6:1667

i
� Quadratic interpolation over this interval will give ˛2 D 3 as the next

iterate; this will terminate the line search in the next bracket iteration
at Step 5

– The bracketing sequence is depicted in the plot below
f(α) = 0.5 + 2(α− 3)2

ρ = 0.25

ρ = 0.5
f ′(0)

(1− ρ)f ′(0)
σf ′(0)

µ

Bracket

α

f(α)
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3.5: Line Search Algorithm: Sectioning

Sectioning Algorithm
For j D i; i C 1; : : :

1. choose ˛j 2
�
aj C �2

�
bj � aj

�
; bj � �3

�
bj � aj

��
2. evaluate f .˛j /

3. if f .˛j / > f .0/ C �˛j f 0.0/ or f .˛j / � f .aj /

(a) aj C1 D aj

(b) bj C1 D ˛j

4. else

(a) evaluate f 0.˛j /

(b) if
ˇ̌
f 0.˛j /

ˇ̌
� ��f 0.0/ ) terminate line search

i. aj C1 D ˛j

(c) if
�
bj � aj

�
f 0.˛j / � 0

i. bj C1 D aj

(d) else

i. bj C1 D bj

(e) end

end

� Parameters �2 and �3 are preset and restrict ˛j from getting too close
to the extremes of the interval

�
aj ; bj

�
:

0 < �2 < �3 �
1

2
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� Typical values are: �2 D 0:1 and �3 D 0:5

Polynomial Interpolation

� For the quadratic case, we can define the 2nd -order polynomial
pq.z/ D p2z

2
C p1z C p0

Considering the normalized interval z D Œ0; 1� corresponding to�
aj ; bj

�
allows us to write the interpolation conditions:

pq.0/ D f .aj /

pq.1/ D f .bj /

p0

q.0/ D f 0

z .aj /

p0

q.1/ D f 0

z .bj /

Assuming we can compute the values f .aj /, f 0

z .aj /, and f .bj /,
substituting for z allows us to write

pq .0/ D p0 D f .aj /

p0

q .0/ D p1 D f 0

z .aj /

pq .1/ D p2 C p1 C p0 D f .bj /

or, assembling in matrix-vector form,264 1 1 1

0 1 0

0 0 1

375
264 p2

p1

p0

375 D

264 f .bj /

f 0

z .aj /

f .aj /

375
– Solving this system of equations yields

p0 D f .aj /

p1 D f 0

z .aj /

p2 D f .bj / � f .aj / � f 0

z .aj /
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giving the interpolating polynomial:

pq.z/ D
�
f .bj / � f .aj / � f 0

z .aj /
�

z2
C
�
f 0

z .aj /
�

z C f .aj /

– Note that the mapping transformation is given by

˛ D a C z .b � a/

where by the chain rule we have

f 0

z D
df

dz
D

df

d˛
�
d˛

dz
D .b � a/

df

d˛

which relates the derivatives of the mapped variables.

– The inverse mapping is,

z D
1

b � a
.˛ � a/

� If in addition f 0.bj / is available, we can find the cubic interpolating
polynomial:

pc.z/ D p3z
3

C p2z
2

C p1z C p0

where we assemble the interpolation equations:
pc .1/ D p3 C p2 C p1 C p0 D f

�
bj

�
p0

c .1/ D 3p3 C 2p2 C p1 D f 0

z

�
bj

�
p0

c .0/ D p1 D f 0

z

�
aj

�
pc .0/ D p0 D f

�
aj

�
or in matrix form,266664

1 1 1 1

3 2 1 0

0 0 1 0

0 0 0 1

377775
266664

p3

p2

p1

p0

377775 D

266664
f
�
bj

�
f 0

z

�
bj

�
f 0

z

�
aj

�
f
�
aj

�
377775
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Thus giving the solution:
p0 D f .aj /

p1 D f 0

z .aj /

p2 D 3
�
f .bj / � f .aj /

�
� 2f 0

z .aj / � f 0

z .bj /

p3 D f 0

z .aj / C f 0

z .bj / � 2
�
f .bj / � f .aj /

�
Example 3

� Consider the function,

f .x/ D 100
�
x2 � x2

1

�2
C .1 � x1/

2

and let

x.k/
D

"
0

0

#
and s.k/

D

"
1

0

#
� We then have,

f .˛/ D 100˛4
C .1 � ˛/2

f 0.˛/ D 400˛3
� 2 .1 � ˛/

� Choosing parameters,
� D 0:1

� D 0:01

�1 D 9

�2 D 0:1

�3 D 0:5

gives the following results for the cases ˛1 D 0:1 and ˛1 D 1:
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Iteration 0 1 2 3 4

˛1 D 0:1

˛ 0 0:1 0:2 0:160948

f .˛/ 1 0:82 0:8 0:771111

f 0.˛/ �2 �1:4 1:6 �0:010423

˛1 D 1

˛ 0 1 0:1 0:19 0:160922

f .˛/ 1 100 0:82 0:786421 0:771112

f 0.˛/ �2 �1:4 1:1236 �0:011269

Table 3.1 LINE SEARCH EXAMPLE

-0.4 -0.2 0 0.2 0.4 0.6 0.8
alpha

1

1.5

2

2.5

F
(a

lp
ha

)

Example: Line Search Interpolation

F(alpha)
Quadratic
Cubic

Figure 3.10 Example 3: f .˛/ D 100˛4 C .1 � ˛/2
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3.6: Descent Methods

� Descent methods are line search methods where the the search
direction satisfies the descent property :

s.k/T g.k/ < 0

where
g.k/

D rL.u/

� This condition ensures

– The slope of dL=d˛ is always negative at ˛ D 0 (unless u.k/ is a
stationary point)

– The function L.u/ can be reduced in the line search for some
˛.k/ > 0

Steepest Descent Methods

Steepest descent is defined by the condition:

s.k/
D �g.k/

for all k .

� This condition ensures that L.u/ decreases most rapidly local to u.k/

� Although appealing, the steepest descent method is not suited for
practical use, largely because:

– it usually exhibits oscillatory behavior

– it usually terminates far from the exact solution due to round-off
errors

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Unconstrained 3–26

� Inadequacy of steepest descent is due mostly to the model: the
steepest descent property along the line holds only at ˛ D 0 (not for
all ˛ )

� An exception occurs for quadratic models, which we’ll investigate in
more detail later

Convergence

� It is important to be able to determine when an algorithm has
converged to an acceptable solution

� A useful test would be: L.k/
� L�

� � or
ˇ̌̌
x

.k/
i � x�

i

ˇ̌̌
� �i , but these

are not practical because they require the solution!

� A practical alternative is:
g.k/

 � � , though in practice it’s hard to
choose an appropriate �

� Far more practical are tests of the following form:ˇ̌̌
x

.kC1/
i � x

.k/
i

ˇ̌̌
� �i 8i

or
L.kC1/

� L.k/
� �
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3.7: Newton’s Method

� It was shown previously that there is a great advantage to deriving a
method based on a quadratic model

� Newton’s method is the most straightforward such technique

� The key to this algorithm is that the values of u which minimize L are
the same as the ones which satisfy

@L

@u
D 0

� So, we’ll set up an algorithm which searches for a solution to this
problem

� Writing the truncated Taylor series expansion of L.u/ about u.k/ :

L.uk/
C ı/ � q.k/.ı/ D L.k/

C g.k/T ı C
1

2
ıT G.k/ı

where ı D u � u.k/, and q.k/.ı/ is the resulting quadratic
approximation for iteration k.

� Iteration u.kC1/ is computed as u.k/
C ı.k/ where the correction ı.k/

minimizes q.k/.ı/

� Method requires the zero, first and second order derivatives of L.u/

� The basic algorithm can be written:

– solve for G.k/ı D �g.k/ for ı D ı.k/

– set u.kC1/
D u.k/

C ı.k/

� Newton’s method exhibits second-order convergence
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Complete Algorithm )

1. Compute the general functions g.k/
D

@L

@u
and

G.k/
D

@2L

@u2
a priori

2. Choose starting value u.1/

3. Evaluate g.1/ and G.1/ at u.1/

4. Solve for ı.1/ (solve the set of simultaneous equa-
tions G.1/ı.1/

D �g.1/)

5. Compute u.2/
D u.1/

C ı.1/

6. Repeat steps (3) - (5) for increasing values of k until
convergence condition is satisfied

� The biggest problem with this algorithm is that the calculation of the

Hessian
@2L

@u2
may be extremely tedious

Example 4

Let
L.u/ D u4

1 C u1u2 C .1 C u2/
2

where

u.1/
D

"
1:25

�0:2

#
Implementing Newton’s method for values of k from 1 to 7 gives the
results summarized in the table below; a graphical representation is
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shown in Figure 3.11. Here we use the (idealized) definition of
h.k/

D uk
� u�.

k 1 2 3 4 5 6 7

u
.k/
1 1:25 0:9110 0:7451 0:69932 0:6959029 0:6958844 0:6958843

u
.k/
2 �0:2 �1:455 �1:3726 �1:34966 �1:347951 �1:3479422 �1:3479422

g
.k/
1 7:6125 1:5683 0:2823 �0:018382 0:0000982235 �0:0000000028559 0

g
.k/
2 2:8500 0 0 0 0 0 0

L.k/ 2:8314 �0:4298 �0:5757 �0:582414 �0:5824452 �0:5824452 �0:5824452h.k/
 1:2727 0:24046 0:0550691 0:00384881 0:0000206765 0:00000000064497 0

Table 3.2 NEWTON’S METHOD EXAMPLE

Figure 3.11 Newton’s method example
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From the above, it can be shown that the ratio kh.kC1/k=kh.k/k
2

! a where
a � 1:4 , indicating second-order convergence.

� Basic Newton method is not suitable for a general purpose algorithm:

– G.k/ may not be be positive definite when x.k/ is far from the
solution

– even if G.k/ is positive definite, algorithm still may not converge

– convergence can be addressed by using Newton’s method with
line search:

s.k/
D �G.k/�1g.k/

) search direction

Example 5

� Returning to the function of Example 4,
L.u/ D u4

1 C u1u2 C .1 C u2/
2

If we choose

x.1/
D

"
0

0

#
then we have,

g.1/
D

"
0

2

#
; G.1/

D

"
0 1

1 2

#
; s.1/

D

"
�2

0

#
� A search along ˙s.1/ changes only the x1 component of x.1/ which

finds x1 D 0 as the minimizing value in the search ) algorithm fails to
make progress!

� Reason for this is: s.1/T g.1/
D 0 ) directions are not downhill!

– This stems from the fact that �.G.1// D 2:1412; �0:4142 ) G.1/ not
positive definite
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� But function L.u/ has a well defined minimum which can be found by
searching along steepest descent direction

3.8 Modifications to Newton’s Method

� Clearly, some modification is required to make the Newton algorithm
generally applicable

� Modification 1: Revert to steepest descent direction s.k/
D �g.k/

whenever G.k/ is not positive definite

– Unfortunately, this exhibits slow oscillatory behavior since the
method ignores information in the model quadratic function

� Modification 2: Adjust the Newton search direction by giving it a bias
towards the steepest descent vector, �g.k/:�

G.k/
C �I

�
s.k/

D �g.k/

– Method adds factor � to the eigenvalues of G.k/ to (hopefully)
make it positive definite

– Takes into account more of the function’s quadratic information
(except in the vicinity of a saddle point)

� Other modifications exist, but they are beyond the scope of this
course

1st-order Gradient Methods (a simplified approach)

� Instead of using knowledge about the “curvature” of L to help us find
ı, let’s simply step by some amount (???) in the direction of
decreasing L until we reach a minimum
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– the solution of the linear equation Gı D �g can be expressed as

ı D �G�1g

(though in practice this is not how we would solve it)

– we now replace G�1 by a positive scalar constant K so that

ı D �Kg

– we can now perform the same iterative algorithm outlined above

� Can I convince you that this will work?

– remember, L.u C ı/ D L.u/ C
@L

@u
ı C O.2/

– if ı D �K
@L

@u
, then

L.u C ı/ � L.u/ � �K

ˇ̌̌̌
@L

@u

ˇ̌̌̌2
< 0

– so, to first order, we are moving in the right direction!

� This verification also provides some insight into the problem of
selecting K W

– if K is too big, the 2nd-order term in the Taylor series may become
significant and the algorithm may overshoot the stationary point
and not converge at all.

– if K is too small, the higher-order-terms will be truly insignificant
but it may take forever to get to the solution

– how is it done in practice? Vary K during the iteration process
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3.9: Quasi-Newton Methods

� Main disadvantage of Newton’s method is that the user must supply
explicit formulae to compute the second derivative matrix G

� But methods very similar to Newton’s method can be derived when
only first derivative formulae are available

� One straighforward approach is the Finite Difference Newton Method:

– estimate G.k/ by using finite differences in the gradient vectors, i.e.,
the .i; j / element of estimate OG.1/ is computed as:

OGij D

�
gj .x.k/ C hiei/ � g

.k/
j

�
hi

where hi is an increment length in the coordinate direction, ei .

– make OG symmetric by computing

OGs D
1

2

�
OG C OGT

�
– use OGs in place of G.k/ in Newton’s method

� The method can be useful, but has some disadvantages:

– OGs may not be positive definite

– n gradient evaluations are required to estimate G.k/

– a set of linear equations must be solved at each iteration

Quasi-Newton Methods

� Quasi-Newton methods avoid some of the disadvantages outlined
above by –

– employing Newton’s method with line search
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– approximating G.k/�1 by a symmetric positive definite matrix H .k/

which is updated at each iteration

� Basic Algorithm:

– initialize H .1/ to any positive definite matrix (H .k/
D I is a good

choice)

– set search direction s.k/
D �H .k/g.k/

– perform line search along s.k/ giving u.kC1/
D u.k/

C ˛.k/s.k/

– update H .k/ giving H .kC1/

� Advantages to this method:

– only first derivatives are required

– positive definite H .k/ implies the descent property

– order of n2 multiplications per iteration

� New aspect is the update calculation of H .kC1/ from H .k/

– attempts to augment H .k/ with second derivative information
gained from kth iteration

– ideally, want the update to change H .1/ into a close approximation
of G.k/�1

– one method of doing this involves defining the differences:

ı.k/
D ˛.k/s.k/

D x.kC1/
� x.k/

 .k/
D g.kC1/

� g.k/

then the Taylor series of the gradient g.k/ gives

 .k/
D G.k/ı.k/

C o
�ı.k/

�
where higher order terms can be neglected.
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– since ı.k/ and  .k/ can only be calculated after the line search,
H .k/ does not usually relate them correctly

– thus, H .kC1/ is chosen to correctly relate the differences
(quasi-Newton condition):

H .kC1/ .k/
D ı.k/

� Computationally, one approach is to introduce a recursive form:
H .kC1/

D H .k/
C E.k/

– let E.k/ be the rank one symmetric matrix avvT

– satisfying the quasi-Newton condition requires:
H .k/ .k/

C avvT  .k/
D ı.k/

– which gives rise to the rank one formula:

H .kC1/
D H C

.ı � H/ .ı � H/T

.ı � H/T 

Example 6

� Consider the quadratic function:

L.u/ D 10u2
1 C u2

2

D uT

"
10 0

0 1

#
u

where the initial point is given by

u.1/
D

"
0:1

1

#
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� Gradient:

g.u/ D

"
20u1

2u2

#
� Hessian:

G.u/ D

"
20 0

0 2

#
Iteration k D 1

g.1/
D

"
2

2

#
H .1/

D

"
1 0

0 1

#
s.1/

D

"
�2

�2

#
˛.1/

D 0:0909

Iteration k D 2

) u.2/
D u.1/

C ˛.1/s.1/
D

"
:1

1

#
C .0:0909/

"
�2

�2

#
D

"
�0:0818

0:8182

#

g.2/
D

"
�1:6364

1:6364

#

ı.1/
D u.2/

� u.1/
D

"
�0:0818

0:8182

#
�

"
0:1

1

#
D

"
�0:1818

0:1818

#

 .1/
D g.2/

� g.1/
D

"
�1:6364

1:6364

#
�

"
2

2

#
D

"
�3:6363

�0:3636

#

v.1/
D ı.1/

� H .1/ .1/
D

"
�0:1818

0:1818

#
�

"
1 0

0 1

#"
�3:6363

�:3636

#
D

"
3:4545

0:1818

#

H .2/
D H .1/

C

�
ı.1/

� H .1/ .1/
� �

ı.1/
� H .1/ .1/

�T�
ı.1/

� H .1/ .1/
�T

 .1/
D

"
0:0550 �0:0497

�0:0497 0:9974

#
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s.2/
D �H .2/g.2/

D

"
0:0550 �0:0497

�0:0497 0:9974

#"
�1:6364

1:6364

#
D

"
0:1713

�1:7135

#
˛.2/

D 0:4775

Iteration k D 3

) u.3/
D u.2/

C ˛.2/s.2/
D

"
�0:0818

0:8182

#
C .0:4775/

"
0:1713

�1:7135

#
D

"
0

0

#

g.3/
D

"
0

0

#

ı.2/
D u.3/

� u.2/
D

"
0

0

#
�

"
�0:0818

0:8182

#
D

"
0:0818

�0:8182

#

 .2/
D g.3/

� g.2/
D

"
0

0

#
�

"
�1:6364

1:6364

#
D

"
1:6364

�1:6364

#

v.2/
D ı.2/

� H .2/ .2/
D

"
�0:0895

0:8953

#

H .3/
D

"
0:05 0

0 0:5

#

� Note that the algorithm terminates with g�
D 0 and H �

D G�1

� It can be proven that under some mild conditions, the method
terminates on a quadratic function in at most n C 1 steps, with
H .nC1/

D G�1
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� Two other well-known quasi-Newton algorithms are:

– DAVIDON-FLETCHER-POWELL (DFP):

H
.kC1/
DFP D H C

ııT

ıT 
�

HT

T H

– BROYDEN-FLETCHER-GOLDFARB-SHANNO (BFGS):

H
.kC1/
BF GS D H C

�
1 C

T H

ıT 

�
ııT

ıT 
�

 
ıT H C HıT

ıT 

!

ı The BFGS algorithm is perhaps the most widely used
Quasi-Newton numerical algorithm and works well with low
accuracy line searches
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