ECE5570: Optimization Methods for Systems and Control 3—1

Parameter Optimization: Unconstrained

We will begin our study by developing some tools and concepts
associated with the general optimization process applied to problems
that are independent of time

= These are known as parameter optimization problems

e We shall utilize a useful class of algorithms known as iterative
methods

— lterative methods generate a sequence of points,
xM x@ x® .., or more compactly {x*}, that converge to a
fixed point x* which is the solution to a given problem

e For example, let us define a line as a set of points x(«) = x' + as
where x ' is a fixed point and s is the direction of the line (see a 2-D
representation in Figure 3.1 )

e An iterative scheme might systematically choose new directions s at
each step and then minimize function values along those directions to
generate a sequence of solution points {x®}
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Figure 3.1 Aline in two dimensions

e An acceptable iterative optimization algorithm exhibits the following

properties:

— iterations x®) move steadily toward the neighborhood of a local
minimizer x*

— iterations converge rapidly to the point x*, i.e., for A%®) = x® — x*,
h® — 0 for some appropriate measure of h*

— rate of convergence is an important measure of goodness of the
algorithm

e A method is usually based on a model — an approximation of the
objective function — which enables an estimate of the local minimizer
to be made

— most successful have been quadratic models
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3.1: Unconstrained Optimization: The Basics

e To begin, we must first define the goals we hope to achieve through
optimization

— We introduce an index of performance, or objective function, that
captures the natue of our optimization goal — we’ll call this function
L

o In general, L will be a function of one, two or many variables;
l.e., L = f (uy, uy, ..., u,),where the u; are scalar parameters

o NOTE: it's also customary to use J to denote an objective
function and x; for the independent variables; e,g.,
J = f(xl, X2, ..., xm)
— Simply put, our main task will be to select the decision variables
{uy, us, ..., u,} such that L is minimized

o Recall here that maximization can be achieved by simply
switching the sign on a minimization problem

— But what exacly do we mean by a minimum? We generally
consider two definitions:

absolute (or global) minimum
=  L(uj+ Auy, us + Auy, ..o, uy + Auy) > L(uj, uy, ..., u,)
for all changes Auy, Au,, ..., Auy,

local minimum
=  Luj+ Auy, us + Auy, ..., uy, + Auy) > L(uj, uy,...,u,)
for all infinitesimal changes Au,, Au,, ..., Au,, , where values u*
denote the optimal (minimizing) values of u
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— An optimization problem usually assumes that an optimum solution
u* exists, is unique and can be found, but this ideal situation may
not hold for a number of reasons:

o L(u) is unbounded below

o L(u) is bounded below

o u™ is not unique

o local minimum exists that is not a global minimum

o local minimum exists although L(«) is unbounded below (see
Figure 3.2)

Local Minimum for Unbounded Function
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Figure 3.2 f(x) = x3—3x

— The conditions for a local minimum are considerably easier to
solve than for a global minimum; we’ll address the local minimum
problem in this course

— NOTE: We will focus on minimizing performance indices (or
objective functions). The problem of maximizing an objective
function fits easily within this framework by simply letting L = —L
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Conditions for Local Minima

e Along any line u(x) = u* + as through «* , L [u(«)] has both zero
slope and non-negative curvature at u™* (see Figure 3.3)

e This is the usual condition derived from a Taylor series for a local
minimum of a function of one variable

L{u(a))

Figure 3.3 Zero slope and non-negative curvature at o = 0
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3.2: Unconstrained Optimization: One and Two Parameters

Single Parameter Problem

e Consider the function: L(u) = (u — 1)*

How do we find the minimum?

dL

—=0=2u—-1) = u=1
du

dzL—2>0

du?

e Why does this work?

— if we let u* denote a local minimum of L(u), then L can be
expanded in a Taylor series about u*:

dL 1 d°L
L = L(u* 1 A i B PR
() (u)+duu* u+2du2u* W
or
dL 1 d’L
AL:L —L *:— A _—_— Az e e
() (") du |, u—|—2 du? |« W

— Since u* is a local minimum, we know two things:
1. L(u) — L(u™) > 0 for all u in a neighborhood of u*

2. Au is an arbitrary, but infinitesimal change in u away from u* =
higher order terms in Taylor series expansion are insignificant:

_dL

= AL~ —
du

Au

u*

. , , dL
But since Au is arbitrary, o
u

#0 = AL <0forsome Au,

and by deduction,
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« . . dL
= u" can only be a minimum if —

=0
U |,
dL
If —| =0,
du |«
d*L
AL ~ ——| Au?
du? |«
) L d?L
but Au® > 0forall Au,so AL>0if —| >0
du? |«
2
= u* willbe a minimumif —| >0
du? | .
Sufficient Conditions For a Local Minimum
dL _o d*L >0
du |, - du? | .
. d?L
e Whatif —| =07
duz u*

e Must go to higher order derivatives (odd derivatives must be zero, 1°
even derivatives must be positive)

Necessary Conditions For a Local Minimum

dL| 0: d’L -0
dul,. du?| .« —
QUESTION: What is the difference between necessary and sufficient

conditions?
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Two-Parameter Problem

e Consider the function L(u;, u,) where L(uj, u3) is a local minimum

e We'll use the same Taylor series arguments as above to develop
conditions for a minimum, but now the Taylor series is more
complicated:

dL dL
L(uy, up) = L(uyj, u3) + — Auy + — AUy
aul w¥ u* auz w*
1°72 1°72
S P PLL )
—{——| Au ur1Aur + —| Au
2 | oud], ! |, ol 2

e Clearly, (u}, u3) can only be a minimum if the following stationarity

condition is attained:
oL

8u1

_

= =0
81/{2

*

k

— If these conditions are satisfied, then the second-order term in the
Taylor series expansion must be greater than or equal to to zero for
( uy, U, ) to be a minimizer

e Let’s re-write the 2"-order term to see how we can validate this
condition;

L{PL Au? +2 : Aui A +82L Au?
—{— u Ui Au — u
2 824% « ! 8%18%2 % : . 8%% " 2
 9%L 0%L ]
.2
i ouy |, du0us |, Aus
= 5 [ Aul Auz ] A
L L "2
| Ouyduy |, dus|, |
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2 ou?

2

L
— NOTE: 3_ is the Hessian of L
ou?

e This result clearly indicates that the 2nd-order term in the Taylor
series expansion will be greater than or equal to zero if

1 2L
= -Au’ [a—} Au

2L . - . .
—— is positive semidefinite
ou?
Sufficient Conditions For a Local Minimum
oL 2L
— =0 —— positive definite
ou ou? P
Necessary Conditions For a Local Minimum
dL 0L . : .
— =0 —— positive semidefinite
ou ou?

N-Parameter Problem

e The vector notation introduced in the 2-parameter problem above is
ideally suited to the N -parameter problem and leads to precisely the
same necessary and sufficient conditions as those stated above

Example 1

e Consider the following four cases:

1. f(x) = x7 + x5
of

£=[2x1 2x2]=0
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= x1=x,=0
0> 2
—4£:= X > 0
dx?2 02

af
ox
:>x1:x2:O

2f [ —2 o
w—[o _2}0

of
ox

2. f(x) = —xi +—x

[ —2XxX1 —2Xx» ] =0

3. f(x) = x} —x7
= [2X1 —2)(?2] =0

= X1 =x,=0

e 2
S _ 01 _ indeterminate
0x?2 0 =2

4. f(x) = —x{ + 3

df
= X1 =x,=0
0> )
_f — 0 = indeterminate
0x? 0

e Corresponding function surface graphs are depicted in the following
figures
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Figure 3.5 f(x) = —x? —x2

Figure 3.4  f(x) = x? + x3
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Figure 3.7 f(x)

Figure 3.6  f(x) = x? —x2

Example 2

ion given by:

funct

Ive

e Consider the object

4)*

= (x1 = X2 +2)" + (1 + 20—

J(x)

4)3

—2(x1 — X2 4 2) + 4(x1 + x2 — 4)°

2()(?1 — X7 —|—2) —I—4(X1 + Xy —

|

] -

4(X1—X2—|—2)=O

X1—X2=—2

X1 +x,—4=0

— 4

X1+ X2
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) x=[13]T

.y 2 12(x; 0 —4)? =2 12(x) + x2 — 4)? ]
W 2 2
|2+ 12(x + 0 -4 241200 4+ x—4)° |
f | 241200 F 12— 42 |24 12001 + xp — 4)?
dx? —2 +12(x; + X2 — 4)? | 24 12(x1 + x5 — 4)?
)
_9 2j| 1 2

Necessary conditions are satisfied; sufficient conditions are not.

f(x) =0V (x1, x2)
f(x) = 0for (1, 3)

= f(1, 3) is a local minimum

e For many multi-parameter optimization problems, the necessary
condition
dL
o=

generates a set of equations that are too difficult to solve analytically.

0

e S0 what do we do? Compute numerically!
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3.3: Line Search Methods for Unconstrained Optimization

e Here we seek an iterative method for unconstrained optimization, i.e.,
one that iterates u® so that it moves rapidly toward the neighborhood
of a local minimizer u* and converges rapidly to the point u™ itself

— Order of convergence is a useful measure of algorithm behavior
o Define the error vector,
Bo — 0 _

o Then if ® — 0 (convergence), it may be possible to give local
convergence results:

L
[0 "
where a > 0 implies the order of convergence is p™ order.

— Here the notation ||e|| denotes a vector norm and,

op=1 = first order or linear convergence
o p =2 = second order or quadratic convergence

Line Search Algorithms

e The basic idea is to search for a minimum function value along
coordinate directions, or in more general directions

e First we generate an initial estimate u'! , then for each k™ iteration,

1. Determine a direction of search s
2. Find a® to minimize L™ + as™®) with respect to «
3. Set u* ) = y® 4 o®®
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« Different methods correspond to different ways of choosing s in
step 1

e Step 2 is the line search subproblem and involves sampling L(u) (and
possibly its derivatives) along the line

— Ideally, an exact minimizing value of «® is required, but this is not
practical in a finite number of steps

e It is apparent that the slope of 9Z/4a at «® must be zero, which gives

VL(k+1)Ts(k) —0

Contour of L

(k)

Figure 3.8 Exact line search

e Generally, inexact or approximate line searches are used to satisfy
this minimizing condition

e Requirement that L&V < L® s unsatisfactory by itself because
reductions in L might be negligible

e Aim of a line search is to:
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— find a step «® which gives a significant reduction in L on each
iteration

— ensure points are not near the extremes of the interval [0, @],
where @®) denotes the least positive value of « for which
L@® +as®) = L@w®)

e (Goldstein Conditions meet the above requirements:

= f(a) = f(0) + apf'(0)
= f(@) = f(0) + a(l —p) f(0)
1
o€ (O, 5) is a fixed parameter; the geometry is illustrated in
accompanying Figure 3.9 .

e The second of these conditions might exclude the minimizing point of
f(a), so an alternate condition is often used:

S (@)] = —af"(0)

\ f{u”"J + (tS[M}

Cx

Figure 3.9 Line search geometry
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e If @ is the least value of @ > 0 at which the f(«) curve intersects the

p-line, and o > p, then it can be shown there exists an interal of
acceptable points satisfying the Goldstein conditions (proof omitted).

e In practice, it is customary to use ¢ = 0.1 and p = 0.01 , though the
behavior is not really too sensitive to choice of p

e Line search algorithm comprises two phases: bracketing and
sectioning:

— Bracketing: iterates «; move out to the right in increasingly large
jumps until an acceptable interval is located

— Sectioning: generates a sequence of brackets [aj, bj] whose
lengths tend toward zero
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3.4: Line Search Algorithm: Bracketing

Bracketing Algorithm
For i=1,2,...

1. evaluate f(«;)
2.if f(a;) < fnin = terminate line search

3.if fa;) > f(0) +apf'(0) or fla) = flai-1)
(@) ai = o

(b) bi = «;

= terminate bracket
4. evaluate f'(«;)
5.if | f(a;)| < —of'(0) = terminate line search
6. if f'(a;) >0

(@) ai = a;

(b) bi = ;-1

= terminate bracket
7. if w =20 —ai_

(@) i1 =
8. else

(a) choose Oj4] € [20[l' — Q;_1, Min (,u, o + 11 (Oll' — Oli_l))]

end
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e Parameter 1, is preset and governs the size of the jumps; 7, = 9is a

reasonable choice

e Choice of «;,; can be made in any way, but a sensible choice is to
minimize a cubic polynomial interpolating f(«;), f'(«;), f(x;i—1), and

f/(ai—l)-

Example: Bracketing

e Consider the quadratic function
f (o) =0.5+2(a—3)

Since this is a quadratic, it's somewhat of a special case. For this
example, we choose the following parameters for the start of the line
search:
=0 ar=1 p=025 o0=0.5
— For simplicity, we select / = 0 as an absolute lower bound
(although it’s obviously bounded by 0.5)

e We begin the first iteration of the bracketing algorithm (i = 1)
1. f (061) = 8.5
2. Test: f (1) < f No
3. Test: f (a;) > f(0) + a;pf' (0)
8.5 > 18.5+ (1) (0.25) (=12) = 15.5 No
4 f' (o) = 8
5. Test: | f' (a1)] < —af'(0)
|—8| < —(0.5)(—12) =6 No

6. Test: /' (a;) >0 No
7. Test: u <201 —ag NoO
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= Therefore, choose the next iterate within the interval

0y € [ 2, min ( 6.1667, 1+ 11 (1 — o) ) ]
Subsituting values,
o € [2, min(6.1667, 1+9(1—0) ) ] - [2, 6.1667 ]
e Quadratic interpolation over this interval will give o, = 3 as the next

iterate; this will terminate the line search in the next bracket iteration
at Step 5

— The bracketing sequence is depicted in the plot below

fga) =0.5+2(a—3)2

Bracket
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3.5: Line Search Algorithm: Sectioning

Sectioning Algorithm
Forj =i,i+1,...

1. choose «; € [a,- + 10 (bj —aj), bj — 13 (bj —aj)]
2. evaluate f(«;)

3.if f(a;) > f(0) + pa; f'(0) or fla;)=> f(a;)

(@) aj+1 =a;
(b) bji1=aqj

4. else

(a) evaluate f'(«;)
(b) if | f'(e;)| < —0f'(0) = terminate line search

Lajy =aj

(c)if (b; —a;) f'(a;) =0
.bjy1 =a;

(d) else
.bj1 =D

(e) end

end

e Parameters 1, and 3 are preset and restrict «; from getting too close
to the extremes of the interval [a;, b;]:

|
0<‘L’2<‘L’3§5
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e Typical values are: 7, = 0.1 and r3 = 0.5

Polynomial Interpolation

e For the quadratic case, we can define the 2"¢-order polynomial
pa(z) = p2z° + p1z + po

Considering the normalized interval z = [0, 1] corresponding to
la;. b;] allows us to write the interpolation conditions:

Pa(0) = f(a))

pa(1) = f(b))

py(0) = f2(a;)

po(1) = f2(b))
Assuming we can compute the values f(a;), f.(a;), and f(b;),
substituting for z allows us to write

Pq(0) = po = f(a;)
p, (0) = p1 = fl(a))
pq (1) = p2+ p1+ po = f(b;)

or, assembling in matrix-vector form,

RREREEIN IO
010 || p|=]| flay)
001 || p| | flay) |
— Solving this system of equations yields
po = fla;)
P1 = fZ/(aj)

p2= f(bj) — flaj) — f2(a;)
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giving the interpolating polynomial:
pe(z) = [f(b)) = fla)) — fl(ap] 2> + [ fl@))]z + f(a))
— Note that the mapping transformation is given by
a=a+z(b—a)

where by the chain rule we have
, _df df da df

fz = dz  da dz —(b—a)%
which relates the derivatives of the mapped variables.

— The inverse mapping is,
1
- b—ua

(@ —a)

z

e If in addition f'(b;) is available, we can find the cubic interpolating

polynomial:
2:(2) = p32° + prz® + p1z + po

where we assemble the interpolation equations:
pe()) = ps+ pr+ pi1+po= f (b))
pe (1) =3ps+2p>+ p1 = f/(b)
. (0) = pi = f!(a;)
pe (0) = po= f(a;)

or in matrix form,

1111 || p
3210 (| p»
0010|| p
0001 || po

S
0 <

~

N\E\'\

AN AN
\@‘

A AN

—_—
Q
~.

Q
<.

~ =
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Thus giving the solution:

po = fla;)
p1 = f(a;)
p2=3(f(b;)— f(a;)) —2f(a;) — f/(b))
p3 = fl(a;) + f(by) =2(f (b)) — f(a;))

Example 3

e Consider the function,
f(x) =100 (x — x2)° + (1 — x1)°

x(")z[o} and s(k):[l}
0 0

f(a) = 100a* + (1 — )?
f(a) = 400a® — 2 (1 — @)

and let

e We then have,

e Choosing parameters,

o =0.1
p = 0.01
71 = 9

Ty = 0.1
73 = 0.5

gives the following results for the cases «; = 0.1 and «; = 1:
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Iteration 0 1 2 3 4
a; = 0.1
o 0 0.1 0.2 0.160948
f(e) 1 0.82 0.8 0.771111
() -2 1.4 1.6 —0.010423
o =1
o 0 1 0.1 0.19 0.160922
f(a) 1 100 0.82 0.786421 0.771112
f () -2 —1.4 1.1236 —0.011269
Table 3.1 LINE SEARCH EXAMPLE

Example: Line Search Interpolation

F@Ipha)
ol

T

—F(alpha)
= =Quadratic
= =Cubic

0.2
alpha

0.4 0.6 0.t

Figure 3.10 Example 3: f(a) = 100a* + (1 — a)?
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3.6: Descent Methods

e Descent methods are line search methods where the the search
direction satisfies the descent property:

s g®

where
g =VL(u)

e This condition ensures

— The slope of 9L/4s is always negative at « = 0 (unless u® is a
stationary point)

— The function L(u) can be reduced in the line search for some
(k)
o’ >0

Steepest Descent Methods

Steepest descent is defined by the condition:

§0) = _g®

for all k .

e This condition ensures that L () decreases most rapidly local to u®

e Although appealing, the steepest descent method is not suited for
practical use, largely because:

— it usually exhibits oscillatory behavior

— it usually terminates far from the exact solution due to round-off
errors
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e Inadequacy of steepest descent is due mostly to the model: the

steepest descent property along the line holds only at « = 0 (not for
all o )

e An exception occurs for quadratic models, which we’ll investigate in
more detail later

Convergence

e |t is important to be able to determine when an algorithm has
converged to an acceptable solution

©) s

e A useful test would be: L™ — L* <€ or )xl X;

are not practical because they require the solution!

< ¢;, but these

e A practical alternative is: |g*’| < e, though in practice it's hard to
choose an appropriate ¢

e Far more practical are tests of the following form:

Sl v

or
L&+ _ k) <
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3.7: Newton’s Method

e It was shown previously that there is a great advantage to deriving a
method based on a quadratic model

e Newton’s method is the most straightforward such technique

e The key to this algorithm is that the values of # which minimize L are
the same as the ones which satisfy

oL

o=

e So, we'll set up an algorithm which searches for a solution to this
problem

0

e Writing the truncated Taylor series expansion of L (u) about u® :
1
L" +8)~q®@)=L® 4 g®Ts 4 53TG<k>5
where 8§ = u —u®, and ¢'¥(§) is the resulting quadratic
approximation for iteration k.

e lteration u**V is computed as u® + §® where the correction §*
minimizes ¢ (§)

e Method requires the zero, first and second order derivatives of L(u)
e The basic algorithm can be written:

— solve for G®§ = —g® for § = §®

—set u®t) — z® 4 §®

e Newton’s method exhibits second-order convergence
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Complete Algorithm =

. oL
1. Compute the general functions g® = e and
u
0%L
G® = —Z a priori
du? P

2. Choose starting value u'!
3. Evaluate gV and GV at !

4. Solve for 8V (solve the set of simultaneous equa-
tions GM§W = —g)

5. Compute u® = u™ 4§V

6. Repeat steps (3) - (5) for increasing values of k until
convergence condition is satisfied

e The biggest problem with this algorithm is that the calculation of the

. 0°L .
Hessian o2 may be extremely tedious
u

Example 4

Let
L(u) = ui + uyus + (1 + uy)?

| 125
—0.2

Implementing Newton’s method for values of k from 1 to 7 gives the
results summarized in the table below; a graphical representation is

where
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shown in Figure 3.11. Here we use the (idealized) definition of
h® = u* — u*.

k 1 2 3 4 5 6 7
w® 125 09110 07451 0.69932 0.6959029 0.6958844 0.6958843
w02 —1455  —13726 —1.34966  —1.347951 —1.3479422 —1.3479422
¢® 76125 15683 02823 —0.018382  0.0000982235 —0.0000000028559 0
g® 28500 0 0 0 0 0 0
L® 28314 —04298 —0.5757 —0.582414  —0.5824452 —0.5824452 —0.5824452
H h® H 12727  0.24046  0.0550691 0.00384881 0.0000206765  0.00000000064497 0

Table 3.2 NEWTON'S METHOD EXAMPLE

—ut 2
L[u]—u|+u‘u2+[l+u__,]

u

Figure 3.11 Newton’s method example
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From the above, it can be shown that the ratio [[#“*"||/|2®||> — a where
a ~ 1.4 , indicating second-order convergence.

e Basic Newton method is not suitable for a general purpose algorithm:

— G® may not be be positive definite when x* is far from the
solution
— even if GW is positive definite, algorithm still may not converge

— convergence can be addressed by using Newton's method with

line search:

§)

— —G(k)_lg(k) = search direction
Example 5

e Returning to the function of Example 4,
L(u) = uf +uus + (1 + un)’

U
0
then we have,

dO = |V go |t oo |2
2 12 0

e A search along +s changes only the x; component of x! which
finds x; = 0 as the minimizing value in the search = algorithm fails to
make progress!

If we choose

e Reason for this is: s("T g = 0 = directions are not downhill!

— This stems from the fact that A(G) = 2.1412, —0.4142 = G not
positive definite
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e But function L(u) has a well defined minimum which can be found by
searching along steepest descent direction

3.8 Modifications to Newton’s Method

e Clearly, some modification is required to make the Newton algorithm
generally applicable

e Modification 1: Revert to steepest descent direction s = —g®
whenever G is not positive definite

— Unfortunately, this exhibits slow oscillatory behavior since the
method ignores information in the model quadratic function

e Modification 2: Adjust the Newton search direction by giving it a bias
towards the steepest descent vector, —g ®):

(G® +v1)s® = —g®

— Method adds factor v to the eigenvalues of G* to (hopefully)
make it positive definite

— Takes into account more of the function’s quadratic information
(except in the vicinity of a saddle point)

e Other modifications exist, but they are beyond the scope of this
course

1-order Gradient Methods (a simplified approach)

e Instead of using knowledge about the “curvature” of L to help us find
3, let’s simply step by some amount (??7?) in the direction of
decreasing L until we reach a minimum
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— the solution of the linear equation G§ = —g can be expressed as

§=-G'g
(though in practice this is not how we would solve it)
— we now replace G™! by a positive scalar constant K so that
d =—Kg
— we can now perform the same iterative algorithm outlined above

e Can | convince you that this will work?
oL

—remember, L(u + &) = L(u) + -

§+0Q)

—if§ = —Ka—L, then
ou
2

<0

aL
ou

— S0, to first order, we are moving in the right direction!

Lu+46)— L(u)~—-K

e This verification also provides some insight into the problem of
selecting K :

— if K is too big, the 2"9-order term in the Taylor series may become
significant and the algorithm may overshoot the stationary point
and not converge at all.

— if K is too small, the higher-order-terms will be truly insignificant
but it may take forever to get to the solution

— how is it done in practice? Vary K during the iteration process
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3.9: Quasi-Newton Methods

e Main disadvantage of Newton’s method is that the user must supply
explicit formulae to compute the second derivative matrix G

e But methods very similar to Newton’s method can be derived when
only first derivative formulae are available

e One straighforward approach is the Finite Difference Newton Method:

— estimate G*) by using finite differences in the gradient vectors, i.e.,
the (i, j) element of estimate G is computed as:

. (gj(x(k) + hie;) —gﬁ-k))
Gij = 7

where h; is an increment length in the coordinate direction, e;.

— make G symmetric by computing
o LA g
G, =3 (6+67)
— use G, in place of G® in Newton’s method
e The method can be useful, but has some disadvantages:

— G, may not be positive definite
— n gradient evaluations are required to estimate G®
— a set of linear equations must be solved at each iteration

Quasi-Newton Methods

e Quasi-Newton methods avoid some of the disadvantages outlined
above by —

— employing Newton’s method with line search
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— approximating G®~! by a symmetric positive definite matrix H*
which is updated at each iteration

¢ Basic Algorithm:
— initialize HY to any positive definite matrix (H* = I is a good
choice)
— set search direction s® = — g ® g*)
— perform line search along s® giving u®**? = 4® 4 ¢®s®
— update H® giving H**V

e Advantages to this method:

— only first derivatives are required
— positive definite H® implies the descent property
— order of n* multiplications per iteration

e New aspect is the update calculation of H**V from H®

— attempts to augment H*® with second derivative information
gained from k" iteration
— ideally, want the update to change HV into a close approximation
of G®-!
— one method of doing this involves defining the differences:
§0) — gk — Lkt _ (k)

(k) (k+1) _ o (k)

y =8 4

then the Taylor series of the gradient g®) gives
y(k) = GRlgh 4, (Hg(k) H)

where higher order terms can be neglected.
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— since 8™ and y® can only be calculated after the line search,
H® does not usually relate them correctly

— thus, H**Y is chosen to correctly relate the differences
(quasi-Newton condition):

HED,® = §®)

e Computationally, one approach is to introduce a recursive form:
H&) — gk 4 pk)

— let E® be the rank one symmetric matrix avv’

— satisfying the quasi-Newton condition requires:
H®p® 4 qypTy® — g
— which gives rise to the rank one formula:
HOED — g 4 S—Hy)@—Hy)
G—Hy)y

Example 6

e Consider the quadratic function:

L(u) = 10u% + u%

1
=u’ Oou
0 1

where the initial point is given by

) [0.1}
1

Lecture notes prepared by M. Scott Trimboli. Copyright © 2013-2021, M. Scott Trimboli



ECE5570, Parameter Optimization: Unconstrained 3-36

e Gradient:
. 20%1
g(u) = { s }

e Hessian:

Iterationk = 1

dO |2 go |10 o] 2] 40 2= 0.0009
2 0 1 )

Iterationk = 2
1 2 —0.0818
= u® =uV 1+ oVs = + (0.0909)
1 2 0.8182
o | —1.6364
£ 71 16364
8(1) . u(z) _ u(l) . —0.0818 0.1 _ —0.1818
a | 08182 1 | | o.1818
_1.6364 2 —3.6363
D — 5@ _ 50 — : _ _ :
Y & 78 { 1.6364 } [ 2 } [ —0.3636 }
oD =g _ H(l)y(l) _ —0.1818 B 10 —3.6363 _ 3.4545
0.1818 01 —.3636 0.1818

(80— HOy®) (60 — HOyOY" T 00550 —0.0497 |
(80 — HOpm)" H | —0.0497 0.9974

\O)

H® = g 4+
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§O = _H g0 = 0.0550 —0.0497 —1.6364 _ 0.1713
—0.0497 0.9974 1.6364 —1.7135

a® = 0.4775

Iteration k = 3

_0.0818 0.1713 0
= u? =u®? 4 oPs® = + (0.4775) =
0.8182 17135 0
0
G _
o _ oo [0]_[-o0s18] _[ oosis
0 0.8182 _0.8182
0 _1.6364 1.6364
@ _ 0,0 _ ~ _
vy =& 78 {o} { 1.6364 } {—1.6364}

—0.0895
0.8953

@ _ | 005 0
1 0 05

e Note that the algorithm terminates with g* = 0and H* = G!

p® = §0 _ g@,@ {

e It can be proven that under some mild conditions, the method
terminates on a quadratic function in at most n + 1 steps, with
H(n-l—l) — G—l
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e Two other well-known quasi-Newton algorithms are:

— DAVIDON-FLETCHER-POWELL (DFP):
§8T  HyyT
8Ty yTHy

(k+1)
Hppp' = H +

— BROYDEN-FLETCHER-GOLDFARB-SHANNO (BFGS):

yTHy) §87 <8yTH + HyST)

(k+1)
H =H4+ |1+ —
BFGS ( 8Ty ST}I 87‘)}
o The BFGS algorithm is perhaps the most widely used
Quasi-Newton numerical algorithm and works well with low
accuracy line searches
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