Parameter Optimization: Unconstrained

We will begin our study by developing some tools and concepts associated with the general optimization process applied to problems that are independent of time
\Rightarrow These are known as parameter optimization problems

- We shall utilize a useful class of algorithms known as iterative methods
- Iterative methods generate a sequence of points, $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}, \ldots$, or more compactly $\left\{\boldsymbol{x}^{(k)}\right\}$, that converge to a fixed point \boldsymbol{x}^{*} which is the solution to a given problem
- For example, let us define a line as a set of points $\boldsymbol{x}(\alpha)=\boldsymbol{x}^{\prime}+\alpha \boldsymbol{s}$ where \boldsymbol{x}^{\prime} is a fixed point and s is the direction of the line (see a 2-D representation in Figure 3.1)
- An iterative scheme might systematically choose new directions s at each step and then minimize function values along those directions to generate a sequence of solution points $\left\{x^{(k)}\right\}$

Figure 3.1 A line in two dimensions

- An acceptable iterative optimization algorithm exhibits the following properties:
- iterations $\boldsymbol{x}^{(k)}$ move steadily toward the neighborhood of a local minimizer \boldsymbol{x}^{*}
- iterations converge rapidly to the point \boldsymbol{x}^{*}, i.e., for $\boldsymbol{h}^{(k)}=\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}$, $\boldsymbol{h}^{(k)} \rightarrow \mathbf{0}$ for some appropriate measure of $\boldsymbol{h}^{(k)}$
- rate of convergence is an important measure of goodness of the algorithm
- A method is usually based on a model - an approximation of the objective function - which enables an estimate of the local minimizer to be made
- most successful have been quadratic models

3.1: Unconstrained Optimization: The Basics

- To begin, we must first define the goals we hope to achieve through optimization
- We introduce an index of performance, or objective function, that captures the natue of our optimization goal - we'll call this function L
- In general, L will be a function of one, two or many variables; i.e., $L=f\left(u_{1}, u_{2}, \ldots, u_{m}\right)$, where the u_{i} are scalar parameters
- Note: it's also customary to use J to denote an objective function and x_{k} for the independent variables; e,g.,

$$
J=f\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

- SImply put, our main task will be to select the decision variables $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ such that L is minimized
- Recall here that maximization can be achieved by simply switching the sign on a minimization problem
- But what exacly do we mean by a minimum? We generally consider two definitions:
absolute (or global) minimum
$\Rightarrow \quad L\left(u_{1}^{*}+\Delta u_{1}, u_{2}^{*}+\Delta u_{2}, \ldots, u_{m}^{*}+\Delta u_{m}\right)>L\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)$ for all changes $\Delta u_{1}, \Delta u_{2}, \ldots, \Delta u_{m}$

local minimum

$\Rightarrow \quad L\left(u_{1}^{*}+\Delta u_{1}, u_{2}^{*}+\Delta u_{2}, \ldots, u_{m}^{*}+\Delta u_{m}\right)>L\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)$ for all infinitesimal changes $\Delta u_{1}, \Delta u_{2}, \ldots, \Delta u_{m}$, where values u^{*} denote the optimal (minimizing) values of u

- An optimization problem usually assumes that an optimum solution u^{*} exists, is unique and can be found, but this ideal situation may not hold for a number of reasons:
- $L(\boldsymbol{u})$ is unbounded below
- $L(\boldsymbol{u})$ is bounded below
- \boldsymbol{u}^{*} is not unique
- local minimum exists that is not a global minimum
- local minimum exists although $L(\boldsymbol{u})$ is unbounded below (see Figure 3.2)

Figure $3.2 f(x)=x^{3}-3 x$

- The conditions for a local minimum are considerably easier to solve than for a global minimum; we'll address the local minimum problem in this course
- Note: We will focus on minimizing performance indices (or objective functions). The problem of maximizing an objective function fits easily within this framework by simply letting $\dot{L}=-L$

Conditions for Local Minima

- Along any line $\boldsymbol{u}(\alpha)=\boldsymbol{u}^{*}+\alpha \boldsymbol{s}$ through $\boldsymbol{u}^{*}, L[\boldsymbol{u}(\alpha)]$ has both zero slope and non-negative curvature at \boldsymbol{u}^{*} (see Figure 3.3)
- This is the usual condition derived from a Taylor series for a local minimum of a function of one variable

Figure 3.3 Zero slope and non-negative curvature at $\alpha=0$

3.2: Unconstrained Optimization: One and Two Parameters

Single Parameter Problem

- Consider the function: $L(u)=(u-1)^{2}$ How do we find the minimum?

$$
\begin{aligned}
\frac{d L}{d u} & =0=2(u-1) \quad \Rightarrow \quad u=1 \\
\frac{d^{2} L}{d u^{2}} & =2>0
\end{aligned}
$$

- Why does this work?
- if we let u^{*} denote a local minimum of $L(u)$, then L can be expanded in a Taylor series about u^{*} :

$$
L(u)=L\left(u^{*}\right)+\left.\frac{d L}{d u}\right|_{u^{*}} \Delta u+\left.\frac{1}{2} \frac{d^{2} L}{d u^{2}}\right|_{u^{*}} \Delta u^{2}+\cdots
$$

or

$$
\Delta L=L(u)-L\left(u^{*}\right)=\left.\frac{d L}{d u}\right|_{u^{*}} \Delta u+\left.\frac{1}{2} \frac{d^{2} L}{d u^{2}}\right|_{u^{*}} \Delta u^{2}+\cdots
$$

- Since u^{*} is a local minimum, we know two things:

1. $L(u)-L\left(u^{*}\right)>0$ for all u in a neighborhood of u^{*}
2. Δu is an arbitrary, but infinitesimal change in u away from $u^{*} \Rightarrow$ higher order terms in Taylor series expansion are insignificant:

$$
\left.\Rightarrow \quad \Delta L \approx \frac{d L}{d u}\right|_{u^{*}} \Delta u
$$

But since Δu is arbitrary, $\left.\frac{d L}{d u}\right|_{u^{*}} \neq 0 \quad \Rightarrow \quad \Delta L<0$ for some Δu, and by deduction,

$$
\Rightarrow \quad u^{*} \text { can only be a minimum if }\left.\frac{d L}{d u}\right|_{u^{*}}=0
$$

$$
\text { If }\left.\frac{d L}{d u}\right|_{u^{*}}=0
$$

$$
\left.\Delta L \approx \frac{d^{2} L}{d u^{2}}\right|_{u^{*}} \Delta u^{2}
$$

but $\Delta u^{2}>0$ for all Δu, so $\triangle L>0$ if $\left.\frac{d^{2} L}{d u^{2}}\right|_{u^{*}}>0$

$$
\Rightarrow \quad u^{*} \text { will be a minimum if }\left.\frac{d^{2} L}{d u^{2}}\right|_{u^{*}}>0
$$

Sufficient Conditions For a Local Minimum

$$
\left.\frac{d L}{d u}\right|_{u^{*}}=0 ;\left.\quad \frac{d^{2} L}{d u^{2}}\right|_{u^{*}}>0
$$

- What if $\left.\frac{d^{2} L}{d u^{2}}\right|_{u^{*}}=0$?
- Must go to higher order derivatives (odd derivatives must be zero, $1^{\text {st }}$ even derivatives must be positive)

Necessary Conditions For a Local Minimum

$$
\left.\frac{d L}{d u}\right|_{u^{*}}=0 ;\left.\quad \frac{d^{2} L}{d u^{2}}\right|_{u^{*}} \geq 0
$$

QUESTION: What is the difference between necessary and sufficient conditions?

Two-Parameter Problem

- Consider the function $L\left(u_{1}, u_{2}\right)$ where $L\left(u_{1}^{*}, u_{2}^{*}\right)$ is a local minimum
- We'll use the same Taylor series arguments as above to develop conditions for a minimum, but now the Taylor series is more complicated:

$$
\begin{aligned}
L\left(u_{1}, u_{2}\right)= & L\left(u_{1}^{*}, u_{2}^{*}\right)+\left.\frac{\partial L}{\partial u_{1}}\right|_{u_{1}^{*}, u_{2}^{*}} \Delta u_{1}+\left.\frac{\partial L}{\partial u_{2}}\right|_{u_{1}^{*}, u_{2}^{*}} \Delta u_{2} \\
& +\frac{1}{2}\left\{\left.\frac{\partial^{2} L}{\partial u_{1}^{2}}\right|_{*} \Delta u_{1}^{2}+\left.2 \frac{\partial^{2} L}{\partial u_{1} \partial u_{2}}\right|_{*} \Delta u_{1} \Delta u_{2}+\left.\frac{\partial^{2} L}{\partial u_{2}^{2}}\right|_{*} \Delta u_{2}^{2}\right\}+\cdots
\end{aligned}
$$

- Clearly, $\left(u_{1}^{*}, u_{2}^{*}\right)$ can only be a minimum if the following stationarity condition is attained:

$$
\left.\frac{\partial L}{\partial u_{1}}\right|_{*}=\left.\frac{\partial L}{\partial u_{2}}\right|_{*}=0
$$

- If these conditions are satisfied, then the second-order term in the Taylor series expansion must be greater than or equal to to zero for $\left(u_{1}^{*}, u_{2}^{*}\right)$ to be a minimizer
- Let's re-write the $2^{\text {nd }}$-order term to see how we can validate this condition:

$$
\begin{aligned}
& \frac{1}{2}\left\{\left.\frac{\partial^{2} L}{\partial u_{1}^{2}}\right|_{*} \Delta u_{1}^{2}+\left.2 \frac{\partial^{2} L}{\partial u_{1} \partial u_{2}}\right|_{*} \Delta u_{1} \Delta u_{2}+\left.\frac{\partial^{2} L}{\partial u_{2}^{2}}\right|_{*} \Delta u_{2}^{2}\right\} \\
& =\frac{1}{2}\left[\begin{array}{ll}
\Delta u_{1} \Delta u_{2}
\end{array}\right]\left[\begin{array}{cc}
\left.\frac{\partial^{2} L}{\partial u_{1}^{2}}\right|_{*} & \left.\frac{\partial^{2} L}{\partial u_{1} \partial u_{2}}\right|_{*} \\
\left.\frac{\partial^{2} L}{\partial u_{2} \partial u_{1}}\right|_{*} & \left.\frac{\partial^{2} L}{\partial u_{2}^{2}}\right|_{*}
\end{array}\right]\left[\begin{array}{c}
\Delta u_{1} \\
\Delta u_{2}
\end{array}\right]
\end{aligned}
$$

$$
=\frac{1}{2} \triangle \boldsymbol{u}^{T}\left[\frac{\partial^{2} L}{\partial \boldsymbol{u}^{2}}\right] \triangle \boldsymbol{u}
$$

- Note: $\frac{\partial^{2} L}{\partial u^{2}}$ is the Hessian of L
- This result clearly indicates that the 2nd-order term in the Taylor series expansion will be greater than or equal to zero if

$$
\frac{\partial^{2} L}{\partial \boldsymbol{u}^{2}} \text { is positive semidefinite }
$$

Sufficient Conditions For a Local Minimum

$$
\frac{\partial L}{\partial \boldsymbol{u}}=\mathbf{0} \quad \frac{\partial^{2} L}{\partial \boldsymbol{u}^{2}} \quad \text { positive definite }
$$

Necessary Conditions For a Local Minimum

$$
\frac{\partial L}{\partial \boldsymbol{u}}=\mathbf{0} \quad \frac{\partial^{2} L}{\partial \boldsymbol{u}^{2}} \quad \text { positive semidefinite }
$$

N-Parameter Problem

- The vector notation introduced in the 2-parameter problem above is ideally suited to the N-parameter problem and leads to precisely the same necessary and sufficient conditions as those stated above

Example 1

- Consider the following four cases:

1. $f(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}$

$$
\frac{\partial f}{\partial \boldsymbol{x}}=\left[\begin{array}{ll}
2 x_{1} & 2 x_{2}
\end{array}\right]=\mathbf{0}
$$

$$
\begin{gathered}
\Rightarrow x_{1}=x_{2}=0 \\
\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]>0
\end{gathered}
$$

2. $f(\boldsymbol{x})=-x_{1}^{2}+-x_{2}^{2}$

$$
\begin{aligned}
\frac{\partial f}{\partial \boldsymbol{x}}= & {\left[\begin{array}{ll}
-2 x_{1} & -2 x_{2}
\end{array}\right]=\mathbf{0} } \\
& \Rightarrow x_{1}=x_{2}=0
\end{aligned}
$$

$$
\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]<0
$$

3. $f(\boldsymbol{x})=x_{1}^{2}-x_{2}^{2}$

$$
\begin{gathered}
\frac{\partial f}{\partial \boldsymbol{x}}=\left[\begin{array}{ll}
2 x_{1} & -2 x_{2}
\end{array}\right]=\mathbf{0} \\
\Rightarrow x_{1}=x_{2}=0 \\
\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right] \equiv \text { indeterminate }
\end{gathered}
$$

4. $f(\boldsymbol{x})=-x_{1}^{2}+x_{2}^{2}$

$$
\begin{gathered}
\frac{\partial f}{\partial \boldsymbol{x}}=\left[\begin{array}{ll}
-2 x_{1} & 2 x_{2}
\end{array}\right]=\mathbf{0} \\
\Rightarrow x_{1}=x_{2}=0 \\
\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right] \equiv \text { indeterminate }
\end{gathered}
$$

- Corresponding function surface graphs are depicted in the following figures

Figure $3.4 \quad f(x)=x_{1}^{2}+x_{2}^{2}$

Figure $3.6 \quad f(x)=x_{1}^{2}-x_{2}^{2}$

Figure $3.5 \quad f(x)=-x_{1}^{2}-x_{2}^{2}$

Example 2

- Consider the objective function given by:

$$
\begin{gathered}
f(\boldsymbol{x})=\left(x_{1}-x_{2}+2\right)^{2}+\left(x_{1}+x_{2}-4\right)^{4} \\
{\left[\frac{\partial f}{\partial \boldsymbol{x}}\right]^{T}=\left[\begin{array}{c}
2\left(x_{1}-x_{2}+2\right)+4\left(x_{1}+x_{2}-4\right)^{3} \\
-2\left(x_{1}-x_{2}+2\right)+4\left(x_{1}+x_{2}-4\right)^{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
4\left(x_{1}-x_{2}+2\right)=0 \\
x_{1}-x_{2}=-2 \\
x_{1}+x_{2}-4=0 \\
x_{1}+x_{2}=4
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{x}=\left[\begin{array}{ll}
1 & 3
\end{array}\right]^{T} \\
\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\left[\begin{array}{cc}
2+12\left(x_{1}+x_{2}-4\right)^{2} & -2+12\left(x_{1}+x_{2}-4\right)^{2} \\
-2+12\left(x_{1}+x_{2}-4\right)^{2} & 2+12\left(x_{1}+x_{2}-4\right)^{2}
\end{array}\right] \\
\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\left[\begin{array}{c|c}
2+12\left(x_{1}+x_{2}-4\right)^{2} & -2+12\left(x_{1}+x_{2}-4\right)^{2} \\
\hline-2+12\left(x_{1}+x_{2}-4\right)^{2} & 2+12\left(x_{1}+x_{2}-4\right)^{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \quad \lambda_{1}=4, \lambda_{2}=0
\end{gathered}
$$

Necessary conditions are satisfied; sufficient conditions are not.

$$
\begin{aligned}
& f(\boldsymbol{x}) \geq 0 \forall\left(x_{1}, x_{2}\right) \\
& f(\boldsymbol{x})=0 \text { for }(1,3) \\
& \Rightarrow \quad f(1,3) \text { is a local minimum }
\end{aligned}
$$

- For many multi-parameter optimization problems, the necessary condition

$$
\frac{\partial L}{\partial \boldsymbol{u}}=0
$$

generates a set of equations that are too difficult to solve analytically.

- So what do we do? Compute numerically!

3.3: Line Search Methods for Unconstrained Optimization

- Here we seek an iterative method for unconstrained optimization, i.e., one that iterates $\boldsymbol{u}^{(k)}$ so that it moves rapidly toward the neighborhood of a local minimizer \boldsymbol{u}^{*} and converges rapidly to the point \boldsymbol{u}^{*} itself
- Order of convergence is a useful measure of algorithm behavior - Define the error vector,

$$
\boldsymbol{h}^{(k)}=\boldsymbol{u}^{(k)}-\boldsymbol{u}^{*}
$$

- Then if $\boldsymbol{h}^{(k)} \rightarrow 0$ (convergence), it may be possible to give local convergence results:

$$
\frac{\left\|\boldsymbol{h}^{(k+1)}\right\|}{\left\|\boldsymbol{h}^{(k)}\right\|^{p}} \rightarrow a
$$

where $a>0$ implies the order of convergence is $p^{\text {th }}$ order.

- Here the notation $\|\bullet\|$ denotes a vector norm and,
- $p=1 \quad \Rightarrow$ first order or linear convergence
- $p=2 \quad \Rightarrow$ second order or quadratic convergence

Line Search Algorithms

- The basic idea is to search for a minimum function value along coordinate directions, or in more general directions
- First we generate an initial estimate $\boldsymbol{u}^{(1)}$, then for each $k^{\text {th }}$ iteration,

1. Determine a direction of search $s^{(k)}$
2. Find $\alpha^{(k)}$ to minimize $L\left(\boldsymbol{u}^{(k)}+\alpha \boldsymbol{s}^{(k)}\right)$ with respect to α
3. Set $\boldsymbol{u}^{(k+1)}=\boldsymbol{u}^{(k)}+\alpha^{(k)} \boldsymbol{s}^{(k)}$

- Different methods correspond to different ways of choosing $s^{(k)}$ in step 1
- Step 2 is the line search subproblem and involves sampling $L(\boldsymbol{u})$ (and possibly its derivatives) along the line
- Ideally, an exact minimizing value of $\alpha^{(k)}$ is required, but this is not practical in a finite number of steps
- It is apparent that the slope of $d L / d \alpha$ at $\alpha^{(k)}$ must be zero, which gives

$$
\nabla L^{(k+1) T} \boldsymbol{s}^{(k)}=0
$$

Figure 3.8 Exact line search

- Generally, inexact or approximate line searches are used to satisfy this minimizing condition
- Requirement that $L^{(k+1)}<L^{(k)}$ is unsatisfactory by itself because reductions in L might be negligible
- Aim of a line search is to:
- find a step $\alpha^{(k)}$ which gives a significant reduction in L on each iteration
- ensure points are not near the extremes of the interval $\left[0, \bar{\alpha}^{(k)}\right]$, where $\bar{\alpha}^{(k)}$ denotes the least positive value of α for which $L\left(\boldsymbol{u}^{(k)}+\alpha \boldsymbol{s}^{(k)}\right)=L\left(\boldsymbol{u}^{(k)}\right)$
- Goldstein Conditions meet the above requirements:
- $f(\alpha) \leq f(0)+\alpha \rho f^{\prime}(0)$
$-f(\alpha) \geq f(0)+\alpha(1-\rho) f^{\prime}(0)$
$\rho \in\left(0, \frac{1}{2}\right)$ is a fixed parameter; the geometry is illustrated in accompanying Figure 3.9 .
- The second of these conditions might exclude the minimizing point of $f(\alpha)$, so an alternate condition is often used:

$$
\left|f^{\prime}(\alpha)\right| \leq-\sigma f^{\prime}(0)
$$

Figure 3.9 Line search geometry

- If $\hat{\alpha}$ is the least value of $\alpha>0$ at which the $f(\alpha)$ curve intersects the ρ-line, and $\sigma>\rho$, then it can be shown there exists an interal of acceptable points satisfying the Goldstein conditions (proof omitted).
- In practice, it is customary to use $\sigma=0.1$ and $\rho=0.01$, though the behavior is not really too sensitive to choice of ρ
- Line search algorithm comprises two phases: bracketing and sectioning:
- Bracketing: iterates α_{i} move out to the right in increasingly large jumps until an acceptable interval is located
- Sectioning: generates a sequence of brackets $\left[a_{j}, b_{j}\right]$ whose lengths tend toward zero

3.4: Line Search Algorithm: Bracketing

Bracketing Algorithm

For $i=1,2, \ldots$

1. evaluate $f\left(\alpha_{i}\right)$
2. if $f\left(\alpha_{i}\right) \leq f_{\text {min }} \Rightarrow$ terminate line search
3. if $f\left(\alpha_{i}\right)>f(0)+\alpha \rho f^{\prime}(0) \quad$ or $\quad f\left(\alpha_{i}\right) \geq f\left(\alpha_{i-1}\right)$
(a) $a_{i}=\alpha_{i-1}$
(b) $b_{i}=\alpha_{i}$

\Rightarrow terminate bracket

4. evaluate $f^{\prime}\left(\alpha_{i}\right)$
5. if $\left|f^{\prime}\left(\alpha_{i}\right)\right| \leq-\sigma f^{\prime}(0) \Rightarrow$ terminate line search
6. if $f^{\prime}\left(\alpha_{i}\right) \geq 0$
(a) $a_{i}=\alpha_{i}$
(b) $b_{i}=\alpha_{i-1}$
\Rightarrow terminate bracket
7. if $\mu \leq 2 \alpha_{i}-\alpha_{i-1}$
(a) $\alpha_{i+1}=\mu$
8. else
(a) choose $\alpha_{i+1} \in\left[2 \alpha_{i}-\alpha_{i-1}, \min \left(\mu, \alpha_{i}+\tau_{1}\left(\alpha_{i}-\alpha_{i-1}\right)\right)\right]$ end

- Parameter τ_{1} is preset and governs the size of the jumps; $\tau_{1}=9$ is a reasonable choice
- Choice of α_{i+1} can be made in any way, but a sensible choice is to minimize a cubic polynomial interpolating $f\left(\alpha_{i}\right), f^{\prime}\left(\alpha_{i}\right), f\left(\alpha_{i-1}\right)$, and $f^{\prime}\left(\alpha_{i-1}\right)$.

Example: Bracketing

- Consider the quadratic function

$$
f(\alpha)=0.5+2(\alpha-3)^{2}
$$

Since this is a quadratic, it's somewhat of a special case. For this example, we choose the following parameters for the start of the line search:

$$
\alpha_{0}=0 \quad \alpha_{1}=1 \quad \rho=0.25 \quad \sigma=0.5
$$

- For simplicity, we select $\bar{f}=0$ as an absolute lower bound (although it's obviously bounded by 0.5)
- We begin the first iteration of the bracketing algorithm $(i=1)$

1. $f\left(\alpha_{1}\right)=8.5$
2. Test: $f\left(\alpha_{1}\right) \leq \bar{f} \quad$ No
3. Test: $f\left(\alpha_{1}\right)>f(0)+\alpha_{i} \rho f^{\prime}(0)$

$$
8.5>18.5+(1)(0.25)(-12)=15.5 \text { No }
$$

4. $f^{\prime}\left(\alpha_{1}\right)=-8$
5. Test: $\left|f^{\prime}\left(\alpha_{1}\right)\right| \leq-\sigma f^{\prime}(0)$

$$
|-8| \leq-(0.5)(-12)=6 \quad \mathrm{No}
$$

6. Test: $f^{\prime}\left(\alpha_{1}\right)>0 \quad$ No
7. Test: $\mu \leq 2 \alpha_{1}-\alpha_{0} \quad$ No
\Rightarrow Therefore, choose the next iterate within the interval

$$
\alpha_{2} \in\left[2, \min \left(6.1667,1+\tau_{1}\left(\alpha_{1}-\alpha_{0}\right)\right)\right]
$$

Subsituting values,

$$
\alpha_{2} \in[2, \min (6.1667,1+9(1-0))]=[2,6.1667]
$$

- Quadratic interpolation over this interval will give $\alpha_{2}=3$ as the next iterate; this will terminate the line search in the next bracket iteration at Step 5
- The bracketing sequence is depicted in the plot below

3.5: Line Search Algorithm: Sectioning

Sectioning Algorithm

For $j=i, i+1, \ldots$

1. choose $\alpha_{j} \in\left[a_{j}+\tau_{2}\left(b_{j}-a_{j}\right), \quad b_{j}-\tau_{3}\left(b_{j}-a_{j}\right)\right]$
2. evaluate $f\left(\alpha_{j}\right)$
3. if $f\left(\alpha_{j}\right)>f(0)+\rho \alpha_{j} f^{\prime}(0) \quad$ or $\quad f\left(\alpha_{j}\right) \geq f\left(a_{j}\right)$
(a) $a_{j+1}=a_{j}$
(b) $b_{j+1}=\alpha_{j}$
4. else
(a) evaluate $f^{\prime}\left(\alpha_{j}\right)$
(b) if $\left|f^{\prime}\left(\alpha_{j}\right)\right| \leq-\sigma f^{\prime}(0) \quad \Rightarrow \quad$ terminate line search
i. $a_{j+1}=\alpha_{j}$
(c) if $\left(b_{j}-a_{j}\right) f^{\prime}\left(\alpha_{j}\right) \geq 0$
i. $b_{j+1}=a_{j}$
(d) else
i. $b_{j+1}=b_{j}$
(e) end
end

- Parameters τ_{2} and τ_{3} are preset and restrict α_{j} from getting too close to the extremes of the interval $\left[a_{j}, b_{j}\right]$:

$$
0<\tau_{2}<\tau_{3} \leq \frac{1}{2}
$$

- Typical values are: $\tau_{2}=0.1$ and $\tau_{3}=0.5$

Polynomial Interpolation

- For the quadratic case, we can define the $2^{\text {nd }}$-order polynomial

$$
p_{\mathrm{q}}(z)=p_{2} z^{2}+p_{1} z+p_{0}
$$

Considering the normalized interval $z=[0,1]$ corresponding to [a_{j}, b_{j}] allows us to write the interpolation conditions:

$$
\begin{aligned}
p_{\mathrm{q}}(0) & =f\left(a_{j}\right) \\
p_{\mathrm{q}}(1) & =f\left(b_{j}\right) \\
p_{\mathrm{q}}^{\prime}(0) & =f_{z}^{\prime}\left(a_{j}\right) \\
p_{\mathrm{q}}^{\prime}(1) & =f_{z}^{\prime}\left(b_{j}\right)
\end{aligned}
$$

Assuming we can compute the values $f\left(a_{j}\right), f_{z}^{\prime}\left(a_{j}\right)$, and $f\left(b_{j}\right)$, substituting for z allows us to write

$$
\begin{aligned}
p_{q}(0) & =p_{0}=f\left(a_{j}\right) \\
p_{q}^{\prime}(0) & =p_{1}=f_{z}^{\prime}\left(a_{j}\right) \\
p_{q}(1) & =p_{2}+p_{1}+p_{0}=f\left(b_{j}\right)
\end{aligned}
$$

or, assembling in matrix-vector form,

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{2} \\
p_{1} \\
p_{0}
\end{array}\right]=\left[\begin{array}{c}
f\left(b_{j}\right) \\
f_{z}^{\prime}\left(a_{j}\right) \\
f\left(a_{j}\right)
\end{array}\right]
$$

- Solving this system of equations yields

$$
\begin{aligned}
& p_{0}=f\left(a_{j}\right) \\
& p_{1}=f_{z}^{\prime}\left(a_{j}\right) \\
& p_{2}=f\left(b_{j}\right)-f\left(a_{j}\right)-f_{z}^{\prime}\left(a_{j}\right)
\end{aligned}
$$

giving the interpolating polynomial:

$$
p_{q}(z)=\left[f\left(b_{j}\right)-f\left(a_{j}\right)-f_{z}^{\prime}\left(a_{j}\right)\right] z^{2}+\left[f_{z}^{\prime}\left(a_{j}\right)\right] z+f\left(a_{j}\right)
$$

- Note that the mapping transformation is given by

$$
\alpha=a+z(b-a)
$$

where by the chain rule we have

$$
f_{z}^{\prime}=\frac{d f}{d z}=\frac{d f}{d \alpha} \cdot \frac{d \alpha}{d z}=(b-a) \frac{d f}{d \alpha}
$$

which relates the derivatives of the mapped variables.

- The inverse mapping is,

$$
z=\frac{1}{b-a}(\alpha-a)
$$

- If in addition $f^{\prime}\left(b_{j}\right)$ is available, we can find the cubic interpolating polynomial:

$$
p_{c}(z)=p_{3} z^{3}+p_{2} z^{2}+p_{1} z+p_{0}
$$

where we assemble the interpolation equations:

$$
\begin{aligned}
& p_{c}(1)=p_{3}+p_{2}+p_{1}+p_{0}=f\left(b_{j}\right) \\
& p_{c}^{\prime}(1)=3 p_{3}+2 p_{2}+p_{1}=f_{z}^{\prime}\left(b_{j}\right) \\
& p_{c}^{\prime}(0)=p_{1}=f_{z}^{\prime}\left(a_{j}\right) \\
& p_{c}(0)=p_{0}=f\left(a_{j}\right)
\end{aligned}
$$

or in matrix form,

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{3} \\
p_{2} \\
p_{1} \\
p_{0}
\end{array}\right]=\left[\begin{array}{c}
f\left(b_{j}\right) \\
f_{z}^{\prime}\left(b_{j}\right) \\
f_{z}^{\prime}\left(a_{j}\right) \\
f\left(a_{j}\right)
\end{array}\right]
$$

Thus giving the solution:

$$
\begin{aligned}
& p_{0}=f\left(a_{j}\right) \\
& p_{1}=f_{z}^{\prime}\left(a_{j}\right) \\
& p_{2}=3\left(f\left(b_{j}\right)-f\left(a_{j}\right)\right)-2 f_{z}^{\prime}\left(a_{j}\right)-f_{z}^{\prime}\left(b_{j}\right) \\
& p_{3}=f_{z}^{\prime}\left(a_{j}\right)+f_{z}^{\prime}\left(b_{j}\right)-2\left(f\left(b_{j}\right)-f\left(a_{j}\right)\right)
\end{aligned}
$$

Example 3

- Consider the function,

$$
f(\boldsymbol{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

and let

$$
\boldsymbol{x}^{(k)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad \boldsymbol{s}^{(k)}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- We then have,

$$
\begin{aligned}
f(\alpha) & =100 \alpha^{4}+(1-\alpha)^{2} \\
f^{\prime}(\alpha) & =400 \alpha^{3}-2(1-\alpha)
\end{aligned}
$$

- Choosing parameters,

$$
\begin{aligned}
\sigma & =0.1 \\
\rho & =0.01 \\
\tau_{1} & =9 \\
\tau_{2} & =0.1 \\
\tau_{3} & =0.5
\end{aligned}
$$

gives the following results for the cases $\alpha_{1}=0.1$ and $\alpha_{1}=1$:

Iteration	0	1	2	3	4
$\alpha_{1}=0.1$					
α	0	0.1	0.2	0.160948	
$f(\alpha)$	1	0.82	0.8	0.771111	
$f^{\prime}(\alpha)$	-2	-1.4	1.6	-0.010423	
					0.160922
$\alpha_{1}=1$					0.19
α	0	1	0.1	0.771112	
$f(\alpha)$	1	100	0.82	0.786421	-0.011269
$f^{\prime}(\alpha)$	-2		-1.4	1.1236	

Table 3.1 LINE SEARCH EXAMPLE

Figure 3.10 Example 3: $f(\alpha)=100 \alpha^{4}+(1-\alpha)^{2}$

3.6: Descent Methods

- Descent methods are line search methods where the the search direction satisfies the descent property:

$$
\boldsymbol{s}^{(k) T} \boldsymbol{g}^{(k)}<0
$$

where

$$
\boldsymbol{g}^{(k)}=\nabla L(\boldsymbol{u})
$$

- This condition ensures
- The slope of $d L / d \alpha$ is always negative at $\alpha=0$ (unless $\boldsymbol{u}^{(k)}$ is a stationary point)
- The function $L(\boldsymbol{u})$ can be reduced in the line search for some $\alpha^{(k)}>0$

Steepest Descent Methods

Steepest descent is defined by the condition:

$$
\boldsymbol{s}^{(k)}=-\boldsymbol{g}^{(k)}
$$

for all k.

- This condition ensures that $L(\boldsymbol{u})$ decreases most rapidly local to $\boldsymbol{u}^{(k)}$
- Although appealing, the steepest descent method is not suited for practical use, largely because:
- it usually exhibits oscillatory behavior
- it usually terminates far from the exact solution due to round-off errors
- Inadequacy of steepest descent is due mostly to the model: the steepest descent property along the line holds only at $\alpha=0$ (not for all α)
- An exception occurs for quadratic models, which we'll investigate in more detail later

Convergence

- It is important to be able to determine when an algorithm has converged to an acceptable solution
- A useful test would be: $L^{(k)}-L^{*} \leq \epsilon$ or $\left|x_{i}^{(k)}-x_{i}^{*}\right| \leq \epsilon_{i}$, but these are not practical because they require the solution!
- A practical alternative is: $\left\|g^{(k)}\right\| \leq \epsilon$, though in practice it's hard to choose an appropriate ϵ
- Far more practical are tests of the following form:

$$
\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right| \leq \epsilon_{i} \quad \forall i
$$

or

$$
L^{(k+1)}-L^{(k)} \leq \epsilon
$$

3.7: Newton's Method

- It was shown previously that there is a great advantage to deriving a method based on a quadratic model
- Newton's method is the most straightforward such technique
- The key to this algorithm is that the values of u which minimize L are the same as the ones which satisfy

$$
\frac{\partial L}{\partial \boldsymbol{u}}=\mathbf{0}
$$

- So, we'll set up an algorithm which searches for a solution to this problem
- Writing the truncated Taylor series expansion of $L(\boldsymbol{u})$ about $\boldsymbol{u}^{(k)}$:

$$
L\left(\boldsymbol{u}^{k)}+\boldsymbol{\delta}\right) \approx q^{(k)}(\boldsymbol{\delta})=L^{(k)}+\boldsymbol{g}^{(k) T} \boldsymbol{\delta}+\frac{1}{2} \boldsymbol{\delta}^{T} G^{(k)} \boldsymbol{\delta}
$$

where $\boldsymbol{\delta}=\boldsymbol{u}-\boldsymbol{u}^{(k)}$, and $q^{(k)}(\boldsymbol{\delta})$ is the resulting quadratic approximation for iteration k.

- Iteration $\boldsymbol{u}^{(k+1)}$ is computed as $\boldsymbol{u}^{(k)}+\boldsymbol{\delta}^{(k)}$ where the correction $\boldsymbol{\delta}^{(k)}$ minimizes $q^{(k)}(\boldsymbol{\delta})$
- Method requires the zero, first and second order derivatives of $L(\boldsymbol{u})$
- The basic algorithm can be written:
- solve for $G^{(k)} \boldsymbol{\delta}=-\boldsymbol{g}^{(k)}$ for $\boldsymbol{\delta}=\boldsymbol{\delta}^{(k)}$
$-\operatorname{set} \boldsymbol{u}^{(k+1)}=\boldsymbol{u}^{(k)}+\boldsymbol{\delta}^{(k)}$
- Newton's method exhibits second-order convergence

Complete Algorithm \Rightarrow

1. Compute the general functions $\boldsymbol{g}^{(k)}=\frac{\partial L}{\partial \boldsymbol{u}}$ and $G^{(k)}=\frac{\partial^{2} L}{\partial \boldsymbol{u}^{2}}$ a priori
2. Choose starting value $\boldsymbol{u}^{(1)}$
3. Evaluate $\boldsymbol{g}^{(1)}$ and $G^{(1)}$ at $\boldsymbol{u}^{(1)}$
4. Solve for $\boldsymbol{\delta}^{(1)}$ (solve the set of simultaneous equations $\left.G^{(1)} \boldsymbol{\delta}^{(1)}=-\boldsymbol{g}^{(1)}\right)$
5. Compute $\boldsymbol{u}^{(2)}=\boldsymbol{u}^{(1)}+\boldsymbol{\delta}^{(1)}$
6. Repeat steps (3) - (5) for increasing values of k until convergence condition is satisfied

- The biggest problem with this algorithm is that the calculation of the Hessian $\frac{\partial^{2} L}{\partial \boldsymbol{u}^{2}}$ may be extremely tedious

Example 4

Let

$$
L(\boldsymbol{u})=u_{1}^{4}+u_{1} u_{2}+\left(1+u_{2}\right)^{2}
$$

where

$$
\boldsymbol{u}^{(1)}=\left[\begin{array}{c}
1.25 \\
-0.2
\end{array}\right]
$$

Implementing Newton's method for values of k from 1 to 7 gives the results summarized in the table below; a graphical representation is

shown in Figure 3.11. Here we use the (idealized) definition of

$\boldsymbol{h}^{(k)}=\boldsymbol{u}^{k}-\boldsymbol{u}^{*}$.

k	1	2	3	4	5	6	7		
$u_{1}^{(k)}$	1.25	0.9110	0.7451	0.69932	0.6959029	0.6958844	0.6958843		
$u_{2}^{(k)}$	-0.2	-1.455	-1.3726	-1.34966	-1.347951	-1.3479422	-1.3479422		
$g_{1}^{(k)}$	7.6125	1.5683	0.2823	-0.018382	0.0000982235	-0.0000000028559	0		
$g_{2}^{(k)}$	2.8500	0	0	0	0	0	0		
$L^{(k)}$	2.8314	-0.4298	-0.5757	-0.582414	-0.5824452	-0.5824452	-0.5824452		
$\left\\|\boldsymbol{h}^{(k)}\right\\|$	1.2727	0.24046	0.0550691	0.00384881	0.0000206765	0.00000000064497	0		

Table 3.2 NEWTON'S METHOD EXAMPLE

Figure 3.11 Newton's method example

From the above, it can be shown that the ratio $\left\|\boldsymbol{h}^{(k+1)}\right\| /\left\|\boldsymbol{h}^{(k)}\right\|^{2} \rightarrow a$ where $a \approx 1.4$, indicating second-order convergence.

- Basic Newton method is not suitable for a general purpose algorithm:
- $G^{(k)}$ may not be be positive definite when $\boldsymbol{x}^{(k)}$ is far from the solution
- even if $G^{(k)}$ is positive definite, algorithm still may not converge
- convergence can be addressed by using Newton's method with line search:

$$
\boldsymbol{s}^{(k)}=-G^{(k)-1} \boldsymbol{g}^{(k)} \Rightarrow \text { search direction }
$$

Example 5

- Returning to the function of Example 4,

$$
L(\boldsymbol{u})=u_{1}^{4}+u_{1} u_{2}+\left(1+u_{2}\right)^{2}
$$

If we choose

$$
\boldsymbol{x}^{(1)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

then we have,

$$
\boldsymbol{g}^{(1)}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad G^{(1)}=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right], \quad \boldsymbol{s}^{(1)}=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]
$$

- A search along $\pm \boldsymbol{s}^{(1)}$ changes only the x_{1} component of $\boldsymbol{x}^{(1)}$ which finds $x_{1}=0$ as the minimizing value in the search \Rightarrow algorithm fails to make progress!
- Reason for this is: $\boldsymbol{s}^{(1) T} g^{(1)}=0 \Rightarrow$ directions are not downhill!
- This stems from the fact that $\lambda\left(G^{(1)}\right)=2.1412,-0.4142 \Rightarrow G^{(1)}$ not positive definite
- But function $L(\boldsymbol{u})$ has a well defined minimum which can be found by searching along steepest descent direction

3.8 Modifications to Newton's Method

- Clearly, some modification is required to make the Newton algorithm generally applicable
- Modification 1: Revert to steepest descent direction $\boldsymbol{s}^{(k)}=-\boldsymbol{g}^{(k)}$ whenever $G^{(k)}$ is not positive definite
- Unfortunately, this exhibits slow oscillatory behavior since the method ignores information in the model quadratic function
- Modification 2: Adjust the Newton search direction by giving it a bias towards the steepest descent vector, $-\boldsymbol{g}^{(k)}$:

$$
\left(G^{(k)}+\nu I\right) s^{(k)}=-g^{(k)}
$$

- Method adds factor v to the eigenvalues of $G^{(k)}$ to (hopefully) make it positive definite
- Takes into account more of the function's quadratic information (except in the vicinity of a saddle point)
- Other modifications exist, but they are beyond the scope of this course
$1^{\text {st }}$-order Gradient Methods (a simplified approach)
- Instead of using knowledge about the "curvature" of L to help us find $\boldsymbol{\delta}$, let's simply step by some amount (???) in the direction of decreasing L until we reach a minimum
- the solution of the linear equation $G \boldsymbol{\delta}=-\boldsymbol{g}$ can be expressed as

$$
\delta=-G^{-1} g
$$

(though in practice this is not how we would solve it)

- we now replace G^{-1} by a positive scalar constant K so that

$$
\delta=-K g
$$

- we can now perform the same iterative algorithm outlined above
- Can I convince you that this will work?
- remember, $L(\boldsymbol{u}+\boldsymbol{\delta})=L(\boldsymbol{u})+\frac{\partial L}{\partial \boldsymbol{u}} \boldsymbol{\delta}+\mathscr{O}(2)$
- if $\boldsymbol{\delta}=-K \frac{\partial L}{\partial \boldsymbol{u}}$, then

$$
L(\boldsymbol{u}+\boldsymbol{\delta})-L(\boldsymbol{u}) \approx-K\left|\frac{\partial L}{\partial \boldsymbol{u}}\right|^{2}<0
$$

- so, to first order, we are moving in the right direction!
- This verification also provides some insight into the problem of selecting K :
- if K is too big, the $2^{\text {nd }}$-order term in the Taylor series may become significant and the algorithm may overshoot the stationary point and not converge at all.
- if K is too small, the higher-order-terms will be truly insignificant but it may take forever to get to the solution
- how is it done in practice? Vary K during the iteration process

3.9: Quasi-Newton Methods

- Main disadvantage of Newton's method is that the user must supply explicit formulae to compute the second derivative matrix G
- But methods very similar to Newton's method can be derived when only first derivative formulae are available
- One straighforward approach is the Finite Difference Newton Method:
- estimate $G^{(k)}$ by using finite differences in the gradient vectors, i.e., the (i, j) element of estimate $\hat{G}^{(1)}$ is computed as:

$$
\hat{G}_{i j}=\frac{\left(\boldsymbol{g}_{j}\left(\boldsymbol{x}^{(k)}+h_{i} \boldsymbol{e}_{i}\right)-\boldsymbol{g}_{j}^{(k)}\right)}{h_{i}}
$$

where h_{i} is an increment length in the coordinate direction, \boldsymbol{e}_{i}.

- make \hat{G} symmetric by computing

$$
\hat{G}_{s}=\frac{1}{2}\left(\hat{G}+\hat{G}^{T}\right)
$$

- use \hat{G}_{s} in place of $G^{(k)}$ in Newton's method
- The method can be useful, but has some disadvantages:
- \hat{G}_{s} may not be positive definite
$-n$ gradient evaluations are required to estimate $G^{(k)}$
- a set of linear equations must be solved at each iteration

Quasi-Newton Methods

- Quasi-Newton methods avoid some of the disadvantages outlined above by -
- employing Newton's method with line search
- approximating $G^{(k)-1}$ by a symmetric positive definite matrix $H^{(k)}$ which is updated at each iteration
- Basic Algorithm:
- initialize $H^{(1)}$ to any positive definite matrix $\left(H^{(k)}=I\right.$ is a good choice)
- set search direction $\boldsymbol{s}^{(k)}=-H^{(k)} \boldsymbol{g}^{(k)}$
- perform line search along $\boldsymbol{s}^{(k)}$ giving $\boldsymbol{u}^{(k+1)}=\boldsymbol{u}^{(k)}+\alpha^{(k)} \boldsymbol{s}^{(k)}$
- update $H^{(k)}$ giving $H^{(k+1)}$
- Advantages to this method:
- only first derivatives are required
- positive definite $H^{(k)}$ implies the descent property
- order of n^{2} multiplications per iteration
- New aspect is the update calculation of $H^{(k+1)}$ from $H^{(k)}$
- attempts to augment $H^{(k)}$ with second derivative information gained from $k^{\text {th }}$ iteration
- ideally, want the update to change $H^{(1)}$ into a close approximation of $G^{(k)-1}$
- one method of doing this involves defining the differences:

$$
\begin{aligned}
\boldsymbol{\delta}^{(k)} & =\alpha^{(k)} \boldsymbol{s}^{(k)}=\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)} \\
\boldsymbol{\gamma}^{(k)} & =\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}
\end{aligned}
$$

then the Taylor series of the gradient $g^{(k)}$ gives

$$
\boldsymbol{\gamma}^{(k)}=G^{(k)} \boldsymbol{\delta}^{(k)}+o\left(\left\|\boldsymbol{\delta}^{(k)}\right\|\right)
$$

where higher order terms can be neglected.

- since $\boldsymbol{\delta}^{(k)}$ and $\boldsymbol{\gamma}^{(k)}$ can only be calculated after the line search, $H^{(k)}$ does not usually relate them correctly
- thus, $H^{(k+1)}$ is chosen to correctly relate the differences (quasi-Newton condition):

$$
H^{(k+1)} \boldsymbol{\gamma}^{(k)}=\boldsymbol{\delta}^{(k)}
$$

- Computationally, one approach is to introduce a recursive form:

$$
H^{(k+1)}=H^{(k)}+E^{(k)}
$$

- let $E^{(k)}$ be the rank one symmetric matrix $a v v^{T}$
- satisfying the quasi-Newton condition requires:

$$
H^{(k)} \boldsymbol{\gamma}^{(k)}+a \boldsymbol{v} \boldsymbol{v}^{T} \boldsymbol{\gamma}^{(k)}=\boldsymbol{\delta}^{(k)}
$$

- which gives rise to the rank one formula:

$$
H^{(k+1)}=H+\frac{(\boldsymbol{\delta}-H \boldsymbol{\gamma})(\boldsymbol{\delta}-H \boldsymbol{\gamma})^{T}}{(\boldsymbol{\delta}-H \boldsymbol{\gamma})^{T} \boldsymbol{\gamma}}
$$

Example 6

- Consider the quadratic function:

$$
\begin{aligned}
L(\boldsymbol{u}) & =10 u_{1}^{2}+u_{2}^{2} \\
& =\boldsymbol{u}^{T}\left[\begin{array}{rr}
10 & 0 \\
0 & 1
\end{array}\right] \boldsymbol{u}
\end{aligned}
$$

where the initial point is given by

$$
\boldsymbol{u}^{(1)}=\left[\begin{array}{c}
0.1 \\
1
\end{array}\right]
$$

- Gradient:

$$
\boldsymbol{g}(\boldsymbol{u})=\left[\begin{array}{c}
20 u_{1} \\
2 u_{2}
\end{array}\right]
$$

- Hessian:

$$
G(\boldsymbol{u})=\left[\begin{array}{cc}
20 & 0 \\
0 & 2
\end{array}\right]
$$

Iteration $k=1$

$$
\boldsymbol{g}^{(1)}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad H^{(1)}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad s^{(1)}=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right] \quad \alpha^{(1)}=0.0909
$$

Iteration $k=2$

$$
\begin{gathered}
\left.\begin{array}{c}
\Rightarrow \boldsymbol{u}^{(2)}=\boldsymbol{u}^{(1)}+\alpha^{(1)} \boldsymbol{s}^{(1)}=\left[\begin{array}{c}
.1 \\
1
\end{array}\right]+(0.0909)\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-0.0818 \\
0.8182
\end{array}\right] \\
\boldsymbol{g}^{(2)}=\left[\begin{array}{c}
-1.6364 \\
1.6364
\end{array}\right] \\
\boldsymbol{\delta}^{(1)}=\boldsymbol{u}^{(2)}-\boldsymbol{u}^{(1)}=\left[\begin{array}{c}
-0.0818 \\
0.8182
\end{array}\right]-\left[\begin{array}{c}
0.1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-0.1818 \\
0.1818
\end{array}\right] \\
\boldsymbol{\gamma}^{(1)}=\boldsymbol{g}^{(2)}-\boldsymbol{g}^{(1)}=\left[\begin{array}{c}
-1.6364 \\
1.6364
\end{array}\right]-\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3.6363 \\
-0.3636
\end{array}\right] \\
\boldsymbol{v}^{(1)}=\boldsymbol{\delta}^{(1)}-H^{(1)} \boldsymbol{\gamma}^{(1)}=\left[\begin{array}{c}
-0.1818 \\
0.1818
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-3.6363 \\
-.3636
\end{array}\right]=\left[\begin{array}{c}
3.4545 \\
0.1818
\end{array}\right] \\
H^{(2)}=H^{(1)}+\frac{\left(\boldsymbol{\delta}^{(1)}-H^{(1)} \boldsymbol{\gamma}^{(1)}\right)\left(\boldsymbol{\delta}^{(1)}-H^{(1)} \boldsymbol{\gamma}^{(1)}\right)^{T}}{\left(\boldsymbol{\delta}^{(1)}-H^{(1)} \boldsymbol{\gamma}^{(1)}\right)^{T} \boldsymbol{\gamma}^{(1)}}=\left[\begin{array}{cc}
0.0550 & -0.0497 \\
-0.0497 & 0.9974
\end{array}\right]
\end{array} . \quad \begin{array}{c}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{s}^{(2)}=-H^{(2)} \boldsymbol{g}^{(2)}=\left[\begin{array}{cc}
0.0550 & -0.0497 \\
-0.0497 & 0.9974
\end{array}\right]\left[\begin{array}{c}
-1.6364 \\
1.6364
\end{array}\right]=\left[\begin{array}{c}
0.1713 \\
-1.7135
\end{array}\right] \\
\alpha^{(2)}=0.4775
\end{gathered}
$$

Iteration $k=3$

$$
\begin{gathered}
\Rightarrow \boldsymbol{u}^{(3)}=\boldsymbol{u}^{(2)}+\alpha^{(2)} \boldsymbol{s}^{(2)}=\left[\begin{array}{c}
-0.0818 \\
0.8182
\end{array}\right]+(0.4775)\left[\begin{array}{c}
0.1713 \\
-1.7135
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\boldsymbol{g}^{(3)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\boldsymbol{\delta}^{(2)}=\boldsymbol{u}^{(3)}-\boldsymbol{u}^{(2)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
-0.0818 \\
0.8182
\end{array}\right]=\left[\begin{array}{c}
0.0818 \\
-0.8182
\end{array}\right] \\
\boldsymbol{\gamma}^{(2)}=\boldsymbol{g}^{(3)}-\boldsymbol{g}^{(2)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
-1.6364 \\
1.6364
\end{array}\right]=\left[\begin{array}{c}
1.6364 \\
-1.6364
\end{array}\right] \\
\boldsymbol{v}^{(2)}=\boldsymbol{\delta}^{(2)}-H^{(2)} \boldsymbol{\gamma}^{(2)}=\left[\begin{array}{c}
-0.0895 \\
0.8953
\end{array}\right] \\
H^{(3)}=\left[\begin{array}{cc}
0.05 & 0 \\
0 & 0.5
\end{array}\right]
\end{gathered}
$$

- Note that the algorithm terminates with $\boldsymbol{g}^{*}=\mathbf{0}$ and $H^{*}=G^{-1}$
- It can be proven that under some mild conditions, the method terminates on a quadratic function in at most $n+1$ steps, with $H^{(n+1)}=G^{-1}$
- Two other well-known quasi-Newton algorithms are:
- Davidon-Fletcher-Powell (DFP):

$$
H_{D F P}^{(k+1)}=H+\frac{\boldsymbol{\delta} \boldsymbol{\delta}^{T}}{\boldsymbol{\delta}^{T} \boldsymbol{\gamma}}-\frac{H \boldsymbol{\gamma} \boldsymbol{\gamma}^{T}}{\boldsymbol{\gamma}^{T} H \boldsymbol{\gamma}}
$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS):

$$
H_{B F G S}^{(k+1)}=H+\left(1+\frac{\boldsymbol{\gamma}^{T} H \boldsymbol{\gamma}}{\boldsymbol{\delta}^{T} \boldsymbol{\gamma}}\right) \frac{\boldsymbol{\delta} \boldsymbol{\delta}^{T}}{\boldsymbol{\delta}^{T} \boldsymbol{\gamma}}-\left(\frac{\boldsymbol{\delta} \boldsymbol{\gamma}^{T} H+H \boldsymbol{\gamma} \boldsymbol{\delta}^{T}}{\boldsymbol{\delta}^{T} \boldsymbol{\gamma}}\right)
$$

- The BFGS algorithm is perhaps the most widely used Quasi-Newton numerical algorithm and works well with low accuracy line searches
(mostly blank)
(mostly blank)

