
ECE5570: Optimization Methods for Systems and Control 2–1

Mathematics and Linear Systems Review

2.1: Matrix Algebra: Basics

� Vectors are quantities that contain magnitude and direction
information

– These quantities can be represented as a linear combination of
basis vectors

x D x1e1 C x2e2 C � � � xnen

where fe1; e2; : : : ; eng define the fundamental directions in the
given n-dimensional space.

– This representation gives rise to a simple shorthand notation that
will be used consistently throughout this course,

x D Œx1 x2 x3 � � � xn�T

� A matrix can be viewed as a “two-dimensional vector”:

A D

264 a11 � � � a1m

::: : : : :::

an1 � � � anm

375
– Notation )A is n rows long by m columns wide, or more

compactly, A is .n � m/.

– A common application of matrices is to summarize information
about a set of simultaneous equations; although there are many
other ways matrices may arise.
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Concepts in Matrix Algebra

Transpose
�
AT

�
) interchange rows and columns

� .AB/T
D BT AT

� xT y D x � y (a scalar quantity, inner product)

� xyT
D A (a matrix in dyadic form, outer product)

Determinant .jAj/ ) only defined for square matrices

jAj D a11C11 C a12C12 C � � � C a1nC1n

where C1i is the cofactor of a1i : Note that the determinant can be
expanded about any row or column of A

� jABj D jAj jBj

� jAj D
ˇ̌
AT

ˇ̌
Inverse

�
A�1

�
) A�1A D AA�1

D I

� A�1
D 1=jAj fadj Ag adj A D fcofactor.A/gT

� .AB/�1
D B�1A�1

�
�
AT

��1
D

�
A�1

�T

�
ˇ̌
A�1

ˇ̌
D 1=jAj

Trace .trace A/ )

nX
iD1

ai i (defined for square matrices only)

� trace A C B D trace A C trace B

� trace ABC D trace BCA D trace CAB

Special Matrices � Symmetric AT
D A

� Skew Symmetric AT
D �A

� Orthogonal A�1
D AT
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Partitioned Matrices

� Many of the matrix operations presented above can be generalized to
much larger matrices using simple notation through partitioning.

� What is a partitioned matrix?

– A matrix that has been subdivided into smaller matrices

A D

266664
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

377775 D

"
A11 A12

A21 A22

#

x D

266664
x1

x2

x3

x4

377775 D

"
X1

X2

#

) Ax D

"
A11X1 C A12X2

A21X1 C A22X2

#

Some Properties of Partitioned Matrices

� Block Diagonal Matrices )

D D

264 A11 0 0

0 A22 0

0 0 A33

375
– jDj D jA11j jA22j jA33j

– D�1
D diag fA�1

11 ; A�1
22 ; A�1

33 g
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� Arbitrarily Partitioned Matrices )

M D

"
A B

C D

#
where the blocks are not necessarily square.

– Definitions:

SCHUR COMPLEMENT of A ) D � CA�1B

SCHUR COMPLEMENT of D ) A � BD�1C

This leads to the following form of the block matrix inverse:

M �1
D

"
.A � BD�1C /�1

�.A � BD�1C /�1BD�1

�D�1C.A � BD�1C /�1 D�1
C D�1C.A � BD�1C /�1BD�1

#

If A is 2 � 2 ,

A D

"
a b

c d

#

then we can write

A�1
D

1

ad � bc

"
d �b

�c a

#
which is the form of the familiar 2 � 2 inverse.
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2.2: Matrix Algebra: Linear Independence and Rank

� Another important concept associated with n-dimensional vector
spaces is linear independence.

� Definition: A set of .n � 1/ vectors .a1; a2; : : : ; am/ is linearly
dependent if and only if

x1a1 C x2a2 C � � � C xmam D 0 ) x1 D x2 D � � � D xm D 0

– In other words, for this condition to be true, there must exist a
vector ak that can be obtained as a combination of one or more of
the other vectors.

– If this condition cannot be met, then the vectors are linearly
independent.

The concept of linear independence can also be related to the rank of a
matrix,

x1a1 C x2a2 C � � � C xmam D

h
a1 a2 � � � am

i
266664

x1

x2

:::

xm

377775 D 0

The columns of a matrix can be thought of as vectors and the definition
for the rank of a matrix now becomes apparent:

rank A D maximum number of linearly independent rows or
columns of A

� if A is .n � m/ with n < m, then rankfAg � n

� if A is .n � m/ with n > m, then rank A � m
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� if A is .n � n/ and –

– rank A < n, then jAj D 0; A�1 does not exist and A is said to be
singular

– rank A D n; then the rows/columns of A form a basis set

Example

a1 D

264 3

1

0

375 a2 D

264 3

1

0

375 a3 D

264 0

0

2

375
� Clearly,

a1 D a2 ) x1a1 C x2a2 C 0 � a3 D 0

for any case where
x1 D �x2

� So .a1; a2; a3/ are not linearly independent, which implies

A D

264 3 3 0

1 1 0

0 0 2

375 ) singular

2.3: Matrix Algebra: Eigenvalues / Eigenvectors

� One particularly useful property of a square matrix is that there exists
a set of n scalars, �i , and a corresponding set of n vectors, wi , such
that:

Awi D �iwi i D 1; : : : ; n

– The n eigenvalues of A can be identified by finding the n roots of

j�iI � Aj D 0
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ı The eigenvalues of A make the matrix �I � A singular so that
there exists a non-zero vector w which satisfies .�I � A/ w D 0

for each �.

ı These vectors are called the eigenvectors of A.

– Using partitioned matrices, the eigenvalue/eigenvector relationship
can be written as:

A
h

w1 w2 � � � wn

i
D

h
w1 w2 � � � wn

i
ƒ

where

ƒ D

266664
�1

�2

: : :

�n

377775
) AW D Wƒ

– In the (common) case where the n eigenvectors of A are linearly
independent, the inverse W �1 exists and we can write the
eigenvalue-eigenvector decomposition of A as

A D WƒW �1

which is a special form of similarity transformation.

Example

A D

264 3 3 0

1 1 0

0 0 2

375
j�I � Aj D .� � 2/

�
�2

� 4�
�

D 0 ) � D 4; 2; 0
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�1 D 4 w1 D

h
3 1 0

iT

�2 D 2 w2 D

h
0 0 1

iT

�3 D 0 w3 D

h
1 �1 0

iT

so we can write the eigen-decomposition as

A D

264 3 3 0

1 1 0

0 0 2

375 D

264 3 0 1

1 0 �1

0 1 0

375
264 4

2

0

375
264 0:25 0:25 0

0 0 1

0:25 �0:75 0

375
� Eigenvectors are unique up to a scaling factor

– It is customary to scale the eigenvectors so that they each have
unity magnitude (Matlab’s eig routine generates the eigenvectors
this way)

– In this case the decomposition from the example is written

A D

264 0:9487 0 �0:7071

0:3162 0 0:7071

0 1 0

375
264 4

2

0

375
264 0:7906 0:7906 0

0 0 1

�0:3536 1:0607 0

375
� Dual Eigenvectors are defined from the inverse of the eigenvector

matrix

W �1
D

264 vT
1
:::

vT
n

375 D V

and satisfy the dual eigenvalue problem:
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vT A D �vT

2.4: Matrix Algebra: Vector Calculus

Matrix Calculus

� Differentiation and integration of a vector with respect to a scalar:

dx=ds D

266664
dx1=ds

dx2=ds

:::

dxb=ds

377775
Z

xds D

2666666664

Z
x1dsZ
x2ds

:::Z
xnds

3777777775
� Differentiation of a scalar with respect to a vector (gradient):

@s.x/=@x D

h
@s=@x1

@s=@x2 � � � @s=@xn

i
� Differentiation of a vector with respect to a vector (Jacobian):

@a.x/=@x D

266664
@a1=@x1

@a1=@x2 � � � @a1=@xn

@a2=@x1
: : : :::

::: : : : :::

@am=@x1
@am=@x2 � � � @am=@xn

377775
� Second derivative of a scalar with respect to a vector (Hessian):

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Mathematics and Linear Systems Review 2–10

@2s.x/=@x2 D

266664
@2s=@x2

1
@2s=@x1@x2 � � � @2s=@x1@xn

@2s=@x2@x1
: : : :::

::: : : : :::

@2s=@xn@x1
@2s=@xn@x2 � � � @2s=@x2

n

377775
� Some additional results you may find useful:

d=dt.A�1/ D �A�1 PAA�1

@=@A ftrace .A/g D I

@=@A ftrace .BAD/g D BT DT

@=@A
˚
trace .ABAT /

	
D 2AB

@=@A fjBADjg D jBADj A�T

Taylor Series Expansions

� In this course, we will focus primarily on optimizing scalar functions of
a set of variables

� The approach taken to accomplish this task relies heavily on the use
of Taylor Series expansions:

– Expansion of f .x/ around a point x0 (where x is a scalar variable):

f .x/ D f .x0/ C

�
df

dx

�
jx0

.x � x0/ C

�
1

2

� �
d 2f

dx2

�
jx0

.x � x0/
2

C � � �

– But what if x is a vector variable?

f .x/ D f .x0/C

�
@f

@x

�
jx0

.x�x0/C

�
1

2

�
.x � x0/

T

�
@2f

@x2

�
.x � x0/C � � �

� How is a Taylor series useful for finding the minima (and maxima) of a
function f .x/ ?
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– Consider scalar x with f .x0/ a minimum

ı f .x/ > f .x0/ for all x in a neighborhood of x0

)
df

dx
jx0

.x � x0/ C

�
1

2

� �
d 2f

dx2

�
jx0

.x � x0/
2

C � � � > 0

ı For x very close to x0,
�

df

dx

�
.x � x0/ dominates the expression

on the left side of the inequality

ı Since x is arbitrary, x � x0 can be both positive and negative )

df

dx
jxo must be zero!!

ı If this is the case,
�

1

2

� �
d 2f

dx2

�
.x � x0/

2 dominates the

expression on the left hand side of the inequality; and since
.x � x0/

2 > 0,

d 2f

dx2
jx0

> 0

– So, the Taylor Series allows us to establish important conditions for
use in identifying minima (and maxima) of a function

– Similar conditions can be developed for problems where x is a
vector variable:

@f

@x
D 0

.x � x0/
T

�
@2f

@x2

�
jx0

.x � x0/ > 0

ı But how can I tell whether this is true for all x ?

Lecture notes prepared by M. Scott Trimboli. Copyright c 2013-2021, M. Scott Trimboli



ECE5570, Mathematics and Linear Systems Review 2–12

Quadratic Forms

� The expression above is a special type of scalar ) one that is written
in a quadratic form

General Quadratic Form ) xT Ax

� The matrix, A , associated with a quadratic form has special
characteristics which describe the properties of xT Ax:

– A can always be written as a symmetric matrix by decomposing
into its symmetric and anti-symmetric parts:

As D 1=2
�
A C AT

�
Aa D 1=2

�
A � AT

�
) A D As C Aa

xT Ax D xT Asx C xT Aax D xT Asx C 1=2
˚
xT Ax � xT AT x

	
) xT Ax D xT Asx

– A is:

positive definite .A > 0/ if xT Ax > 0 8x ¤ 0

positive semidefinite .A � 0/ if xT Ax � 0 8x ¤ 0

negative semidefinite .A � 0/ if xT Ax � 0 8x ¤ 0

negative definite .A < 0/ if xT Ax < 0 8x ¤ 0

– If A is positive definite:

ı jAj > 0

ı BT AB > 0 if B is real and nonsingular or if B has maximum
column rank

ı A�1 > 0
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ı An > 0

ı 9 a nonsingular B 3 A D BT B (matrix square root)

– Tests for definiteness:
�i > 0 ) A > 0

�i � 0 ) A � 0

�i � 0 ) A � 0

�i < 0 ) A < 0

– Test for positive definiteness: determinant of every principal
subminor of A is positive!
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2.5 Linear Systems: State-Space Representations

� What do we mean by a “state-space” representation

– A representation of the dynamics of an nth -order system as a
system of first-order differential equations in an n-vector called the
system state vector

� A classic example is given by second-order spring-mass-damper:

m

u(t)

y(t)

k b

– Writing the equations of motion according to Newton’s 2nd Law,

m Ry.t/ D u.t/ � b Py.t/ � ky.t/

Ry.t/ D

�
1

m

�
Œu.t/ � b Py.t/ � ky.t/�

� Now defining the state vector

x.t/ D

"
y.t/

Py.t/

#
we have

Px.t/ D

"
Py.t/

Ry.t/

#
D

24 Py.t/

�
k

m
y.t/ �

b

m
Py.t/ C

1

m
u.t/

35
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� We can write this in the general form,

Px.t/ D Ax.t/ C Bu.t/

where A and B are constant matrices.

� Complete the picture by setting y.t/ as a function of x.t/. The general
form is the linear equation,

y.t/ D C x.t/ C Du.t/

where C and D are constant matrices.

� Thus we have the fundamental form for a linear state-space model:

Px.t/ D Ax.t/ C Bu.t/

y.t/ D C x.t/ C Du.t/

where u.t/ is the input, x.t/ is the “state”, and A, B, C , D are
constant matrices.

Definition: The state of a system at time t0 is the minimum amount of
information at t0 that, together with the input u.t/; t � t0, uniquely
determines the behavior of the system for all t � t0 .

� A state-space description may also be defined for more general
systems where parameters are time-varying, i.e., the matrices A, B,
C , D are not constant.

– For this case, we may express the general state equation as,

Px.t/ D f .x.t/; u.t/; t/

or if the system is linear,
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Px.t/ D A.t/x.t/ C B.t/u.t/

Note that the vector-valued term u.t/ allows for a multiple-input
system.

� The time-domain solution of this set of linear, time-varying differential
equations is given by:

x.t/ D ˆ.t; t0/x.t0/ C

Z t

t0

ˆ.t; �/B.�/u.�/d�

where ˆ.t; t0/ is referred to as the state transition matrix.

– ˆ.t; t0/ satisfies the matrix differential equation

d

dt
fˆ.t; t0/g D A.t/ˆ.t; t0/

ˆ.t0; t0/ D I

– Other properties of ˆ.t; t0/:

ı ˆ.t2; t1/ˆ.t1; t0/ D ˆ.t2; t0/

ı ˆ�1.t; t0/ exists for all t; t0 and ˆ�1.t; t0/ D ˆ.t0; t /

� For linear, time-invariant systems, the state transition matrix takes a
much simpler form:

ˆ.t; t0/ D eA.t�t0/

where

eAt
D I C At C

1

2
A2t2

C
1

3Š
A3t3

C � � �

– So, for linear, time-invariant systems,

ı ˆ.t2; t1/ D ˆ.t2 � t1/ D ˆ.4t/

ı ˆ�1.t2 � t1/ D ˆ.t1 � t2/

– Some standard methods to compute eAt
W
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ı eAt
D L�1

˚
.sI � A/�1

	
ı A D WƒW �1

) eAt
D WeƒtW �1 (where

eƒt
D diag

˚
e�1t ; : : : ; e�nt

	
ı Numerical calculation of series expansion with truncation to get

eA4t

Variational Equations

� Why are linear equations important in a non-linear world? Because
they allow us to expand the solution of a non-linear problem to a wide
range of similar problems

Px D f .x; u; t /

Px C ı Px D f .x C ıx; u C ıu; t /

Px C ı Px � f .x; u; t /jx0;u0
C @f=@xjx0;u0

ıx C @f=@xjx0;u0
ıu

) ı Px D Aıx C Bıu

This gives a linear differential equation describing small purturbations
about a nominal trajectory

State Transformations

� Another important characteristic of state variable representations is
that they are not unique. Consider the linear state-space equation

Px D Ax C Bu

– Let T be a nonsingular, constant matrix such that

Kx D T x

Px D T �1 PKx D AT �1
Kx C Bu
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) PKx D TAT �1
Kx C TBu

– Example state-space representations include: modal form, control
canonical form, and observer canonical form - all model the same
system

Discrete-Time State Space Representations

� If we assume that u can be approximated by a piecewise constant
over every interval kT � t � .k C 1/T , then the continuous-time state
space representation can be extended to discrete-time systems:

x.Œk C 1�T / D ˆ.Œk C 1�T; kT /x.kT / C

Z .kC1/T

kT

ˆ.Œk C 1�T; �/Gu.�/d�

x.Œk C 1�T / D ˆx.kT / C

�Z
ˆGd�

�
u.kT /

– So, for linear time-invariant systems,

x.k C 1/ D ADx.k/ C BDu.k/

where

AD D ˆ.T / BD D

Z T

0

ˆ.�/Gd�

Note: x.k C 1/ can also be written as:

x.k C 1/ D Ak
Dx.0/ C

k�1X
iD0

Ak�1�i
D BDu.i/
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2.6: Linear Systems: Controllability and Observability

Linear, Time-Invariant State Space Representations

� Continuous time
Px D Ax C Bu

y D C x C Du

For strictly proper systems, D D 0, and we can write the solution as

x.t/ D eAtx0 C

Z t

0

eA.t��/Gu.�/d�

� Discrete time
xkC1 D ADxk C BDuk

yk D C xk C Duk

For strictly proper systems, D D 0, and we can write the solution as

xkC1 D Ak
Dx0 C

k�1X
iD0

Ak�1�i
D BDui

Introduction to Controllability and Observability

� Two particularly important questions to address for linear systems are
whether or not:

1. we can use our inputs to drive the system to an arbitrary state

2. we can use our outputs to reconstruct the states

� Linear Algebra Preliminaries:

– Consider a set of linear algebraic equations defined by:
R˛ D ˇ

where R is a .p � q/ matrix, ˛ is a .q � 1/ vector and ˇ is a .p � 1/

vector
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– When will solutions to this set of equations exist?

1. if p D q, a unique solution will exist provided jRj ¤ 0

2. if p > q, (more equations than unknowns), a unique solution given
by ˛ D .RT R/�1RT ˇ will exist provided rank.R/ D q

3. if p < q, (fewer equations than unknowns),

(a) an infinite number of solutions will exist for any ˇ provided
rank.R/ D p

(b) but if rank.R/ < p , an infinite number of solutions will exist only
if ˇ lies in a certain subspace of the q- dimensional space (i.e.,
ˇ cannot be arbitrary!)

� These concepts will help us to address our two questions above

Controllability

Definition )

A state is controllable at t D t0 if there exists a finite t1 > t0 such
that, for any x.t0/ and x.t1/, there exists an input u.t/, t 2 Œt0; t1�,
which transfers x.t0/ to x.t1/.

If all states are controllable for all t0; then the system is
controllable.

� Necessary & Sufficient Conditions for Controllability:

1. Continuous ) rank
h

B AB A2B � � � An�1B
i

D n

2. Discrete ) rank
h

BD ADBD A2
DBD � � � An�1

D BD

i
D n

� Where do these conditions come from? We’ll consider the
discrete-time case here.
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– From above,

xkC1 D Ak
Dx.0/ C

k�1X
iD0

Ak�1�i
D BDui

D Ak
Dx.0/ C

h
Ak�1

D BD Ak�2
D BD � � � ADBD BD

i
26666664

u0

u1

:::

uk�2

uk�1

37777775
)

h
Ak�1

D BD � � � ADBD BD

i
v D xkC1 � Ak

Dx0

– From our linear algebra preliminaries, there will be an infinite
number of solutions, v, for any arbitrary xkC1 and x0 only if

rankŒC� D rank
h

Ak�1
D BD � � � BD

i
D n

Observability

Definition )

A state is observable at t D t0 if, by observing the output y.t/ during a
finite time interval Œt0; t1� , the state x.t0/ can be determined.
If all states are observable for every t0, then the system is observable

� Necessary & Sufficient Conditions for Observability:

1. Coninuous ) rank
h

C T AT C T
� � � .AT /n�1C T

i
D n

2. Discrete ) rank
h

C T AT
DC T

� � � .AT
D/n�1C T

i
D n

� These conditions can be developed in a manner analogous to the
development for controllability
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Useful Matrix Identities

Basic Relationships

A.B C C / D AB C AC

.A C B/T
D AT

C BT

.AB/T
D BT AT

.AB/�1
D B�1A�1

.A�1/T
D .AT /�1

Useful Derivative Identities

Gradients
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Hessians
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Jacobians
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