ECE5570: Optimization Methods for Systems and Control 2—1

Mathematics and Linear Systems Review

2.1: Matrix Algebra: Basics

e \ectors are quantities that contain magnitude and direction
information

— These quantities can be represented as a linear combination of
basis vectors
X = Xi€1+ x84+ -+ Xp€y
where {eq, e,, ...,e,} define the fundamental directions in the
given n-dimensional space.

— This representation gives rise to a simple shorthand notation that
will be used consistently throughout this course,
x = [x; x2x3 -~ xn]T
e A matrix can be viewed as a “two-dimensional vector”:

aipy - dim
A=

Apl - dnm

— Notation = A is n rows long by m columns wide, or more
compactly, A is (n x m).

— A common application of matrices is to summarize information
about a set of simultaneous equations; although there are many
other ways matrices may arise.
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Concepts in Matrix Algebra

Transpose (A”) = interchange rows and columns
o (AB)" = BT AT
ex’y =x-y (ascalar quantity, inner product)
exy’ = A (amatrix in dyadic form, outer product)

Determinant (|A|) = only defined for square matrices
Al = anCi +anCp+---+a,Ciy,
where Cy; is the cofactor of a;. Note that the determinant can be
expanded about any row or column of 4
o [AB| =[A||B|
o |A] = |A"]
Inverse (47') => A7'A=A447"=1

o A7l =1/ {adj A} adj A = {cofactor(A)}T
e (AB) ' =B7!4!

° (AT)_1 = (A_I)T

° |A_1| = 1/)4

Trace (trace A) = Zaii (defined for square matrices only)
i=1

e trace A + B = trace A + trace B
o trace ABC = trace BCA = trace CAB

Special Matrices ¢ Symmetric A7 = 4
e Skew Symmetric AT = —4
e Orthogonal A™' = 47
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Partitioned Matrices

e Many of the matrix operations presented above can be generalized to
much larger matrices using simple notation through partitioning.

e What is a partitioned matrix?

— A matrix that has been subdivided into smaller matrices

aip diz a1z dig

A = dz) dzz|d23 dy4 | An | A
as| asp|dsz dass Ary | A

aqr A42 | A43 dyg

X1

X2 X1
X = _ = B
X3 X

X4

A X A X
o Ax — 11X1 + A1pX>
Ay X1+ AnX,

Some Properties of Partitioned Matrices

¢ Block Diagonal Matrices =

Ay 0| 0 ]
D=| 0 |A»n| 0
0| 0 |As

— |D| = |A11| |Ax| |A33]
- D7 = diag {4, 45}, A3
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e Arbitrarily Partitioned Matrices =

[t

where the blocks are not necessarily square.

— Definitions:
SCHUR COMPLEMENT of A = D —CA™'B
SCHUR COMPLEMENT of D = A — BD~'C

This leads to the following form of the block matrix inverse:

o (A— BD'C)™! —(A—BD7'C)'BD™!
| =D 'c(4a-BD'C)' D'+ D 'c(4—BD'C) 'BD!

-1

1 d —b
A7 =
ad—bc|:—c a :|

which is the form of the familiar 2 x 2 inverse.

If Ais2x2,

then we can write
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2.2: Matrix Algebra: Linear Independence and Rank

e Another important concept associated with n-dimensional vector
spaces is linear independence.

e Definition: A set of (n x 1) vectors (ay, a,, ..., a,) is linearly
dependent if and only if

xia;+xa,+---+x,4, =0 = x1=x,=---=x, =0

— In other words, for this condition to be true, there must exist a
vector a, that can be obtained as a combination of one or more of
the other vectors.

— If this condition cannot be met, then the vectors are linearly
independent.

The concept of linear independence can also be related to the rank of a
matrix,

X1

X2
xlal—l—xzaz—l—---—l—xmam:[alaz---am] . =0

Xm

The columns of a matrix can be thought of as vectors and the definition
for the rank of a matrix now becomes apparent:

rank A = maximum number of linearly independent rows or
columns of 4

o if Ais (n x m) with n < m, then rank{A} <n

oif Ais (n x m)withn > m, thenrank 4 <m
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oif Ais(n xn)and —

—rank A < n, then |A] = 0, A~ does not exist and A4 is said to be
singular

—rank A = n, then the rows/columns of 4 form a basis set

Example
[ 3] [ 3] [ 0 |
a = | 1 a = | 1 a;= | 0
i 0 i i 0 | i 2 i
e Clearly,

a, =a, = x1a1+x2a2—|—0-a320

for any case where
X1 = —Xp

e SO (a;, a», as) are not linearly independent, which implies
(330 |
A=1]110 | = singular
| 00 2 |

2.3: Matrix Algebra: Eigenvalues / Eigenvectors

e One particularly useful property of a square matrix is that there exists
a set of n scalars, A;, and a corresponding set of n vectors, w;, such
that:

Awizk,-wi i=1,...,n

— The n eigenvalues of A can be identified by finding the n roots of
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o The eigenvalues of A make the matrix A/ — A singular so that

there exists a non-zero vector w which satisfies (Al — A)w =0
for each A.

o These vectors are called the eigenvectors of A.

— Using partitioned matrices, the eigenvalue/eigenvector relationship
can be written as:

A[wlwz-uwn]:[wlwz---wn]A
where

A
A

An

= AW =WA

— In the (common) case where the n eigenvectors of 4 are linearly
independent, the inverse W ™! exists and we can write the
eigenvalue-eigenvector decomposition of 4 as

A=WAW!

which is a special form of similarity transformation.

Example
[ 330 |
A=1110
| 002

AL —Al=(A—-2)(A*—41) =0 = 1=4,2,0
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A=

A =4
Ay =2
A3:O

[L%)

31

00

0

1

17

17

T
w3=[1 1 0]

SO we can write the eigen-decomposition as

(330] [30 1
110|l=]10 =1
l002] [01 0

4

0

025 025 0 |
0 0 1
| 0.25 —0.75 0 |

e Eigenvectors are unique up to a scaling factor

— It is customary to scale the eigenvectors so that they each have

unity magnitude (Matlab’s eig routine generates the eigenvectors
this way)

— In this case the decomposition from the example is written

e Dual Eigenvectors are defined from the inverse of the eigenvector

matrix

[ 0.9487 0 —0.7071 |
0.3162 0 0.7071

0 1 0

Wl =

and satisfy the dual eigenvalue problem:

0.7906 0.7906 0 |
0 0 1

| —0.3536 1.0607 0 |
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vl A = !

2.4: Matrix Algebra: Vector Calculus

Matrix Calculus

¢ Differentiation and integration of a vector with respect to a scalar:

= - /xlds
dxl/ds
dx/ds _ dxz./ds /xds _ /deS

dxp/ g .
B b/ - /xnds

e Differentiation of a scalar with respect to a vector (gradient):
8s(x)/3x — [ 8s/3xl 8s/3x2 as/axn :|

e Differentiation of a vector with respect to a vector (Jacobian):

8a1/3xl 8a1/3x2 aal/axn
ad

8a(x)/ax _ a2/8x1
8am/3xl 3am/3x2 8am/3xn

e Second derivative of a scalar with respect to a vector (Hessian):
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825/8x% 32S/axlax2 s 82S/axlaxn
32
Ps(x)/gx? = Vi
82S/ 0x,0x1 82S/ dxpdxy *°* azs/ ax,%

e Some additional results you may find useful:
d/a(A™) = —A71447!
/a4 {trace (A)} = 1
8/s4 {trace (BAD)} = BT DT
904 {trace (ABA")} = 2AB
9/s4{|BAD|} = |BAD| A"

Taylor Series Expansions

e In this course, we will focus primarily on optimizing scalar functions of
a set of variables

e The approach taken to accomplish this task relies heavily on the use
of Taylor Series expansions:

— Expansion of f(x) around a point x, (where x is a scalar variable):
2
7 = £+ (G ) o =50+ (5) (G5 ) o G =507 o
— But what if x is a vector variable?
2
7@ = £+ () It —xor+ () =0 (55 ) =0+

e How is a Taylor series useful for finding the minima (and maxima) of a
function f(x) ?
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— Consider scalar x with f(x¢) a minimum

o f(x) > f(xo) forallxina neighborhood of x

2
= Y+ G) (%) o (= x0) e >0

d , :
o For x very close to xo, (d—f) (x — xo) dominates the expression
X

on the left side of the inequality

o Since x is arbitrary, x — xy can be both positive and negative =
d
—f|x0 must be zero!!
dx
1\ [d*f
dx?
expression on the left hand side of the inequality; and since

(x — x0)> > 0,

o If this is the case, (x — xo)* dominates the

d*f
dxzl =0

— So, the Taylor Series allows us to establish important conditions for
use in identifying minima (and maxima) of a function

— Similar conditions can be developed for problems where x is a
vector variable:

o
E =0
2
=0 (525 ) o = x0) > 0

o But how can | tell whether this is true for all x ?
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Quadratic Forms

e The expression above is a special type of scalar = one that is written
in a quadratic form

General Quadratic Form = xTAx

e The matrix, A , associated with a quadratic form has special
characteristics which describe the properties of x” Ax:

— A can always be written as a symmetric matrix by decomposing
into its symmetric and anti-symmetric parts:
Ag=12(4+4")

Ay =12(A—-A")
= A=A, + A,
xTAx = xTAx +xTA4,x = xTA,x + 1/2 {xTAx —xTATx}

= x"Ax = xTA,x
— Alis:
positive definite (A>0) ifxTAx >0 Vx #0
positive semidefinite (4 >0) ifx"Ax >0 Vx #0
negative semidefinite (4 <0) ifx’Ax <0 Vx #0
negative definite (A<0) ifxTAx <0 Vx #0
— If A is positive definite:
o|A|l >0
o B"AB > 0 if B is real and nonsingular or if B has maximum
column rank
oA '>0
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o A" >0

o Janonsingular B> A= BB (matrix square root)
— Tests for definiteness:
i>0=>A4>0
i >0=A4>0
i<0=>A4<0
ALi<0=>A4<0

NN

— Test for positive definiteness: determinant of every principal
subminor of A is positive!
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2.5 Linear Systems: State-Space Representations

e What do we mean by a “state-space” representation

— A representation of the dynamics of an n'" -order system as a
system of first-order differential equations in an n-vector called the
system state vector

e A classic example is given by second-order spring-mass-damper:

— Writing the equations of motion according to Newton’s 2"¢ Law,
my(t) =u(t) —by(t) —ky()
. 1 :
50 = () ) 30~ ky 1)

e Now defining the state vector

| y@)
¥ = [ 5 (1) }
we have

Lol 10
m m m
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e We can write this in the general form,

x(t) = Ax(t) + Bu(?)

where A and B are constant matrices.

e Complete the picture by setting y(¢) as a function of x(¢). The general
form is the linear equation,

y(t) =Cx(t) + Du(r)
where C and D are constant matrices.

e Thus we have the fundamental form for a linear state-space model:

x() = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where u(t) is the input, x(¢) is the “state”, and A4, B, C, D are
constant matrices.

Definition: The state of a system at time ¢, is the minimum amount of
information at ¢, that, together with the input u(z), t > ¢y, uniquely
determines the behavior of the system for all r > ¢, .

e A state-space description may also be defined for more general
systems where parameters are time-varying, i.e., the matrices 4, B,
C, D are not constant.

— For this case, we may express the general state equation as,
x()=f(x(@), u@),1)

or if the system is linear,
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x(t)=A)x(@) + B(t)u(r)
Note that the vector-valued term u(¢) allows for a multiple-input

system.

e The time-domain solution of this set of linear, time-varying differential
equations is given by:

x(t) = Oz, to)x(ty) + ft ®(t, )B(v)u(r)dr

)

where ®(¢, ty) is referred to as the state transition matrix.

— ®(¢, ty) satisfies the matrix differential equation

%{CD(Z, fo)} = A()®(t, 1)
(19, t9) = 1

— Other properties of ®(z, ty):
o q)(fz, l‘l)qD(l‘l, Zo) = qD(fz, fo)
o &7 I(t, 1,) exists for all ¢, 1, and (¢, 1)) = P(t, t)

e For linear, time-invariant systems, the state transition matrix takes a
much simpler form:
®(t, ty) = A0
where
1 1
el =1+ At + §A2t2 + §A3t3 + -
— So, for linear, time-invariant systems,
o ®(tp, t1) = (1, — 11) = P(Ar)
0o Nty — 1)) = P11 — 1)
— Some standard methods to compute e*' :
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oel =L (sI —A)"}
— -1 At __ At -1
o A=WAW = e7 =Wer'W (where

e = diag {e’“t, e ek”‘t}
o Numerical calculation of series expansion with truncation to get
ANt
e
Variational Equations

e Why are linear equations important in a non-linear world? Because
they allow us to expand the solution of a non-linear problem to a wide
range of similar problems

x = f(x,u,t)
X +06x = f(x+06x,u+du,t)

X +0x ~ f(x, u, Z)|x0,u0 + 3f/ax|x0,u08x + 8f/8x|x0,u05u

= 0x = Adéx + Bdu

This gives a linear differential equation describing small purturbations
about a nominal trajectory

State Transformations

e Another important characteristic of state variable representations is
that they are not unique. Consider the linear state-space equation

X = Ax + Bu
— Let T be a nonsingular, constant matrix such that
x=Tx

¥ =T7'% = AT '¥ + Bu
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— ¥ = TAT'¥ + TBu

— Example state-space representations include: modal form, control
canonical form, and observer canonical form - all model the same
system

Discrete-Time State Space Representations

e If we assume that u can be approximated by a piecewise constant
over every interval kT <t < (k + 1)T, then the continuous-time state
space representation can be extended to discrete-time systems:

(k+D)T
x([k + 1]T) = ®(fk + 1|T, kT)x (kT) + / o[k + 1]T, 1)Gu(r)dt
kT

x([k +1]T) = &x(kT) + {/ CDGdr} ukT)

— So, for linear time-invariant systems,
x(k +1)= Apx(k) + Bpu(k)
where
T
AD = CD(T) BD = / CD(‘L’)Gd‘L’
0

Note: x(k + 1) can also be written as:

k—1
x(k+1) = ALx(0)+ ) A" Bpu(i)
i=0
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2.6: Linear Systems: Controllability and Observability

Linear, Time-Invariant State Space Representations

e Continuous time
xXx = Ax + Bu

y=Cx + Du

For strictly proper systems, D = 0, and we can write the solution as

t
x(t) = etlx, —I—/ e DGu(t)dt
0

e Discrete time
Xk+1 = Apxr + Bpug

v = Cxy + Duy

For strictly proper systems, D = 0, and we can write the solution as

k—1
Xip1 = Abxo+ ) A Bpu
1=0
Introduction to Controllability and Observability

e Two particularly important questions to address for linear systems are
whether or not:

1. we can use our inputs to drive the system to an arbitrary state
2. we can use our outputs to reconstruct the states

e Linear Algebra Preliminaries:

— Consider a set of linear algebraic equations defined by:
Ra =B

where Risa (p x g) matrix, «isa (¢ x 1) vectorand gisa (p x 1)
vector
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— When will solutions to this set of equations exist?

1.if p = ¢, a unique solution will exist provided |R| # 0
2. if p > g, (more equations than unknowns), a unique solution given
by « = (RT R)"'RT B will exist provided rank(R) = ¢
3. if p < ¢q, (fewer equations than unknowns),
(a) an infinite number of solutions will exist for any B provided
rank(R) = p
(b) but if rank(R) < p , an infinite number of solutions will exist only
if B lies in a certain subspace of the ¢g- dimensional space (i.e.,
B cannot be arbitrary!)

e These concepts will help us to address our two questions above

Controllability

Definition =

A state is controllable at r = ¢, if there exists a finite #; > ¢y, such
that, for any x(#y) and x(¢;), there exists an input u(z), t € [ty, t1],
which transfers x (zy) to x (¢;).

If all states are controllable for all ¢y, then the system is
controllable.

e Necessary & Sufficient Conditions for Controllability:
1. Continuous = rank[ B|AB|A’B|--- | A" 'B ] =n
2. Discrete = rank | Bpy | ApBp| 43 By

An_lBD =n
b8 |

e Where do these conditions come from? We'll consider the
discrete-time case here.
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— From above,

k—1

Xit1 = AIBX(O) + Z AIB_I_iBDui
=0

— 4% x(0) + [ A By A2 || Ap By | By ]
U2

Uk—1

= [AIB_IBD---ADBDBD]vzka—A’f)xO

— From our linear algebra preliminaries, there will be an infinite
number of solutions, v, for any arbitrary x;; and x, only if

rank[C] = rank[ AkD_lBD... Bp ] =n

Observability

Definition =

A state is observable at ¢ = 1 if, by observing the output y(¢) during a
finite time interval [z, t;] , the state x(#y) can be determined.
If all states are observable for every 1, then the system is observable

e Necessary & Sufficient Conditions for Observability:
1. Coninuous = rank [ ctiATct|... | (A IcT ]
2. Discrete = rank| CT[ALCT |- | (ahy~CT | =n

e These conditions can be developed in a manner analogous to the
development for controllability

n
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Useful Matrix Identities

Basic Relationships

A(B+ C)= AB + AC
(A+ B)! = A" + BT
(AB) = BT A"
(AB)—l _ g ly!
(A™H" =@AhH™

Useful Derivative Identities

Gradients

a T _ a T _ T
ax(y x) = ax(x y)=y
a T 4T a T T 4T
8—(y A x)=a—(x Ay)=y" A
X X
%(xTAx) =xT(A+ A"
0
a(xTQx) = 2x7 0 (O symmetric)

9
—(lx - yI"Olx —yD) =2[x —y]' 0

rf
ax

Jdf dy
T0J 7oy
0x +f 0x

Jd 7 B B
e fx) = (f (x)y)=y'

) (o1 _ i ; _
— (TS @) = = (fT @y ) =
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Hessians

82

ﬁ(xTAx) = A + AT
X

0> T

ﬁ(x Ox) =20

82
7a(lx =y 0lx —y) =20

Jacobians

0
Jf

0 ds
E(S(x)f(x)) =Sy + fa
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