Mathematics and Linear Systems Review

2.1: Matrix Algebra: Basics

- Vectors are quantities that contain magnitude and direction information
- These quantities can be represented as a linear combination of basis vectors

$$
\boldsymbol{x}=x_{1} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}+\cdots x_{n} \boldsymbol{e}_{n}
$$

where $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ define the fundamental directions in the given n-dimensional space.

- This representation gives rise to a simple shorthand notation that will be used consistently throughout this course,

$$
\boldsymbol{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & \cdots
\end{array} x_{n}\right]^{T}
$$

- A matrix can be viewed as a "two-dimensional vector":

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n m}
\end{array}\right]
$$

- Notation $\Rightarrow A$ is n rows long by m columns wide, or more compactly, A is $(n \times m)$.
- A common application of matrices is to summarize information about a set of simultaneous equations; although there are many other ways matrices may arise.

Concepts in Matrix Algebra

Transpose $\left(A^{T}\right) \Rightarrow$ interchange rows and columns

- $(A B)^{T}=B^{T} A^{T}$
- $\boldsymbol{x}^{T} \boldsymbol{y}=\boldsymbol{x} \cdot \boldsymbol{y} \quad$ (a scalar quantity, inner product)
- $\boldsymbol{x} \boldsymbol{y}^{T}=A \quad$ (a matrix in dyadic form, outer product)

Determinant $(|A|) \Rightarrow$ only defined for square matrices

$$
|A|=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

where $C_{1 i}$ is the cofactor of $a_{1 i}$. Note that the determinant can be expanded about any row or column of A

- $|A B|=|A||B|$
- $|A|=\left|A^{T}\right|$

Inverse $\left(A^{-1}\right) \Rightarrow A^{-1} A=A A^{-1}=I$

- $A^{-1}=1 /|A|\{\operatorname{adj} A\} \quad$ adj $A=\{\operatorname{cofactor}(A)\}^{T}$
- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $\left|A^{-1}\right|=1 /|A|$

Trace (trace A) $\Rightarrow \sum_{i=1}^{n} a_{i i} \quad$ (defined for square matrices only)

- $\operatorname{trace} A+B=\operatorname{trace} A+\operatorname{trace} B$
- trace $A B C=\operatorname{trace} B C A=\operatorname{trace} C A B$

Special Matrices • Symmetric $A^{T}=A$

- Skew Symmetric $A^{T}=-A$
- Orthogonal $A^{-1}=A^{T}$

Partitioned Matrices

- Many of the matrix operations presented above can be generalized to much larger matrices using simple notation through partitioning.
- What is a partitioned matrix?
- A matrix that has been subdivided into smaller matrices

$$
\begin{aligned}
& A= {\left[\begin{array}{ll|ll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\hline a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]=\left[\begin{array}{l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right] } \\
& \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
\frac{x_{2}}{x_{3}} \\
x_{4}
\end{array}\right]=\left[\frac{X_{1}}{X_{2}}\right] \\
& \Rightarrow A \boldsymbol{x}=\left[\begin{array}{l}
A_{11} X_{1}+A_{12} X_{2} \\
\hline A_{21} X_{1}+A_{22} X_{2}
\end{array}\right]
\end{aligned}
$$

Some Properties of Partitioned Matrices

- Block Diagonal Matrices \Rightarrow

$$
D=\left[\begin{array}{c|c|c}
A_{11} & 0 & 0 \\
\hline 0 & A_{22} & 0 \\
\hline 0 & 0 & A_{33}
\end{array}\right]
$$

- $|D|=\left|A_{11}\right|\left|A_{22}\right|\left|A_{33}\right|$
$-D^{-1}=\operatorname{diag}\left\{A_{11}^{-1}, A_{22}^{-1}, A_{33}^{-1}\right\}$
- Arbitrarily Partitioned Matrices \Rightarrow

$$
M=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

where the blocks are not necessarily square.

- Definitions:

Schur Complement of $A \Rightarrow D-C A^{-1} B$
Schur Complement of $D \Rightarrow A-B D^{-1} C$
This leads to the following form of the block matrix inverse:

$$
M^{-1}=\left[\begin{array}{c|c}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
\hline-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right]
$$

If A is 2×2,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then we can write

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

which is the form of the familiar 2×2 inverse.

2.2: Matrix Algebra: Linear Independence and Rank

- Another important concept associated with n-dimensional vector spaces is linear independence.
- Definition: A set of ($n \times 1$) vectors $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{m}\right)$ is linearly dependent if and only if

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{m} \boldsymbol{a}_{m}=0 \Rightarrow x_{1}=x_{2}=\cdots=x_{m}=0
$$

- In other words, for this condition to be true, there must exist a vector \boldsymbol{a}_{k} that can be obtained as a combination of one or more of the other vectors.
- If this condition cannot be met, then the vectors are linearly independent.

The concept of linear independence can also be related to the rank of a matrix,

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{m} \boldsymbol{a}_{m}=\left[\boldsymbol{a}_{1}\left|\boldsymbol{a}_{2}\right| \cdots \mid \boldsymbol{a}_{m}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=0
$$

The columns of a matrix can be thought of as vectors and the definition for the rank of a matrix now becomes apparent:
$\operatorname{rank} A=$ maximum number of linearly independent rows or columns of A

- if A is $(n \times m)$ with $n<m$, then $\operatorname{rank}\{A\} \leq n$
- if A is $(n \times m)$ with $n>m$, then $\operatorname{rank} A \leq m$
- if A is $(n \times n)$ and -
$-\operatorname{rank} A<n$, then $|A|=0, A^{-1}$ does not exist and A is said to be singular
$-\operatorname{rank} A=n$, then the rows/columns of A form a basis set

Example

$$
\boldsymbol{a}_{1}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{a}_{2}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{a}_{3}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

- Clearly,

$$
\boldsymbol{a}_{1}=\boldsymbol{a}_{2} \Rightarrow x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+0 \cdot \boldsymbol{a}_{3}=0
$$

for any case where

$$
x_{1}=-x_{2}
$$

- So ($\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$) are not linearly independent, which implies

$$
A=\left[\begin{array}{lll}
3 & 3 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \Rightarrow \text { singular }
$$

2.3: Matrix Algebra: Eigenvalues / Eigenvectors

- One particularly useful property of a square matrix is that there exists a set of n scalars, λ_{i}, and a corresponding set of n vectors, \boldsymbol{w}_{i}, such that:

$$
A \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{w}_{i} \quad i=1, \ldots, n
$$

- The n eigenvalues of A can be identified by finding the n roots of

$$
\left|\lambda_{i} I-A\right|=0
$$

- The eigenvalues of A make the matrix $\lambda I-A$ singular so that there exists a non-zero vector w which satisfies $(\lambda I-A) w=0$ for each λ.
- These vectors are called the eigenvectors of A.
- Using partitioned matrices, the eigenvalue/eigenvector relationship can be written as:

$$
A\left[\boldsymbol{w}_{1}\left|\boldsymbol{w}_{2}\right| \cdots \mid \boldsymbol{w}_{n}\right]=\left[\boldsymbol{w}_{1}\left|\boldsymbol{w}_{2}\right| \cdots \mid \boldsymbol{w}_{n}\right] \Lambda
$$

where

$$
\begin{aligned}
\Lambda= & {\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] } \\
& \Rightarrow \quad A W=W \Lambda
\end{aligned}
$$

- In the (common) case where the n eigenvectors of A are linearly independent, the inverse W^{-1} exists and we can write the eigenvalue-eigenvector decomposition of A as

$$
A=W \Lambda W^{-1}
$$

which is a special form of similarity transformation.

Example

$$
\begin{gathered}
A=\left[\begin{array}{lll}
3 & 3 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \\
|\lambda I-A|=(\lambda-2)\left(\lambda^{2}-4 \lambda\right)=0 \Rightarrow \lambda=4,2,0
\end{gathered}
$$

$$
\begin{array}{ll}
\lambda_{1}=4 & w_{1}=\left[\begin{array}{lll}
3 & 1 & 0
\end{array}\right]^{T} \\
\lambda_{2}=2 & \boldsymbol{w}_{2}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T} \\
\lambda_{3}=0 & w_{3}=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]^{T}
\end{array}
$$

so we can write the eigen-decomposition as

$$
A=\left[\begin{array}{lll}
3 & 3 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
4 & & \\
& 2 & \\
& & 0
\end{array}\right]\left[\begin{array}{ccc}
0.25 & 0.25 & 0 \\
0 & 0 & 1 \\
0.25 & -0.75 & 0
\end{array}\right]
$$

- Eigenvectors are unique up to a scaling factor
- It is customary to scale the eigenvectors so that they each have unity magnitude (Matlab's eig routine generates the eigenvectors this way)
- In this case the decomposition from the example is written

$$
A=\left[\begin{array}{ccc}
0.9487 & 0 & -0.7071 \\
0.3162 & 0 & 0.7071 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
4 & \\
& 2 & \\
& 0
\end{array}\right]\left[\begin{array}{ccc}
0.7906 & 0.7906 & 0 \\
0 & 0 & 1 \\
-0.3536 & 1.0607 & 0
\end{array}\right]
$$

- Dual Eigenvectors are defined from the inverse of the eigenvector matrix

$$
W^{-1}=\left[\begin{array}{c}
\frac{\boldsymbol{v}_{1}^{T}}{\vdots} \\
\frac{\boldsymbol{v}_{n}^{T}}{}
\end{array}\right]=V
$$

and satisfy the dual eigenvalue problem:

$$
\boldsymbol{v}^{T} A=\lambda \boldsymbol{v}^{T}
$$

2.4: Matrix Algebra: Vector Calculus

Matrix Calculus

- Differentiation and integration of a vector with respect to a scalar:

$$
d x / d s=\left[\begin{array}{c}
d x_{1} / d s \\
d x_{2} / d s \\
\vdots \\
d x_{b} / d s
\end{array}\right] \quad \int \boldsymbol{x} d s=\left[\begin{array}{c}
\int x_{1} d s \\
\int x_{2} d s \\
\vdots \\
\int x_{n} d s
\end{array}\right]
$$

- Differentiation of a scalar with respect to a vector (gradient):

$$
\partial s(\boldsymbol{x}) / \partial x=\left[\begin{array}{llll}
\partial s / \partial x_{1} & \partial s / \partial x_{2} & \cdots & \partial s / \partial x_{n}
\end{array}\right]
$$

- Differentiation of a vector with respect to a vector (Jacobian):

$$
\partial \boldsymbol{a}(\boldsymbol{x}) / \partial \boldsymbol{x}=\left[\begin{array}{cccc}
\partial a_{1} / \partial x_{1} & \partial a_{1} / \partial x_{2} & \cdots & \partial a_{1} / \partial x_{n} \\
\partial a_{2} / \partial x_{1} & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\partial a_{m} / \partial x_{1} & \partial a_{m} / \partial x_{2} & \cdots & \partial a_{m} / \partial x_{n}
\end{array}\right]
$$

- Second derivative of a scalar with respect to a vector (Hessian):

$$
\partial^{2} s(\boldsymbol{x}) / \partial \boldsymbol{x}^{2}=\left[\begin{array}{cccc}
\partial^{2} s / \partial x_{1}^{2} & \partial^{2} s / \partial x_{1} \partial x_{2} & \cdots & \partial^{2} s / \partial x_{1} \partial x_{n} \\
\partial^{2} s / \partial x_{2} \partial x_{1} & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\partial^{2} s / \partial x_{n} \partial x_{1} & \partial^{2} s / \partial x_{n} \partial x_{2} & \cdots & \partial^{2} s / \partial x_{n}^{2}
\end{array}\right]
$$

- Some additional results you may find useful:

$$
\begin{aligned}
d / d t\left(A^{-1}\right) & =-A^{-1} \dot{A} A^{-1} \\
\partial / \partial A\{\operatorname{trace}(A)\} & =I \\
\partial / \partial A\{\operatorname{trace}(B A D)\} & =B^{T} D^{T} \\
\partial / \partial A\left\{\operatorname{trace}\left(A B A^{T}\right)\right\} & =2 A B \\
\partial / \partial A\{|B A D|\} & =|B A D| A^{-T}
\end{aligned}
$$

Taylor Series Expansions

- In this course, we will focus primarily on optimizing scalar functions of a set of variables
- The approach taken to accomplish this task relies heavily on the use of Taylor Series expansions:
- Expansion of $f(x)$ around a point x_{0} (where x is a scalar variable):

$$
f(x)=f\left(x_{0}\right)+\left.\left(\frac{d f}{d x}\right)\right|_{x_{0}}\left(x-x_{0}\right)+\left.\left(\frac{1}{2}\right)\left(\frac{d^{2} f}{d x^{2}}\right)\right|_{x_{0}}\left(x-x_{0}\right)^{2}+\cdots
$$

- But what if \boldsymbol{x} is a vector variable?

$$
f(x)=f\left(x_{0}\right)+\left.\left(\frac{\partial f}{\partial \boldsymbol{x}}\right)\right|_{x_{0}}\left(x-x_{0}\right)+\left(\frac{1}{2}\right)\left(x-x_{0}\right)^{T}\left(\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}\right)\left(x-x_{0}\right)+\cdots
$$

- How is a Taylor series useful for finding the minima (and maxima) of a function $f(x)$?
- Consider scalar x with $f\left(x_{0}\right)$ a minimum
- $f(x)>f\left(x_{0}\right)$ for all x in a neighborhood of x_{0}

$$
\left.\Rightarrow \quad \frac{d f}{d x}\right|_{x_{0}}\left(x-x_{0}\right)+\left.\left(\frac{1}{2}\right)\left(\frac{d^{2} f}{d x^{2}}\right)\right|_{x_{0}}\left(x-x_{0}\right)^{2}+\cdots>0
$$

- For x very close to $x_{0},\left(\frac{d f}{d x}\right)\left(x-x_{0}\right)$ dominates the expression on the left side of the inequality
- Since x is arbitrary, $x-x_{0}$ can be both positive and negative \Rightarrow $\left.\frac{d f}{d x}\right|_{x_{o}}$ must be zero!!
- If this is the case, $\left(\frac{1}{2}\right)\left(\frac{d^{2} f}{d x^{2}}\right)\left(x-x_{0}\right)^{2}$ dominates the expression on the left hand side of the inequality; and since $\left(x-x_{0}\right)^{2}>0$,

$$
\left.\frac{d^{2} f}{d x^{2}}\right|_{x_{0}}>0
$$

- So, the Taylor Series allows us to establish important conditions for use in identifying minima (and maxima) of a function
- Similar conditions can be developed for problems where x is a vector variable:

$$
\begin{gathered}
\frac{\partial f}{\partial \boldsymbol{x}}=0 \\
\left.\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T}\left(\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}\right)\right|_{x_{0}}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)>0
\end{gathered}
$$

- But how can I tell whether this is true for all \boldsymbol{x} ?

Quadratic Forms

- The expression above is a special type of scalar \Rightarrow one that is written in a quadratic form

$$
\text { General Quadratic Form } \Rightarrow \boldsymbol{x}^{T} A \boldsymbol{x}
$$

- The matrix, A, associated with a quadratic form has special characteristics which describe the properties of $\boldsymbol{x}^{T} A \boldsymbol{x}$:
- A can always be written as a symmetric matrix by decomposing into its symmetric and anti-symmetric parts:

$$
\begin{gathered}
A_{s}=1 / 2\left(A+A^{T}\right) \\
A_{a}=1 / 2\left(A-A^{T}\right) \\
\Rightarrow A=A_{s}+A_{a} \\
\boldsymbol{x}^{T} A \boldsymbol{x}=\boldsymbol{x}^{T} A_{s} \boldsymbol{x}+\boldsymbol{x}^{T} A_{a} \boldsymbol{x}=\boldsymbol{x}^{T} A_{s} \boldsymbol{x}+1 / 2\left\{\boldsymbol{x}^{T} A \boldsymbol{x}-\boldsymbol{x}^{T} A^{T} \boldsymbol{x}\right\} \\
\Rightarrow \boldsymbol{x}^{T} A \boldsymbol{x}=\boldsymbol{x}^{T} A_{s} \boldsymbol{x}
\end{gathered}
$$

$-A$ is:

positive definite	$(A>0)$	if $\boldsymbol{x}^{T} A \boldsymbol{x}>0$	$\forall \boldsymbol{x} \neq 0$
positive semidefinite	$(A \geq 0)$	if $\boldsymbol{x}^{T} A \boldsymbol{x} \geq 0$	$\forall \boldsymbol{x} \neq 0$
negative semidefinite	$(A \leq 0)$	if $\boldsymbol{x}^{T} A \boldsymbol{x} \leq 0$	$\forall \boldsymbol{x} \neq 0$
negative definite	$(A<0)$	if $\boldsymbol{x}^{T} A \boldsymbol{x}<0 \quad \forall \boldsymbol{x} \neq 0$	

- If A is positive definite:
- $|A|>0$
$\circ B^{T} A B>0 \quad$ if B is real and nonsingular or if B has maximum column rank
- $A^{-1}>0$
- $A^{n}>0$
- ヨa nonsingular $B \ni A=B^{T} B \quad$ (matrix square root)
- Tests for definiteness:

$$
\begin{aligned}
& \lambda_{i}>0 \Rightarrow A>0 \\
& \lambda_{i} \geq 0 \Rightarrow A \geq 0 \\
& \lambda_{i} \leq 0 \Rightarrow A \leq 0 \\
& \lambda_{i}<0 \Rightarrow A<0
\end{aligned}
$$

- Test for positive definiteness: determinant of every principal subminor of A is positive!

2.5 Linear Systems: State-Space Representations

- What do we mean by a "state-space" representation
- A representation of the dynamics of an $n^{\text {th }}$-order system as a system of first-order differential equations in an n-vector called the system state vector
- A classic example is given by second-order spring-mass-damper:

- Writing the equations of motion according to Newton's $2^{\text {nd }}$ Law,

$$
\begin{aligned}
m \ddot{y}(t) & =u(t)-b \dot{y}(t)-k y(t) \\
\ddot{y}(t) & =\left(\frac{1}{m}\right)[u(t)-b \dot{y}(t)-k y(t)]
\end{aligned}
$$

- Now defining the state vector

$$
\boldsymbol{x}(t)=\left[\begin{array}{l}
y(t) \\
\dot{y}(t)
\end{array}\right]
$$

we have

$$
\dot{\boldsymbol{x}}(t)=\left[\begin{array}{c}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=\left[\begin{array}{c}
\dot{y}(t) \\
-\frac{k}{m} y(t)-\frac{b}{m} \dot{y}(t)+\frac{1}{m} u(t)
\end{array}\right]
$$

- We can write this in the general form,

$$
\dot{\boldsymbol{x}}(t)=A x(t)+B u(t)
$$

where A and B are constant matrices.

- Complete the picture by setting $y(t)$ as a function of $\boldsymbol{x}(t)$. The general form is the linear equation,

$$
y(t)=C \boldsymbol{x}(t)+D u(t)
$$

where C and D are constant matrices.

- Thus we have the fundamental form for a linear state-space model:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =A \boldsymbol{x}(t)+B u(t) \\
y(t) & =C \boldsymbol{x}(t)+D u(t)
\end{aligned}
$$

where $u(t)$ is the input, $x(t)$ is the "state", and A, B, C, D are constant matrices.

Definition: The state of a system at time t_{0} is the minimum amount of information at t_{0} that, together with the input $u(t), t \geq t_{0}$, uniquely determines the behavior of the system for all $t \geq t_{0}$.

- A state-space description may also be defined for more general systems where parameters are time-varying, i.e., the matrices A, B, C, D are not constant.
- For this case, we may express the general state equation as,

$$
\dot{\boldsymbol{x}}(t)=f(\boldsymbol{x}(t), \boldsymbol{u}(t), t)
$$

or if the system is linear,

$$
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t)+B(t) \boldsymbol{u}(t)
$$

Note that the vector-valued term $\boldsymbol{u}(t)$ allows for a multiple-input system.

- The time-domain solution of this set of linear, time-varying differential equations is given by:

$$
\boldsymbol{x}(t)=\Phi\left(t, t_{0}\right) \boldsymbol{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) \boldsymbol{u}(\tau) d \tau
$$

where $\Phi\left(t, t_{0}\right)$ is referred to as the state transition matrix.

- $\Phi\left(t, t_{0}\right)$ satisfies the matrix differential equation

$$
\begin{gathered}
\frac{d}{d t}\left\{\Phi\left(t, t_{0}\right)\right\}=A(t) \Phi\left(t, t_{0}\right) \\
\Phi\left(t_{0}, t_{0}\right)=I
\end{gathered}
$$

- Other properties of $\Phi\left(t, t_{0}\right)$:
- $\Phi\left(t_{2}, t_{1}\right) \Phi\left(t_{1}, t_{0}\right)=\Phi\left(t_{2}, t_{0}\right)$
- $\Phi^{-1}\left(t, t_{0}\right)$ exists for all t, t_{0} and $\Phi^{-1}\left(t, t_{0}\right)=\Phi\left(t_{0}, t\right)$
- For linear, time-invariant systems, the state transition matrix takes a much simpler form:

$$
\Phi\left(t, t_{0}\right)=e^{A\left(t-t_{0}\right)}
$$

where

$$
e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots
$$

- So, for linear, time-invariant systems,
- $\Phi\left(t_{2}, t_{1}\right)=\Phi\left(t_{2}-t_{1}\right)=\Phi(\Delta t)$
- $\Phi^{-1}\left(t_{2}-t_{1}\right)=\Phi\left(t_{1}-t_{2}\right)$
- Some standard methods to compute $e^{A t}$:
$\circ e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}$
० $A=W \Lambda W^{-1} \quad \Rightarrow \quad e^{A t}=W e^{\Lambda t} W^{-1} \quad$ (where $e^{\Lambda t}=\operatorname{diag}\left\{e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right\}$
- Numerical calculation of series expansion with truncation to get $e^{A \Delta t}$

Variational Equations

- Why are linear equations important in a non-linear world? Because they allow us to expand the solution of a non-linear problem to a wide range of similar problems

$$
\begin{gathered}
\dot{\boldsymbol{x}}=f(\boldsymbol{x}, \boldsymbol{u}, t) \\
\dot{\boldsymbol{x}}+\delta \dot{\boldsymbol{x}}=f(\boldsymbol{x}+\delta \boldsymbol{x}, \boldsymbol{u}+\delta \boldsymbol{u}, t) \\
\dot{\boldsymbol{x}}+\left.\delta \dot{\boldsymbol{x}} \approx f(\boldsymbol{x}, \boldsymbol{u}, t)\right|_{x_{0, u_{0}}}+\partial f /\left.\partial \boldsymbol{x}\right|_{x_{0}, u_{0}} \delta \boldsymbol{x}+\partial f /\left.\partial \boldsymbol{x}\right|_{x_{0}, u_{0}} \delta \boldsymbol{u} \\
\Rightarrow \delta \dot{\boldsymbol{x}}=A \delta \boldsymbol{x}+B \delta \boldsymbol{u}
\end{gathered}
$$

This gives a linear differential equation describing small purturbations about a nominal trajectory

State Transformations

- Another important characteristic of state variable representations is that they are not unique. Consider the linear state-space equation

$$
\dot{\boldsymbol{x}}=A \boldsymbol{x}+B \boldsymbol{u}
$$

- Let T be a nonsingular, constant matrix such that

$$
\begin{gathered}
\dot{\boldsymbol{x}}=T \boldsymbol{x} \\
\dot{\boldsymbol{x}}=T^{-1} \dot{\boldsymbol{x}}=A T^{-1} \dot{\boldsymbol{x}}+B \boldsymbol{u}
\end{gathered}
$$

$$
\Rightarrow \dot{\dot{\boldsymbol{x}}}=T A T^{-1} \dot{\boldsymbol{x}}+T B \boldsymbol{u}
$$

- Example state-space representations include: modal form, control canonical form, and observer canonical form - all model the same system

Discrete-Time State Space Representations

- If we assume that \boldsymbol{u} can be approximated by a piecewise constant over every interval $k T \leq t \leq(k+1) T$, then the continuous-time state space representation can be extended to discrete-time systems:

$$
\begin{aligned}
& \boldsymbol{x}([k+1] T)=\Phi([k+1] T, k T) \boldsymbol{x}(k T)+\int_{k T}^{(k+1) T} \Phi([k+1] T, \tau) G \boldsymbol{u}(\tau) d \tau \\
& \boldsymbol{x}([k+1] T)=\Phi \boldsymbol{x}(k T)+\left\{\int \Phi G d \tau\right\} \boldsymbol{u}(k T)
\end{aligned}
$$

- So, for linear time-invariant systems,

$$
\boldsymbol{x}(k+1)=A_{D} \boldsymbol{x}(k)+B_{D} \boldsymbol{u}(k)
$$

where

$$
A_{D}=\Phi(T) \quad B_{D}=\int_{0}^{T} \Phi(\tau) G d \tau
$$

Note: $\boldsymbol{x}(k+1)$ can also be written as:

$$
\boldsymbol{x}(k+1)=A_{D}^{k} \boldsymbol{x}(0)+\sum_{i=0}^{k-1} A_{D}^{k-1-i} B_{D} \boldsymbol{u}(i)
$$

2.6: Linear Systems: Controllability and Observability

Linear, Time-Invariant State Space Representations

- Continuous time

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=A \boldsymbol{x}+B \boldsymbol{u} \\
& \boldsymbol{y}=C \boldsymbol{x}+D \boldsymbol{u}
\end{aligned}
$$

For strictly proper systems, $D=0$, and we can write the solution as

$$
\boldsymbol{x}(t)=e^{A t} \boldsymbol{x}_{0}+\int_{0}^{t} e^{A(t-\tau)} G \boldsymbol{u}(\tau) d \tau
$$

- Discrete time

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =A_{D} \boldsymbol{x}_{k}+B_{D} \boldsymbol{u}_{k} \\
\boldsymbol{y}_{k} & =C \boldsymbol{x}_{k}+D \boldsymbol{u}_{k}
\end{aligned}
$$

For strictly proper systems, $D=0$, and we can write the solution as

$$
\boldsymbol{x}_{k+1}=A_{D}^{k} \boldsymbol{x}_{0}+\sum_{i=0}^{k-1} A_{D}^{k-1-i} B_{D} \boldsymbol{u}_{i}
$$

Introduction to Controllability and Observability

- Two particularly important questions to address for linear systems are whether or not:

1. we can use our inputs to drive the system to an arbitrary state
2. we can use our outputs to reconstruct the states

- Linear Algebra Preliminaries:
- Consider a set of linear algebraic equations defined by:

$$
R \boldsymbol{\alpha}=\boldsymbol{\beta}
$$

where R is a $(p \times q)$ matrix, $\boldsymbol{\alpha}$ is a $(q \times 1)$ vector and β is a $(p \times 1)$ vector

- When will solutions to this set of equations exist?

1. if $p=q$, a unique solution will exist provided $|R| \neq 0$
2. if $p>q$, (more equations than unknowns), a unique solution given by $\boldsymbol{\alpha}=\left(R^{T} R\right)^{-1} R^{T} \boldsymbol{\beta}$ will exist provided $\operatorname{rank}(R)=q$
3. if $p<q$, (fewer equations than unknowns),
(a) an infinite number of solutions will exist for any $\boldsymbol{\beta}$ provided $\operatorname{rank}(R)=p$
(b) but if $\operatorname{rank}(R)<p$, an infinite number of solutions will exist only if β lies in a certain subspace of the q-dimensional space (i.e., β cannot be arbitrary!)

- These concepts will help us to address our two questions above

Controllability

Definition \Rightarrow

A state is controllable at $t=t_{0}$ if there exists a finite $t_{1}>t_{0}$ such that, for any $\boldsymbol{x}\left(t_{0}\right)$ and $\boldsymbol{x}\left(t_{1}\right)$, there exists an input $\boldsymbol{u}(t), t \in\left[t_{0}, t_{1}\right]$, which transfers $\boldsymbol{x}\left(t_{0}\right)$ to $\boldsymbol{x}\left(t_{1}\right)$.
If all states are controllable for all t_{0}, then the system is controllable.

- Necessary \& Sufficient Conditions for Controllability:

1. Continuous $\Rightarrow \operatorname{rank}\left[B|A B| A^{2} B|\cdots| A^{n-1} B\right]=n$ 2. Discrete $\Rightarrow \operatorname{rank}\left[B_{D}\left|A_{D} B_{D}\right| A_{D}^{2} B_{D}|\cdots| A_{D}^{n-1} B_{D}\right]=n$

- Where do these conditions come from? We'll consider the discrete-time case here.
- From above,

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =A_{D}^{k} \boldsymbol{x}(0)+\sum_{i=0}^{k-1} A_{D}^{k-1-i} B_{D} \boldsymbol{u}_{i} \\
& =A_{D}^{k} \boldsymbol{x}(0)+\left[A_{D}^{k-1} B_{D}\left|A_{D}^{k-2} B_{D}\right| \cdots\left|A_{D} B_{D}\right| B_{D}\right]\left[\begin{array}{c}
\boldsymbol{u}_{0} \\
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{k-2} \\
\boldsymbol{u}_{k-1}
\end{array}\right] \\
& \Rightarrow\left[A_{D}^{k-1} B_{D}|\cdots| A_{D} B_{D} \mid B_{D}\right] \boldsymbol{v}=\boldsymbol{x}_{k+1}-A_{D}^{k} \boldsymbol{x}_{0}
\end{aligned}
$$

- From our linear algebra preliminaries, there will be an infinite number of solutions, \boldsymbol{v}, for any arbitrary \boldsymbol{x}_{k+1} and \boldsymbol{x}_{0} only if

$$
\operatorname{rank}[\mathcal{C}]=\operatorname{rank}\left[A_{D}^{k-1} B_{D}|\cdots| B_{D}\right]=n
$$

Observability

Definition \Rightarrow
A state is observable at $t=t_{0}$ if, by observing the output $\boldsymbol{y}(t)$ during a finite time interval $\left[t_{0}, t_{1}\right]$, the state $\boldsymbol{x}\left(t_{0}\right)$ can be determined.
If all states are observable for every t_{0}, then the system is observable

- Necessary \& Sufficient Conditions for Observability:

1. Coninuous $\Rightarrow \operatorname{rank}\left[C^{T}\left|A^{T} C^{T}\right| \cdots \mid\left(A^{T}\right)^{n-1} C^{T}\right]=n$
2. Discrete $\Rightarrow \operatorname{rank}\left[C^{T}\left|A_{D}^{T} C^{T}\right| \cdots \mid\left(A_{D}^{T}\right)^{n-1} C^{T}\right]=n$

- These conditions can be developed in a manner analogous to the development for controllability

Useful Matrix Identities

Basic Relationships

$$
\begin{aligned}
A(B+C) & =A B+A C \\
(A+B)^{T} & =A^{T}+B^{T} \\
(A B)^{T} & =B^{T} A^{T} \\
(A B)^{-1} & =B^{-1} A^{-1} \\
\left(A^{-1}\right)^{T} & =\left(A^{T}\right)^{-1}
\end{aligned}
$$

Useful Derivative Identities

Gradients

$$
\begin{aligned}
& \frac{\partial}{\partial \boldsymbol{x}}\left(\boldsymbol{y}^{T} \boldsymbol{x}\right)=\frac{\partial}{\partial \boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{y}\right)=\boldsymbol{y}^{T} \\
& \frac{\partial}{\partial \boldsymbol{x}}\left(\boldsymbol{y}^{T} A^{T} \boldsymbol{x}\right)=\frac{\partial}{\partial x}\left(\boldsymbol{x}^{T} A \boldsymbol{y}\right)=\boldsymbol{y}^{T} A^{T} \\
& \frac{\partial}{\partial \boldsymbol{x}}\left(\boldsymbol{x}^{T} A \boldsymbol{x}\right)=\boldsymbol{x}^{T}\left(A+A^{T}\right) \\
& \frac{\partial}{\partial \boldsymbol{x}}\left(x^{T} Q x\right)=2 x^{T} Q(Q \text { symmetric }) \\
& \frac{\partial}{\partial \boldsymbol{x}}\left([\boldsymbol{x}-\boldsymbol{y}]^{T} Q[\boldsymbol{x}-\boldsymbol{y}]\right)=2[\boldsymbol{x}-\boldsymbol{y}]^{T} Q \\
& \frac{\partial}{\partial x}\left(y^{T} f(x)\right)=\frac{\partial}{\partial x}\left(f^{T}(x) y\right)=y^{T} \frac{\partial f}{\partial x} \\
& \frac{\partial}{\partial x}\left(y^{T}(x) f(x)\right)=\frac{\partial}{\partial x}\left(f^{T}(x) y(x)\right)=y^{T} \frac{\partial f}{\partial x}+f^{T} \frac{\partial y}{\partial x}
\end{aligned}
$$

Hessians

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \boldsymbol{x}^{2}}\left(\boldsymbol{x}^{T} A \boldsymbol{x}\right) & =A+A^{T} \\
\frac{\partial^{2}}{\partial \boldsymbol{x}^{2}}\left(\boldsymbol{x}^{T} Q \boldsymbol{x}\right) & =2 Q \\
\frac{\partial^{2}}{\partial \boldsymbol{x}^{2}}\left([\boldsymbol{x}-\boldsymbol{y}]^{T} Q[\boldsymbol{x}-\boldsymbol{y}]\right) & =2 Q
\end{aligned}
$$

Jacobians

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{x}}(A \boldsymbol{x}) & =A \\
\frac{\partial}{\partial \boldsymbol{x}}(s(\boldsymbol{x}) \boldsymbol{f}(\boldsymbol{x})) & =s \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}+\boldsymbol{f} \frac{\partial s}{\partial \boldsymbol{x}}
\end{aligned}
$$

(mostly blank)

