ECE5560: System Identification 6—1

State-Space Identification, Noisy Data

6.1: Stochastic identification via subspace methods

= Of the methods we studied last chapter, the subspace algorithms look
to be the most promising.

= However, as presented so far, these methods are not capable of
correctly identifying systems having disturbance or sensor noise.

= We relax these restrictions in this chapter in two steps.

o We look first at identifying a purely stochastic system;
e Then, at identifying a combined deterministic—stochastic system.

Stochastic identification via subspace methods

m Recall the model assumed by the subspace methods
xlk + 1] = Ax[k] + Bulk] + w[k]
yvlk] = Cxlk] + Dulk] + vlk].
» The deterministic system-ID methods assumed w[k] = 0, v[k] = 0.
m Here, we pursue the purely stochastic problem, with u[k] = 0 instead.

PROBLEM: Given s measurements of the output y[k] € R?, generated by
an unknown stochastic system of order =,

Xk 4 1] = Ax*[k] + wik]
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ylk] = Cx’[k] + vlk],

and w[k] and v[k] are zero-mean stationary white processes with

' S
o[ Lo v <[ 3 Jan=o

determine the order n of the unknown system, and the system
matrices A and C up to a similarity transformation, and Q € R"™",
S e R"*?, and R € R?*? g0 that the second-order statistics of the
output of the model and of the given output sequence are equal.

= Note the new notation x°[k], where the “s” stands for “stochastic”.

« The combined deterministic—stochastic problem will rely on x?[k]
and x’[k] separately, so we must distinguish between them.

= We will assume that the the stochastic process is stationary with zero
mean E[x’[k]] = 0, which implies that the state covariance is
constant: E[x*[k](x’[k])T] 2 =°.

» This also requires that A be a stable matrix, otherwise the impact of
process noise will grow without bound.

= Note: There are multiple equivalent representations of stochastic
systems treated in VODM; here, we look at the “forward model” only.

m For this model, we can develop a block-matrix notation

0o 0 0 -0
cC 0 0 -0
Yy=0X;+| cA4 C 0 -0 |N/+N}

| CA> cA cAT .- 0

N

-~

W

1

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data

= The goal is to show that an orthogonal projection £ = Y,/Y, will
project away the W’ N/ and N ; contributions, leaving § = O, X,
where X contains the Kalman-filter estimates of the states.

ROADMAP: It's easy to get bogged down in the details, so here’s a
roadmap of where we’ll be going in the next pages:

1. Deriving statistical relationships and defining notation to be used,;

2. Deriving noisy-measurements based Kalman-filter state estimates;

3. Seeing how to use projections to recover the Kalman-filter states;

4. Using the Kalman-filter states to recover the system matrices A4, C,
O, R,and §S.
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6.2: Step 1: Some statistical relationships

m \We need to define some correlation matrices, which will be used in
the development of the stochastic method.

m First, we assume that w[k] and v[k] are zero-mean white-noise vector
sequences, independent of x°[k].

« This gives us that E[x*[k]v[k]] = 0 and E[x*[k]wT [k]] = 0.
= Next, we find the “Lyapunov equation” for the state covariance matrix
¥ = E[x*[k + 1](x*[k + 1])7]
= E[(Ax’[k] + w[k]) (Ax°[k] + w[k])"]
= AE[x’[k](x°[k])"]A" + E[w[k]w" [£]]
¥ = AX*A" + Q in steady state.

e If you know 4 and Q, you can solve this discrete-time Lyapunov
equation for the steady-state covariance matrix X° (cf. App. A).

m We define G to be the correlation between the future state and
present output

G £ E[x'[k + 1]y [K]
= E[(Ax"[k] + w[k])(Cx°[k] + v[k])']
= AE['[K](x* (kD" ]C" + E[w([k]v" [£]]
= AZ'CT + 5.
= We define the family of output covariance matrices as

A; = Elylk + i]y [K]].
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» Note that this is a covariance matrix in addition to being a

correlation matrix because E[y[k]] = 0.

= We find for Ay,

Ao = E[y[k]y"[K]

= E[(Cx*[k] + v[k])(Cx*[k] + v[k])"]

= CE[x"[k](x’[k])"]C" + E[v[k]v" [k]]

=CYC! +R.

= We can follow similar steps to find A; fori > 0
A; = E[y[k + i)y’ [k]
= E[(Cx*[k +i] + v[k +i])(Cx*[k] + v[k])"]

=FE

= CA'E[x'[k](x*[k])T] CT + CA ' E[w[k]vT[k]]

CAfo[k]+c[Af—1,

A, 1]

+ E[v[k + i](Cx*[k] + v[k])']

S

wlk]

_w[k—l.—i—l]_

=cAlazct +5)=cAG.

S

= Similarly, we can find that A_; = GT (4"™HI C”.

(Cx*[k]+v[k])”

m These last observations indicate that the output covariances can be
considered as Markov parameters of the deterministic linear-time-

invariant system {4, G, C, Ay}.

m This is an important observation that plays a major role in the
derivation of stochastic subspace-identification algorithms.

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data 6—6
Notation

= As with the deterministic algorithm, we retain the notations Yyp;_,
Yoii-1, Yipiz1, Yp, Y7, Yp+, Y, and so forth.

= Recall that we also defined 9 = [ A~'B, ... A’B, AB, B ] where
9¢ was the reversed extended controllability matrix.

= We now define Of = [ AlG, .-+ A’G, AG, G ] where ¢ is the
reversed extended stochastic controllability matrix.

e The superscript “c” stands for “covariance”.

= We assume that the pair {4, 0'/?} is controllable, implying that all
dynamical modes of the system are excited by the process noise.

» The block Toeplitz matrices C; and L; are constructed from the output
covariance matrices as

A,‘ Ai—l AZ Al
Ai+1 Al‘ ce A3 A2
Cié Ai+2 A,'+1 e Ay A3 GRPiXpi
| Agir Ao s Ay Ay
Ao Al Mg Ar
Ay Ao o0 Azl Ao
L; é N> ANy o Ay A e RPVP,
| Ao A - A Ao |
= \We can approximate each A; as
N-1
.1 . A .
A; ~ NIE{;NZYV‘ +i]y"[k] = En[ylk + i]y" [k]]
k=0
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. 1 T A
— 1\}1—I>noo NYiliYmO — CD[YiU,Ymo]'

» Note in passing that we have introduced two new notational ideas:

A 1

Ex[] = lim —[
v = lim ]
A
®14.5 = Ex[ABT].

e These allow us to extend the geometric tools used in a
deterministic framework to a stochastic framework. In particular,

i
A/B = Oy 5Py 4 B.

m Using this new notation, we can show

1
Ci = Py, = YrY,
1 T
Li =P,y = 1Y,
1 T
= Py =Gty

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data 6—8

6.3: Step 2a: Kalman-filter covariance

m Recall that for deterministic subspace identification, we required the
state sequence Xjf. From that sequence we can recover {A, B, C, D}.

m For stochastic subspace identification, we also require an estimate of
the state sequence, X;. From this sequence, we will recover 4 and C.

= But, how to get an estimate of a system state x[k]?

= A Kalman filter is a recursive algorithm for optimally estimating an LTI
system’s state, given the system’s {A, B,C, D, O, R, S} matrices.

m An amazing result of the stochastic subspace system-1D section is
that we can recover the Kalman-filter state estimates from
measurements of a stochastic system’s output data only, Y, and Y/,
without needing to know its {4, C, O, R, S} matrices!

= |t is beyond the scope of this course to go into the intricate details of
Kalman filters. They are treated in some depth in ECE5530; they are
furthermore the entire subject of ECE5550.

= Here, we present some results without proof.

» The Kalman filter is a recursive state estimator that computes
x[k] = AR[k — 1] + K[k — 1](y[k — 1] — C X[k — 1])
Kk —1]= (G — AP[k —1]CT)(Ay— CP[k —1]CT)~!
P[k] = AP[k —1]A" + (G — AP[k —1]C") x
(Ag— CP[k — 1]1CTYy (G — APk — 11C )T,

where K k] is time-varying “Kalman gain”, P[k] is correlation of state
estimate P[k] = E[z[k]%" [k]], and both £[0] = 0 and P[0] = 0.
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KEY POINT: We are going to show that x[k] and P[k] can be written
using our notation as

y[0]

y[1]

R[] = QL and Plk] = DL,
k™~k k™~k k

k-1 |
= These two relationships are what make the stochastic subspace
identification algorithm work.

= We’'ll prove them by induction. That is,

o We’ll show that they are true for k = 1.

e Then, if they are true for k = p, we’ll show that they are also true
for k = p + 1. This completes the proof.

m For k = 1, the Kalman-filter equation is
x[1] = A x[0] +K[0](y[0]—C x[0] ) = K[0]y[0]
N—— N——

0 0
K[0]=(G—A P[0] C")(Ag—C P[0] C")' =GA;' = LT
0 0

= Therefore, £[1] = DL y[0], which proves the hypothesized state
relationship for k = 1. Note that we also have
P[1]=A4 P[0] AT +(G—A P[0] CT) x

N—— N——
0 0

(Ag—C P[0] CTHY"Y(G—4 Pl|o] ¢!
0 0

= GAy'G" = (LT (D9),

which proves the hypothesized correlation relationship for k = 1.
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= Now, we assume that the hypothesized relationships are true for
k = p. That is, we assume that

y[0]
y[1]

x[p) = 9L, and P[p] = L,'(D)".

| ylp—1] |

= With this assumption, we show that the hypotheses are true for
k =p+ 1. We first find P[p + 1]

Plp+1]=9,,,L p+1(3 i

_ ¢ (SC)TCT (BC)TAT
oo, 1]

= To handle the block matrix inverse, we invoke the block matrix
inversion lemma,

a b - B al+a'bd—-ca'b)ylea —a'b(d —ca 'b)!
' B —(d—ca'b)yteca™ | (d—ca'b)! ’

b
which may be proven by multiplying on the left by {ad}, and
(O
finding the identity. |

= For our special case, a = L,, b = (3)' C", ¢ = C3,and d = A,.

—1 :
SC TcT :
____________ () _ | me e ere
CDC Ao Moy M

mi = L'+ L, (9) ' CTATCY L]
miy = —L;l(B;)TCTA_l
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my = —AT'CY L}
my = A" = (Ag— C LN (D) €)™ = (Ag—CP[p]C")™".

-~

P|p]

= Multiplying out the three matrices gives

é cNT 4T
Plp+1]= [ A G ] {mn_mlz} [(%)A _____ }

= A m (95 A" + Gmy(99)" A" + A m1,G" + GmypGT
m Treating the terms individually,

A my ()" AT = AE;L;(S;)iAT

-~

P|p]

cr—=lxe\NT T A—1p ¢ 7—1/e\NT 4T
+ AL )T CTATIC 9L ()T 4

-~

P[p] P[p]

= AP[p|AT + AP[p]CT A 'CP[p]AT
Gmy ()" A" = —GATIC YL, (D) A" = -GA™'CP[p]A"

P(p]

A m Gl = —AE;L;,l(:);‘,)iCTA—IGT = —AP[p]CTAIGT

-~

Pp]
GmnG' = GA™'G'.
m Putting everything together,
P[p+1] = AP[p]A" + (G=AP[p]CTYA N (G-AP[p]CT)T
= AP[p]A" + (G—AP[p]C")(A—CP[p]CT)(G—AP[pIC")".
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m This is the matrix recursion that we started with, thus we conclude
that it is indeed true that P[p] = 9L, (29)".
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6.4: Step 2b: Kalman-filter state

= \We now focus on the state relationship.

y[0]
. P 1
x[p+1] = 3p—HLleH yE |
| vlp]
| oy
; L, (O)'cT | :
_ I:ABC G] _______ p(p) ___________
CY%l Ao slp =11
ylpl |
| oy
_ I:ASE’; G] m11m12 :
| marma || ylp =11
a2
» Based on this partitioning, we have
oy ]
)2[]?4—1] = [ AB;mll + Gmoy Abj,mlz + Gmyy ] y[p:_ 1]
""" ylpl
y[0]
= (A3§,m11 + Gm21) : + (A3§,m12 + szz) ylp]
| ylp—1]
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y[0]
— c1—1 .
= AL :
| ylp—1] |

y[0]

cyr—1lonwce T A—1po¢ 7 —1 —1, ee 7 —1 .

+ (A% L, CT AT e L —GATe L) |

| ylp—1] |

+(Ga7" = A% L3 (35T CTAT) ylp)

y[0]

c7—1rerT ~Ty A -1 c7—1 y[1]

= [A—(G—ASPLP (Sp) C A C]SPLP 5
Firl ylp—11 |

x[p]
+ (G — ALY CT)A™ y[p]
P[p]
= AX[p] = (G — AP[p]C") AT'Cx[p] + (G — AP[pIC") A7 y[p]
= AR[p] + (G — AP[PICT) (Ao — CPPICT) "\ (vlp] ~ CHlp))
K|p]
= Ax[p] + K[p](y[p] = Cx[p)),

which proves the relationship.

BOTTOM LINE: We have now shown the very significant result that
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y[0]
y[1]

[k] = 2L,

| ylke—1]
= \We can combine multiple state estimates in a block matrix to get
X;= | R1), &l +1), - S+ N -1 |
=LY,

m This state sequence is generated by a bank of non-steady-state
Kalman filters working in parallel on each of the columns of the block
Hankel matrix of past outputs Y.

_ B y Kalman
X, 0 . 0 . 0 filter
 y[0] ylq] yIN—-1 |]
Y,: : E E
|yl —1] | yi+qg—1] | yi +N—=2] | | l
X.: | & - fi+q - R+N-1] |

= Note that the Kalman filters use only partial output information. For
instance, the (¢ + 1)st column of X; can be written as

- ylel
X[i+q] =L’ : ,
L yli+g—1]
which indicates that the Kalman filter generating the estimate x[i + 1]
uses only i output measurements y[q]---y[i + g — 1] instead of the full
set of output measurements y[0]--- y[i + g — 1] as would be expected.
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6.5: Step 3: Geometric properties of stochastic systems

= The miracle isn’t so much that we can represent the operation of the
Kalman filter in such a compact notation (which is pretty miraculous)
but that we can moreover determine the Kalman-filter state estimates
X; using only output data via subspace projections.

= We're going to now show that & = Y /Y, also satisfies the
relationship & = O, X;.

= Therefore, we can recover the Kalman-filter states from Yy, _;.

= WWe assume that process noise w[k] and sensor noise v[k] are not
identically zero, and that the number of measurements N — oc.

« For finite N, the outcomes will be somewhat biased.
= We start the proof with
§i = Yi/Yp
= CD[vaYP]CDELYp,YP]YP
= C/L7'Y,.

m \We then take a closer look at C;

A A -0 Ay Ay
Ai+1 Al‘ tc A3 A2

Ci=1 Aiva ANig1 -+ Ay A

| Agic1 Ao e Ay A
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CA~'G CA'7?G --- CAG CG
CA'G CA7'G ..- CA’G CAG
= | CA"T'G CA'G .-- CA’G CA’G

| CA"7°G CA”7G --- CAG CAT'G _

C
cA
—| ca [A"—IG, A2G, .- AG, G]

i CAi—l
— O,

= Therefore, & = O;9L;'Y,. But, we already know 9L;'Y, = X;, so
& =0 X
= We proceed to break up &; into its component parts via SVD, much
like we did for the deterministic subspace identification problem.

= We first define weighting matrix W; € R?"*?" and W, e RV*V | as
before, such that W, is full rank and rank(Y,) = rank(Y,W,).

= Then, we compute the singular value decomposition

> 0 124
W,-W=[U U] L = Uz, v
15 2 1 U2 |:O O:||:V2T:| 1<1%1

= Since W is full rank, and since the rank of Y, W, is equal to the rank
of Y,, we find that the rank of W& W, is equal to the rank of &;, which
in turn is equal to n, the system order.
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= The SVD can now be split into two parts:

Wi0; = U, S/°T
- — 1/2
X W, =T 'y,
= From this, we can extract O; = W,"'U,%,/°T, and X; = O]

= This overall result indicates that the row space of the future states X;
can be found by orthogonally projecting the row space of the future
outputs Y, onto the row space of the past outputs Y.
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6.6: Step 4: Computing the system matrices

= \We now consider how the system matrices A4, C, O, S, and R may be
computed from the data.

= VODM proposes three algorithms; we consider only the third here.

= We already have that & = Y,/Y, = O; X,.

= Through similar reasoning, we can show §&;_; = Yf‘/Y; =01 Xit1.
= So, we can calculate both X; and X, using only the output data.

= We now form the following set of equations

X, _ §
i+1 _ A Xi + P .
Yi|i C Po

S——— N——
known residuals

= The Kalman-filter residuals p,, and p, are uncorrelated with X;, so we
can solve for 4 and C as

Al [ X | g
C Yi)i

m The estimate of 4 and C is asymptotically unbiased.

= We can now solve for

and then
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= Note that we would really like to compute steady-state O, R, and S,

but O;, R;, S; are non-steady-state matrices satisfying

Pli +1] = AP[i]A” + O,

G = AP[i]ICT + S,
Ao = CP[iICT + R;.

s When N > o0, O; = O, R; — R, and S; — S. Otherwise, there is
some noise/bias in the estimates.

= However, we are guaranteed, by construction, that

Vi e

which is important to guarantee a “positive real” solution, and is not
guaranteed by the other two algorithms presented in VODM.

Summary of the stochastic subspace system-identification method

Form the data matrix Yy»;—1, and break itup into ¥, Y/, Yp+, Yr.
Compute the projections §; = Y, /Y, and &_, =Y, /Y,
Calculate the SVD of the weighted projection W& W, = UV,

Determine the order by inspecting the singular values in X, and
partition the SVD accordingly to obtain U, and X;.

5. Determine O; = W,"'U,=/* and O;_; = O}
6. Determine X; = (’)}LS,- and X, = O;r_lé,-_l.

7. Solve for A and C via
AN | X | g1
C Yii

> w0 o
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Q> :’k>

8. Solve for the residuals

HEEE!
P Y;i
9. Solve for the noise covariance matrices via
BRG]
= [n the van Overschee toolbox, sto_pos.m contains a MATLAB
implementation of this algorithm.
» Note that the toolbox model is slightly different from the text model:
xlk + 1] = Axlk] + Bulk] + Kelk]
ylk] = Cxlk] + Dulk] + e[k].
e We can see that v[k] = elk] and w[k] = Kelk]. Then,
R = E [v[k]v" [k]] = E[e[k]e" [K]]
S =E[wlk]v'[k]] = KE[e[k]e" [k]] = KR

0 =E[wlklw’[k]] = KE [e[k]e"[k]] KT = KRK".

e So, if we can find K and R, then we can also compute S and Q.

+ But, notice that the method is slightly less general since it does
not allow for uncorrelated w[k] and v[k].

+ I'm not sure why they implement the less general version.
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6.7: Combined deterministic—stochastic identification

m In deterministic subspace system identification,

« We started by recognizing that Y, = O; X4 + W;Uy.

« We used oblique projection § = Y,y W), = O; X to recover the
noiseless state sequence and the extended observability matrix;

« We then used the SVD to separate O; from X7.

m |n stochastic subspace system identification,

 We started by recognizing that Y, = O; X + W'N/ + N.

« We used orthogonal projection to compute §; = Y,/Y, = O; X, to
project out noise and find a Kalman-filter state sequence.

« We then used the SVD to separate O; from X;.

» For combined deterministic—stochastic identification,
e We start with Y, = O;(X¢ + X%) + WUy + V'N} + N7.
o We would like to use orthogonal projection to eliminate the noise

and find a Kalman-filter state sequence, but what we actually find
has a Uy component still embedded in it.

« Alternately, we would like to use oblique projection to eliminate the
U component, but then find that we have a state sequence that is
not useful in itself.

e It turns out that we need to do both types of projection, combining
results, to come up with our system matrices.

ROADMAP: In this section, we will

1. First look at what a matrix of Kalman-filter states looks like:
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W

2. Then look at the orthogonal projection Z; =Y/ (U”), and find that
f

it gives Z; = O; X; + ¥, U, which has Kalman-filter states embedded

within, but is also influenced by Uy.

3. Then look at the oblique projection & = Y/, W), and find that it
gives & = O; X;, where the states are not so useful, but where the
extended observability matrix can be found.

4. Finally, combine the two methods, computing O; from the oblique
projection, and computing 4, B, C, D, Q, R, and S from O; and Z;.
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6.8: Step 1a: Kalman-filter covariance

= \We state without proof that the non-steady-state Kalman filter
estimates x; according to the following equations:

x[k] = Ax[k—1]4+Bu[k—1]+K[k—1] (y[k—1]—C 2 [k—1]—Du[k—1])
K[k—1] = (G — AP[k — 1]CT)(Ag— CP[k — 1]CT)7!
Plk] = AP[k—1]AT + (G—AP[k—1]CT)(Ao—CP[k—1]CT)! x
(G—AP[k—1]CH".

= WWe desire to show that this set of recursive equations can be written
explicitly as

)%[k]Z[Ak—QkOkgsg—Qk\Pkgﬂk] u[k—l] ’

where
Qr 2 (9 — AFP0]OT)(Li — O P[0]OT ).

= We will also show that the explicit solution to the matrix P [k] equals
Plk] = A*P[0O(AT)F + Q1 (D — A* P[0jO])T.

m Before we prove this, note carefully how the solution depends on the
initial state estimate x[0] and the initial covariance estimate P|[0].
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» This is different from the stochastic case (where both were set to
zero). Turns out we need to be very careful in how we account for
these initial estimates if we are to come up with an unbiased solution.

= WWe prove these two hypotheses by induction: We show they are true
for k = 1; then, assume they are true for k = p, and prove that they
are true for k = p + 1 also, completing the proof.

m Starting with £ = 1, we look at €, and from it find x[1]:
Q, = (G —-A'P[0]CT)(Ay—CP[O]CT)™! = K][0]
£[1] = (A= 107 £[0] + (3 — Q1¥1) u[0] + 21y[0]
= (A — K[0]C) x[0] + (B — K[0]D) u[0] + K[0]y[O]
= Ax[0]4+Bu[0]+K[0] (y[0]—C x[0]—Du[0]),
which is exactly the state update equation for k = 1.
= We can also show that the expression for P[1] is
P[1] = AP[0]AT + (G—AP[0]CT)(Ag—CP[0]CT) H(G—AP[0O]CT)T
= AP[0]A" + (3{—AP[0]O])(L,—O, P[0]O])' (I —AP[0]O])"
= AP[0]AT + Q,({—AP[0]O])T.
= This completes the proof for k = 1.
= WWe assume that the hypotheses are true for k = p, which gives
- uf0] ] - [0 ]
: + 2, z ,

£[p] = (47 — Q,0,) £[0] + (B;f—szqup) .
\u[p—1] ylp—1]]

P[p] = APP[0}(ATY + @, (3;, _ APP[O]og)T .

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data 6—26
= We now proceed to show that the hypotheses are true fork = p + 1.

m But first, define some notation to clean things up a bit:
ap, = (3 — APP[O]O;)
By = (L, —0,P[0]O,)
= (G — APt pojAah)rCh).
m Using this notation, we find that
Plp +1] = AP POJ(AT)P ™ + apriB,i10,4

— APFLP[0)(AT)P*! + (S;H _ Ap+1P[O]Op+1)

(Lpe1 = O POIOT,) ™ (35, — 477 PIOJOL, )

= Note that we can write

% =] 4% G |
- 0 T
T _ P _ ;
Opi1 = CAP:| = [ (9; 5 AhHrct ]
B (SC)TCT
b= | e h |
_ p 0

m Substituting these relationships gives
P[p+1] = APT'P[OJ(AT)"! + ap 1B 100) 4
= APFIP[0](AT)" T +
[ A (3; _ APP[O]O;) G — AP p[o)(ATyPCT ] x
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©)c’] [ o, oo 1)
[ st o)

G —carploja’)rt!
= APFIP[0](AT)? +

A (3; _ APP[O]O;) G — AP p[oj(AT)PCT ] x

" 1,-0,Pl0]0] ,<3;>TcT—0pP[01<AT>ch}1

| GT —cAarpoj(AT)rt!
= APFIP[0](AT)? +

mp = ,3;1 + ﬂ;la;CTA_lCapﬁ;l
Mmiy = —ﬁ;lo{gCTA_l

My = —A_lCoep,B;l

Moy = A1

where
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A=Ay—C [APP[O](AT)P n apﬁ;la;] CT = Ay— CP[pICT.

P|p]

= Then,

Plk+1]= 4 [APP[O](AT)P n apﬁljla;] AT ¢

P[p]

(yp — Aozp,B;loz;CT)A_l(yp — Aap,B;loc;CT)T

— AP[p]AT + (G A [APP[O](AT)P + a,,ﬁ;a;] CT)T X

N -

P|p]

Al (G —A [APP[O](AT)P + a,,ﬂ;la;] CT)

N

T

-~

P[p]

= AP[p]A" 4+ (G — AP[p]C")(Ag— CP[p]C")™" x
(G —AP[pICH)",
which is what we were trying to prove.

= Therefore, the P[k] recursion is proven.
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6.9: Step 1b: Kalman-filter state

m Before completing the proof of the X[k] recursion, we need to see how
to write Q2,1

_ -1
Q2p11=pr1P 1

— (3;+1 — AP+1P[O]O;+1) (Lp_|_1 — Op+1P[O]O;+1)_1 |

= Note that we have already done these calculations as a part of
computing P[p + 1].

Qpy1 = | Aapymyy + ypman Aaymip + ypman ]

= | vy Uz]

V] = Aozp,Bljl + Aozp,B;lochTA_lCap,Bljl — ypA_lCocp,B;l
= AQ, + AQ,a, C"ATICQ, —y,A7'CQ,
= AQ, — (y, — AQpa, CHAT'CQ,
= AQ, — (G — AP[p]C")(Ao - CP[pIC)7'CQ,
= (4= K[p]C)2,

vy = —Aapﬁljloe;CTA_l + y,A™!
= (yp — AQpa, CT)A™!
= (G — AP[p]C")(Ao— CP[pIC")~!
= K{pl.

" S0, Q01 = [ (A= K[PIOIR, KIp] |

= We now use this result to rewrite x[p + 1]

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data

6-30

u[0]
flp+ 1] = (AP = Q,10,11) £10] + (s;fH — szpﬂxppﬂ) ;
| ulp] |
[ y[0]
+Qppr |
| y[p]
= (A7 — (A - K[p]C)Q,0, — K[p]CA?) £[0] +
- u0]
(A3}f — (A= K[p]C)Q,¥, — K[p]CSZ) :
| ulp—1]
+(B — K[p]D)u[p] +
- y[0]
(A - K[p]C) 2, : + K[ply[p]
| ylp—1]
e h
= (4 - K[p]C) ((APQPOP);%[O] + (29-Q,V,) :
Lulp — 1]

y[0]
+Q, :

| yip—1]
= (A — K[p]C)x[p] + (B — K[p]D)u[p] + K[p]y

= Ax[p] + Bu[p] + K[p] (y[p] — Cx[p] — Du[p])

which completes the proof.

)+@KMDWM+KMUM

[P]
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PERSPECTIVE: We have now shown that the time-varying Kalman filter,
operating on the data y[0]--- y[k] and u[0] - - - u[k] will produce the
state estimates

fk = [ 4 - Q00 of @ @ || ulk -1 |,

where
Q2 (9 — AFP0]OT)(Li — O; P[0]OT) .

= This is important: We will find this relationship showing up when we
consider the orthogonal and oblique projections in the next sections.

= This means that these projections result in sequences of
non-steady-state Kalman-filter state estimates, initialized with some
initial state x[0] and covariance P|0].

= This will become more clear when we organize the state estimates in
a block matrix as

Xo =[50 2 +1), - 2+ N -1]]

:[Ai—QiOié 3,‘-1—91"111'2 Qi] Up

[4-00. [r-aw a]][ ]
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m This state sequence is generated by a bank of non-steady-state
Kalman filters working in parallel on each of the columns of W, as

— - N " Kalman
Xy o] - #ql - F[N—1] ] flter

- u[0] u[g] ulN -1 ||

uli — 1] uli +q — 1] uli + N — 2]
Wy oo | et e S
y[0] ylg] YN —1]

Cyli—1] yi+qg—1] | yi+N=2]| l

X;: | & e fital o R+N-1 ],

where X' [k] denotes an “initial” state, as different from the
Kalman-filter estimated state x[k].

= In what follows, we will encounter different Kalman-filter sequences
(in the sense of different initial states X[0] and covariances P[0]), so
we will denote the Kalman-filter state sequence with initial state X[0]

and covariance matrix P[0] as X, _ .
(X [0].P (0]
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6.10: Step 2a: Orthogonal projection for combined systems (A, B'!)

= Now that we have seen what a Kalman-filter state sequence looks

like, we will investigate some projection results, and find that these
state sequences show up naturally.

= We start with
Y, =0:(Xy + X))+ WU, +¥'N)+ N,

d s W ATW v
= O; X! + WU, + O; X5 + W'NY + N

v
Yy =0 X5+ WU;+Y;
X§=AX+5U,.
= Over the next pages, our goal is to show that

/4 _
Z — Yy/ |:Up:| =0 X; + ¥, Uy,

f
where
X, 2X,.
[X[0], P[0]]
— U
X[0] = S*¥ (R —1 p
01 = 5 & (1)
P[O] — _ [Ed . qu(Ruu)—l(qu)T],
where

R 4 CI)[U| Uopi 1] = |: (I)[Up,Up] CI)[Up,Uf] :| _ |: Rzu Z?F
0|2i—1-%~0|2i -1
(

P, Pusuy) %Wﬂﬁ

Xu __ - —
5T = q)[Xf;l»Uom—ﬂ — [ CD[X;%’,Up] CI)[Xg»Uf] ] _ [S;u S;u ]

zdéq

d ydi-
x4.x4]
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= The importance of this result is that it shows one way in which the
Kalman-filter state sequence X; relates to given input-output data.

= The projected matrix Z; can indeed be computed from the given data,
without knowing the system matrices.

m We assume that the deterministic input u[k] is uncorrelated with the
process noise w|k] and the sensor noise v[k].

m We also assume the input is persistently exciting of order 2i, and that
the number of measurements N — oc.

= The first assumption gives us
Ey[Y U1 =Ey[Y,U/]1=0
En[Y;U, ] =EN[Y;U;]=0
En[Y,(X;)"] = Ex[Y,(X{)'] =0
Ev[Y;(X;)T] = En[Y;(X)] = 0.

= \We wish to compute

U e
Z=Ys/| U | 2AB"| U, |,
- YP - - YP -

where

A=Ey|v Ul vl vl =] A A 4

p p

Up |
; B B
B=Ey|| Uy [UpT uf YpT] — [“ ...... 12]

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data 6—-35
= We now compute A;, A,, and Aj;,

Ay = Ey[Y,;UT] = Ey[(OA'X¢ + 09U, + WUy + Y$HU]]
= O; A3 + O RY + Wy (RU4)T
Ay = Ex[Y,U]] = Ex[(O A XS + O,%U, + WUy + Y})UJ]
= Q;A'ST + O;9 RY 4+ W; Ry
A3 = Ex[Y/Y,)]
= Ex[(Oi A" X+ O, U,+ WU+ Y D) ((XHTOT +UTW! +(¥3)T)]
= O A'SIO] + O AT S + 0,955 O] + 0,9 Riw]
+ Wi (ST O + wi(RYH W + G
= O A'TIOT + O AT ST + 0,9 (S3)TOT + 0,97 RuwT
+ Wi (SO + (R + O
= Similarly, we compute By, Bz, B, and By,.
Bi1 = En[Uopi-iUgpi ] = R™
B =By [v,[ U7 UT || =Ex[©@xE +wu, + v [ UT UF ]
= O™ + ;| Riv Ry |
B = By,
By = Ey [YprT]
= Ex[(O: X g+ W Up+Y )X O +U W] +(Y)T)]

= 0,20 + 0,83V + v, (S;) O] + W Ry + L;.
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= Note that B is guaranteed to be of full rank due to the persistently
exciting input and the non-zero stochastic system.

= To compute B}, we again make use of the matrix inversion lemma
|:Bn Bl :|1 _ |:m11 m12:|
B> By may My
mu = By + By By A™ By By
miy = —Byi By A~
my = —A"'By By}
mp = A" where A =By — BB B
= [n our case, this becomes:
mi = (R"™) ™" + ([(I)} v/ + (R””)I(Sx”)TO,.T) A7l x
(w1 0]+os™@®m™)
mp = — ([é} v/ 4 (R““)‘I(Sx“)T(’)IT) A7

My = —A"! (xp,— [ I 0] + Oin”(R””)_l)
my = A7,
with

A=035'0" + Li + O;S* W] + (S5O0l + ¥Ry w]

(osmen iy wy ) (iwvers | S ]w)
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xu uuy—1 xuNT d T
= L; — O; (S™(R™) "1 (s*)T — 24) OT.

P[o]
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6.11: Step 2b: Orthogonal projection for combined systems...

m Recall that we wish to compute

Up Up
Z =Y/ Uy éAB_l Ur |,
- YP - | Yp -

and we are now ready to compute AB..

AB =[] 4 A, ] A3][m“ m”}

mypy myp

= || A Ay |mp + Asmoy, [A1 Az]m12+A3m22]

A

Ly, LUf] LYP].

= We start with [ Ly, Ly, ] = [Al A, ] my + Asm,;. Note that we
can write

[,41 Az] :O,-Ai[sgu S;”]Jro,-B?[R;” Rj;;i]Jr\Pi[(RZ?)T R?”]

=0 'S+ O [ 10 |R™ + w0 1 |R™

|:m11 i| _ |: (R")~! :| B _(I)i| v+ (RSO

moni 0 .

moi.

m Putting these together, we can write
[LUP Ly, :| -
(O,-Ain” + O, [ 10 ] R™ 4, [ 01 ] R””) (R*)~!

— (0 [ sy sy ]+ o [ R R |+ [ REHT RY]) X

Lecture notes prepared by Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett



ECE5560, State-Space Identification, Noisy Data 6—-39

I
ot

_ (OiAin”+ [ (9,-3,4 0 ] R [ 0, ]Ruu) (Ruu)—l(qu)TOiTmzl

+ [O,-AiEdOiT + O, AT ST + 0,9 (53 TOT + 09 YT

+ (va”)TO,-T + (RZ?")T‘I’,-T + (91'3,{|mz1

_ (Ol_Ainu(Ruu)—l n [ 0, ])

—(OiAiS;”\I!iT + O Ry W] + q/,-(R;;;i)TqJ,.T)mZI

o B Y

(

— Ol’Ainu(Ruu)_l(qu)TOiT 4 [ Oiblg’, W, :| (qu)TOlT Mo

\ e
+| O;A'ZO] + O A4S + 0,9 (53T O + 0,9 Ry w]

o 51 p

TNV TNV

p) v

+Wi(S7) 07 +Wi(Ry)' ) +Oi3f}m21-

= Notice the cancellations «, 8, y, 6, and §,. We can write the
simplified equation as

[ Ly, Lo, | = (0a's™ R+ 0, w; )
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+0; | 9 — A" (SRS =) O | ma

—

-~

P[0]
= (0ais R +[ 09, W |)
+0; (3 — A" P[0]O]) m2
= (0as™ (R~ + [ 09, W |)
—0; (3 — ATP[0]OT) (L; — O; P[0]OT) ! x
(\If,- [ I 0] n O,-S”(R””)_l)
= (0as™ (R + [ 09, W |)
_0,Q, (qf,- [ I o] + Oin”(R””)‘l)

=| 0 (¥ W), Wi |+ 0 (4" - 2:0) s (R
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6.12: Step 2c¢c: Orthogonal projection for combined systems...

= Whew. Now we proceed to find Ly, = [ A A ] mir + Asmy,. First

note, v
|:m12i| G e
—1

nmos.
my»

= This gives us

ot =~ (o + 01 o]+ [0 ] 7)

+[0,-Afz:dof + O; A ST + O0;9(S3T O + 09 RWw]
+ (S O] + wi(RYH W] + o,-sf}
I oxu \IIZT uuy—1 xu\T T
= —0;A'S 0 + (R™)71(§*)T O.

T

~l o o ] R™ ([q; } + (R"“)l(sxu)TO,T)

+ [(’),-AiZd(’)iT + O;A'ST + O0;9(S3 O + 0.9 Ry ]

+ Wi (ST O + wi(RYH W] + Oi3f:|
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. Wl .
— _OiAszu |: Ol :| . O,‘Aleu(Ruu)_l(qu)TOiT

Lot o] [ ]-Loot o]smrer
_ :0 v, ] R [‘Iﬂ - [ 0 v, ] (s*y'o}!

+ [OiAfz:dQ.T + O; A ST + O0;9(S3 O + 09 Ry w]

+ ¥ (S7)' O] + Wi(RYH W] + 0,-35}

= — O ATS3"W; —0; A’ S¥ (R (55T O]

o

— O Ry — 0.9 (sx)Tof

-~

p Y
uu T xu\T T
— Wi(Ry W] — W, (5770,

TNV TNV

) €

+ [O,-A"EdOiT + O; A S + 0,95 (SOl + 0,9 Ry

-~

o v p

TV TV

€ ]

+ W (ST Of +Wi(RY)T ] +O,-i)§]

= Again, note all the cancellations « - - - €. With these terms eliminated,
we find
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Ly,=0; | % — 4 ™R =2/ 0] | my

P[o]

= O; (¥ — A'P[0]O]) (L — OiP[O]OiT)_l
— 0,Q;.

= We're nearly there now. All that remains is to put these results
together to compute

UP UP
z=v;,/ U | 2487 U,
YP | YP -
U, | |
:[[LUP LU.f-]LYp] |:Uf:|
| YP -

= ([ o (o —w), w |+ 0 (4 - 2,0) s (R ™) [gﬂ

+0:QY,

=0, ( (% — QW) U, + (A" — Q,0;) S™(R"™)™ [gp] +9ti)
/

N

-~

X[0]
+ W, Uy.

= Recall that we showed earlier that the non-steady-state Kalman-filter
state sequence can be expressed as

X;=| 4 -0, | o -, Q]]|:/§/O:|
p
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= This allows us to rewrite our expression for Z; as

W

Z,‘ — Yf/ |:U;i| — O,‘Yi —|— LIj,'Uf,

_ U
where X[0] = S*(R"*)™! [Up}, and P[0] = S™(R")"}(S™)T — =7,
f
which, if you still recall, is what we were trying to prove.

= Note that we can write X[0] differently:

Y xu UU\— Y
X[0] = S*(R"™) I[Uj]

= X4 Uppi—1]  Wopi—il Uy

— Xd/ UP .
p Uf
= The “real” initial state is X;’ + X, but we have no way of predicting

X ,, s0 this projection sets it to zero.

= This projection uses the X[0] that is the best estimate of Xj lying in
the row space of past and future inputs.
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6.13: Step 3: Oblique projections for combined systems

= As mentioned before, we will need to be able to compute both
orthogonal and oblique projections to arrive at our combined
algorithm.

= Here, we consider the oblique projection §; = Yifo,Wp.

= We will show that § = O, X;, where X is the output of a
non-steady-state Kalman filter with initial conditions

X[0] = X{ fu, Uy
P[O] — qu(Ruu)—l(qu)T . Ed.
m Note that the initial covariance of this filter is the same as for the
orthogonal projection case, but the initial states are different.

Therefore, the state sequence X; will be different from the state
sequence X;. This is a subtle but important point.

m Fortunately, most of the “heavy lifting” has already been done. We
take advantage of our prior work.

m First, we establish a relationship between orthogonal and oblique
projections

— ) | o )
v ‘ uUu)  U,U; U
Xd/[ p] o R L e e S L
— ) | o )
— d T: T UpUI;T Upr »
- EN XP Up E Uf T ------------- ol N
. i UfUp Uf Up i 0 |
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d d
=X, lv,Up + X, 1v,Uy,

where we have used a relationship from VODM chapter 1 for the
oblique projection that is different from what we have previously used.

= Therefore, if we can break up our prior relationship for
- . 1Up . . .
X[0] =X,/ U into parts that are linear in U, and U, we can then
f

determine the desired projection.
= The figure shows the relationships.

= The orthogonal projection creates Z;.

= But, X; has components related to Uy,
so the oblique projection of Y along the
row space of U onto the row space of g
U, will result in a different O; X;. 0%,

span{W,}

» span{U,}

= To find X;, we start with the expression that we have previously
proven is true for a non-steady-state Kalman-filter state sequence

X; = [Ai _gz,-(’),-g [35’ —Q,-\p,-g Q, ] ] [YO}

(A" —;0;) x4/ [g;] + [ of Y ] W,.

= We substitute this result into 2; = O, X; + ¥, U,

Zi = Oi (Al — QiOi) XZ’/ [gp]
f

+0; [ 9 —@uw, @ W, +wiUy.

— 0, (Ai _ Q,-Oi) (Xg/UfUp + XZ’/Upr)
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+O; [ o - @ | W, +wU,.

= We drop those terms that are linear in U, to give the oblique
projection
& =0 (A — Q0 (X;f/UfUp) + [ o - @ ] W,
= 0; X;,
if we define

X; = [Ai —Q,0; [:)g’ QY Q,; ] ] {Xg/UfUP} |

which satisfies the equation for a non-steady-state Kalman-filter state

sequence with
X[0] = X fu,Up,

which is what we were trying to prove.

» Because & = O, X;, it has rank n, so we can determine the system
order from the SVD of W & W.,.

e When W, = I and W, = I, we get the N4SID method,;
e When W, =1 and W, = HUJ%, we get the MOESP method;

) V. _
When W = CD[Xf/U},Xf/U}]’ and W, = HUJ%, we get the CVA

method.
e It is not presently known which of these methods is “best.”

= \We can determine the extended observability matrix
O; = W 'U =T, and the state sequence X; = O¢;.
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6.14: Step 4a: Computing the system matrices A, C

m There does not appear to be consensus regarding how to compute
the system matrices for a combined deterministic—stochastic system.

m Generally, we find n and O; from the SVD of W& Ws,.

= We might consider finding a state sequence X; from & = Y/, W,
and a second state sequence X, from &, = Yf—/U]7 Wp+, but it turns
out that these have different initial conditions: |

« Initial state for X; is X¢ /y, U,;

o Initial state for X ;. is XZ/U;U;.

m Because of these different initial conditions, the two resulting state
sequences are incompatible. That is,

Y,‘+l A B Y,‘ Pw
Ll e

m Even so, as the amount of data collected N — oo, or if the system is
purely deterministic, or if the deterministic input is white noise, then
this inequality becomes an equality, and can be used as the basis for
a subspace system-identification algorithm (algorithm 2 in VODM).

= \We will not assume that here. So, we must work a little harder.

= WWe consider the orthogonal projection computed by shifting the
border between “past” and “future” down by one block row in the data
matrices.

= \We can show that the orthogonal projection becomes

W+
Zin=Y,/ |:Up_:|
f
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=0 X1+ v Uy,

where the initial state estimates for Z; and Z; ., are the same, as are
the initial covariance.

m Therefore, Z; and Z;,; are compatible in the sense talked about
above. So,

X1 = AX; 4+ BU;; + K;(Y;; —CX; — DUy)
Yii = CX; + DUy + (Y;; —CX; — DUy).
= Because the Kalman-filter innovations (Y;; — CX;— DU;) are

uncorrelated with the states X;, the past inputs and outputs W, and
the future inputs U, we have

/Xi+1 . A B j(\i 4+ Pw
Yiii |c D Ui Py |’
where the row spaces of p,, and p, are orthogonal to the row space of

X;, Wy,and Uy.

= |f we were able to compute X;,, and X;, then we could use this
expression to find the system matrices.

= Unfortunately, we are not. The orthogonal projection does not return
the state sequence, but the direct sum Z; = O; X; + ; Uy.
= But, we can write
X, =0 (2 -WUy)

Xiy1 = O,T_l (Zi+1 — ‘Ifi—1Uf) :

= The only unknowns in this relationship are ¥; and ¥;_; because the
other terms can be found by projections.
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= S0, we can write

|:O;L—IZ"+1:|—|:A:|OTZ_|_ [B= O;L—lqji—l]_AOquji U—|—|:'Ow
v | |c | [ D, 0]-cow, !

1

K
= We solve this equation in a least-squares sense for 4, C, and K.

= Once A and € are known, the matrices B and D appear linearly in K.
They are a little cumbersome to solve for, but we will see one method
in the sequel.

= Then, when A, B, C, and D are known, we compute
Pw _ /X,'_H - A\/X, - B\UH,'
P Yii —CX; = DUy |

and compute the covariance matrices

i) =m (L o)

= |In the van Overschee toolbox, com_alt .m contains a MATLAB
implementation of this algorithm, using one method to find B and D.
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6.15: Step 4b: Computing the system matrices B, D

= Let’s now consider briefly the problem of finding B and D

2
. ol =z A _
B, D = arg min At (P B (’);LZ,-—/C(B,D) Uy
B,D Y ¢ ——
- known
known F

e The subscript “F” refers to a “Frobenius norm”.
|A|l » = trace(AT A) = /Z;0;.

m For ease of notation, define

P L {OQL—IZ"“}_[%}O;&
Y C
o

QéUf: sz ,
_Qi_

where the Q, are block row vectors.

= Then, we can write B,D = argrl?’ig |P - K(B, D)QH? .

= We now investigate the structure of (B, D)
i [ B, O v, ] _ Aoy,
| D, 0]-colw,

BOTy 0.0 v |2 ot
D 0 0 0 " c| '

—

K =
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= Note that ¥;,_; and W; are both functions of B and D, but we can

compute
ra zilA O;“: Lin Lip -+ Ly
C Lo Lop -+ Ly
MZEQO = [/\/11 M, - Mi—l]

using the available data from the projections. Further, we can break K

into blocks
T Kin K -+ Kyji
Ko Ko -0 Ky
and write _ _
Kin
Iy D
|y |
IC2|1 B
where _
—Lip Mi—Liyp - Mis—Lyicr Mo — Ly
Mi—=Liyp Mo—=Ly -+ Mig— Ly 0
My =Lz Mz — Ly 0 0
i— _L i 0 0 0
No | Moazkw 0 e 0 0 y
I — Lo —Lop —Lo)i1 —Ly);
— Lo —Lo3 —Ly); 0
— L3 — Lo 0 0
- ['2|z 0 0 0
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I 0
0 0, |

= We could stop right now by solving this rather enormous set of linear
equations using least squares.

= VODM proposes an alternative, which can be solved more efficiently.

Define

I —Lipn o Mo — Ly I O

N, =

1 | T —Lop -0 =Ly :| |:0 Oi—1:|

_M1—£1|2 e Mo =Ly 0 I 0

N, =
i _£2|2 oo _£2|l O O Oi_l
M =Ly - 00][ T 0

N = :

where each matrix has one block row from the top half of A/ and one
block row from the bottom half of N.

= \We can now write more compactly
/C1|k _ Nk D
Kok B |’
" D
P — ZNk Ok
k=1 B

= The apparent problem is that the only unknown terms, which we
would like to find, are sandwiched in between some known quantities.

and ,

B, D = argmin
B.D

F

= To turn this into a more useful expression, we make use of the identity
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vec(AXB) = (BT ® A)vec(X),

where vec(X) stacks the columns into a vector, and ® is the
Kronecker product.

e In MATLAB, vec(X) is computed as X (:).

= \We now rewrite our goal

vec(P) — (; QO ®Nk) vec ({ I; D

which may be solved using least squares

,- :
vec (|: b :|) = (Z ol ®Nk> vec(P).
B k=1

= This still requires quite a large matrix inversion, but VODM chapter 6
shows how to solve the relationships using an LQ factorization, which
makes for a robust algorithm.

2

F

B, D = argmin
B.D

Summary of the combined deterministic—stochastic solution

= \We now summarize the combined deterministic—stochastic section by
presenting an algorithm that is industrially robust.

L w
1. Calculate the projections & = Yf/Upr, Zi=Yy/ [ ”}, and

Uy
W
Ziqn=Y,/ |:Up_:|-

f
2. Calculate the SVD of the weighted oblique projection

§T,) = uzv?’.

Note that this has assumed the weighting matrices for the MOESP
method. Other weighting matrices W; and W, could be used.
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3. Determine the order n of the system by inspecting the singular values

in X, partitioning appropriately to obtain U; and ;.
4. Determine O; = UIE}/z and O;_; = (’)}.
5. Solve the set of linear equations for 4, €, and K

ol |2 A _ v
L I R OITZ, + KUy + P .
Yi|i C P

Recompute ©; and O;_; from 4 and C.
6. Solve for B and D from

O;L_lzi+1 .
Yiii
7. Finally, determine

Pu | _ X — AX; — BUH:‘
Pu Yi|i_C/X\i_DUi|i ,
and compute the covariance matrices

==L Jen)

m [n the van Overschee toolbox, subid.m contains a MATLAB
implementation of this algorithm.

2

Q> :’k>

B,D = argmin
B.D

} Oz, - K(B,D)U;
F

Where from here

= Wow. It's been quite a journey to get to this point.

» Not exactly hard, but certainly intense, involving huge attention to
details/book-keeping in the linear algebra.
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= In the end, we have found robust methods for determining system
models for deterministic, stochastic, and combined
deterministic—stochastic systems.

= There are some very good features of these methods:

e Few user inputs required;
« “Simpler” calculations (no local minima);
» They easily handle MIMO systems.

m Problems with the state space methods is that there are few knobs
» Can get a good model, but how about a great one?

m Suggest that you use the state-space methods as a starting point for
the Box—Jenkins (PEM) optimizations.

= From here, we move on to look at a few more “advanced” topics.

= These will probably seem like a relief after all this linear algebra. . .
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