
ECE5560: System Identification 4–1

Transfer-Function Identification

4.1: Introduction to transfer functions

■ Issues with nonparametric system ID:

� Needed to identify an infinite number of values to determine either

a unit-pulse- or frequency response to uniquely identify system.

� When there is disturbance, we need more data than values to

identify, to somehow average out the effects of the disturbance.

� So, prefer to find a low-order approximate model of system (i.e.,

low number of parameters to identify).

■ We now begin to look at parametric system ID—identifying a small

set of parameters (here, in transfer-function form) to define a model.

� Most control-system analysis and design methods work directly

with either transfer-function or state-space models;

� Can easily get unit-pulse and frequency responses from

parametric models if needed (converse isn’t generally true).

■ Start by reviewing discrete-time transfer function models.

■ Then, look at some common model structures used in system ID,

then at optimization methods, then at validation of models.

Parametric models of linear systems

■ In this section of notes, we will assume transfer-function (TF) models

G.q/ and H.q/ for system and noise dynamics respectively,
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y�k� D G.q/u�k�CH.q/e�k�.

� The u�k� signal is known (we applied it).

� The e�k� signal is assumed to be a sequence of independent RVs,

◆ Usually assume zero-mean, white, Gaussian.

◆ May know E�e
2

�k��, but may need to estimate that too.

� G.q/ is the transfer function between (known) input and output.

� H.q/ is the transfer function between disturbance and output.

■ The transfer functions can be defined as1

G.q/ D

1

X

kD1

g�k�q

�k and H.q/ D

1

X

kD0

h�k�q

�k.

■ If the unit-pulse responses are known, we can compute G.q/ and

H.q/ directly. But, we’re trying to avoid this approach. . .

■ Fortunately, many systems can be very well described by (short)

discrete-time difference equations. For example,

y�k� D �y�k � 1�C �u�k � 1�.

■ If we write this equation in operator form, we get2

.1� �q

�1

/y�k� D �q

�1

u�k�

y�k� D

�q

�1

.1� �q

�1

/

u�k� D

�

.q � �/

� �� �

G.q/

u�k�.

1 Note the different summation starting indices, due to assumption that G.q/ has no

strictly feedthrough path (i.e., g�0� D 0). If g�0� ¤ 0, then both indices start at k D 0.
2 The second line of this equation does not really follow from the first, since q

�1 is an

operator and not a variable. However, we can use a similar approach with ´ transforms

to rigorously come up with the same result, if we permit rational-polynomial functions

of q. This is really an abuse of notation, but when everybody understands what you’re

talking about, I suppose it’s okay.
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■ From this example, we see that a system having infinite length

unit-pulse response can be perfectly described by a transfer function

having only two unknown parameters, � and �.

■ All systems described by linear constant coefficient difference

equations can be represented with transfer functions that are “rational

polynomial in q”. For example,

G.q/ D

B.q/

A.q/

D q

�n

k

b

1

q

�1

C � � � C b

n

b

q

�n

b

1C a

1

q

�1

C � � � C a

n

a

q

�n

a

.

� Here, the system has a transport delay of n
k

samples, n
b

feedforward coefficients, and n
a

feedback coefficients.

� So, there are a total of n
a

C n

b

C 3 values to determine, in order to

define the transfer function (3 D dimfn
a;

; n

b

; n

k

g).

� This is much more compact than trying to find the entire unit-pulse

or frequency responses.

■ By analogy with the ´-domain transfer function, we can treat q as a

variable and factor the numerator and denominator polynomials.

� Roots of the numerator polynomial are called zeros of the transfer

function;

� Roots of the denominator polynomial are called poles of the

transfer function.

■ System response to initial conditions or input stimuli are qualitatively

defined by pole locations. The zero locations are required to quantify

the result.

� Poles tell if the system is stable or unstable, smooth or oscillatory,

fast or slow.
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4.2: Some examples of time responses versus pole locations

■ The following shows some correspondence between the q-plane and

some discrete-time unit-pulse-response signals.

Unit step:

■
g�k� D 1�k�.

■
G.q/ D

q

q � 1

; jqj > 1.

�4�2 0 2 4
6 8

Exponential (geometric):

■
g�k� D a

k

1�k�; jaj < 1.

■
G.q/ D

q

q � a

; jqj > jaj.

�4�2 0
2 4

6 8

General cosinusoid:

■
g�k� D a

k cos�!k�1�k�; jaj < 1.

■
G.q/ D

q.q � a cos!/

q

2

� 2a.cos!/q C a

2

for jqj > jaj.
�4�2

0 2
4 6 8

■ The radius to the two poles is a; the angle to the poles is !.

■ The zero (not at the origin) has the same real part as the two poles.

� If ! D 0, G.q/ D
q

q � a

: : : geometric!

� If ! D 0; a D 1, G.q/ D
q

q � 1

: : : step!

■ Pole radius a is the geometric factor, determines settling time.

1. jaj D 0; finite-duration response. e.g., Æ�k �N�� q

�N .

2. jaj > 1; growing signal which will not decay.

3. jaj D 1; signal with constant amplitude; either step or cosine.
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4. jaj < 1; decaying signal. Small a = fast decay (see below).

a 0.9 0.8 0.6 0.4

� duration N 43 21 9 5

■ Pole angle ! determines number of samples per oscillation.

� That is, if we require cos�!k� D cos�!.k CN/�, then

N D

2�

!

�

�

�

�

rad

D

360

!

�

�

�

�

deg

:

■ Solid: cst. damping ratio �.

■ Dashed: constant natural

frequency !
n

. N D 2

N D 3

N D 4

N D 5

N D 8

N D 10

N D 20

■ Plot to right

shows

discrete-time

unit-pulse

responses

versus pole

locations. R.q/

I.q/
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Correspondence with continuous-time signals

■ Let g.t/ D e

�at cos.bt/1.t/.

■ Suppose

a D 0:3567=T

b D

�=4

T

9

=

;

T D sampling period:

■ Then,

g�k� D g.kT / D

�

e

�0:3567

�

k

cos

�

�k

4

�

1�k�

D 0:7

k cos

�

�k

4

�

1�k�:

(This is the cosinusoid example used in the earlier example).

■
G.s/ has poles at s

1;2

D �aC jb and �a � jb.

■
G.q/ has poles at radius e�aT angle ! D �bT or at e�aT�jbT .

� So, q
1;2

D e

s

1

T and es2T .

■ In general, poles convert between the s-plane and q-plane via

q D e

sT .

EXAMPLE: Some corresponding pole locations:

j

�

T

�j

�

T

j

�

T

�j

�

T

s-plane q-plane
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■
j!-axis maps to unit circle.

■ Constant damping ratio � maps to strange spiral.

■ When considering system response to a step input for controls

purposes, the following diagrams may be helpful:

Good Good Good

Damping � Frequency !

n

Settling time

■ Higher-order systems:

� Pole moving toward q D 1, system slows down.

� Zero moving toward q D 1, overshoot.

� Pole and zero moving close to each other cancel.
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4.3: Bode plots from discrete-time transfer functions

■ Knowing a system’s frequency response is key to many system

analysis and control synthesis methods.

■ Bode plots are plots of frequency response of a system, displayed as

separate magnitude- and phase-response plots.

■ Frequency response is extracted from transfer functions, knowing

geometrically where pure sinusoids exist in s- or q-plane.

� In s-plane, H.s/
j

sDj!

is frequency response for 0 � ! <1.

� In q-plane, H.q/
j

qDe

j!T

is frequency response for 0 � ! � !
s

=2.

■ Straight-line tools of s-plane analysis DON’T WORK! They are based

on geometry and geometry has changed—j!-axis to q-unit circle.

■ To use straight-line tools, must convert H.q/ to an equivalent form

H.w/ where unit circle in q-plane maps to j!-axis in w-plane.

� Ideally, interior of q-plane unit circle maps to LHP in w-plane, and

exterior of q-plane unit circle maps to RHP in w-plane.

� It is not accurate to label the destination plane the s-plane. It is

often called the w-plane, and the transformation between the

q-plane and the w-plane is called the w-Transform.

◆ That is, for the H.w/ we come up with, H.w/ ¤ H.s/j

sDw

.
q-plane w-plane
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■ A transform that satisfies these requirements is the bilinear transform:

H.w/ D H.q/
j

qD

1C.T=2/w

1�.T=2/w

and H.q/ D H.w/
j

wD

2

T

q�1

qC1

:

■ Three things to check:

1. Unit circle in q-plane � j!-axis in w-plane.

2. Inside unit circle in q-plane � LHP in w-plane.

3. Outside unit circle in q-plane � RHP in w-plane.

■ If true,

1. Take H.q/� H.w/ via the bilinear transform.

2. Use straight-line methods to plot Bode plot of H.w/.

CHECK: Let q D re

j!T . Then, q is on the unit circle if r D 1, q is inside

the unit circle if jr j < 1 and q is outside the unit circle if jr j > 1.

q D re

j!T

w D

2

T

q � 1

q C 1

�

�

�

�

qDre

j!T

D

2

T

re

j!T

� 1

re

j!T

C 1

:

■ Expand ej!T D cos.!T /C j sin.!T / and use the shorthand




4

D cos.!T / and s
4

D sin.!T /. Also note that s2C 


2

D 1.

w D

2

T

�

r
 C jrs � 1

r
 C jrs C 1

�

D

2

T

�

.r
 � 1/C jrs

.r
 C 1/C jrs

� �

.r
 C 1/� jrs

.r
 C 1/� jrs

�

D

2

T

�

.r

2




2

� 1/C j.rs/.r
 C 1/� j.rs/.r
 � 1/C r

2

s

2

.r
 C 1/

2

C .rs/

2

�

D

2

T

�

r

2

� 1

r

2

C 2r
 C 1

�

C j

2

T

�

2rs

r

2

C 2r
 C 1

�

:

■ Notice that the real part of w is 0 when r D 1 (w is on the imaginary

axis), the real part of w is negative when jr j < 1 (w in LHP), and that
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the real part of w is positive when jr j > 1 (w in RHP). Therefore, the

bilinear transformation does exactly what we want.

■ When r D 1;

w D j

2

T

2 sin.!T /

2C 2 cos.!T /
D j

2

T

tan

�

!T

2

�

.

■ That is, in w-plane, H.w/
j

wDj!

w

is the frequency response for

0 � !

w

<1. Straight-line tools work, but frequency axis is warped!

■ The following diagram summarizes the relationship between the

s-plane, q-plane, and w-plane:

s-plane q-plane w-plane

j

2

T

j

!

s

2

j

!

s

4

�j

!

s

2

�j

!

s

4

�

2

T

R D 1

R D 1

➀

➀
➀

➁

➁
➁

➂

➂

➂

➃➃

➃

➄➄

➄

➅

➅

➅

➆

➆

➆

PROCEDURE:

1. Convert H.q/ to H.w/ by H.w/ D H.q/
j

qD

1C.T=2/w

1�.T=2/w

:

2. Simplify expression to rational-polynomial in w.

3. Factor into zeros and poles in standard “Bode Form”.

4. Plot the response exactly the same way as an s-plane Bode plot.

Note: Plots are versus log
10

!

w

: : : !

w

D

2

T

tan

�

!T

2

�

. Can

re-scale axis in terms if ! if we want.

EXAMPLE: Plot the straight-line w-plane Bode plot for a system with

transfer function:
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LetG.q/ D
0:368q C 0:264

q

2

� 1:368qC 0:368

:

(1,2)

G.w/ D

0:368

�

1C0:5w

1�0:5w

�

C 0:264

�

1C0:5w

1�0:5w

�

2

� 1:368

�

1C0:5w

1�0:5w

�

C 0:368

D

0:368.1C 0:5w/.1� 0:5w/C 0:264.1� 0:5w/

2

.1C 0:5w/

2

� 1:368.1C 0:5w/.1� 0:5w/C 0:368.1� 0:5w/

2

D

�0:0381.w � 2/.w C 12:14/

w.w C 0:924/

:

(3)

G.j!

w

/ D

�

�

j

!

w

2

� 1

� �

j

!

w

12:14

C 1

�

j!

w

�

j

!

w

0:924

C 1

�

:

(4)

10
−1

10
0

10
1

10
2

10
3

−40

−20

0

20

40

10
−1

10
0

10
1

10
2

10
3

−270

−180

−90

0

90

180

Bode Plots

Frequency (warped rad sec�1)

M
a
g
n
it
u
d
e

(d
B

)
P

h
a
s
e

(d
e
g
)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011, 2015, 2017, 2018, 2019, Gregory L. Plett



ECE5560, Transfer-Function Identification 4–12

4.4: System ID with transfer-function models

■ Having reviewed discrete-time systems, we return to the problem of

system ID using transfer-function models.

■ Recall that we are assuming a system model with system and noise

dynamics specified by G.q/ and H.q/,

y�k� D G.q/u�k�CH.q/e�k�,

with G.q/ D B.q/=A.q/ and H.q/ D C.q/=D.q/.

ISSUES: Do all of A.q/, B.q/, C.q/, D.q/ exist? And, what are the values

for n
k

, n
a

, n
b

, n



, and n
d

?

■ Typically use time response to estimate delay n
k

directly.

■ Then, try certain “standard” structures involving A.q/, B.q/, etc., to

see which fits “best”.

■ Involved in this is the selection of model order via some criteria, and

validation of the model.

Standard model forms

■ Different approaches to using transfer-function models differ primarily

on how disturbance is factored into the system response.

■ We look at four “standard” model forms that have different properties:

some are easier to identify, but others are more general.

Output error model

■ The output error (OE) approach

models the system as shown in the

diagram.
u�k� y�k�

e�k�

B.q/

A.q/
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■ That is, G.q; �/ D
B.q; �/

A.q; �/

and H.q; �/ D 1, and

y�k� D

B.q; �/

A.q; �/

u�k�C e�k�.

■ The OE model is parametrized by � D
h

a

1

� � � a

n

a

b

1

� � � b

n

b

i

.

■ The filters are defined as

A.q; �/ D 1C a

1

q

�1

C � � � C a

n

a

q

�n

a

B.q; �/ D b

1

q

�1

C � � � C b

n

b

q

�n

b.

■ The noise source is the difference (error) between the actual and

noise-free output.

■ Good to use when system dominated by white sensor noise.

■ Expect problems when the noise spectrum is shaped (colored noise,

process noise). Why?

■ Denote the noise-free output by w�k�. Then, the difference equation is

w�k�C a

1

w�k � 1�C � � � C a

n

a

w�k � n

a

� D b

1

u�k � 1�C � � � C b

n

b

u�k � n

b

�

y�k� D w�k�C e�k�.

ARMAX model

■ The ARMAX (auto regressive

with moving average and

exogenous (or extra) input)

approach models the system

as shown in the diagram.

u�k� y�k�

e�k�

1

A.q/

B.q/

C.q/
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■ That is, G.q; �/ D
B.q; �/

A.q; �/

and H.q; �/ D
C.q; �/

A.q; �/

, and

A.q; �/y�k� D B.q; �/u�k�C C.q; �/e�k�.

■ It is parametrized by � D
h

a

1

� � � a

n

a

b

1

� � � b

n

b




1

� � � 


n




i

.

■ The filters are defined as

A.q; �/ D 1C a

1

q

�1

C � � � C a

n

a

q

�n

a

B.q; �/ D b

1

q

�1

C � � � C b

n

b

q

�n

b

C.q; �/ D 1C 


1

q

�1

C � � � C 


n




q

�n


 .

■ Disturbance and input subject to the same poles.

■ Good model if shaped or process noise dominates.

■ The difference equation is

y�k�C a

1

y�k � 1�C � � � C a

n

a

y�k � n

a

�

D b

1

u�k � 1�C � � � C b

n

b

u�k � n

b

�

C e�k�C 


1

e�k � 1�C � � � C 


n




e�k � n




�.

ARX model

■ The ARX (auto regressive with exogenous (or extra) input) approach

models the system as shown in the diagram. That is,

A.q; �/y�k� D B.q; �/u�k�C e�k�,

or, G.q; �/ D
B.q; �/

A.q; �/

and

H.q; �/ D

1

A.q; �/

.

u�k� y�k�

e�k�

1

A.q/

B.q/
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■ The ARX model is parametrized by � D
h

a

1

� � � a

n

a

b

1

� � � b

n

b

i

.

■ The filters are defined as

A.q; �/ D 1C a

1

q

�1

C � � � C a

n

a

q

�n

a

B.q; �/ D b

1

q

�1

C � � � C b

n

b

q

�n

b.

■ Simplified disturbance model. Not particularly well motivated by any

physical intuition, but solution found by very simple numerical method.

■ The difference equation is

y�k�Ca

1

y�k�1�C� � �Ca

n

a

y�k�n

a

� D b

1

u�k�1�C � � �Cb

n

b

u�k�n

b

�Ce�k�.

Box–Jenkins model

■ The Box–Jenkins (BJ) approach models the system as shown in the

diagram. That is,

y�k� D

B.q; �/

A.q; �/

u�k�C

C.q; �/

D.q; �/

e�k�,

or G.q; �/ D
B.q; �/

A.q; �/

and

H.q; �/ D

C.q; �/

D.q; �/

.
u�k� y�k�

e�k�

B.q/

A.q/

C.q/

D.q/

■ The Box–Jenkins model is parametrized by

� D

h

a

1

� � � a

n

a

b

1

� � � b

n

b




1

� � � 


n




d

1

� � � d

n

d

i

.

■ The filters are defined as

A.q; �/ D 1C a

1

q

�1

C � � � C a

n

a

q

�n

a

B.q; �/ D b

1

q

�1

C � � � C b

n

b

q

�n

b
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C.q; �/ D 1C 


1

q

�1

C � � � C 


n




q

�n




D.q; �/ D 1C d

1

q

�1

C � � � C d

n

d

q

�n

d .

■ Very general form. Includes all others as special cases.

■ Denote the noise-free system output by w�k�, and the overall

disturbance by v�k�. Then, the difference equation is

w�k�C a

1

w�k�1�C � � � C a

n

a

w�k�n

a

� D b

1

u�k�1�C � � � C b

n

b

u�k�n

b

�

v�k�C d

1

v�k�1�C � � � C d

n

d

v�k�n

a

� D e�k�C 


1

e�k�1�C � � � C 


n




e�k�n




�

y�k� D w�k�C v�k�.

Generalizing for longer input delay

■ All these difference equations assume a single delay in B.q; �/ only.

■ Often need n
k

additional delays: B.q; �/ D q

�n

k

.b

1

q

�1

C � � � C b

n

b

q

�n

b

/.

■ Difference equations now of the form

� � � D b

1

u�k � n

k

� 1�C b

2

u�k � n

k

� 2�C � � �.
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4.5: Initial model structure selection

■ Models are valid for different assumptions on the dynamics, noise.

■ Often not clear which is the best to use!

� Common approach is to try several structures and see if the fit

improves (will look at how to compare them later on).

■ In addition to the structures themselves, number of delays n
k

and

coefficient order n
a

, n
b

, n



, and n
d

not obvious either.

Delay estimation

■ One quick way to estimate the delay is to plot the cross-correlation

between the output and input. For the “dryer” data,

load dryer2

u2 = u2 - mean(u2); y2 = y2 - mean(y2);

x = (-length(u2)+1):(length(u2)-1);

Ryu = xcorr(y2,u2); stem(x,Ryu,'filled');
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■ We see a general noise floor of around 200. So, a time delay of two

or three samples looks about right. Should probably try both.

■ A second method is to look at unit-pulse- or step-response data (if

available), looking for the first non-negligible response point.
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■ A third method is to use MATLAB’s delayest.m. (cf. Topic 4.14)

� Fits ARX models with different delays to the data, uses a “cost”

criteria to determine which one looks most likely.

� Since ARX is not guaranteed to be best structure, don’t believe

delayest too much. For above data, it suggests a delay of three

samples, but a delay of two samples is probably better.

Coefficient order

■ To estimate model order, can use frequency response identification

(e.g., spa.m) to get a feel for the Bode plot.

� “Eyeball” fit poles and zeros to get an idea of how many of each.

� Pay particular attention to peaks in the magnitude plot, which

indicate resonances (lightly damped complex-conjugate pole pair).

� Slope of magnitude plot of some use, but care must be taken due

to frequency warping of discrete-time Bode plots, and uncertainty

of whether there are regions where slope doesn’t change as much

as might be expected due to a near pole-zero cancelation.

load dryer2

u2 = u2 - mean(u2);

y2 = y2 - mean(y2);

z = iddata(y2,u2,0.08);

[m,p,w]=bode(spa(z));

w=squeeze(w); m=squeeze(m);

semilogx(w,20*log10(m));
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■ Slope � �40 dB per decade: at least two more poles than zeros.
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� But, how many zeros? Phase plot is pretty useless due to delays.

� Might try a range of model orders from 2 to 5 to see which fits best.

■ Typically get a better fit as we increase the order of A.q/.

� Avoid “over fitting” the data—the result looks good on this data set,

but much poorer on any other.

■ MATLAB selstruc can help determine good starting points.

Polynomial form

■ Much of the MATLAB system identification toolbox deals with transfer

functions given in a polynomial format.

■ We enter polynomials by typing their coefficients in vector form as

ascending powers of the delay operator q�k, k D 0; 1; : : :

KEY POINT: Delays are denoted by leading zeros in the polynomial. So,

B.q/

A.q/

D

q

�3

1 � 1:5q

�1

C 0:7q

�2

is entered by B = [0 0 0 1] and A = [1 -1.5 0.7].

■ Note that the MATLAB control-systems toolbox does this differently:

� In discrete-time (´ form), would normally write this as

´

�3

1� 1:5´

�1

C 0:7´

�2

D

1

´

3

� 1:5´

2

C 0:7´

,

entered as num = 1 and den = [1 -1.5 0.7 0].

� The two different toolbox representations are equivalent (only) if

the lengths of A and B are equal.

■ MATLAB commands to use polynomials in system ID are idpoly

and polydata.
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4.6: Fitting parametrized model: Simulation or prediction?

■ Having chosen n
k

and n
a

, n
b

, n



, and n
d

, it’s now time to determine

the polynomials A.q/, B.q/, etc.

■ This is an optimization problem:

� First, much choose what objective we are trying to optimize,

� Then, develop a “cost function” to achieve this objective,

� Then, select an appropriate optimization method.

Optimization objectives: Simulation or prediction?

■ A very fundamental question we must consider is: what will the final

model be used for?

� Simulation: Given knowledge only of u�k� up to the present time,

estimate the present output y�k�.

� 1-step prediction: Given knowledge of u�k� up to the present time,

and y�k� up to the prior time, k � 1, estimate present output y�k�.

� n-step prediction: Given knowledge of u�k� up to the present time,

and y�k� up to a previous time, k � n, estimate present output y�k�.

■ A model optimized for a simulation application will generally match

the open-loop response best.

■ A model optimized for prediction will use measured data as feedback,

and will generally provide better estimates, especially when there is

non-white noise impacting the system response.

■ Our basic approach will be to find G.q/ and possibly H.q/ to minimize

some measure of modeling error:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011, 2015, 2017, 2018, 2019, Gregory L. Plett



ECE5560, Transfer-Function Identification 4–21

� For simulation, �
s

�k� D y�k�� Oy

s

�k�, where Oy

s

�k� D G.q/u�k�, the

simulated value of the output at time k given measurements of the

input only. (We don’t estimate H.q/ for a simulation application.)

� For 1-step prediction, �
p

�k� D y�k�� Oy

p

�k j k � 1�, where

Oy

p

�k j k � 1� is the predicted value of the output at time k given

measurements of the output up until (and including) time k � 1.

� For n-step prediction, �
n

�k� D y�k�� Oy

n

�k j k � n�, where

Oy

n

�k j k � n� is the predicted value of the output at time k given

measurements of the output up until (and including) time k � n.

■ The formulations for the predicted Oy

p

�k j k � 1� and Oy

n

�k j k � n�

deserve some attention.

■ We start with the assumed form y�k� D G.q/u�k�CH.q/e�k�.

■ Pre-multiply both sides by H�1

.q/, assuming that H.q/ is monic,

minimum-phase, and hence is also stable. This isolates e�k�.

H

�1

.q/y�k� D H

�1

.q/G.q/u�k�C e�k�.

■ Now, add y�k� to both sides, and rearrange to get

y�k� D

�

1 �H

�1

.q/

�

y�k�CH

�1

.q/G.q/u�k�C e�k�.

■ Note that the RHS requires knowledge of u�k� up until the present,

e�k� at the present time only, and y�k� up until the prior time only.

■ To see this last point, let’s look at the details of H.q/ more closely:

H.q/ D

C.q/

D.q/

D

1C 


1

q

�1

C 


2

q

�2

C :::

1C d

1

q

�1

C d

2

q

�2

C � � �

1 �H

�1

.q/ D

C.q/�D.q/

C.q/

D

.


1

� d

1

/q

�1

C .


2

� d

2

/q

�2

C � � �

1C 


1

q

�1

C 


2

q

�2

C � � �

.
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■ The numerator has a pure delay term, therefore,
�

1 �H

�1

.q/

�

y�k�

contains only old values of the output fy�s�; s � k � 1g.

■ Therefore, we can use this relationship to predict y�k� from past

values of y�k� (etc).

� Assume that e�k� is white, so best estimate of e�k�, given

information up to k � 1, is Oe�k� D 0.

� Therefore, Oy
p

�k j k � 1� D

�

1 �H

�1

.q/

�

y�k�CH

�1

.q/G.q/u�k�.

■ Can also derive similar relationship for n-step prediction,

Oy

n

�k j k � n� D

�

1 �H

n

.q/H

�1

.q/

�

y�k�CH

n

.q/H

�1

.q/G.q/u�k�,

where H
n

.q/ D

n�1

X

jD0

h�j �q

�j , which is a truncated version of H.q/.

EXAMPLE: For output error, H.q/ D 1, and G.q/ D B.q/=A.q/.

■ This gives .1�H�1

.q// D 0 and H�1

.q/G.q/ D G.q/.

� So, Oy
p

�k j k�1� D

B.q/

A.q/

u�k�, which is not a function of past outputs.

EXAMPLE: For ARX, H.q/ D 1=A.q/, and G.q/ D B.q/=A.q/.

■ This gives .1�H�1

.q// D 1 � A.q/ and H�1

.q/G.q/ D B.q/.

� Therefore,
Oy

p

�kjk�1� D .1 �A.q//y�k�C B.q/u�k�

D �a

1

y�k�1�� � � � �a

n

a

y�k�n

a

�C b

1

u�k�1�C � � � C b

n

b

u�k�n

b

�.

� ARX uses old values of y�k� as well as u�k� to predict Oy
p

�k j k � 1�.

■ Other cases are more complicated.
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4.7: Fitting parametrized model: Cost function

■ Now that we have defined three different forms of instantaneous

modeling error ��k�, would like to define an optimization strategy to

minimize that error in some sense.

� Note that ��k� is parametrized by � , which we write explicitly in this

section as ��k; ��.

■ Can take either a time-domain or frequency-domain approach: both

require defining a “cost function” to be minimized.

■ In the time domain, might want to choose parameters � to minimize

V

N

.�/ D

N

X

kD1

�

2

�k; ��.

� Solution, O� D arg min
�

V

N

.�/ is called the “least squares” solution.

� More generally, might want to minimize V
N

.�/ D

N

X

kD1

L.��k; ��/,

where L.�/ is a “loss function” where L � 0 and L is a scalar.

■ In the frequency domain, might want to minimize weighted linear

least-squares frequency response

V

N

.�/ D

X

!

i

�

i

�

�

G.e

j!

i ; �/ �bG
N

.e

j!

i

/

�

�

2

,

where G.ej!i ; �/ is the model frequency response at frequency !
i

with parameters � , and bG
N

.e

j!

i

/ is the estimated frequency response

(using spa.m, for example).

� One of the problems with the linear least-squares frequency fit is

that zeros of the system are fit very poorly.
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◆ Especially true for lightly damped zeros.

� Reason is that the index assigns a very small penalty to errors in

the match of the data/model in the low-gain regions.

◆ Near these zeros, the absolute difference in the frequency

responses is small (relative errors are large).

� Linear least squares puts too much emphasis on fitting the poles.

■ Logarithmic least squares is better for the fitting of the zeros since it

weights the ratio of model gain to measurement gain.

V

N

.�/ D

X

!

i

�

i

�

�log.G.ej!i ; �//� log.bG
N

.e

j!

i

//

�

�

2

.

� Works much better for a system with large dynamic range3.

EXAMPLE: Consider two points in the transfer function

■ Measured data: bG.!
1

/ D 10 and bG.!
2

/ D 0:1.

■ Our model estimates these as: G.!
1

; �/ D 9 and G.!
2

; �/ D 0:09.

■ Check contribution to the cost functions:

Vlin D .10� 9/

2

� �� �

1

C .0:1� 0:09/

2

� �� �

0:0001�1

Vlls D .log.10/� log.9//2
� �� �

0:0111

C .log.0:1/� log.0:09//2
� �� �

0:0111

.

Optimization method

■ Most cost functions and models require nonlinear optimization

methods, which we look at in the sequel.

■ However, a simple solution to the linear least-squares ARX problem

exists. We look at this first.

3 Sidman, IEEE TAC, 36, p. 1065, 1991.
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4.8: Solving the linear least-squares ARX problem

■ Consider quadratic case first, linear prediction form of ARX, where

Oy

p

�kjk�1� D .1 �A.q//y�k�C B.q/u�k�

D �a

1

y�k�1�� � � � �a

n

a

y�k�n

a

�C b

1

u�k�1�C � � � C b

n

b

u�k�n

b

�

D �

T

��k�,

where

� D

h

a

1

a

2

� � � a

n

a

b

1

b

2

� � � b

n

b

i

T

��k� D

h

�y�k � 1� � � � �y�k � n

a

� u�k � 1� � � � u�k � n

b

�

i

T

.

■ Note that the prediction error is linear in �

�

p

�kI �� D y�k�� Oy

p

�kI �� D y�k�� �

T

��k�.

■ So, we can use regression to solve for � .4 Define

V

N

.�/ D

N

X

kD1

�

y�k�� �

T

��k�

�

2

D

N

X

kD1

�

y

2

�k� � 2�

T

��k�y�k�C �

T

��k��

T

�k��

�

D

 

N

X

kD1

y

2

�k�

!

� �� �

y

N

�2�

T

 

N

X

kD1

��k�y�k�

!

� �� �

f

N

C�

T

 

N

X

kD1

��k��

T

�k�

!

� �� �

R

N

�

D y

N

� 2�

T

f

N

C �

T

R

N

� .

4 Note, the term “regress” here alludes to the fact that we try to calculate or describe

y�k� by “going back” to ��k�. Also, models such as ARX where ��k� contains old values

y�k � �� of the variable to be explained, y�k�, are then partly “auto-regression” models.
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■ We assume that R
N

is invertible, giving

V

N

.�/ D y

N

� f

T

N

R

�1

N

f

N

� �� �

not a function of �

C .� �R

�1

N

f

N

/

T

R

N

.� �R

�1

N

f

N

/

� �� �

non-negative sinceR
N

�0

.

■ We get the smallest possible V
N

.�/ when we select � D O

�

N

D R

�1

N

f

N

.

■ Can also formulate using vectors,

X D

h

��1� ��2� � � � ��N �

i

T

Y D

h

y�1� y�2� � � � y�N �

i

T

,

which allows us to write R
N

D X

T

X and f
N

D X

T

Y .

■ This also gives

V

N

D .Y �X�/

T

.Y �X�/

and O

�

N

D .X

T

X/

�1

X

T

Y (the least-squares estimate).

■ In MATLAB, theta = X \ Y.

Solving other parameter estimation optimizations

■ The prediction ARX problem with quadratic cost function is the only

system ID that can be done using linear least squares.

■ Other problems require nonlinear optimization, which is quite tricky.

■ One fundamental principle is that we know we are at a minima (or

maxima) of an objective function when dV
N

.�/=d� D 0.

■ Comparing to the matrix form of the prior case, we get

d

d�
V

N

D 2R

N

� � 2f

N

D 0

O

� D R

�1

N

f

N

,

which is consistent with the result we obtained.
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■ In the more general case (i.e., most other model forms),

� ��k; �� is not linear in � , and V
N

.�/ is not quadratic in ��k; ��.

� Hence, V
N

.�/ is not quadratic in � .

� Optimization is not as simple. No closed-form solutions are

available. Nonlinear optimization is required.

■ So, next substantial section of notes is an overview of nonlinear

optimization, in general, using the Newton/quasi-Newton methods.

■ We then return to the system identification problem, where we apply

these general results to our problem.
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4.9: Nonlinear optimization

■ Here, we re-cast the problem into more generic notation.5

� Instead of finding O

� that minimizes V
N

.�/, we are find x� that

minimizes F.x/, where x is a vector and F.x/ is a scalar.

x

�

D arg min
x

F.x/.

� This scenario encompasses the ARMAX, OE, and BJ cases, plus

many other unconstrained optimization problems.

■ Numerical methods for nonlinear optimization are iterative. Typically,

this is done using Ox

kC1

D Ox

k

C �

k

p

k

, where,

� Ox

k

is the estimate of the optimizing x� at algorithm iteration k,

� p

k

is a search direction to look for the minimum, and

� �

k

is a positive constant determined so that an appropriate

decrease in the value of F.x/ is observed.

� Note that I am using subscripts to denote iteration number at a

specific sample number (i.e., given a fixed set of data, length N ).

This is different from time sample number, for which I still use

square brackets ���, when appropriate.

■ Available methods primarily differ in how they find p
k

and �
k

.

� Some methods use function values only;

� Some methods use values of F as well as values of its gradient

g. Ox

k

/ (the first derivative vector);

5 Some references for this section include: L.E. Scales, Introduction to Non-Linear

Optimization, Springer-Verlag, 1985, and M.A. Wolfe, Numerical Methods for

Unconstrained Optimization: An Introduction, Van Nostrand Reinhold, 1978.
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� Others use values of F , its gradient, and its Hessian G. Ox
k

/ (the

second derivative matrix).

■ The typical member of the third group corresponds to Newton

algorithms, where the search direction is computed as

p

k

D �G

�1

. Ox

k

/g. Ox

k

/.

■ The most important subclass of the second group consists of

quasi-Newton algorithms, which somehow form an estimate of the

Hessian and then compute

p

k

D �

b

G

�1

. Ox

k

/g. Ox

k

/.

■ Methods from the first group generally form gradient estimates by

difference approximations and proceed as quasi-Newton methods,

p

k

D �

b

G

�1

. Ox

k

/ Og. Ox

k

/.

■ The basic idea is that the minimum lies (more or less) in the direction

of the negative gradient of F.x/ with respect to x.

■ Via gradient descent, we eventually get to (at least a local) minimum.

� However, for objective functions having both steep regions and flat

regions (or dimensions), gradient descent is very slow.

� Scaling by the local curvature allows us to take different step sizes

in different dimensions, greatly speeding up the search.

� Note that the scaling G�1 is large when the curvature is small (can

go long distances before local gradient is invalid estimate of slope),

and is small when the curvature is large (can go only a short

distance before local gradient no longer reliable indicator of slope).
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■ Can use fixed value for �
k

D �, but generally get better computational

performance if we do a line search to find the value for �
k

that

minimizes F.x/ along the search direction p
k

. Line search:

� First looks for bracket �a; b� in which there is a minimum; then

� Iteratively reduces bracket length until “close enough” to minimum.

■ Overall process: Compute p
k

; compute �
k

; update Ox

k

; repeat.

NOTE: Ox
0

tends to be very important.

NOTE: In general, nonlinear optimization will find only a local minimum.

NOTE: Convergence can be very slow.

NOTE: Guarantees on getting a good final answer in a reasonable

amount of time? No. But, very often do so anyway.
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4.10: Generic nonlinear optimization example

EXAMPLE: Consider the Rosenbrock function, a non-convex problem that

is difficult to minimize:

F.x/ D 100.x

2

1

� x

2

/

2

C .1� x

1

/

2,

where the global minimum is at x� D �

1 1

�

T

:

■ Start with x
0

D �

�1:2 1

�

T and see how different methods work.

■ We will use fminunc.m from MATLAB’s optimization toolbox to try

different algorithm possibilities.

■ First, create a MATLAB function to implement the Rosenbrock

function

function F=rosen(x)

global xpath;

F=100*(x(1)^2-x(2))^2+(1-x(1))^2;

xpath=[xpath;x'];

end

■ Next, in a separate script, build up the surface we’re trying to minimize

global xpath;

x1=[-2:.1:2]'; x2=x1; N=length(x1); FF = zeros(N,N);

for ii=1:N,

for jj=1:N,

FF(ii,jj)=rosen([x1(ii) x2(jj)]');

end

end

■ First, use steepest descent. Lots of iterations required to get solution.

xpath=[];

options = optimset('LargeScale','off','HessUpdate','steepdesc',...

'MaxFunEvals',20000,'MaxIter',2000);

[X,FVAL,EXITFLAG,OUTPUT]=fminunc('rosen',[-1.2 1]',options);
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figure; clf; contour(x1,x2,FF',[0:2:10 15:50:1000]); hold on

plot(xpath(:,1),xpath(:,2),'gd'); plot(xpath(:,1),xpath(:,2),'g-');

xlabel('x(1)'); ylabel('x(2)');

title('Rosenbrocks optimization path: Steepest')

plot(-1.2,1,'ro'); plot(1,1,'ro')

text(-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d',...

OUTPUT.iterations,OUTPUT.funcCount),'fontsize',16);

figure;clf; mesh(x1,x2,FF'); hold on

for ii=1:length(xpath);

plot3(xpath(ii,1),xpath(ii,2),0.1+rosen(xpath(ii,:)'),'gd',...

'markersize',5)

end

plot3(-1.2,1,1+rosen([-1.2 1]'),'r.','markersize',25)

plot3(1,1,1+rosen([1 1]'),'r.','markersize',25)

xlabel('x(1)'); ylabel('x(2)'); zlabel('Value');

title('Rosenbrocks optimization path: Steepest')

campos([-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);
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x
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)

Rosenbrocks optimization path: Steepest

Iterations: 1879, Fn evals: 19704
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■ Next, use a quasi-Newton method, with the “Davidson, Fletcher,

Powell (DFP) approach” to recursively build up approximate Hessian

inverse, using the function and its approximate gradients only.

xpath=[];

options = optimset('LargeScale','off','HessUpdate','dfp',...

'MaxFunEvals',5000,'MaxIter',2000);

[X,FVAL,EXITFLAG,OUTPUT] = fminunc('rosen',[-1.2 1]',options);
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figure; clf; contour(x1,x2,FF',[0:2:10 15:50:1000]); hold on

plot(xpath(:,1),xpath(:,2),'gd'); plot(xpath(:,1),xpath(:,2),'g-');

xlabel('x(1)'); ylabel('x(2)');

title('Rosenbrocks optimization path: DFP')

plot(-1.2,1,'ro'); plot(1,1,'ro')

text(-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d',...

OUTPUT.iterations,OUTPUT.funcCount),'fontsize',16);

figure; clf; mesh(x1,x2,FF'); hold on

for ii=1:length(xpath);

plot3(xpath(ii,1),xpath(ii,2),0.1+rosen(xpath(ii,:)'),'gd',...

'markersize',5)

end

plot3(-1.2,1,1+rosen([-1.2 1]'),'r.','markersize',25)

plot3(1,1,1+rosen([1 1]'),'r.','markersize',25)

xlabel('x(1)'); ylabel('x(2)'); zlabel('Value');

title('Rosenbrocks optimization path: DFP')

campos([-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);
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x
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)

Rosenbrocks optimization path: DFP

Iterations: 982, Fn evals: 3129
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■ Finally, use a quasi-Newton method, with the “Broyden, Fletcher,

Goldfarb, Shano (BFGS) approach” to building up the Hessian.

xpath=[];

options = optimset('LargeScale','off'); % select quasi-Newton; BFGS

[X,FVAL,EXITFLAG,OUTPUT]=fminunc('rosen',[-1.2 1]',options);

figure; clf; contour(x1,x2,FF',[0:2:10 15:50:1000]); hold on

plot(xpath(:,1),xpath(:,2),'gd'); plot(xpath(:,1),xpath(:,2),'g-');

xlabel('x(1)'); ylabel('x(2)');
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title('Rosenbrocks optimization path: BFGS')

plot(-1.2,1,'ro'); plot(1,1,'ro')

text(-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d',...

OUTPUT.iterations,OUTPUT.funcCount),'fontsize',16);

figure; clf; mesh(x1,x2,FF'); hold on

for ii=1:length(xpath);

plot3(xpath(ii,1),xpath(ii,2),0.1+rosen(xpath(ii,:)'),'gd',...

'markersize',5)

end

plot3(-1.2,1,1+rosen([-1.2 1]'),'r.','markersize',25)

plot3(1,1,1+rosen([1 1]'),'r.','markersize',25)

xlabel('x(1)'); ylabel('x(2)'); zlabel('Value');

title('Rosenbrocks optimization path: BFGS')

campos([-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);
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x
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)

Rosenbrocks optimization path: BFGS

Iterations: 36, Fn evals: 138
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■ Quasi-Newton (BFGS) by far the most efficient of those tried. (It’s

MATLAB’s default for medium-scale problems.)

■ It would be fun to spend a lot more time looking at methods for

nonlinear optimization, but that isn’t really the purpose of this course.

� So, we press on, switching our attention back to system ID;

� If you are interested in methods of optimization, take ECE 5570:

Optimization Methods for Systems and Control.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011, 2015, 2017, 2018, 2019, Gregory L. Plett



ECE5560, Transfer-Function Identification 4–35

4.11: Toolbox methods (1): Frequency response

■ MATLAB’s system identification toolbox contains commands arx.m,

armax.m, bj.m, and oe.m, which use measured system

input–output data to produce optimized polynomials A.q/, B.q/, C.q/,

and D.q/, as appropriate, for each model type.

� Must supply model delay n
k

and model size n
a

, n
b

, n



, and n
d

.

■ The best way to see these functions in action is via example.

EXAMPLE: Consider a continuous-time system

G.s/ D

1

s

2

C 0:5s C 1

.

■ Actual system configured with OE structure (i.e., H.s/ D 1).

■ First step in simulation is to convert model from continuous time to

discrete time using ZOH, sampled at 2 Hz

y�k� D G.q/u�k�C e�k�,

giving the discrete-time transfer function

G.q/ D

0:1129q

�1

C 0:1038q

�2

1� 1:5622q

�1

C 0:7788q

�2

.

■ Used noise with E�e
2

�k�� D �

2

� 0:15, but I scaled its power

automatically in code to be equal to 1/4 of signal power.

■ Simulate and plot random input–output sequence:

%% Modified from code originally by Jonathan P. How

%% Part 1: Setup

clear; clc; close all

Npts=512; T = 0.5; t=(0:1:Npts-1)*T; % # data points, sample period

RandStream.setGlobalStream(RandStream('mcg16807','Seed', 15));
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nn=1; dd=[1 .5 1]; % continuous-time system dynamics

[num,den]=c2dm(nn,dd,T,'zoh'); % discrete-time system dynamics

w_arx=logspace(-2,0,300)*pi/T;

% compute input sequence for identification

u = idinput(Npts,'prbs'); % input signal for identification

yc = dlsim(num,den,u); % compute "clean" output of G

v = randn(Npts,1); % noise - note that this is white, gaussian

LL = 0.25*(yc'*yc)/(v'*v); % scale so energy in sensor noise 1/4 times

v = sqrt(LL)*v; % the energy in the "clean" signal

y = yc+v; % actual output y=Gu+v

Z = iddata(y,u,T); % data available to identification

% compute input sequence for validation

u_val = idinput(Npts,'prbs'); % input signal for validation

yc_val = dlsim(num,den,u_val); % "clean" output of G

v_val = sqrt(LL)*randn(Npts,1); % noise - white, gaussian

y_val = yc_val+v_val; % actual output y=Gu+v

Z_val = iddata(y_val,u_val,T); % data available for validation

% plot portions of input and output signals after initial transient

figure; plot(t,[u v]); legend('u[k]','v[k]');

title('Inputs to the system being identified');

xlabel('Time (s)'); ylabel('Amplitude (unitless)');

figure; plot(t,[yc y]); legend('"clean" y_c[k]','measured y[k]');

title('Outputs from the system being identified');

xlabel('Time (s)'); ylabel('Amplitude (unitless)');
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■ Identify system models for several different model structures, and

show Bode plots of the results:

% frequency response of actual system, and "SPA" frequency resp model

[mag,ph,w]=dbode(num,den,T,w_arx); % get "true" magnitude and phase resp

G = spa(Z,64,w,[],T); [amp,phas,w]=bode(G); w = squeeze(w);

amp = squeeze(amp); phas = squeeze(phas);

% ARX model with na=2; nb=2; nk=1 (ARX221)

M_arx221 = arx(Z,'na',2,'nb',2,'nk',1);

[m_arx221,p_arx221,w_arx221]=bode(M_arx221); w_arx221 = squeeze(w_arx221);

m_arx221 = squeeze(m_arx221); p_arx221 = squeeze(p_arx221);

[a_arx221,b_arx221,c_arx221,d_arx221,f_arx221] = polydata(M_arx221);

% ARX model with na=4; nb=4; nk=1 (ARX441)

M_arx441 = arx(Z,'na',4,'nb',4,'nk',1);

[m_arx441,p_arx441,w_arx441]=bode(M_arx441); w_arx441 = squeeze(w_arx441);

m_arx441 = squeeze(m_arx441); p_arx441 = squeeze(p_arx441);

[a_arx441,b_arx441,c_arx441,d_arx441,f_arx441] = polydata(M_arx441);

% ARMAX model with na=2; nb=2; nc=2; nk=1 (ARMAX2221)

M_armax=armax(Z,'na',2,'nb',2,'nc',2,'nk',1);

[a_armax,b_armax,c_armax,d_armax,f_armax]=polydata(M_armax);

[m_armax,p_armax,w_armax]=bode(M_armax); w_armax = squeeze(w_armax);

m_armax = squeeze(m_armax); p_armax = squeeze(p_armax);

% Box-Jenkins model with nb=2; nc=2; nd=2; nf=2; nk=1 (BJ22221)

% y(t) = [B(q)/F(q)] u(t-nk) + [C(q)/D(q)] e(t)

M_bj=bj(Z,'nb',2,'nc',2,'nd',2,'nf',2,'nk',1);

[m_bj,p_bj,w_bj]=bode(M_bj); w_bj = squeeze(w_bj);

m_bj = squeeze(m_bj); p_bj = squeeze(p_bj);

[a_bj,b_bj,c_bj,d_bj,f_bj]=polydata(M_bj);

% OE model with nb=2; nf=2; nk=1;

M_oe = oe(Z,'nb',2,'nf',2,'nk',1);

[m_oe,p_oe,w_oe]=bode(M_oe); w_oe = squeeze(w_oe);

m_oe = squeeze(m_oe); p_oe = squeeze(p_oe);

[a_oe,b_oe,c_oe,d_oe,f_oe]=polydata(M_oe);

% Now, plot Bode plots

figure; loglog(w,mag,w,amp,w_arx221,m_arx221,w_arx441,m_arx441);

title('Bode mag. plots of several system id models');
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ylabel('Magnitude'); xlabel('Frequency (rad s^{-1})');

legend('Actual','SPA','ARX221','ARX441'); axis([.08 8 1e-2 5]);

figure; semilogx(w,ph,w,phas,w_arx221,p_arx221,w_arx441,p_arx441);

title('Bode phase plots of several system id models');

xlabel('Frequency (rad s^{-1})'); ylabel('Phase (deg)');

legend('Actual','SPA','ARX221','ARX441'); axis([.08 8 -270 0]);

figure; loglog(w,mag,w_oe,m_oe,w_armax,m_armax,w_bj,m_bj);

title('Bode mag. plots of several system id models');

ylabel('Magnitude'); xlabel('Frequency (rad s^{-1})');

legend('Actual','OE221','ARMAX2221','BJ22221'); axis([.08 8 1e-2 5]);

figure; semilogx(w,ph,w_oe,p_oe,w_armax,p_armax,w_bj,p_bj);

title('Bode phase plots of several system id models');

xlabel('Frequency (rad s^{-1})'); ylabel('Phase (deg)');

legend('Actual','OE221','ARMAX2221','BJ22221'); axis([.08 8 -270 0]);
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4.12: Toolbox methods (2): Unit-pulse response, residuals

■ We continue the prior example by looking at the true and estimated

system discrete-time unit-pulse responses.

Ntime=30;

y_act = dimpulse(num,den,Ntime);

y_arx221 = dimpulse(b_arx221,a_arx221,Ntime);

y_arx441 = dimpulse(b_arx441,a_arx441,Ntime);

y_armax = dimpulse(b_armax,a_armax,Ntime);

y_oe = dimpulse(b_oe,f_oe,Ntime);

y_bj = dimpulse(b_bj,f_bj,Ntime);

figure; stem([0:Ntime-1]*T,[y_act y_arx221 y_arx441],'filled'); hold on

stem([0:Ntime-1]*T,y_act,'filled');

legend('True system','ARX221','ARX441');

title('Discrete impulse responses')

xlabel('Time (sec)'); ylabel('Output amplitude')

figure; stem([0:Ntime-1]*T,[y_act y_armax y_oe y_bj],'filled'); hold on

stem([0:Ntime-1]*T,y_act,'filled');

legend('System','ARMAX2221','OE221','BJ22221');

title('Discrete impulse responses')

xlabel('Time (sec)'); ylabel('Output amplitude')

■ Here are the impulse responses of the various methods attempted.
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■ We can also tabulate transfer-function coefficients:
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[['Act B ',num2str(num,4)] [' Act A ',num2str(den,4)]; ...

['ARX221 B ',num2str(b_arx221,4)] [' ARX221 A ',num2str(a_arx221,4)];...

['ARMAX B ',num2str(b_armax,4)] [' ARM A ',num2str(a_armax,4)]; ...

['BJ B ',num2str(b_bj,4)] [' BJ A ',num2str(f_bj,4)]; ...

['OE B ',num2str(b_oe,4)] [' OE A ',num2str(f_oe,4)]]

■ Values for this example are tabulated below:

� Second-order ARX isn’t even close.

� Fourth-order ARX isn’t directly comparable.

� Other three provide good estimates of OG.q/.

b

0

b

1

b

2

a

0

a

1

a

2

Actual 0 0:1129 0:1038 1 �1:562 0:7788

ARX221 0 0:1309 0:1538 1 �0:689 0:0154

ARMAX2221 0 0:1144 0:0941 1 �1:569 0:7874

BJ22221 0 0:1153 0:0940 1 �1:569 0:7872

OE221 0 0:1148 0:0948 1 �1:568 0:7869

Model validation: A first step

■ Usually we do not know the “actual system” dynamics, so how do we

establish if our model is good?

■ Various types of tests can be performed:

� Prediction and simulation errors,

� Frequency-response fit.

■ Make sure you use different data to validate (if possible).

■ Can also perform very detailed analysis of the residuals.

��k� D y�k�� Oy�k j k � 1�
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D y�k��

�

1 �H

�1

.q/

�

y�k��H

�1

.q/G.q/u�k�

D H

�1

.q/ .y�k� �G.q/u�k�/ .

■ Called the innovations process and it contains a lot of information

about the quality of our fit.

■ A first desirable property of the residuals is that they be zero mean

and normally distributed (at least symmetric).

� Analyze using a histogram of ��k�.

■ We can also use the residuals �2�k� to estimate �2

O�

2

D

1

N

N

X

kD1

�

2

�k�.

� Natural if H.q/ D 1 as ��k� D y�k�� Oy�k� is a good estimate of e�k�.

■ Residuals can be computed as:

e_arx2 = resid(M_arx221,Z); e_arx2 = e_arx2.OutputData;

e_arx4 = resid(M_arx441,Z); e_arx4 = e_arx4.OutputData;

e_arm = resid(M_armax,Z); e_arm = e_arm.OutputData;

e_bj = resid(M_bj,Z); e_bj = e_bj.OutputData;

e_oe = resid(M_oe,Z); e_oe = e_oe.OutputData;

mean([v e_arx2 e_arx4 e_arm e_bj e_oe])'

■ Approximate noise variance can be computed as:

[['sigma^2 arx ',sprintf('%1.4f',M_arx221.NoiseVariance)];...

['sigma^2 arm ',sprintf('%1.4f',M_armax.NoiseVariance)];...

['sigma^2 BJ ',sprintf('%1.4f',M_bj.NoiseVariance)];...

['sigma^2 OE ',sprintf('%1.4f',M_oe.NoiseVariance)];...

['sigma^2 act ',sprintf('%1.4f',LL)]]

■ Results shown below for noise-mean and noise-power estimation

� Again, second-order ARX not even close.
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� Other three provide good estimates.

Actual ARX221 ARMAX BJ2221 OE221

Mean �0:0221 �0:0087 �0:0272 �0:0281 �0:0249

�

2

0:1118 0:2206 0:1085 0:1091 0:1083

■ Look for symmetry and normal distribution in histograms of residuals:

% Plot a histogram of the residuals for ARX221

figure; hist([e_arx2 v],-2:0.2:2); axis([-1.6 1.6 0 160])

title('Residual histogram for ARX221');

ylabel('Count');xlabel('Value of residual')

legend('Model fit','Actual');

% Similar for the other cases. Omitting code for figure formatting...

figure; hist([e_arx4 v],-2:0.2:2);

figure; hist([e_arm v],-2:0.2:2);

figure; hist([e_bj v],-2:0.2:2);

figure; hist([e_oe v],-2:0.2:2);
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■ Again, ARX models do not match data very well; ARMAX, BJ and OE

much better.
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4.13: Toolbox methods (3): Model validation using correlations

■ Two other desirable properties of residuals are:

� White: We want ��k� to look like what we assumed for e�k� .

� Residuals uncorrelated with past inputs: If there are traces of past

inputs in the residuals, then a part of y�k� that originates from the

input was not captured well in our model (bad).

■ Analyze for whiteness by computing residual autocorrelation




R

N

�

�� � D

1

N

N

X

kD�

��k���k � ��,

which we desire to be (roughly) zero everywhere except at � D 0.

■ Analyze the second by computing cross-correlation between

residuals and input




R

N

�u

�� � D

1

N

N

X

kD�

��k�u�k � ��,

where � > 0 correlates ��k� with old u�k � ��, and so we desire 


R

N

�u

�� �

to be (roughly) zero for � > 0.

■ Both analysis tests of the correlation graph need a measure of “small

enough,” which must be developed from the data as well.

■ Can develop this by analyzing the statistics of the residuals.

WHITENESS: The numbers 
RN

�

carry information regarding whether the

residuals can be regarded as white.

■ We can test for whiteness by first defining

r

N;M

D

p

N




R

�

�0�

h




R

�

�1� � � �




R

�

�M �

i

T

.
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■ Then, according to the central limit theorem, as N !1, r
N;M

will be

normally distributed with zero mean, and unit variance.

■ Thus, if we sum together squares of r
N;M

,

�

N;M

D

N

�




R

N

�

�0�

�

2

M

X

�D1

�




R

N

�

�� �

�

2

should be asymptotically �2.M/ distributed.

■ So, we develop an overall test on the residuals by checking whether

�

N;M

passes the test of being �2.M/ distributed. That is, by checking

that �
N;M

< �

2

�

.M/.

■ More instructive is to look at the residuals individually, using the

confidence intervals for a normal distribution.

� For a 95% confidence level, we can use the �1:96 bounds on each

element of r
N;M

�� � to decide if the autocorrelation is small for � > 0.

◆ Plot r
N;M

�k� for 1 � k �M .

◆ Test for normality by ensuring that r
N;M

�k� within the confidence

interval for all k.

CROSSCORRELATION TEST: As N !1 can show
p

N




R

�u

�� � is normally

distributed, with zero mean and variance P
r

D

1

X

kD�1

R

�

�k�R

u

�k�.

■ Can perform a normality test on 


R

�u

�� � by checking if

j




R

�u

�� �j � 1:96

p

P

r

=N for all � .

■ If 
R
�u

�� � is outside these bounds, then for those values of � , ��k� and

u�k � �� are probably dependent.

■ Dependency for small � could imply the need for smaller n
k

.
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OTHER TESTS: MATLAB system ID toolbox has validation functions.

■ compare.m - compare model’s output with actual output.

■ sim.m - simulate a model (old function = idsim.m).

■ pe.m - compute prediction errors (the longer the prediction

horizon, the more demanding the modeling task).

■ predict.m - predict future outputs.

■ resid.m - compute and test residuals.

■ Try at least one of these, never using same data to create and

validate a model.

� A larger model will always give a better fit (a lower value of V
N

.�/).

� Must use new data to compare. Good models will still give good

predictions on the new data as well.

■ Problem with using same data for model creation and validation is

that model will attempt to fit the randomness of the noise.

� Since noise varies from run to run, this is counterproductive.

� If only one data set is available, split in half: one half for training,

one for validation.

EXAMPLE: Calculated residuals for the previous system ID example.

% Create a new figure; call "resid" with no outputs to plot residuals

figure; resid(M_arx221,Z);

% Do some fancy MATLAB handle graphics calls to relabel axes

h = get(gcf,'children'); xlabel(h(1),'Lag'); xlabel(h(2),'Lag');

title(h(1),'Cross correlation R_{\epsilonu} for ARX221');

title(h(2),'Autocorrelation R_{\epsilon} for ARX221');

% For the following, I have omitted the axes-relabeling code
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figure; resid(M_arx441,Z); figure; resid(M_armax,Z);

figure; resid(M_bj,Z); figure; resid(M_oe,Z);
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■ Both ARX cases

fail the auto-

correlation and

crosscorrelation

tests.

■ ARMAX, BJ and

OE pass. Big

improvement over

ARX.
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4.14: Toolbox methods (4): ARX model size

■ MATLAB toolbox also has routines to help determine a good model

size for the ARX structure.

■ There is a tradeoff between model fidelity and accuracy, so

researchers have developed modified cost functions of the form

J.�; d/ D V

N

.�/.1C U

N

.d//.

� V

N

.�/ is the standard cost: decreases with increase in model size.

� U

N

.d/ provides a measure of the complexity of the model:

increases with increase in model size.

■ Two common criteria for U
N

.d/ are (where d D dim.�/):

� Akaike information criterion (AIC): U
N

.d/ D 2d=N .

� Minimum description length (MDL): U
N

.d/ D d log.N /=N .

■ Both have strong information-theoretic background, which we won’t

discuss here. They generally give (somewhat) different “optimum”

answers, so the “best” model turns out to be somewhat subjective.

■ The objective now is to minimize J over all available d and � .

� This is a hybrid optimization problem, since d is integer, and � is a

vector of real numbers.

� To make tractable, must first select a set of candidate model

structures, for which d is known.

� Then, for each structure, find the optimum V

N

.�/.

◆ Note that U
N

.d/ will be a constant in this optimization, so it does

not play a direct role.

◆ Can use any optimization method from before without change.
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� For each d , select the model structure having the lowest V
N

.�/.

� Finally, plot J.�; d/; select model with overall lowest value.

■ Note that this can require lots of optimization time.

� Most facile for ARX structure due to speed of ARX parameter

optimization, so MATLAB has this built in (see example below).

◆ Guidance: If validation set Z_val is different from training set Z,

then choose “best fit” structure. Otherwise, choose either MDL

or AIC structure.

� However, can also be done (manually) for any set of structures,

where you compute V using your own methods, then use

selstruc(V) for final selection.

EXAMPLE: In prior example, we found that ARX221 and ARX441 did not

do very good job of modeling system.

■ Probably need a larger model: Typical problem with ARX.

■ Optimize ARX models where:

� Numerator: n
b

2 f1 : : : 15g,

� Denominator: n
a

2 f1 : : : 15g,

� Delays: n
k

2 f1 : : : 5g.

■ Plot of V
N

.�/ versus number of

parameters. 0 5 10 15 20 25 30 35
Number of parameters

0.1

0.15

0.2

0.25

0.3

C
o

s
t 

fu
n

c
ti
o

n

Costs for all models investigated

NN = struc(1:15,1:15,1:5); % define range of structures

V = arxstruc(Z,Z_val,NN); % compute cost for each one

plot(sum(V(2:4,1:end-1)),V(1,1:end-1),'x');

xlabel('Number of parameters'); ylabel('Cost function');

title('Costs for all models investigated');
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■ See right away that there are many poor choices! With only five

parameters, would get very poor fit.

■ Can also use selstruc

GUI to manually select best

model for each overall size.

� For MDL, fifteen

parameters: 8,6,1;

� For AIC, sixteen

parameters: 8,7,1.

■ Frequency response plots show that ARX-AIC and ARX-MDL are

very similar and much better fits to the actual dynamics.
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■ Histograms look much better than ARX221 and ARX441.
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■ Both pass the correlation tests with flying colors.
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■ Note: This approach automatically takes care of the delay estimation

and model-order estimation problems that we discussed earlier.

■ So, these give much better models, but much larger than what we

have used for the other approaches.

� Very typical problem: ARX is not the ideal structure.

� So, will generally be better off trying this approach with multiple

non-ARX model structures.
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4.15: Example with nonwhite noise

■ Previous examples had white Gaussian noise, added directly in OE

form. Will now try something harder.

■ For valid comparison, try same experiment, but with nonwhite noise.

■ Try more complicated scenario with

H.q/ D

1 � 1:633q

�1

C 0:7567q

�2

1� 1:8623q

�1

C 0:9851q

�2

.

� Introduces broadband noise plus narrowband noise at 0:7 rad s�1.

■ Now must match both G.q/ and H.q/ to do a good job.

� H.q/ and G.q/ have a different denominator, so expect both ARX

and ARMAX to struggle.

� Also jH.q/j ¤ 1 so OE should also be poor.

■ Noise v�k� scaled to be 1/4 input signal’s power, as before.

nne=[1 .5 .5]; dde=[1 .03 .5];% cts H dynamics

[nume,dene] = c2dm(nne,dde,T);%ZOH conversion is default for TF's

nume = nume/nume(1); % scaling to make the polynomial monic

u = idinput(Npts,'prbs'); % input signal for identification

yc = dlsim(num,den,u); % compute "clean" output of G

e = randn(Npts,1); % dist

v = dlsim(nume,dene,e); % filtered dist

LL = 0.25*(yc'*yc)/(v'*v); % scale so energy in sensor noise 1/4 times

e = sqrt(LL)*e; % scale both

v = sqrt(LL)*v; % the energy in the "clean" signal

y = yc+v; % actual output y=Gu+v

Z = iddata(y,u,T); % data available to identification

% similar process for validation set

■ Correlation in noise not necessarily obvious.
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■ Some numerical results for the transfer-function coefficients of G.q/

are tabulated below: ARMAX, OE good; BJ better.

b

0

b

1

b

2

a

0

a

1

a

2

Actual 0 0:1129 0:1038 1 �1:562 0:7788

ARX221 0 0:1200 0:1106 1 �1:199 0:4338

ARMAX2221 0 0:1181 0:0868 1 �1:581 0:7984

BJ22221 0 0:1125 0:1002 1 �1:566 0:7841

OE221 0 0:1053 0:0920 1 �1:573 0:7989

■ ARX441 gives reasonable fit to G.q/, but BJ, ARMAX, OE look better.
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■ ARX441 gives reasonable impulse response; BJ, ARMAX, OE better.
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■ Some numerical results for the transfer-function coefficients of H.q/

are tabulated below: ARMAX and BJ only ones even close.




0




1




2

d

0

d

1

d

2

Actual 1 �1:634 0:7567 1 �1:862 0:9851

ARX221 1 0 0 1 �1:199 0:4338

ARMAX2221 1 �1:122 0:5905 1 �1:581 0:7984

BJ22221 1 �1:673 0:7865 1 �1:872 0:9955

OE221 1 0 0 1 0 0

■ Bode plots of bH.q/ also show BJ to be far superior to other methods.
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■ Histograms (of e�k�, not v�k�): ARX221, OE having problems
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■ Results for noise mean and noise-power estimation of e�k� (not v�k�)

Actual ARX221 ARMAX BJ2221 OE221

Mean �0:0117 �0:0026 �0:0071 �0:0155 �0:0197

�

2

0:0310 0:0750 0:0418 0:0302 0:1038

■ Residuals: ARX221, ARX441, ARMAX, OE(!) fail. BJ passes well.
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4.16: Model quality: Bias error

■ What do we mean by a good model?

� Close to the “true description,” but that usually doesn’t exist.

■ Factors to keep in mind:

� “Model quality” depends on intended use: simulation model, or

prediction model for control design.

■ Model quality associated with “model stability”

� Does it change much as we look at different segments of the data?

■ Need to quantify these model errors: bias and variance.

■ Want a model with low bias and low variance!

■ All model types have bias/variance problems, but ARX easiest (only?)

case to analyze.

� Also most pronounced.

Types of model errors

1. Variance errors:

■ Repeat experiment with same deterministic input u�k� but different

disturbance sequence v�k�.

■ Solve for model parameters: will get different values each time

because the noise changes.

■ Variance errors can typically be reduced by collecting more data

(want N !1).

2. Bias errors:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011, 2015, 2017, 2018, 2019, Gregory L. Plett



ECE5560, Transfer-Function Identification 4–57

■ Systematic errors that occur because the model chosen is not

capable of describing the system dynamics.

■ If we repeat the experiment, will get same (expected) values each

time because of deficiency of model structure.

� Even with no noise.

� Model structure too small or wrong type.

Typical problems

■ Consider what happens when the linear regression analysis has a

non-zero mean plus white noise for e�k�.

■ Turns out that ARX performance is very sensitive to this type of

“coloring” in the noise (bias).

SIMPLE EXAMPLE: Let y�k�C ay�k � 1� D bu�k � 1�C e�k�.

■ Let the input be white Gaussian noise: u�k� � N .0; 1/.

■ Consider two disturbance cases:

1. Let the disturbance be white Gaussian noise: e�k� � N .0; 1/.

2. Let the disturbance have an unknown bias: e�k� � N .1; 1/.

■ We use a D 0:9, b D 0:25, and N D 1024.

■ After averaging over ten different input-output sequences,

1. Case 1 results: Oa D 0:9028, Ob D 0:2563.

2. Case 2 results: Oa D 0:8128, Ob D 0:2652.

� ARX performance with the non-white noise is quite poor (even

though the “true” system is ARX).
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■ Residual analysis shows us that there is a real problem here.
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■ Two possible solutions: de-trend or estimate the offset.

■ detrend(x,'constant') is an ad hoc approach that works well.

� Work with modified model:

A.q/.y�k�� Ny/ D B.q/.u�k�� Nu/C Qe�k�.

� Use the modified data .u�k�� Nu; y�k�� Ny/ to estimate the

parameters in A.q/ and B.q/.
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■ For our example, case 2, we get

Oa D 0:9029 and O

b D 0:2565 using

de-trended data. Very similar to

the results for case 1.

� You should nearly always

detrend y�k� and u�k� data.

■ The second solution is to

estimate the offset.

■ Write e�k� D e

0

C w�k�, where e
0

is a constant offset and w�k� is

zero-mean white noise.

■ Modify the estimation scheme

so that we can estimate e
0

also.

0 5 10 15 20 25
−0.5

0

0.5

1

Autocorrelation Rε for ARX detrend

Lag

−20 −10 0 10 20
−0.1

−0.05

0

0.05

0.1

Cross correlation Rεu
 for ARX detrend

Lag

y�k� D �ay�k � 1�C bu�k � 1�C e

0

C w�k�

D

h

�y�k�1� u�k�1� 1

i

2

6

4

a

b

e

0

3

7

5

Cw�k�.

■ This is a standard form, but now � D

h

a b e

0

i

T

.

■ For the example given above, I solved the least-squares problem with

handwritten code, averaged over ten runs, and got Oa D 0:9029,

O

b D 0:2565, and Oe
0

D 1:0005.
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4.17: Bias problems in ARX WLS solution

■ Consider the least-squares ARX optimization in Topic 4.8.

■ Wrote prediction model as O

Y D X� .

■ The weighted cost function was V
N

D .Y �

O

Y /

T

W.Y �

O

Y /.

■ This gives O

� D .X

T

WX/

�1

X

T

W Y .

■ What is the bias in this estimate? Measure this by computing

E�� � O

��. Want bias to be zero.

CALCULATION: Compute

� �

O

� D � � .X

T

WX/

�1

X

T

W Y .

■ Assume that Y has the form Y D X� C e. Then

� �

O

� D � � .X

T

WX/

�1

X

T

WX� � .X

T

WX/

�1

X

T

W

� �� �

�X

L

W

e

D �X

�L

W

e,

so

E�� � O

�� D �E�X
�L

W

e�.

■ If the matrices X and W are deterministic and known, then

E�� � O

�� D �X

�L

W

E�e�.

� So, WLSE is unbiased for zero-mean disturbances in this case.

■ Big problem: For the WLSE we care about in the ARX case,

X D

h

��1� � � � ��N �

i

T

so is explicitly a function of measured data.

■ So, we cannot pull out the X�L
W

term. We are stuck with the bias.

E�� � O

�� D �E�.X
T

WX/

�1

X

T

We� ¤ 0 in general:
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■ One last exception: If e�k� is white, it will not be correlated with past

data in X .

� Therefore, E�� � O

�� D �E�X
�L

W

�E�e� D 0.

■ In general, WLSE tends to be biased, but the bias tends to be quite

small with high SNRs.

EXAMPLE: Another example of problems with bias in parameter

estimates.

■ Actual system has A.q/y�k� D B.q/u�k�C C.q/e�k�, with

� A.q/ D 1C a

0

q

�1, B.q/ D b

0

q

�1, and C.q/ D 1C 


0

q

�1.

� u�k� and e�k� independent white noises.

■ Model this with ARX form

Oy�kI �� D �ay�k � 1�C bu�k � 1�

D �

T

��k�,

which ignores the dynamics in the error input (assumes 

0

D 0).

■ Now, compute the “prediction error variance.” Since

� V

N

D

1

N

N

X

kD1

�

2

�k; ��, which is approximately E��
2

�k; ��� for large N ,

� As N !1, V
N

is a good estimate of the prediction-error variance.

� That is, as N !1, we can work with either V
N

or V D E��
2

�.

� The latter is directly computable, which allows for interesting

analytical comparison.
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■ New cost

V D E��
2

� D E� .y�k�� Oy�k; ��/2 �

D E� .y�k�C ay�k � 1�� bu�k � 1�/

2

�

:

:

: (see appendix)

D r

0

.1C a

2

� 2aa

0

/C b

2

� 2bb

0

C 2a


0

,

with r
0

D E�y
2

�k�� D

�

b

2

0

C 


2

0

� 2a

0




0

C 1

� �

1� a

2

0

�

�1

.

■ To optimize, �� D arg min
�

V ,

�V

�a

D r

0

.2a � 2a

0

/C 2


0

D 0

➠ a

�

D a

0

� 


0

=r

0

,

where 

0

=r

0

� 1=SNR. Also

�V

�b

D 2b � 2b

0

D 0

➠ b

�

D b

0

.

■ The costs are

V .�

�

/ D 1C 


2

0

.1 � 1=r

0

/

V .�

0

/ D 1C 


2

0

,

so V .��/ < V .�
0

/.

■ By minimizing V
N

for large N we expect our estimates to converge to

�

� because of the lower value of V .

■ But, these are biased since �� ¤ �

0

.

■ But, for this assumed model class, �� gives a better predictor since

V.�

�

/ < V.�

0

/.
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NUMERICAL EXAMPLE: Confirmation of the above calculations.

■ System has y�k�C 0:9y�k � 1� D 0:25u�k � 1�C e�k�C 0:7e�k � 1�. So,

�

0

D

"

a

0

b

0

#

D

"

0:9

0:25

#

.

■ We can compute r
0

D 1:54, so we expect a� D a

0

� 


0

=r

0

D 0:4453

and b� D b

0

. That is,

�

�

D

"

a

�

b

�

#

D

"

0:4453

0:25

#

.

■ Averaged ARX results over ten runs for several values of N .

O

�

1024

D

"

0:4580

0:2530

#

, O

�

4096

D

"

0:4501

0:2508

#

, O

�

16384

D

"

0:4485

0:2525

#

.

■ Note that V .�
0

/ D 1:49 and V .��/ D 1:17.

■ Algorithm gives us the best possible predictor, but this does not

necessarily mean we get a good model.

■ Average ten ARMAX models: ��ARMAX D

h

0:9025 0:2520 0:7038

i

T

,

which gives a good fit with low bias.

■ Conclusion: If the model type or size is wrong, we will get a bias in

the parameters.

Variance errors

■ Assume that our estimate has zero bias.

■ Can show that, if �
0

is the value of the actual parameters, then

P

N

D E�. O�
N

� �

0

/.

O

�

N

� �

0

/

T

� �

�

2

N

R

�1

,
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where �2 is the variance of the added noise e�k�, and

R D E� .k; �
0

/ 

T

.k; �

0

/� where

 .k; �

0

/ D

d

d�
Oy�k; ��

�

�

�

�

�

0

which is the gradient of prediction with respect to � .

� Covariance decreases with less noise and/or more data.

� Quality of O�
N

depends on sensitivity of prediction to � ( ).

◆ Small sensitivity means that  is small, so R is small, and R
�1

is

large, so variance is large.

■ Of course, to be of any use, we need to estimate R and �2.

O

R

N

D

1

N

N

X

kD1

 .k; O�
N

/ 

T

.k; O�
N

/

O�

2

N

D

1

N

N

X

kD1

�

2

�k; O�
N

�

O

P

N

D

1

N

O�

2

N

O

R

�1

N

.

■ For ARX, Oy�k� D �

T

��k� and
d

d�
Oy�k� D ��k�, so

��k� D

"

�y�k � 1�

u�k � 1�

#

.

■ This gives R D E�  
T

� D

"

R

y

�0� R

yu

�0�

R

yu

�0� R

u

�0�

#

.

■ We now see that the selection of u�k� explicitly plays a role in the

accuracy of our estimates through R
u

and R
yu

.
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■ These tools allow us to display confidence bounds for the models we

develop.

Where from here?

■ Transfer functions great for analysis and design of predictors for and

control of LTI SISO systems.

■ But, much harder to use for MIMO systems, and much harder to

identify transfer-function models for MIMO systems.

■ Also, nonlinear optimization required for all but simplest

transfer-function approaches, which can get “stuck” in local minima,

yielding sub-optimal models.

■ “State space” models are an alternate way to describe system

dynamics.

� Work great for multi-input, multi-output systems.

� Can provide access to what goes on inside a system in addition to

an input–output mapping only (however, a system-ID model will

not automatically provide this insight).

� Allow new analysis and synthesis tools for estimation and control

that are very powerful.

■ Furthermore, deterministic globally optimal solutions exist to the

system-ID problem. No local minima.

■ So, our next topic is a preview of state-space systems (prior exposure

helpful, but not necessary).

■ From there, we will continue to explore a number of system-ID

approaches for state-space models.
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Appendix: Variance calculations for bias example

■ These calculations are for the example in Topic 4.17.

E�y
2

�k�� D E� .�a
0

y�k�1�C b

0

u�k�1�C e�k�C 


0

e�k�1�/

2

�

.�a

0

/

2

E�y
2

�k�1�� D a

2

0

E�y
2

�k��

�2a

0

b

0

E�y�k�1�u�k�1�� D 0

�2a

0

E�y�k�1�e�k�� D 0

�2a

0




0

E�y�k�1�e�k�1�� D �2a

0




0

�

E� .�a
0

y�k�2�Cb

0

u�k�2�Ce�k�1�C


0

e�k�2�/ e�k�1��

D �2a

0




0

b

2

0

E�u
2

�k�1�� D b

2

0

E�u�k�1�e�k�� D E�u�k�1�e�k�1�� D 0

E�e
2

�k�� C 2


0

E�e�k�e�k�1��C 


2

0

E�e
2

�k�1��

D 1C 


2

0

so, E�y2�k�� D a

2

0

E�y
2

�k��� 2a

0




0

C b

2

0

C 1C 


2

0

D .b

2

0

C 1C 


2

0

� 2a

0




0

/.1� a

2

0

/

�1.

■ Also

E�.y�k�� Oy�k�/

2

� D E� .y�k�C ay�k�1� � bu�k�1�/

2

�

E�y
2

�k�� D r

0

2aE�y�k�y�k�1�� D 2aE�.�a
0

y�k�1�Cb

0

u�k�1�Ce�k�C


0

e�k�1�/y�k�1��

D 2.�aa

0

E�y
2

�k��C a


0

/

2
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2E�y�k�.�bu�k�1�/� D �2bE�.�a
0

y�k�1�Cb

0

u�k�1�Ce�k�C


0

e�k�1�/u�k�1��

D �2bb

0

b

2

E�u
2

�k�1�� D b

2

E�a�y�k�1�bu�k�1�� D 0

E�.ay�k�1�/
2

� D a

2

E�y
2

�k��

so, E�.y�k�� Oy�k�/

2

� D r

0

.1C a

2

� 2aa

0

/C b

2

C 2a


0

� 2bb

0

.
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