ECE5560: System Identification 4—1

Transfer-Function Identification

4.1: Introduction to transfer functions

= [ssues with nonparametric system ID:

» Needed to identify an infinite number of values to determine either
a unit-pulse- or frequency response to uniquely identify system.

« When there is disturbance, we need more data than values to
identify, to somehow average out the effects of the disturbance.

e So, prefer to find a low-order approximate model of system (i.e.,
low number of parameters to identify).

= WWe now begin to look at parametric system |ID—identifying a small
set of parameters (here, in transfer-function form) to define a model.

» Most control-system analysis and design methods work directly
with either transfer-function or state-space models;

» Can easily get unit-pulse and frequency responses from
parametric models if needed (converse isn’t generally true).

m Start by reviewing discrete-time transfer function models.

= Then, look at some common model structures used in system ID,
then at optimization methods, then at validation of models.

Parametric models of linear systems

= |In this section of notes, we will assume transfer-function (TF) models
G(q) and H(q) for system and noise dynamics respectively,

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-2

vkl = G(q)ulk] + H(g)elk].

e The u[k] signal is known (we applied it).

e The ¢[k] signal is assumed to be a sequence of independent RVs,

+ Usually assume zero-mean, white, Gaussian.
« May know E[e*[k]], but may need to estimate that too.
e G(q) is the transfer function between (known) input and output.

e H(q) is the transfer function between disturbance and output.

= The transfer functions can be defined as’
G(q)=) glklg™ and H(q) =) hlklg™.
k=1 k=0

= |f the unit-pulse responses are known, we can compute G(g) and
H (q) directly. But, we're trying to avoid this approach. ..

m Fortunately, many systems can be very well described by (short)
discrete-time difference equations. For example,

ylk] = aylk — 1] + pulk —1].
= [f we write this equation in operator form, we get?
(1 —ag™)y[k] = g~ ulk]

_ Bg! B
Y = k] = s ulkl
G(q)

! Note the different summation starting indices, due to assumption that G(g¢) has no
strictly feedthrough path (i.e., g[0] = 0). If g[0] # 0, then both indices start at k = 0.

2 The second line of this equation does not really follow from the first, since ¢! is an
operator and not a variable. However, we can use a similar approach with z transforms
to rigorously come up with the same result, if we permit rational-polynomial functions
of g. This is really an abuse of notation, but when everybody understands what you're
talking about, | suppose it's okay.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-3
= From this example, we see that a system having infinite length
unit-pulse response can be perfectly described by a transfer function
having only two unknown parameters, « and g.

= All systems described by linear constant coefficient difference
equations can be represented with transfer functions that are “rational
polynomial in ¢”. For example,
G(q) = ? - blq_l_‘|1‘ et ban_nb_n .
(4) l+ag= +---+ayqg™"
e Here, the system has a transport delay of n, samples, n,
feedforward coefficients, and n, feedback coefficients.

e SO, there are a total of n, + n, + 3 values to determine, in order to
define the transfer function (3 = dim{n, , ny, n;}).

e This is much more compact than trying to find the entire unit-pulse
or frequency responses.

= By analogy with the z-domain transfer function, we can treat ¢ as a
variable and factor the numerator and denominator polynomials.

« Roots of the numerator polynomial are called zeros of the transfer
function;

» Roots of the denominator polynomial are called poles of the
transfer function.

m System response to initial conditions or input stimuli are qualitatively
defined by pole locations. The zero locations are required to quantify
the result.

 Poles tell if the system is stable or unstable, smooth or oscillatory,
fast or slow.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 44
4.2: Some examples of time responses versus pole locations

= The following shows some correspondence between the ¢-plane and
some discrete-time unit-pulse-response signals.

6 8

Unit step:

= glk] = 1[k]. o

q

"G(g) = . gl > 1.
q—1 420 2 4

Exponential (geometric):
n g[k] = a*1[k], la| < 1.

q
. . 4770 2 4 6 8
General cosinusoid:
m g[k] = a” cos[wk]1[k], |a| < 1.
q(q —acosw) —
" G(q) — 2 2 %]
q* —2a(cosw)q +a A70 2741678
for |q| > |a]|.

= The radius to the two poles is a; the angle to the poles is w.

= The zero (not at the origin) has the same real part as the two poles.

elfw=0,G(q) = 4 geometric!

olfa)=0,a=1,G(q)=L1...S’[ep!
q_

m Pole radius a is the geometric factor, determines settling time.
1.]a| =0, finite-duration response. e.g., §[k — N| <= q V.
2. la] > 1, growing signal which will not decay.
3. la| =1, signal with constant amplitude; either step or cosine.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-5

4. la| <1, decaying signal. Small a = fast decay (see below).

a 09 08 06 04
~ duration N 43 21 9 5

» Pole angle w determines number of samples per oscillation.

e That is, if we require cos[wk] = cos[w(k + N)], then

N =4 _
2 360 y=>
N = — = — . B
@ rad W deg N=3
m Solid: cst. damping ratio ¢.
m Dashed: constant natural (
frequency w,. N =2 (4
I(g)
b i
)
= Plot to right
shows

discrete-time

unit-pulse BX

responses
versus pole
locations. X ek X X % R(q)

X

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES560, Transfer-Function Identification

Correspondence with continuous-time signals

m et g(¢) = e cos(br)1(z).

= Suppose
a = 0.3567/T
, /4 T = sampling period.
T
= Then,

glk] =g(kT) = (6_0'3567)k cos (%k) 1[k]

= 0.7% cos (%k) 1[k].

(This is the cosinusoid example used in the earlier example).

= G(s) has poles at s;, = —a + jb and —a — jb.

» G(¢) has poles at radius e angle w = +bT or at e “T /0T,

° SO, dio2 = €S1T and €S2T.

= In general, poles convert between the s-plane and g-plane via

sT
q —¢ .

EXAMPLE: Some corresponding pole locations:

s-plane g-plane

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-7
m jw-axis maps to unit circle.

= Constant damping ratio ¢ maps to strange spiral.

= WWhen considering system response to a step input for controls
purposes, the following diagrams may be helpful:

PN o A 1D
. _/

Damping ¢ Frequency w, Settling time

m Higher-order systems:

e Pole moving toward g = 1, system slows down.
e Zero moving toward g = 1, overshoot.
» Pole and zero moving close to each other cancel.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-8
4.3: Bode plots from discrete-time transfer functions

= Knowing a system’s frequency response is key to many system
analysis and control synthesis methods.

» Bode plots are plots of frequency response of a system, displayed as
separate magnitude- and phase-response plots.

» Frequency response is extracted from transfer functions, knowing
geometrically where pure sinusoids exist in s- or g-plane.

e In s-plane, H(s)| is frequency response for 0 < w < .

S=jw
e In g-plane, H(q)|,_.jor is frequency response for 0 < o < w;/2.

m Straight-line tools of s-plane analysis DON'T WORK! They are based
on geometry and geometry has changed—jw-axis to ¢-unit circle.

= To use straight-line tools, must convert H(g) to an equivalent form
H (w) where unit circle in g-plane maps to jw-axis in w-plane.

o Ideally, interior of ¢g-plane unit circle maps to LHP in w-plane, and
exterior of g-plane unit circle maps to RHP in w-plane.

e It is not accurate to label the destination plane the s-plane. Itis
often called the w-plane, and the transformation between the
g-plane and the w-plane is called the w-Transform.

+ That is, for the H(w) we come up with, H(w) # H(S)|s=w-
q-plane w-plane

B
A

X

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-9

= A transform that satisfies these requirements is the bilinear transform:

H(w) = H(q)|, eI and H(q) = Hw)|,_

—(T/2)w

q .
|

'ﬁ|l\3
s}
ul

= Three things to check:

1. Unit circle in g-plane — jw-axis in w-plane.
2. Inside unit circle in g-plane — LHP in w-plane.
3. Outside unit circle in g-plane — RHP in w-plane.

m |f true,

1. Take H(qg) — H(w) via the bilinear transform.
2. Use straight-line methods to plot Bode plot of H(w).

CHECK: Let ¢ = re/“T. Then, g is on the unit circle if » = 1, ¢ is inside
the unit circle if |r| < 1 and ¢ is outside the unit circle if |r| > 1.

q =re/®!
_2q-1 _ 2re/®t —1
CTqA4+ 1 por TreioT + 1

= Expand e/®" = cos(wT) + j sin(wT) and use the shorthand
c2 cos(wT) and s 2 sin(wT’). Also note that s> + ¢* = 1.
(rc+ jrs—1 2[(re=1)+jrs][(rc+1)—jrs
rc+ jrs + 1] T |:(rc +1) + jrs] |:(rc +1) — jrsi|
C(r2c2—=1) 4+ jrs)(rc+ 1) — j(rs)(re—1) + r2s2:|

w =

(rc + 1)+ (rs)?

Nl N N e

[re—1 N 2 2rs

r24+2rc+ 1 Tlr v 2re+ 1]

= Notice that the real part of w is 0 when r = 1 (w is on the imaginary
axis), the real part of w is negative when |r| < 1 (w in LHP), and that

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-10
the real part of w is positive when |r| > 1 (w in RHP). Therefore, the
bilinear transformation does exactly what we want.

m \Whenr =1,

w=J]—= = J—tan >

.2 2sin(wT) 2 T
T2+ 2cos(wT) T '

= Thatis, in w-plane, H(w)l,_;,, is the frequency response for
0 < wy < o0o. Straight-line tools work, but frequency axis is warped!

= The following diagram summarizes the relationship between the
s-plane, g-plane, and w-plane:

s-plane g-plane w-plane

/® 3
. / ® =
Vs
® @{‘ ;LD R=1 ® ;AD | T 7
® —j &_/@
2 ®

PROCEDURE:
1. Convert H(g) to H(w) by H(w) = H(q)|q_1+(T/2)w

—1=(T/2)w"
2. Simplify expression to rational-polynomial in w.

3. Factor into zeros and poles in standard “Bode Form”.
4. Plot the response exactly the same way as an s-plane Bode plot.
2 wT
Note: Plots are versus log,y 0y, ... oy, = Ttan - | Can
re-scale axis in terms if w if we want.
EXAMPLE: Plot the straight-line w-plane Bode plot for a system with
transfer function:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4—11

0.368¢ + 0.264
g2 — 1.368¢ + 0.368"

LetG(q) =
(1,2)

0.368 [H022] + 0.264
[HE822]° — 1368 [1£024] + 0.368
B 0.368(1 + 0.5w)(1 — 0.5w) + 0.264(1 — 0.5w)?
(14 0.5w)2 —1.368(1 + 0.5w)(1 — 0.5w) + 0.368(1 — 0.5w)?

~ —0.0381(w — 2)(w + 12.14)
B w(w + 0.924)

Gw) =

(3)

— (7% 1) (7L 1
G(jw,) = (v 2)w(wf 214)
jou (Jos5 + 1)

(4)

Bode Plots

N
o

N
[=]

———————— —— i ————— L -

Magnitude (dB)

S o
~

|
N
o

107 10 10’ 10° 10°

Frequency (warped radsec™)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-12
4.4: System ID with transfer-function models

m Having reviewed discrete-time systems, we return to the problem of
system ID using transfer-function models.

m Recall that we are assuming a system model with system and noise
dynamics specified by G(g) and H(q),

ylk] = G(q)ulk] + H(q)elk],
with G(¢) = B(q)/A(q) and H(q) = C(q)/D(q).

ISSUES: Do all of A(g), B(g), C(q), D(q) exist? And, what are the values
for ng, ny, ny, n., and n,?

m Typically use time response to estimate delay n, directly.

m Then, try certain “standard” structures involving A(q), B(g), etc., to
see which fits “best”.

m Involved in this is the selection of model order via some criteria, and
validation of the model.

Standard model forms

m Different approaches to using transfer-function models differ primarily
on how disturbance is factored into the system response.

= We look at four “standard” model forms that have different properties:
some are easier to identify, but others are more general.

Output error model
= The output error (OE) approach elk]
models the system as shown in the ulk] | B@) Ik
diagram. A(q)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-13

= That is, G(¢,0) = EEZ g; and H(g,0) =1, and
, 0
VK] = jgz Q;u[k] + e[k].

= The OE model is parametrized by 6 = [a1 ces dp, b1 o-ee by,] :
= The filters are defined as

Alg.0)=14+aig ' +---+a,qg ™

B(q,0) =big + -+ + by,q7".

= The noise source is the difference (error) between the actual and
noise-free output.
= Good to use when system dominated by white sensor noise.

m Expect problems when the noise spectrum is shaped (colored noise,
process noise). Why?

m Denote the noise-free output by w[k]. Then, the difference equation is
wlk] +awlk —1] + -+ ay,wlk —ny] = byulk — 1] + -+ + by, ulk — ny)
yvlk] = wlk] + elk].

ARMAX model

= The ARMAX (auto regressive
with moving average and C(q)

exogenous (or extra) input)
approach models the system [k | p ,$ o ! g

A
as shown in the diagram. (4)

e[k]

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-14

-5
A(g,0)ylk] = B(q, 0)ulk] + C(q, 0)elk].

m Thatis, G(q,0) = and

m |t is parametrized by 6 = [al ev p, by ooer by, 1 e ocp,]
= The filters are defined as
Aq,0) =1+ag™ +- +anqg™
B(q.0) =big™ + -+ by,q™"
C(q.0)=14c1qg "+ +cuq™
m Disturbance and input subject to the same poles.
= Good model if shaped or process noise dominates.
» The difference equation is
vkl +arylk = 1]+ -+ ap,ylk —ng)
= byulk — 1] + -+ + by, ulk — nyp)

+elk] +crelk = 1]+ -+ ¢y elk —n.].

ARX model

= The ARX (auto regressive with exogenous (or extra) input) approach
models the system as shown in the diagram. That is,

A(g, 0)ylk] =]139((61,99))u[k] + e[k], elk]
_ Bl
TR Rk el 8@ @
H(g,0) = .
(4.0) 1. 0)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-15

-TheARXnMMeHspmanmUEedbyQ==[m>~-aw hu-b%].

m The filters are defined as
A, 0)=14+aig ' + -+ anqg™
B(q,0) =big ' + -+ + by,q ™.

= Simplified disturbance model. Not particularly well motivated by any
physical intuition, but solution found by very simple numerical method.

= The difference equation is
ylk]+aylk=1]+---+a,,ylk—n,] = biulk—1]+--- +b,, ulk—np|+elk].

Box—Jenkins model

= The Box—Jenkins (BJ) approach models the system as shown in the
diagram. That is,

_ B(q.9) C(q.9)

VK] = g vk + etk elt) [€@

B(q,0) D(q)
or G(q,0) = 44.0) and

C(q,(g,) ulk] | B@ ylk
H(g,0) = DG.0) A(q)
= The Box—Jenkins model is parametrized by
ez[al o @p, by e by, cp e oCp dy e dnd]-

m The filters are defined as
A(q, 0) = 1 + alq_l + _|_ anaq—na
B(q,0) =big ' + -+ by,q "

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-16

C(q.0)=1+cig "+ +cnq™™

D(q,0)=1+dig"" +-+dy,q".

= Very general form. Includes all others as special cases.

= Denote the noise-free system output by w(k], and the overall
disturbance by v[k]. Then, the difference equation is

wlk] +awlk—1] + -+ + ap,wlk—n,] = byulk—1] + -+ + by, ulk—ny]
vlk] + divlk—1] +--- + d,,v[k—n,] = elk] + crelk—1] + -+ + ¢y elk—n,]
ylk] = wlk] + v[k].

Generalizing for longer input delay

= All these difference equations assume a single delay in B(g, 6) only.
= Often need n, additional delays: B(q,0) = ¢' " (big"' + -+ + bu,q).

m Difference equations now of the form
c~-=byulkr ng — 1]+ byulkr np —2]+ ---.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-17

4.5: Initial model structure selection

= Models are valid for different assumptions on the dynamics, noise.
= Often not clear which is the best to use!

« Common approach is to try several structures and see if the fit
improves (will look at how to compare them later on).

= |[n addition to the structures themselves, number of delays n; and
coefficient order n,, ny, n., and n; not obvious either.

Delay estimation

= One quick way to estimate the delay is to plot the cross-correlation
between the output and input. For the “dryer” data,

load dryer2

uz2 = u2 - mean(u2); y2 = y2 — mean(y2);

x = (—length(u2)+1): (length(u2)-1);

Ryu = xcorr(y2,u2); stem(x,Ryu, 'filled');

Cross correlation R betweeny and u Cross correlation R between y and u (zoom)
yu yu
1000 - - 1000 . . . :
[} L 4
[]
800y 800} ? .
c 600} c ?
RS © 600t ?
= 400 =
S G 400¢
O 200} &)
200}] ‘
2% -100 0 100 200 % 2 4 6 8 10
Time shift (samples) Time shift (samples)

= We see a general noise floor of around 200. So, a time delay of two
or three samples looks about right. Should probably try both.

= A second method is to look at unit-pulse- or step-response data (if
available), looking for the first non-negligible response point.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES560, Transfer-Function Identification

= A third method is to use MATLAB’s delayest .m. (cf. Topic 4.14)

4-18

o Fits ARX models with different delays to the data, uses a “cost”
criteria to determine which one looks most likely.

» Since ARX is not guaranteed to be best structure, don'’t believe
delayest too much. For above data, it suggests a delay of three
samples, but a delay of two samples is probably better.

Coefficient order

= To estimate model order, can use frequency response identification
(e.g., spa.m) to get a feel for the Bode plot.

« “Eyeball” fit poles and zeros to get an idea of how many of each.

» Pay particular attention to peaks in the magnitude plot, which
indicate resonances (lightly damped complex-conjugate pole pair).

« Slope of magnitude plot of some use, but care must be taken due
to frequency warping of discrete-time Bode plots, and uncertainty
of whether there are regions where slope doesn’t change as much
as might be expected due to a near pole-zero cancelation.

Estimated magnitude response

load dryer?2 T
u2 = u2 — mean (u2); @
y2 = y2 - mean(y2); 7g/—zo-
z = iddata(y2,u2,0.08); g
[m, p, w]=bode (spa(z)); ‘256“-30-

w=squeeze (w); m=squeeze (m);
semilogx(w,20x1ogl0 (m)) ; —40}

1 10° 10, 10°
Frequency (rad sec ')

= Slope ~ —40dB per decade: at least two more poles than zeros.

10

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-19

» But, how many zeros? Phase plot is pretty useless due to delays.

« Might try a range of model orders from 2 to 5 to see which fits best.
m Typically get a better fit as we increase the order of A(g).

 Avoid “over fitting” the data—the result looks good on this data set,
but much poorer on any other.

» MATLAB selstruc can help determine good starting points.

Polynomial form

= Much of the MATLAB system identification toolbox deals with transfer
functions given in a polynomial format.

= We enter polynomials by typing their coefficients in vector form as
ascending powers of the delay operator ¢ *, k = 0,1, . ..

KEY POINT: Delays are denoted by leading zeros in the polynomial. So,

B(q) _ q~
A(q) 1—-15¢140.7¢2
isenteredbyB = [0 0 0 1]andA = [1 -1.5 0.7].

= Note that the MATLAB control-systems toolbox does this differently:

e In discrete-time (z form), would normally write this as

773 B 1
1—1.5z714+0.7z72 z3—-1.5224+0.77
enteredas num = 1andden = [1 -1.5 0.7 0].

e The two different toolbox representations are equivalent (only) if
the lengths of A and B are equal.

= MATLAB commands to use polynomials in system ID are idpoly
and polydata.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-20
4.6: Fitting parametrized model: Simulation or prediction?

» Having chosen n; and n,, ny, n., and ng4, it's now time to determine
the polynomials A(g), B(q), etc.

= This is an optimization problem:

e First, much choose what objective we are trying to optimize,
e Then, develop a “cost function” to achieve this objective,
e Then, select an appropriate optimization method.

Optimization objectives: Simulation or prediction?

= A very fundamental question we must consider is: what will the final
model be used for?

» Simulation: Given knowledge only of u[k] up to the present time,
estimate the present output y[k].

o 1-step prediction: Given knowledge of u[k] up to the present time,
and y[k] up to the prior time, kK — 1, estimate present output y[k].

e n-step prediction: Given knowledge of u[k] up to the present time,
and y|k] up to a previous time, k — n, estimate present output y[k].

= A model optimized for a simulation application will generally match
the open-loop response best.

= A model optimized for prediction will use measured data as feedback,
and will generally provide better estimates, especially when there is
non-white noise impacting the system response.

= Qur basic approach will be to find G(¢) and possibly H(g) to minimize
some measure of modeling error:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-21

e For simulation, ¢;[k] = y[k] — y,[k], where y([k] = G(q)u[k], the
simulated value of the output at time k given measurements of the
input only. (We don’t estimate H(g) for a simulation application.)

o For 1-step prediction, €,[k] = y[k] — y,[k | kK — 1], where
yplk | k — 1] is the predicted value of the output at time k given
measurements of the output up until (and including) time k — 1.

e For n-step prediction, ¢,[k] = y[k] — y.[k | kK — n], where
yulk | k — n] is the predicted value of the output at time k given
measurements of the output up until (and including) time k — n.

= The formulations for the predicted y,[k | kK — 1] and y,[k | k — n]
deserve some attention.

m We start with the assumed form y[k] = G(q)ulk] + H(q)elk].

= Pre-multiply both sides by H ~'(¢g), assuming that H(g) is monic,
minimum-phase, and hence is also stable. This isolates e[k].

H™\(q)ylk] = H™'(q)G(q)ulk] + e[k].
= Now, add y[k] to both sides, and rearrange to get
vkl = (1= H () k] + H™'(q)G(q)ulk] + e[k].
= Note that the RHS requires knowledge of u[k] up until the present,
e|k] at the present time only, and y[k] up until the prior time only.

= To see this last point, let’s look at the details of H(g) more closely:
_C@) _1+aqg ' +eoq+ ..
D(g) 1+4+dig'+dyq2+---
Clq)—D(g) _ (c1—d)q ' +(c2—dr)g > + -+
C(q) [+eg tog 2+

H(q)

1—H (q) =

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-22

= The numerator has a pure delay term, therefore, (1 — H~'(q)) y[k]
contains only old values of the output {y[s], s < k — 1}.

m Therefore, we can use this relationship to predict y[k] from past
values of y[k] (etc).

o Assume that e[k] is white, so best estimate of e[k], given
information up to k — 1, is e[k] = 0.
o Therefore, J,[k |k —1] = (1 — H™'(q)) y[k] + H '(q9)G(q)u[k].

= Can also derive similar relationship for n-step prediction,

Vulk |k —n] = (1—H,(q)H™'(q)) y[k] + H.(q)H ™' ()G (q)u[k],
n—1
where H,(g) = Y _h[jlg~/, which is a truncated version of H(qg).
j=0

EXAMPLE: For output error, H(g) = 1, and G(gq) = B(q)/A(q).

= This gives (1 — H'(g)) = 0and H'(¢)G(q) = G(q).

B(q)
A(q)
EXAMPLE: For ARX, H(q) = 1/A(q), and G(q) = B(q)/A(q).

e S0, P,k | k—1] =

uk], which is not a function of past outputs.

= This gives (1 — H'(q)) = 1 — A(g) and H™'(¢)G(q) = B(q).
7, [RIANFILOM— A())ylk] + Blg)ulk]
= —a1ylk—1]—---—a,,ylk—ns] + biulk—1] + -+« + by, ulk—n,).
o ARX uses old values of y[k] as well as u[k] to predict y,[k | kK — 1].

m Other cases are more complicated.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-23
4.7: Fitting parametrized model: Cost function

= Now that we have defined three different forms of instantaneous
modeling error ¢[k], would like to define an optimization strategy to
minimize that error in some sense.

e Note that ¢[k] is parametrized by 0, which we write explicitly in this
section as €lk; 6.

= Can take either a time-domain or frequency-domain approach: both
require defining a “cost function” to be minimized.

= In the time domain, might want to choose parameters 6 to minimize

N
Vn(0) =) elk; 0],
k=1
« Solution, 6 = arg mein Vn(0) is called the “least squares” solution.

N
« More generally, might want to minimize Vy(6) =)~ L(e[k; 0]),

k=1
where L(-) is a “loss function” where L > 0 and L is a scalar.

= In the frequency domain, might want to minimize weighted linear
least-squares frequency response

Vn(0) =D [G(el™;0) = Gu(e™)|,

where G(e/“; 0) is the model frequency response at frequency w;
with parameters 6, and G y (e/“) is the estimated frequency response
(using spa .m, for example).

» One of the problems with the linear least-squares frequency fit is
that zeros of the system are fit very poorly.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-24

+ Especially true for lightly damped zeros.

e Reason is that the index assigns a very small penalty to errors in
the match of the data/model in the low-gain regions.

+ Near these zeros, the absolute difference in the frequency
responses is small (relative errors are large).

e Linear least squares puts too much emphasis on fitting the poles.

m | ogarithmic least squares is better for the fitting of the zeros since it
weights the ratio of model gain to measurement gain.

Vi(8) = D" ai [log(G(e/™;6)) — log(G (™))"

« Works much better for a system with large dynamic range®.
EXAMPLE: Consider two points in the transfer function
= Measured data: G(w;) = 10 and G (w,) = 0.1.
= Our model estimates these as: G(w;0) = 9 and G(w,;0) = 0.09.
= Check contribution to the cost functions:
Vin = (10 — 9)* + (0.1 — 0.09)?

1 0.0001<1
Vis = (log(10) —1log(9))* + (1og(0.1) — 1og(0.09))*.
0.0111 0.0111

Optimization method

m Most cost functions and models require nonlinear optimization
methods, which we look at in the sequel.

= However, a simple solution to the linear least-squares ARX problem
exists. We look at this first.

3 Sidman, IEEE TAC, 36, p. 1065, 1991.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-25
4.8: Solving the linear least-squares ARX problem

m Consider quadratic case first, linear prediction form of ARX, where
yplklk—1] = (1 — A(q))y[k] + B(q)ulk]
= —arylk—1]—+--—an, ylk—ng] + byulk—1] + --- + by, ulk—ny]
= 0" ¢[k],
where

B T
0 = ay dp --- dy, b] bz bnb]

B T
ol = | =yl =11 -+ —ylk—na] ulk—1] - ulk—m] | .
= Note that the prediction error is linear in 6
eplk; 0] = ylk] — ¥, lk; 0] = y[k] — 6" ¢[k].

= So, we can use regression to solve for 6.* Define
N

Vv (0) = Y (y[k] - 6" p[k])’

k=1

N

=" (y2[k] — 207 [k y[K] + 07 p[k]$T [K16)
k

N N N
- (Z yz[k]) 26" (Z ¢[k]y[k]) +67 (Z ¢[k]¢T[k]) z
o k=1 k=1 g

k=1

YN IN Ry

= yy — 207 fy + 0T Ry 0.

* Note, the term “regress” here alludes to the fact that we try to calculate or describe
y k] by “going back” to ¢[k]. Also, models such as ARX where ¢[k] contains old values
y[k — t] of the variable to be explained, y[k], are then partly “auto-regression” models.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-26
= We assume that R is invertible, giving

Vn(0) = yx — AR f + (0 — Ry fu) Ry (6 — Ry fi)

not a function of non-negative since Ry >0

= We get the smallest possible Vy(#) when we select 6 = Oy = Ry fy.
= Can also formulate using vectors,

X =gl o2 - IN]

v=[0 v N]

which allows us to write Ry = X' X and fy = X'Y.

= This also gives
Vv = (Y —XO)T(Y — X6)
and Oy = (X"X)"'XTY (the least-squares estimate).
m In MATLAB, theta = X \ Y.

Solving other parameter estimation optimizations

» The prediction ARX problem with quadratic cost function is the only
system ID that can be done using linear least squares.

= Other problems require nonlinear optimization, which is quite tricky.

= One fundamental principle is that we know we are at a minima (or
maxima) of an objective function when dVy (6)/d6 = 0.

= Comparing to the matrix form of the prior case, we get

d
— VN =2RN0 —2fy =0
T N IN

N

8 — Rx,lfN,
which is consistent with the result we obtained.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-27

= In the more general case (i.e., most other model forms),

e ¢[k; 0] is not linear in 8, and Vy (0) is not quadratic in €[k; 0].
e Hence, Vy(0) is not quadratic in 6.

« Optimization is not as simple. No closed-form solutions are
available. Nonlinear optimization is required.

m SO, next substantial section of notes is an overview of nonlinear
optimization, in general, using the Newton/quasi-Newton methods.

= We then return to the system identification problem, where we apply
these general results to our problem.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-28
4.9: Nonlinear optimization

= Here, we re-cast the problem into more generic notation.>

« Instead of finding 6 that minimizes Vy (6), we are find x* that
minimizes F(x), where x is a vector and F(x) is a scalar.

x* = argmin F(x).

 This scenario encompasses the ARMAX, OE, and BJ cases, plus
many other unconstrained optimization problems.

= Numerical methods for nonlinear optimization are iterative. Typically,
this is done using X;,1 = Xx + o pr, Where,

e X; IS the estimate of the optimizing x* at algorithm iteration k,
e pi is a search direction to look for the minimum, and

e o IS a positive constant determined so that an appropriate
decrease in the value of F(x) is observed.

» Note that | am using subscripts to denote iteration number at a
specific sample number (i.e., given a fixed set of data, length N).
This is different from time sample number, for which | still use
square brackets [-], when appropriate.

= Available methods primarily differ in how they find p, and .

« Some methods use function values only;

« Some methods use values of F as well as values of its gradient
g(%r) (the first derivative vector);

> Some references for this section include: L.E. Scales, Introduction to Non-Linear
Optimization, Springer-Verlag, 1985, and M.A. Wolfe, Numerical Methods for
Unconstrained Optimization: An Introduction, Van Nostrand Reinhold, 1978.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-29
» Others use values of F, its gradient, and its Hessian G (x;) (the
second derivative matrix).

m The typical member of the third group corresponds to Newton
algorithms, where the search direction is computed as

pr = =G (X) g (Re).

= The most important subclass of the second group consists of
quasi-Newton algorithms, which somehow form an estimate of the
Hessian and then compute

P =—G ' (Xp)g(Xk).

= Methods from the first group generally form gradient estimates by
difference approximations and proceed as quasi-Newton methods,

e = —G (%) 8 (%)

» The basic idea is that the minimum lies (more or less) in the direction
of the negative gradient of F(x) with respect to x.

m Via gradient descent, we eventually get to (at least a local) minimum.

» However, for objective functions having both steep regions and flat
regions (or dimensions), gradient descent is very slow.

e Scaling by the local curvature allows us to take different step sizes
in different dimensions, greatly speeding up the search.

« Note that the scaling G™! is large when the curvature is small (can
go long distances before local gradient is invalid estimate of slope),
and is small when the curvature is large (can go only a short
distance before local gradient no longer reliable indicator of slope).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-30
= Can use fixed value for o, = «, but generally get better computational
performance if we do a line search to find the value for «; that
minimizes F(x) along the search direction p,. Line search:

e First looks for bracket [a,] in which there is a minimum; then
e lteratively reduces bracket length until “close enough” to minimum.

= Overall process: Compute py; compute oy ; update Xy ; repeat.
NOTE: X, tends to be very important.
NOTE: In general, nonlinear optimization will find only a local minimum.
NOTE: Convergence can be very slow.

NOTE: Guarantees on getting a good final answer in a reasonable
amount of time? No. But, very often do so anyway.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-31
4.10: Generic nonlinear optimization example

EXAMPLE: Consider the Rosenbrock function, a non-convex problem that
is difficult to minimize:

F(x) = 100(x} — x2)* + (1 — x1)?,
where the global minimumisatx*=[1 1]".

= Start with xo = [—=1.2 1] and see how different methods work.

= We will use fminunc.m from MATLAB'’s optimization toolbox to try
different algorithm possibilities.

m First, create a MATLAB function to implement the Rosenbrock
function

function F=rosen (x)
global xpath;
F=100*(x (1) "2-x(2)) "2+ (1-x(1))"2;
xpath=[xpath;x"'];

end

m Next, in a separate script, build up the surface we're trying to minimize

global xpath;
x1=[-2:.1:2]"'; x2=x1; N=length(xl); FF = zeros(N,N);
for ii=1:N,
for jj=1:N,
FF (ii, jj)=rosen([x1(ii) x2(33)1");
end
end

m First, use steepest descent. Lots of iterations required to get solution.

xpath=[];

options = optimset ('LargeScale','off', "HessUpdate', 'steepdesc’', ...
'MaxFunEvals',20000, "MaxIter',2000);

[X, FVAL, EXITFLAG, OUTPUT]=fminunc ('rosen', [-1.2 1]',options);

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-32

figure; clf; contour(xl,x2,FF',[0:2:10 15:50:1000]); hold on

plot (xpath(:,1),xpath(:,2), 'gd"'); plot(xpath(:,1),xpath(:,2),'g-"");

xlabel ('x (1) "); yvlabel ('x(2)");

title('Rosenbrocks optimization path: Steepest')

plot(-1.2,1,'ro'"); plot(l,1,'ro")

text (-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d', ...
OUTPUT.iterations, OUTPUT. funcCount), 'fontsize',16);

figure;clf; mesh(xl,x2,FF'); hold on
for ii=1:length (xpath);
plot3 (xpath(ii, 1), xpath(ii,2),0.1+rosen(xpath(ii, :) "), 'gd', ...

'"markersize',)

end

plot3(-1.2,1,1+rosen([-1.2 1]1"),'r.', 'markersize',25)

plot3(1,1,1+rosen([1 11"),'r."', 'markersize',25)

xlabel ('x(1)"); ylabel ('x(2)"'); zlabel('Value');

title('Rosenbrocks optimization path: Steepest')

campos ([—-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);

Rosenbrocks optimization path: Steepest Rosenbrocks optimization path: Steepest

: T T3
4 4 /] 4000,)
£ 30001 ¢
= ==)
— g Z () - &
= f / = 2000+ I,
> ~] { KX CREKEKEKS
/ S S SRS
X / = ISR SRS
CCORTSREXKS CEISIITIIITRS
10004 S SRS SRS SOSISIEITIES
\ XN Q’\‘\‘\‘Q““g‘.0‘0.““o,
. X \‘“t“:“‘:“:“:“"‘:t':‘““““‘
N \ ARSI IS SIS
lterations:\1879, Fn evals: 19704 \ \77¢ ™ ¢
-2 -1 0 1 2 1

x(1) X(1) 5 2(2)

= Next, use a quasi-Newton method, with the “Davidson, Fletcher,
Powell (DFP) approach” to recursively build up approximate Hessian
inverse, using the function and its approximate gradients only.

xpath=[];

options = optimset ('LargeScale', 'off', 'HessUpdate', 'dfp', ...
'MaxFunEvals', 5000, '"MaxIter',2000);

[X, FVAL, EXITFLAG, OUTPUT] = fminunc('rosen',[-1.2 1]',options);

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-33

figure; clf; contour(xl,x2,FF',[0:2:10 15:50:1000]); hold on

plot (xpath(:,1),xpath(:,2), 'gd"'"); plot(xpath(:,1),xpath(:,2),'g-"");

xlabel ('x (1) "); yvlabel ('x(2)");

title('Rosenbrocks optimization path: DFP')

plot(-1.2,1,'ro'); plot(l,1,'ro")

text (-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d', ...
OUTPUT.iterations, OUTPUT. funcCount), 'fontsize',16);

figure; clf; mesh(x1l,x2,FF'); hold on
for ii=1l:length (xpath);
plot3 (xpath(ii, 1), xpath(ii,2),0.1+rosen(xpath(ii, :) "), 'gd', ...

'"markersize',)

end

plot3(-1.2,1,1+rosen([-1.2 1]1"),'r."', 'markersize',25)

plot3(1,1,1+rosen([1 11"),'r."', 'markersize',25)

xlabel ('x(1)"); ylabel('x(2)"); zlabel('Value');

title('Rosenbrocks optimization path: DFP')

campos ([—-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);

. Rosenbroclgs optimizatiqn pgth:FP Rosenbrocks optimization path: DFP

V/

OO

& CRSRIRERIEN
oS
SRR e

-~ S
‘\‘\‘\‘“ S :003
S
e
IS

XSRS =

= Finally, use a quasi-Newton method, with the “Broyden, Fletcher,
Goldfarb, Shano (BFGS) approach” to building up the Hessian.

xpath=[1];
options = optimset ('LargeScale','off'); % select quasi-Newton,; BFGS
[X, FVAL, EXITFLAG, OUTPUT]=fminunc ('rosen', [-1.2 1]',options);

figure; clf; contour(xl,x2,FF',[0:2:10 15:50:1000]); hold on
plot (xpath(:,1),xpath(:,2), 'gd"'"); plot(xpath(:,1),xpath(:,2),'g-"");
xlabel ('x(1)"); ylabel ('x(2)");

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-34

title('Rosenbrocks optimization path: BFGS')

plot (-1.2,1,'ro"); plot(l,1,'ro")

text (-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d', ...
OUTPUT.iterations, OUTPUT. funcCount), 'fontsize',16);

figure; clf; mesh(x1l,x2,FF'); hold on
for ii=1l:length (xpath);
plot3(xpath(ii, 1), xpath(ii,2),0.1l+rosen(xpath(ii, :)"), 'gd', ...
'markersize', b)
end
plot3(-1.2,1,1+rosen([-1.2 1]'),'r.', 'markersize',25)
plot3(1,1,1+rosen([1 1]"),'r.', 'markersize',25)
xlabel ('x(1)"); ylabel ('x(2)"'); zlabel('Value');
title('Rosenbrocks optimization path: BFGS')
campos ([-22.248, 21.81, 17143]1); x1lim([-2 2]); ylim([-2 2]);

) Rosenbrocks optimization path: B

FGS Rosenbrocks optimization path: BFGS

N ,
)
4000+ e
7 3000 %
7 AW | Yy
T 2000+ X RS \”\”\;)fr .
> XX “““‘\$‘§‘““Q“‘o
CCICICIREERS
1000 R
e
013
2 -2
2 1

= Quasi-Newton (BFGS) by far the most efficient of those tried. (It’s
MATLAB'’s default for medium-scale problems.)

= |t would be fun to spend a lot more time looking at methods for
nonlinear optimization, but that isn’t really the purpose of this course.

e So, we press on, switching our attention back to system ID;

o If you are interested in methods of optimization, take ECE 5570:
Optimization Methods for Systems and Control.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-35
4.11: Toolbox methods (1): Frequency response

» MATLAB’s system identification toolbox contains commands arx.m,
armax.m, bj.m, and oe.m, which use measured system
input—output data to produce optimized polynomials A(g), B(g), C(q),
and D(q), as appropriate, for each model type.

e Must supply model delay n;, and model size n,, n;, n., and n,.
m The best way to see these functions in action is via example.

EXAMPLE: Consider a continuous-time system
|
s2+05s + 1

m Actual system configured with OE structure (i.e., H(s) = 1).

G(s) =

= First step in simulation is to convert model from continuous time to
discrete time using ZOH, sampled at 2 Hz

ylk] = G(q)ulk] + e[k],

giving the discrete-time transfer function

() = 0.1129¢7! + 0.1038¢
= 1 156221 +0.7788¢2

= Used noise with E[e*[k]] = o* &~ 0.15, but | scaled its power
automatically in code to be equal to 1/4 of signal power.

= Simulate and plot random input—output sequence:

%% Modified from code originally by Jonathan P. How

%% Part 1: Setup

clear; clc; close all

Npts=512; T = 0.5; t=(0:1:Npts-1)*T; % # data points, sample period
RandStream.setGlobalStream(RandStream('mcgl6e807', "'Seed', 15));

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-36

nn=1; dd=[1 .5 1]; % continuous—-time system dynamics

[num, den]=c2dm(nn, dd, T, 'zoh'); % discrete-time system dynamics
w_arx=logspace (-2,0,300)xpi/T;

% compute input sequence for identification

u = idinput (Npts, 'prbs'); input signal for identification
yc = dlsim(num, den,u); compute "clean" output of G
v = randn (Npts,1); noise - note that this is white, gaussian
LL = 0.25x% (yc'*xyc)/ (v'*v);

sgrt (LL) *v; 3 the energy in the "clean" signal

oo oo oo o

scale so energy in sensor noise 1/4 times

v
y = yctv; actual output y=Gu+v

7 iddata(y,u,T);

oo oo

data available to identification

% compute input sequence for validation

u_val = idinput (Npts, 'prbs'); input signal for validation
P

yc_val = dlsim(num,den,u_val); % "clean" output of G

v_val = sqrt (LL)+randn(Npts,1l); % noise - white, gaussian

y_val = yc_val+v_val; % actual output y=Gutv

Zz_val = iddata(y_val,u_val,T); % data available for validation

% plot portions of input and output signals after initial transient
figure; plot(t, [u v]); legend('ulk]','v[k]");

title('Inputs to the system being identified');

xlabel ('Time (s)'); ylabel ('Amplitude (unitless)');

figure; plot(t, [yc y]); legend('"clean" y_clk]', 'measured y[k]");
title('Outputs from the system being identified');
xlabel ('Time (s)'); ylabel ('Amplitude (unitless)');

Inputs to the system being identified) Outputs from the system being identified
1 ' ' ' ' —ulk] ' ' ' _"cleén" yc[k]
—V[K] —measured y[k]

o
[
-

|
o
(4

Amplitude (unitless)
|
- o

Amplitude (unitless)
(=)

|
—_

\‘

20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)

o

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-37
m |dentify system models for several different model structures, and

show Bode plots of the results:

% frequency response of actual system, and "SPA" frequency resp model
[mag, ph, w]=dbode (num, den, T,w_arx); % get "true" magnitude and phase resp
G = spa(z,64,w,[],T); [amp,phas,w]=bode(G); w = squeeze(w);

amp = squeeze (amp); phas = squeeze (phas);

% ARX model with na=2; nb=2; nk=1 (ARX221)
M_arx221 = arx(Z,'na',2,'nb',2, 'nk',1);

[m_arx221,p_arx221,w_arx221]=bode (M_arx221); w_arx22]1 = squeeze(w_arx221);
m_arx22]1 = squeeze(m_arx22]1l); p_arx221l = squeeze (p_arx22l);
l[a_arx221,b_arx221l,c_arx221,d_arx22]1,f_arx221] = polydata (M_arx221);

% ARX model with na=4; nb=4; nk=1 (ARX441)
M _arx441 = arx(Z, 'na',4,'nb',4, 'nk',1);

[m_arx441l,p_arx441,w_arx441]=bode (M_arx44l),; w_arx44l = squeeze(w_arx441l);
m_arx44]1 = squeeze(m_arx441l); p_arx44l = squeeze (p_arx44l);
[a_arx44l,b_arx44l,c_arx441,d_arx44l,f_arx441l] = polydata (M_arx44l);

% ARMAX model with na=2; nb=2; nc=2; nk=1 (ARMAX2221)
M_armax=armax(Z, 'na',2, 'nb',2,'nc',2,'nk',1);
[a_armax,b_armax,c_armax,d_armax, f_armax]=polydata (M_armax) ;
[m_armax,p_armax,w_armax]=bode (M_armax); w_armax = squeeze (w_armax) ;

m_armax = squeeze (m_armax); p_armax = squeeze (p_armax) ;

Box—-Jenkins model with nb=2; nc=2; nd=2; nf=2; nk=1 (BJ22221)
y(t) = [B(q)/F(q)] u(t-nk) + [C(q)/D(q)] e(t)

M_bij=bj(Zz, 'nb',2, 'nc',2,'nd',2, 'nf',2, 'nk',1);
[m_bj,p_bj,w_bjl=bode(M_bij); w_bj = squeeze(w_Dbj);

m_bj = squeeze(m_bj); p_bj = squeeze(p_bj);

l[a_bj,b_bj,c_bj,d bj,f_bjl=polydata(M_b7j);

oo oo

% OE model with nb=2; nf=2; nk=1;
M_oe = oe(Z, 'nb',2,'nf',2,'nk',1);
[m_oe,p_oe,w_oe]=bode (M_oe); w_oe = squeeze(w_oe);
m_oe = sgueeze(m_oe); p_oe = squeeze (p_oe);

[a_oe,b_oe,c_oe,d_oe, f_oce]l=polydata (M_oce);

% Now, plot Bode plots
figure; loglog(w,mag,w,amp,w_arx221,m_arx221,w_arx441,m_arx44l);
title('Bode mag. plots of several system id models');

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES560, Transfer-Function Identification

4-38

ylabel ("Magnitude');
legend ('Actual', 'SPA', "ARX221"', "ARX441");

figur

xlabel ('Frequency
legend ('Actual', 'SPA', "ARX221"', "ARX441");

figure;

xlabel ('Frequency

(rad s™{-1})");

axis([.08 8 le-2 51);

e; semilogx (w,ph,w,phas,w_arx221,p_arx221,w_arx441l,p_arx44l);
title ('Bode phase plots of several system id models');

(rad s*{-11})");

ylabel ('Phase
axis([.08 8

(deg) ') ;

=270 07);

loglog (w,mag,w_oe,m_oe,w_armax,m_armax,w_bJj,m_bJj);

title('Bode mag. plots of several system id models');

ylabel ("Magnitude');
legend ('Actual', '"OE221"'", 'ARMAX2221"', 'BJ22221");

figure;

xlabel ('Frequency

(rad s~{-11})");
axis([.08 8 le-2 571);

semilogx (w,ph,w_oe,p_oe,w_armax,p_armax,w_bj,p_b7Jj);

title('Bode phase plots of several system id models');

xlabel ('Frequency
legend ('Actual', "OE221", 'ARMAX2221"', 'BJ22221");

(rad s*{-1})");

Bode mag. plots of several system id models

Magnitude

— Actual
—SPA
— ARX221

— ARX441

10

Bode mag. plots of several system id models

-1

10° 1
Frequency (rad s ')

o

—_
o

Magnitude

—_
o

— Actual
— QOE221

—BJ22221

— ARMAX2221

-1

10° 1
Frequency (rad s ')

ylabel ('Phase

E(:)ode phase plots of several system id models

(deg) ') ;
axis([.08 8

=270 01);

| —SPA

| — ARX441

— Actual

— ARX221

-1

10

. 0
10 »
Frequency (rad s)

10

E(:)ode phase plots of several system id models

— Actual

| — OE221
— ARMAX2221

| — BJ22221

. 0
10 »
Frequency (rad s)

10

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-39
4.12: Toolbox methods (2): Unit-pulse response, residuals

= We continue the prior example by looking at the true and estimated
system discrete-time unit-pulse responses.

Ntime=30;

y_act = dimpulse (num, den, Ntime) ;

y_arx221 = dimpulse(b_arx221,a_arx221,Ntime);
y_arx441l = dimpulse(b_arx441,a_arx441,Ntime);
y_armax = dimpulse(b_armax,a_armax,Ntime);
y_oe = dimpulse (b_oe, f_oe,Ntime) ;

_b7 = dimpulse(b_bj, f_bj,Ntime);

figure; stem([0:Ntime-1]xT, [y_act y_arx221 y_arx441],'filled'); hold on
stem([0:Ntime-1]+T,y_act, 'filled'");

legend ('True system', "ARX221"', "ARX441");

title('Discrete impulse responses')

xlabel ('Time (sec)'); ylabel ('Output amplitude')

figure; stem([0:Ntime-1]xT, [y_act y_armax y_oe y_bj],'filled"'); hold on
stem([0:Ntime-1]+T,y_act, 'filled'");

legend ('System', "ARMAX2221"', 'OE221"', 'BJ22221");

title('Discrete impulse responses')

xlabel ('Time (sec)'); ylabel ('Output amplitude')

m Here are the impulse responses of the various methods attempted.

Discrete unit-pulse responses Discrete unit-pulse responses

0.5 0.5
—e True system —e System

041 —e ARX221 i 0.4f —e ARMAX2221 H
o ? —e ARX441 o —e OE221
3 0.3r 3 0.3f —= BJ22221
S 0.2t 3 02}
g 0.2 g 0.2
© ©
= 0.1 = 0.1
Q. Q.
5 5
O O

-0.1} -0.1}

-0.2 . ; -0.2 . :

0 0 5 10 15 0 0 5 10 15

Time (sec) Time (sec)

m We can also tabulate transfer-function coefficients:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-40

[["Act B ', num2str (num, 4)] [' Act A ', num2str(den,4)];
["ARX221 B '",num2str(b_arx221,4)] [' ARX221 A ',num2str(a_arx221,4)];
["ARMAX B '",num2str (b_armax,4)] ['" ARM A ',num2str(a_armax,4)];
['"BJ B ',num2str (b_bij, 4)] ['" BJ A ',num2str(f_bJj,4)1;
['"OE B ', num2str (b_oe, 4)] ['" OE A ',num2str(f_oe,4) 1]

m Values for this example are tabulated below:

» Second-order ARX isn’t even close.
» Fourth-order ARX isn’t directly comparable.
« Other three provide good estimates of G (g).

by b b, ao a a
Actual 0 0.1129 0.1038 1 —1.562 0.7788
ARX221 0 0.1309 0.1538 1 —0.689 0.0154
ARMAX2221 | 0 0.1144 0.0941 1 —1.569 0.7874
BJ22221 0 0.1153 0.0940 1 —1.569 0.7872
OE221 0 0.1148 0.0948 1 —1.568 0.7869

Model validation: A first step

m Usually we do not know the “actual system” dynamics, so how do we
establish if our model is good?

= Various types of tests can be performed:

e Prediction and simulation errors,

» Frequency-response fit.

m Make sure you use different data to validate (if possible).
m Can also perform very detailed analysis of the residuals.

elk] = ylk] = ylk [k —1]

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES560, Transfer-Function Identification

4-41

about the quality of our fit.

= ylk]— (1 — H '(¢)) y[k] — H '(q9)G(q)ulk]
= H™'(q) (y[k] — G(q)ulk]).

= Called the innovations process and it contains a lot of information

= A first desirable property of the residuals is that they be zero mean
and normally distributed (at least symmetric).

» Analyze using a histogram of ¢[k].

= We can also use the residuals €[k] to estimate ¢

1 N
57 = —) €k].
& N;”]

e Natural if H(q) =1 as €lk] = y[k] — V[k] is a good estimate of e[k].

m Residuals can be computed as:

e_arx?2 = resid(M_arx221,7); e_arx2 = e_arx2.0utputData;
e_arx4 = resid(M_arx441,7); e_arx4 = e_arx4.0OutputData;
e_arm = resid(M_armax,?); e_arm = e_arm.OutputData;
e_bj = resid(M_b7j, 2); e_bi] = e_bj.OutputData;
e_oe = resid(M_oe, 72); e_oe = e_oe.OutputData;

mean ([v e_arx2 e_arx4 e_arm e_bj e_oe])'

= Approximate noise variance can be computed as:

arx
arm
BJ
OE
act

', sprintf
', sprintf
', sprintf
', sprintf
', sprintf

(
(
(
(
(

1
1
v
v

v

%$1.4f'",M _arx221.NoiseVariance)]; ...
%$1.4f',M _armax.NoiseVariance)]; ...
$1.
%1
%1

4f',M _bj.NoiseVariance)]; ...

.4f'",M_oe.NoiseVariance)]; ...
JAf',LL)]]

» Results shown below for noise-mean and noise-power estimation

» Again, second-order ARX not even close.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-42

Count

» Other three provide good estimates.

Actual ARX221 ARMAX BJ2221 OE221
Mean | —0.0221 —0.0087 —0.0272 —0.0281 —0.0249
o’ 0.1118 0.2206 0.1085 0.1091 0.1083

= Look for symmetry and normal distribution in histograms of residuals:

% Plot a histogram of the residuals for ARX221

figure; hist([e_arx2 v],-2:0.2:2); axis([-1.6 1.6 0 160])

title('Residual histogram for ARX221");

ylabel ('"Count') ;xlabel ('Value of residual')

legend ('Model fit', '"Actual');

% Similar for the other cases. Omitting code for figure formatting...

figure; hist([e_arx4 v],-2:0.2:2);

figure; hist([e_arm v],-2:0.2:2);

figure; hist([e_bj v],-2:0.2:2);
(

figure; hist([e_oe v],-2:0.2:2);

Residual histogram for ARX221 Residual histogram for ARX441 Residual histogram for ARMAX2221
150 ElModel fitfi 150f Hl Model fity ~ 150f Il Model fit
Il Actual Il Actual Bl Actual ||
100 100f 1 . 100F
€ €
> >
o o
o o
50 50F 1 50f
0 0 0
-15 -1 -05 0 0.5 1 1.5 -5 -1 -05 0 0.5 1 1.5 -5 -1 -05 0 0.5 1 1.5
Value of residual Value of residual Value of residual

Residual histogram for BJ2221 Residual histogram for OE221
150 Il Model ity 150F Il Model fit
Hl Actual Il Actual
100 100}
€ €
>]
Q o
o o
50 501
0 0
“15 -1 -05 0 0.5 1 15 ~15 -1 05 0 0.5 1 15

Value of residual Value of residual

= Again, ARX models do not match data very well; ARMAX, BJ and OE
much better.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-43
4.13: Toolbox methods (3): Model validation using correlations

m Two other desirable properties of residuals are:

o White: We want ¢[k] to look like what we assumed for e[k] .

» Residuals uncorrelated with past inputs: If there are traces of past
inputs in the residuals, then a part of y[k] that originates from the
input was not captured well in our model (bad).

= Analyze for whiteness by computing residual autocorrelation
N

RY[r] = 3 elklelk — <],

k=t
which we desire to be (roughly) zero everywhere except at t = 0.

= Analyze the second by computing cross-correlation between

residuals and input
N

R [1] = %;e[k]u[k—fl,

where 7 > 0 correlates €[k] with old u[k — t], and so we desire R” [z]
to be (roughly) zero for = > 0.

m Both analysis tests of the correlation graph need a measure of “small
enough,” which must be developed from the data as well.

m Can develop this by analyzing the statistics of the residuals.

WHITENESS: The numbers R” carry information regarding whether the
residuals can be regarded as white.

= We can test for whiteness by first defining

VN
r = =
M RO)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

[R1) - RIM]]

ECE5560, Transfer-Function Identification 4-44
= Then, according to the central limit theorem, as N — oo, ry. s Will be
normally distributed with zero mean, and unit variance.

= Thus, if we sum together squares of ry ,

— RN
Cn.m [O] 2 Z [r]

should be asymptotically y (M) distributed.

m S0, we develop an overall test on the residuals by checking whether
Cn m passes the test of being y*(M) distributed. That is, by checking

that ZN,M < Xé(M)

m More instructive is to look at the residuals individually, using the
confidence intervals for a normal distribution.

» For a 95% confidence level, we can use the +1.96 bounds on each
element of ry . [7] to decide if the autocorrelation is small for ¢ > 0.

o Plot ry ylk]forl1 <k <M.
« Test for normality by ensuring that ry s [k] within the confidence
interval for all k.

CROSSCORRELATION TEST: As N — oo can show ~/' N R.,[r] is normally
(0,0)

distributed, with zero mean and variance P, = Z R k] R, [k].

k=—00
= Can perform a normality test on R.,[t] by checking if
|R..[7]| <1.964/P./N forall

= If R.,[7] is outside these bounds, then for those values of z, €[k] and
ulk — t] are probably dependent.

= Dependency for small ¢ could imply the need for smaller n.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-45

OTHER TESTS: MATLAB system ID toolbox has validation functions.

m compare.m - compare model’s output with actual output.
m sim.m - Simulate a model (old function = idsim.m).

m pe.m - compute prediction errors (the longer the prediction
horizon, the more demanding the modeling task).

m predict .m - predict future outputs.
m resid.m - compute and test residuals.

= Try at least one of these, never using same data to create and
validate a model.
A larger model will always give a better fit (a lower value of Vy (0)).
e Must use new data to compare. Good models will still give good
predictions on the new data as well.

= Problem with using same data for model creation and validation is
that model will attempt to fit the randomness of the noise.

« Since noise varies from run to run, this is counterproductive.
o If only one data set is available, split in half: one half for training,

one for validation.

EXAMPLE: Calculated residuals for the previous system ID example.

% Create a new figure,; call "resid" with no outputs to plot residuals

figure; resid(M_arx221,7);

% Do some fancy MATLAB handle graphics calls to relabel axes

h = get(gcf, 'children'); xlabel(h(l),'Lag'); xlabel (h(2), 'Lag');
title(h (1), 'Cross correlation R_{\epsilonu} for ARX221'");
title(h(2), 'Autocorrelation R_{\epsilon} for ARX221"');

% For the following, I have omitted the axes-relabeling code

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification

4-46

figure; resid(M_arx441,7); figure; resid(M_armax,?7);
figure; resid(M_bij,2); figure; resid(M_oe, Z);
Autocorrelation Re for ARX221 Autocorrelation Rs for ARX441 Autocorrelation Rs for ARMAX2221
0.5 05 {1 05
0lfwllllbovroffoooavovalf Ollélévébv.,?&Q?évaeonl% Ovv?va96° °?L¢°Lv°‘ GOQ&‘&
05 5 10 15 20 25 0% 5 10 15 20 25 7%% 5 10 15 20 25
Lag Lag Lag
Cross correlation F(Eu for ARX221 Cross correlation REu for ARX441 Cross correlation RSu for ARMAX2221
0.4 : . . . 0.2 0.2 ;
0.2 0.1} 1 o1}
Srwer e e L TR N A O O R AV W
o'y i [s 061 l l sul;l 1111 I Ml uluullwls [[T
-0.2 i -0.1f -0.1 1
04455 T 0 10 20 0245 10 0 10 20 02455 10 0 10 20
Lag Lag Lag
Autocorrelation Rs for BJ2221 Autocorrelation Rs for OE221
= Both ARX cases
. 0.5 0.5
fail the auto-
correlation and ol st teetgoost oo ogeocttot] olocesongoectoecgoocetyy
crosscorrelation , ,
Iha) 5 10 15 20 2570 5 10 15 20 25
tests. e L2
Cross correlation REU for BJ2221 Cross correlation F%gu for OE221
0.2 0.2
= ARMAX, BJ and
0.1 0.1
O E paSS . Bi 9 0 tl?nl 1ﬂ ?“ 1717]]] Jl?"?l I “1]1 [o rlfﬂnﬂ ?J LTL? J r]ll leé?l I “lll |
Improvement over ll lll [ll H TR
-0.1 4 -01]
024, T 0 10 20 02455 T 0 10 20
Lag Lag

Lecture notes prepared by Dr. Gregory L.

Plett. Copyright © 2011,2015,2017, 201

8,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-47

4.14: Toolbox methods (4): ARX model size

= MATLAB toolbox also has routines to help determine a good model
size for the ARX structure.

» There is a tradeoff between model fidelity and accuracy, so
researchers have developed modified cost functions of the form
J(0,d) =VNO)(+ Un(d)).

e Vn(0) is the standard cost: decreases with increase in model size.
e Uy (d) provides a measure of the complexity of the model:
increases with increase in model size.

= Two common criteria for Uy (d) are (where d = dim(6)):

 Akaike information criterion (AIC): Uy(d) = 2d/N.
e Minimum description length (MDL): Uy (d) = d log(N)/N .
= Both have strong information-theoretic background, which we won't

discuss here. They generally give (somewhat) different “optimum”
answers, so the “best” model turns out to be somewhat subjective.

= The objective now is to minimize J over all available d and 6.

 This is a hybrid optimization problem, since d is integer, and 6 is a
vector of real numbers.

e 10 make tractable, must first select a set of candidate model
structures, for which d is known.

e Then, for each structure, find the optimum Vy (6).

+ Note that Uy (d) will be a constant in this optimization, so it does
not play a direct role.

+ Can use any optimization method from before without change.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-48
e For each d, select the model structure having the lowest Vy (9).

« Finally, plot J(6, d); select model with overall lowest value.

= Note that this can require /ots of optimization time.

o Most facile for ARX structure due to speed of ARX parameter
optimization, so MATLAB has this built in (see example below).

+ Guidance: If validation set z_val is different from training set z,
then choose “best fit” structure. Otherwise, choose either MDL
or AIC structure.

o However, can also be done (manually) for any set of structures,
where you compute v using your own methods, then use
selstruc (V) for final selection.

EXAMPLE: In prior example, we found that ARX221 and ARX441 did not
do very good job of modeling system.

» Probably need a larger model: Typical problem with ARX.

= Optimize ARX models where: 0.3 prrrrsts for all modlels Investigated
. s x"g“
o Numerator: n, € {1...15}, _ 025¢ .3;s;;;535!‘.;||"m..........'.
. - . 3 I I
Denominator: n, € {1...15}, 5 o2} .3g*szgzsmmmus......... -
o Delays: n; € {1...5}. 3 'fggi;i;';;;:.
0-15¢ .;!!' s."iiiiifﬁilcuuu
= Plot of V() versus number of RALLLLUTUTTITIPPE

parameters. *To 5 10 15 20 25 30 35

Number of parameters

NN = struc(l:15,1:15,1:5); % define range of structures
V = arxstruc(Z,Z_val,NN); % compute cost for each one
plot (sum(V(2:4,1:end-1)),V(l,1l:end-1), 'x");

xlabel ('Number of parameters'); ylabel ('Cost function');
title('Costs for all models investigated');

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification
m See right away that there are many poor choices! With only five
parameters, would get very poor fit.
m Can also use selstruc
GUI to manually select best

4-49

ARX Model Structure Selection
File Options Style Help

Modsl Misfit va number of par's

model for each overall size. ol rZTS;;M;ChZ!ZZ_ {Co—
40 —
o For MDL, fifteen " _

parameters: 8,6,1; | ;ﬁei_]

« For AIGC, sixteen Hmﬂmmmm_ =
parameters: 8,7,1.

= Frequency response plots show that ARX-AIC and ARX-MDL are

very similar and much better fits to the actual dynamics.
Bode magnitude plot of different models Bode phase plot of different models

Unexplained output vatiance in %)

Click other bar or press SELECT.

" H‘(‘}"‘)&#’?}LJ ;%’LS _50 3
100 PR]
© >
o _\%1100
c [0
> ®-150 |
s 10! f|—Actual £ — Actual
— ARX221 000 £|——ARX221
ARX441 - ARX441 N
B ARX-AIC B ARX-AIC
ARX-MDL 250 ARX-MDL
10_2 1 I 1 I 1
10° 10° y 10 10° 10° y 10
Frequency (rad s) Frequency (rad s)
m Histograms look much better than ARX221 and ARX441.
Residual histogram for ARX-AIC Residual histogram for ARX-MDL
1501 Il Model fitl[| 150t Il Model fit};
Bl Actual Bl Actual
100t 100}
< <
> >
@] [@]
O O
50' 50_
0 - 1 0 1 =
15 -1 -0.5 0 0.5 1 1.5 15 -1 -0.5 0 0.5 1 15

Value of residual Value of residual

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-50
= Both pass the correlation tests with flying colors.

Autocorrelation R8 for ARX-AIC Autocorrelation F{8 for ARX-MDL

0.5 1 0.5f

"0'50 5 10 15 20 25 "0'50 5 10 15 20 25

Lag Lag

Cross correlation RSU for ARX-AIC Cross correlation Rsu for ARX-MDL

0.2 0.2

0.1r 01F

0rlrllf,,q.llulllﬂw LI, 0rlrllf,,q.llulllﬂm 11

-0.1} 1 =011

-0.2 -20 -10 0 10 20 0.2 -20 -10 0 10 20

Lag Lag

= Note: This approach automatically takes care of the delay estimation
and model-order estimation problems that we discussed earlier.

» So, these give much better models, but much larger than what we
have used for the other approaches.

« Very typical problem: ARX is not the ideal structure.

e So, will generally be better off trying this approach with multiple
non-ARX model structures.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-51

4.15: Example with nonwhite noise

= Previous examples had white Gaussian noise, added directly in OE
form. Will now try something harder.

m For valid comparison, try same experiment, but with nonwhite noise.

= Try more complicated scenario with

1 —1.633¢7! 4+ 0.7567¢ >
1 —1.8623¢~1 4 0.9851g 2

H(g) =

« Introduces broadband noise plus narrowband noise at 0.7rads™".

= Now must match both G(¢) and H(g) to do a good job.

e H(q) and G(gq) have a different denominator, so expect both ARX
and ARMAX to struggle.

e Also |H(q)| # 1 so OE should also be poor.

= Noise v[k] scaled to be 1/4 input signal’s power, as before.

nne=[1 .5 .5]; dde=[1 .03 .5];%

9
9

cts H dynamics

[nume, dene] = c2dm(nne,dde,T); $Z0H conversion 1s default for TF's
nume = nume/nume (1) ; % scaling to make the polynomial monic
u = idinput (Npts, 'prbs'); $% input signal for identification

yc = dlsim(num, den,u); % compute "clean" output of G

e = randn (Npts, 1) ; % dist

v = dlsim(nume, dene,e); % filtered dist

LL = 0.25%(yc'*xyc)/(v'*v); % scale so energy in sensor noise 1/4 times
e = sqgrt (LL) xe; % scale both

v = sqgrt (LL) xv; % the energy in the "clean" signal

y = yc+v; % actual output y=Gu+tv

Z = iddata(y,u,T); % data available to identification

% similar process for validation set

= Correlation in noise not necessarily obvious.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification

4-52

Inputs to the system being identified

0.5¢

Amplitude (unitless)
o

5 Outputs from the system being identified
' ' " [—"clean"y [K]

— measured y[K]

I W —ulK]
—v[K]
B 1t
o
:‘é’
2
o 0
©
2
5
E -1t
<C
1Nt) i
10 20 30 40 50 0

Time (s)

10

20 30
Time (s)

40

50

= Some numerical results for the transfer-function coefficients of G(g)
are tabulated below: ARMAX, OE good; BJ better.

by b b, ao a a
Actual 0 0.1129 0.1038 1 —1.562 0.7788
ARX221 0 0.1200 0.1106 1 —1.199 0.4338
ARMAX2221 | 0 0.1181 0.0868 1 —1.581 0.7984
BJ22221 0 0.1125 0.1002 1 —1.566 0.7841
OE221 0 0.1053 0.0920 1 —1.573 0.7989

= ARX441 gives reasonabile fit to G(g), but BJ, ARMAX, OE look better.

Bode mag. plots of several system id models

Magnitude

— Actual
— SPA

— ARX221
— ARX441

Magnitude

-1 I 0
10 »
Frequency (rad s)

Bode mag. plots of several system id models

— Actual
— QOE221
— ARMAX2221
—BJ22221

10° 1
Frequency (rad s)

10

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-53

Bé)de phase plots of several system id models Bgde phase plots of several system id models

—50f —50f

100} 100}
S S
[[
5_—‘@ -150¢ 5_—‘@ -150¢
o — Actual o — Actual

~200f — cpa ~2000__ oE221

— ARX221 — ARMAX2221
~250}{ — ARX441 ~250}{ — BJ22221
107" 10° 10’ 107" 10° 10’

Frequency (rad 3_1) Frequency (rad 3_1)

= ARX441 gives reasonable impulse response; BJ, ARMAX, OE better.

Discrete unit-pulse responses Discrete unit-pulse responses

0.5 0.5
—e True system —e System
041 —e ARX221 0.4f —e ARMAX2221
o —e ARX441 o —e OE221
3 0.3r 3 0.3f —= BJ22221
s 0.2t 3 o2}
g 0.2 g 0.2
© ©
= 0.1} = 0.1
Q. Q.
5 5
o o
-0.1f -0.1f
-0.2 : -0.2 . :
0 5 10 15 0 5 10 15
Time (s) Time (s)

= Some numerical results for the transfer-function coefficients of H(g)
are tabulated below: ARMAX and BJ only ones even close.

Co Cq CH do dy d>
Actual 1 —1.634 0.7567 1 —1.862 0.9851
ARX221 1 0 0 1 —1.199 0.4338
ARMAX2221 | 1 —1.122 0.5905 1 —1.581 0.7984
BJ22221 1 —1.673 0.7865 1 —1.872 0.9955
OE221 1 0 0 1 0 0

= Bode plots of H (¢) also show BJ to be far superior to other methods.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-54

102 Bode mag. plots of several error models Bode phase plots of several error models
—Actual —Actual
— OE221 —OE221
— ARMAX2221 50F — ARMAX2221
1 01 —BJ22221 | — —BJ22221
3 — ARX221 o — ARX221
2 - ARX441 =2 ARX441
= -) 0 *-\
g T _ 8 T
= 10’ — T ~
N -50 \
-1
10
107" 0’ 10' 107" 10° 10'
Frequency (rad s~) Frequency (rad s~)
m Histoarams (of elk1. nn’r Ik ARX221 OF havmn nrohlem
250 ReSIduaI hlstogram for ARX221 ‘ Re3|dual hlstogram forARX44 ‘ ReS|duaI hlstogram for ARMAX2221)
Il Model fit Il Model fit Il Model fit
Hl Actual Il Actual Il Actual
200f 200f 200f
E150' 1 E150' 1 E150'
3 3 3
O1o0f { ©1o0f { ©100}
501 1 501 1 501
0—1.5 -1 -0.5 0 0t5 1 1i5 0—1‘.5 —‘i —L05 0 O; 1 1t5 0—1‘.5 —‘i —0:5 0 0.5 1 1.5
Value of residual Value of residual Value of residual

Residual histogram for OE221

Residual histogram for BJ2221
250 . . : . 250~ ; : :

Bl Model fit " [EEModel fit
Il Actual Il Actual
200} 200f
150} 1 _150}
e c
3 3
O100f 1 ©1o0f
50}] 50}
ol

-1.5 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 1.5
Value of residual Value of residual

= Results for noise mean and noise-power estimation of e[k] (not v[k])

Actual ARX221 ARMAX BJ2221 OE221
Mean | —0.0117 —0.0026 —0.0071 —0.0155 —-0.0197
o’ 0.0310 0.0750 0.0418 0.0302 0.1038

m Residuals: ARX221, ARX441, ARMAX, OE(!) fail. BJ passes well.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification

4-55

Autocorrelation R8 for ARX221

Autocorrelation RE for ARX441

Autocorrelation Re for ARMAX2221

0.5 0.5 0.5
f rer o b ol T Hitt—
U U X Y SR ok 3 B 7 9 S 3 B R LR I T S € % B 1 B R 2 Y)
L © ULQ s 4°
05 5 10 15 20 25‘0'50 5 10 15 20 25‘0'50 5 10 15 20 25
Lag Lag Lag
Cross correlation F%Eu for ARX221 Cross correlation REU for ARX441 Cross correlation REU for ARMAX2221
0.3 - - - - 0.2 - - - - 0.2 : - . . .
02 0.1} I 0.1} l
0.1
ﬂ o Tl S ﬂo I X 7] l I o Mt e et 1. ﬂm I s
OL,T?T.HQQJ?.T__T IR 2 RO Y GV B
R R [
-0.1 -0.1 1
-0.1]
024 10 0 10 20 -0245 10 0 10 20 -0245 10 0 10 20
Lag Lag Lag
Autocorrelation RE for OE221 Autocorrelation FzE for BJ2221
0.5
0.5
' 1 I
0 I) T
° l ¢ | PP B
0°o°°°5?°o"??°5° o0 o so !
-0.5
-1 - . . ; -0.5 . . . ;
0 5 10 15 20 250 5 10 15 20 25
Lag Lag
Cross correlation Rsu for OE221 Cross correlation Rsu for BJ2221
0.2 - - - - 0.2 - . . .
0.1 0.1} 1
0 ﬂﬂr ﬂTTﬂT.. o o ﬂ’mﬂr fo o oLietel | J“mh, AR t] L h?
11*1111 IR) 11 l | 111 T 1 l
-0.1 -0.1]
-2, 10 0 10 20 023 =T 0 10 20
Lag Lag

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-56

4.16: Model quality: Bias error

= What do we mean by a good model?
» Close to the “true description,” but that usually doesn’t exist.
m Factors to keep in mind:

» “Model quality” depends on intended use: simulation model, or
prediction model for control design.

= Model quality associated with “model stability”
e Does it change much as we look at different segments of the data?

= Need to quantify these model errors: bias and variance.
= Want a model with low bias and low variance!

= All model types have bias/variance problems, but ARX easiest (only?)
case to analyze.

» Also most pronounced.

Types of model errors

1. Variance errors:

m Repeat experiment with same deterministic input u k] but different
disturbance sequence v|k].

m Solve for model parameters: will get different values each time
because the noise changes.

= Variance errors can typically be reduced by collecting more data
(want N — o0).

2. Bias errors:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-57
m Systematic errors that occur because the model chosen is not
capable of describing the system dynamics.

m |f we repeat the experiment, will get same (expected) values each
time because of deficiency of model structure.

» Even with no noise.
» Model structure too small or wrong type.

Typical problems

m Consider what happens when the linear regression analysis has a
non-zero mean plus white noise for e[k].

= Turns out that ARX performance is very sensitive to this type of
“coloring” in the noise (bias).

SIMPLE EXAMPLE: Let y[k] 4+ ay[k — 1] = bulk — 1] + e[k].
= | et the input be white Gaussian noise: ul[k] ~ N (0, 1).
= Consider two disturbance cases:

1. Let the disturbance be white Gaussian noise: e[k] ~ N (0, 1).
2. Let the disturbance have an unknown bias: e[k] ~ N (1, 1).

mWeusea =0.9,b =025 and N = 1024.
m After averaging over ten different input-output sequences,

1. Case 1 results: 4 = 0.9028, h = 0.2563.
2. Case 2 results: a = 0.8128, h = 0.2652.

« ARX performance with the non-white noise is quite poor (even
though the “true” system is ARX).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES560, Transfer-Function Identification

4-58
m Residual analysis shows us that there is a real problem here.
Autocorrelation R8 for ARX white Autocorrelation F{8 for ARX biased
1 1
0.5} : 0.5} 1T % . T 1 ¢ oo ? o ? 097979999
O—gJl4FG4%17[E:5JLﬂf§1riﬂfijffh‘4LiJL§H+a 0
05 5 10 15 20 25 0% 5 10 15 20 25
Lag Lag
Cross correlation Rsu for ARX white Cross correlation Rsu for ARX biased
0.1 ; ; ; 0.1 . . :
0.05} 0.05} .
TT?].T? K e.]TT oo T
0 00 © o © 0
i1 l | r 58 léol [P l | ulll ¥ l llﬂll“ la l l lsllﬂu lz l l) 1 llrllﬂ“llllll
~0.05} 1 -0.057 -
-0 20 T 0 10 20 -0 20 T 0 : 10 20

Lag Lag

= Two possible solutions: de-trend or estimate the offset.
mdetrend (x, 'constant ') is an ad hoc approach that works well.
« Work with modified model:
A(q)(ylk] = y) = B(g)(ulk] —u) + e[k].

» Use the modified data (u[k] — u, y[k] — y) to estimate the
parameters in A(q) and B(g).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-59

Autocorrelation R8 for ARX detrend
m For our example, case 2, we get 1 ' ' '

a = 0.9029 and b = 0.2565 using
de-trended data. Very similarto
the results for case 1.

OMW

e You should nearly always
detrend y[k] and u[k] data. 05

0 5 10 15 20 25
Lag

m The second solution is to

) Cross correlation REu for ARX detrend
estimate the offset. 01— .

m Write e[k] = ep + wlk], where ey o8} -
is a constant offset and w[k] is J ¢ 1

i i i IRy I
zero-mean white noise. ll 1

= Modify the estimation scheme |

so that we can estimate ¢, also. -o-

—2I0 —1I0 0 1I0 2I0
Lag
y[k] = —ay[k — 1] + bu[k — 1] + e + wl[k]

a
= | —yle=1] ulk—11 1]| b |+wlk]

1T

m This is a standard form, but now 6 = [a b e

= For the example given above, | solved the least-squares problem with
handwritten code, averaged over ten runs, and got @ = 0.9029,
b = 0.2565, and &, = 1.0005.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES560, Transfer-Function Identification

4-60

4.17: Bias problems in ARX WLS solution

» Consider the least-squares ARX optimization in Topic 4.8.
= Wrote prediction model as ¥ = X6.

= The weighted cost function was Vy = (Y — Y) T W(Y = Y).
= This gives 6 = (X" WX)'x"wy.

= What is the bias in this estimate? Measure this by computing
E[6 — é]. Want bias to be zero.

CALCULATION: Compute
0—0=0-—X"WX)"'xX"wy.
m Assume that Y has the form Y = X6 + e. Then
0—0=0—X"WX)"'XTWX0 — (X"TWX)"'X"We

L
_XW

—L
— _XW e,

SO
E[0 — 0] = —E[X; e].

m [f the matrices X and W are deterministic and known, then
E[0 — 0] = —X ;" Ee].

e S0, WLSE is unbiased for zero-mean disturbances in this case.

= Big problem: For the WLSE we care about in the ARX case,

T
X = [o[1] --- @[N]] so is explicitly a function of measured data.

= So, we cannot pull out the X ;> term. We are stuck with the bias.

E[— 0] = —-E[(X"WX)'X"We] # 0 in general.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-61

= One last exception: If e[k] is white, it will not be correlated with past
datain X.

« Therefore, E[f — 0] = —E[X;,*]E[e] = 0.

= [n general, WLSE tends to be biased, but the bias tends to be quite
small with high SNRs.

EXAMPLE: Another example of problems with bias in parameter
estimates.

m Actual system has A(q)ylk] = B(q)ulk] + C(q)elk], with

« A(q) = 1 +aoq™", B(g) = bog™', and C(g) = 1 +coq™".

e u[k] and e[k] independent white noises.
= Model this with ARX form

ylk; 0] = —aylk — 1] + bulk — 1]
= 0" ¢lk],
which ignores the dynamics in the error input (assumes ¢y = 0).

= Now, compute the “prediction error variance.” Since

o Vy = %XN:ez[k; 6], which is approximately E[e*[k; 6]] for large N,

k=1
e As N — o0, Vy is a good estimate of the prediction-error variance.

e Thatis, as N — oo, we can work with either Vy or V = E[€?].

e The latter is directly computable, which allows for interesting
analytical comparison.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-62
= New cost

V = E[e?] = E[(y[k] — $[k; 6])*]

= E[(y[k] + ay[k — 1] — bu[k — 1])?]
(see appendix)

= ro(1 4+ a* — 2aag) + b* — 2bby + 2ac,
with ro = E[y2[k]] = (b2 + 2 — 2aoco + 1) (1 —ad) .
= To optimize, 0* = arg m@inv,
oV
T — ro(2a—2a0) +2C() =0
a
™ a* = ag— co/ro,

where ¢y/rp ~ 1/SNR. Also

= The costs are
V(©) =1+cd(1—1/r)
V() =1+ ¢,
so V(0%) < V(6,).

= By minimizing Vy for large N we expect our estimates to converge to
6* because of the lower value of V.

= But, these are biased since 60" # 6,.

m But, for this assumed model class, 6* gives a better predictor since
V(6% < V(6)).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4-63
NUMERICAL EXAMPLE: Confirmation of the above calculations.

m System has y[k] + 0.9y[k — 1] = 0.25ulk — 1] + e[k] + 0.7e[k — 1]. So,

ve)=o)

= We can compute ry = 1.54, so we expect a* = ay — c¢o/ro = 0.4453
and b* = by. That is,

g | @ | _ | 04453
S| | 025 |
= Averaged ARX results over ten runs for several values of N.
G| 04580 | s 104501 | 5 | 0.4485
T 02530 |0 T T | 02508 |0 T T | 02525 |
= Note that V(6;) = 1.49 and V (6*) = 1.17.

m Algorithm gives us the best possible predictor, but this does not
necessarily mean we get a good model.

T
» Average ten ARMAX models: imyax = | 0.9025 0.2520 0.7038 | ,
which gives a good fit with low bias.

= Conclusion: If the model type or size is wrong, we will get a bias in
the parameters.

Variance errors

m Assume that our estimate has zero bias.

= Can show that, if 6, is the value of the actual parameters, then

2

~ ~ O°—_
Py =E[(By — 60Oy - 0)") ~ TR 1

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-64

where o7 is the variance of the added noise e[k], and
R =E[y (k. 0)y" (k, 60)] where

d .
ko0 = itk 0]

which is the gradient of prediction with respect to 6.

e Covariance decreases with less noise and/or more data.
e Quality of Oy depends on sensitivity of prediction to 6 (v).

e . — . — 1.
+ Small sensitivity means that v is small, so R is small, and R " is
large, so variance is large.

= Of course, to be of any use, we need to estimate R and o°.

R 1 & . .
Ry == vk 0n)v" (k; Oy)
k=1

= For ARX, $[k] = 67 ¢[k] and %y[k] = ¢[k], so

¢[k]=[‘y["_”]

ulk —1]
= This gives R = E[yy’] = [Ify[ﬁ)]] I;y”[g]] }
yu u

= We now see that the selection of u[k] explicitly plays a role in the
accuracy of our estimates through R, and R,,,.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4—-65
= These tools allow us to display confidence bounds for the models we
develop.

Where from here?

= Transfer functions great for analysis and design of predictors for and
control of LTI SISO systems.

m But, much harder to use for MIMO systems, and much harder to
identify transfer-function models for MIMO systems.

m Also, nonlinear optimization required for all but simplest
transfer-function approaches, which can get “stuck” in local minima,
yielding sub-optimal models.

m “State space” models are an alternate way to describe system
dynamics.

o Work great for multi-input, multi-output systems.

« Can provide access to what goes on inside a system in addition to
an input—output mapping only (however, a system-ID model will
not automatically provide this insight).

» Allow new analysis and synthesis tools for estimation and control
that are very powerful.

= Furthermore, deterministic globally optimal solutions exist to the
system-ID problem. No local minima.

m SO, our next topic is a preview of state-space systems (prior exposure
helpful, but not necessary).

= From there, we will continue to explore a number of system-1D
approaches for state-space models.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECES5560, Transfer-Function Identification 4—-66
Appendix: Variance calculations for bias example

» These calculations are for the example in Topic 4.17.
E[y%[k]] = E[(—aoy[k—1] + bou[k—1] + e[k] + coe[k—1])*]
(—ao)’E[y*[k—1]] = agE[y’[K]]
—DapboE[y[k—1]ulk—1]] = 0
—2aoE[y[k—1]e[k]] = 0
—2apcoE[y[k—1]e[k—1]] = —2aoco x
E[(—aoy [k—2]+bou[k—2]+e[k—1]+coe[k—2]) e[k—1]]
= —2dapCy
boE[u’[k—1]] = by
Elulk—1]elk]] = Elu[k—1]e[k—1]] =0
Ele’[k]] + 2coE[e[k]e[k—1]] + ciE[e*[k—1]]
=1+c¢;
so, E[y?[k]] = adE[y?[k]] — 2aoco + b3 + 1 + ¢
= (b + 1+ ¢} —2apco)(1 —ad)™".
= Also
E[(y[k] - P[k]D] = E[(y[k] + ay[k—1] — bu[k—1])°]
E[y*[k]] = ro
2aE[ylk]y[k—1]] = 2aE[(—aoy[k—1]+boulk—1]+e[k]+coe[k—1]) y[k—1]]

= 2(—aa0E[y2[k]] + aCO)2

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

ECE5560, Transfer-Function Identification 4-67

2E[y[k](—=bulk—1])] = —2DE[(—aoy[k—1]+boulk—1]+e[k]+coe[k—1])u[k—1]]

= —2bby
b2 E[u’[k—1]] = b
Ela[y[k—1]bu[k—1]] = 0
El(ay[k—1])’] = a’E[y’[K]]

so, E[(y[k] — p[k])?] = ro(1 + a® — 2aay) + b* + 2acy — 2bby,.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011,2015,2017,2018,2019, Gregory L. Plett

