Transfer-Function Identification

4.1: Introduction to transfer functions

- Issues with nonparametric system ID:
 - Needed to identify an infinite number of values to determine either a unit-pulse- or frequency response to uniquely identify system.
 - When there is disturbance, we need more data than values to identify, to somehow average out the effects of the disturbance.
 - So, prefer to find a low-order approximate model of system (*i.e.*, low number of parameters to identify).
- We now begin to look at parametric system ID—identifying a small set of parameters (here, in transfer-function form) to define a model.
 - Most control-system analysis and design methods work directly with either transfer-function or state-space models;
 - Can easily get unit-pulse and frequency responses from parametric models if needed (converse isn't generally true).
- Start by reviewing discrete-time transfer function models.
- Then, look at some common *model structures* used in system ID, then at *optimization methods*, then at *validation* of models.

Parametric models of linear systems

In this section of notes, we will assume transfer-function (TF) models
 G(q) and H(q) for system and noise dynamics respectively,

$$y[k] = G(q)u[k] + H(q)e[k].$$

- The *u*[*k*] signal is known (we applied it).
- The e[k] signal is assumed to be a sequence of independent RVs,
 - Usually assume zero-mean, white, Gaussian.
 - May know $\mathbb{E}[e^2[k]]$, but may need to estimate that too.
- G(q) is the transfer function between (known) input and output.
- H(q) is the transfer function between disturbance and output.
- The transfer functions can be defined as¹

$$G(q) = \sum_{k=1}^{\infty} g[k]q^{-k}$$
 and $H(q) = \sum_{k=0}^{\infty} h[k]q^{-k}$.

- If the unit-pulse responses are known, we can compute G(q) and H(q) directly. But, we're trying to avoid this approach...
- Fortunately, many systems can be very well described by (short) discrete-time difference equations. For example,

$$y[k] = \alpha y[k-1] + \beta u[k-1].$$

If we write this equation in operator form, we get²

$$(1 - \alpha q^{-1}) y[k] = \beta q^{-1} u[k]$$
$$y[k] = \frac{\beta q^{-1}}{(1 - \alpha q^{-1})} u[k] = \frac{\beta}{\underbrace{(q - \alpha)}_{G(q)}} u[k]$$

- ¹ Note the different summation starting indices, due to assumption that G(q) has no strictly feedthrough path (*i.e.*, g[0] = 0). If $g[0] \neq 0$, then both indices start at k = 0.
- ² The second line of this equation does not really follow from the first, since q^{-1} is an operator and not a variable. However, we can use a similar approach with *z* transforms to rigorously come up with the same result, if we permit rational-polynomial functions of *q*. This is really an abuse of notation, but when everybody understands what you're talking about, I suppose it's okay.

- From this example, we see that a system having infinite length unit-pulse response can be perfectly described by a transfer function having only two unknown parameters, *α* and *β*.
- All systems described by linear constant coefficient difference equations can be represented with transfer functions that are "rational polynomial in q". For example,

$$G(q) = \frac{B(q)}{A(q)} = q^{-n_k} \frac{b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}}{1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}}$$

- Here, the system has a transport delay of n_k samples, n_b feedforward coefficients, and n_a feedback coefficients.
- So, there are a total of n_a + n_b + 3 values to determine, in order to define the transfer function (3 = dim{n_a, n_b, n_k}).
- This is much more compact than trying to find the entire unit-pulse or frequency responses.
- By analogy with the z-domain transfer function, we can treat q as a variable and factor the numerator and denominator polynomials.
 - Roots of the numerator polynomial are called <u>zeros</u> of the transfer function;
 - Roots of the denominator polynomial are called <u>poles</u> of the transfer function.
- System response to initial conditions or input stimuli are *qualitatively* defined by pole locations. The zero locations are required to *quantify* the result.
 - Poles tell if the system is stable or unstable, smooth or oscillatory, fast or slow.

4.2: Some examples of time responses versus pole locations

The following shows some correspondence between the q-plane and some discrete-time unit-pulse-response signals.

- The radius to the two poles is a; the angle to the poles is ω .
- The zero (not at the origin) has the same real part as the two poles.

• If
$$\omega = 0$$
, $G(q) = \frac{q}{q-a}$... geometric!
• If $\omega = 0$, $a = 1$, $G(q) = \frac{q}{q-1}$... step!

- Pole radius a is the geometric factor, determines settling time.
 - 1. |a| = 0, finite-duration response. *e.g.*, $\delta[k N] \iff q^{-N}$.
 - 2. |a| > 1, growing signal which will not decay.
 - 3. |a| = 1, signal with constant amplitude; either step or cosine.

4. |a| < 1, decaying signal. Small a = fast decay (see below).

a	0.9	0.8	0.6	0.4
\approx duration N	43	21	9	5

• Pole angle ω determines number of samples per oscillation.

• That is, if we require $\cos[\omega k] = \cos[\omega(k + N)]$, then

- Solid: cst. damping ratio ζ .
- Dashed: constant natural frequency ω_n.

 Plot to right shows discrete-time unit-pulse responses versus pole locations.

Correspondence with continuous-time signals

• Let
$$g(t) = e^{-at} \cos(bt) 1(t)$$
.

Suppose

$$a = 0.3567/T \\ b = \frac{\pi/4}{T}$$

$$T = \text{sampling period.}$$

$$g[k] = g(kT) = \left(e^{-0.3567}\right)^k \cos\left(\frac{\pi k}{4}\right) \mathbf{1}[k]$$
$$= 0.7^k \cos\left(\frac{\pi k}{4}\right) \mathbf{1}[k].$$

(This is the cosinusoid example used in the earlier example).

- G(s) has poles at $s_{1,2} = -a + jb$ and -a jb.
- G(q) has poles at radius e^{-aT} angle $\omega = \pm bT$ or at $e^{-aT \pm jbT}$.

• So,
$$q_{1,2} = e^{s_1 T}$$
 and $e^{s_2 T}$.

• In general, *poles* convert between the *s*-plane and *q*-plane via $q = e^{sT}$.

EXAMPLE: Some corresponding pole locations:

- $j\omega$ -axis maps to unit circle.
- Constant damping ratio ζ maps to strange spiral.
- When considering system response to a step input for controls purposes, the following diagrams may be helpful:

- Higher-order systems:
 - Pole moving toward q = 1, system slows down.
 - Zero moving toward q = 1, overshoot.
 - Pole and zero moving close to each other cancel.

4.3: Bode plots from discrete-time transfer functions

- Knowing a system's frequency response is key to many system analysis and control synthesis methods.
- Bode plots are plots of frequency response of a system, displayed as separate magnitude- and phase-response plots.
- Frequency response is extracted from transfer functions, knowing geometrically where pure sinusoids exist in *s*- or *q*-plane.
 - In *s*-plane, $H(s)|_{s=j\omega}$ is frequency response for $0 \le \omega < \infty$.
 - In *q*-plane, $H(q)|_{q=e^{j\omega T}}$ is frequency response for $0 \le \omega \le \omega_s/2$.
- Straight-line tools of s-plane analysis DON'T WORK! They are based on geometry and geometry has changed—jω-axis to q-unit circle.
- To use straight-line tools, must convert H(q) to an equivalent form H(w) where unit circle in q-plane maps to $j\omega$ -axis in w-plane.
 - Ideally, interior of *q*-plane unit circle maps to LHP in *w*-plane, and exterior of *q*-plane unit circle maps to RHP in *w*-plane.
 - It is not accurate to label the destination plane the *s*-plane. It is often called the *w*-plane, and the transformation between the *q*-plane and the *w*-plane is called *the w*-*Transform*.
 - That is, for the H(w) we come up with, $H(w) \neq H(s)|_{s=w}$.

A transform that satisfies these requirements is the bilinear transform:

$$H(w) = H(q)|_{q = \frac{1 + (T/2)w}{1 - (T/2)w}}$$
 and $H(q) = H(w)|_{w = \frac{2}{T} \frac{q-1}{q+1}}$.

- Three things to check:
 - 1. Unit circle in q-plane $\mapsto j\omega$ -axis in w-plane.
 - 2. Inside unit circle in *q*-plane \mapsto LHP in *w*-plane.
 - 3. Outside unit circle in *q*-plane \mapsto RHP in *w*-plane.

If true,

- 1. Take $H(q) \mapsto H(w)$ via the bilinear transform.
- 2. Use straight-line methods to plot Bode plot of H(w).

CHECK: Let $q = re^{j\omega T}$. Then, q is on the unit circle if r = 1, q is inside the unit circle if |r| < 1 and q is outside the unit circle if |r| > 1.

$$q = re^{j\omega T}$$
$$w = \frac{2}{T} \frac{q-1}{q+1} \Big|_{q=re^{j\omega T}} = \frac{2}{T} \frac{re^{j\omega T}-1}{re^{j\omega T}+1}.$$

• Expand
$$e^{j\omega T} = \cos(\omega T) + j\sin(\omega T)$$
 and use the shorthand
 $c \stackrel{\Delta}{=} \cos(\omega T)$ and $s \stackrel{\Delta}{=} \sin(\omega T)$. Also note that $s^2 + c^2 = 1$.
 $w = \frac{2}{T} \left[\frac{rc + jrs - 1}{rc + jrs + 1} \right] = \frac{2}{T} \left[\frac{(rc - 1) + jrs}{(rc + 1) + jrs} \right] \left[\frac{(rc + 1) - jrs}{(rc + 1) - jrs} \right]$
 $= \frac{2}{T} \left[\frac{(r^2c^2 - 1) + j(rs)(rc + 1) - j(rs)(rc - 1) + r^2s^2}{(rc + 1)^2 + (rs)^2} \right]$
 $= \frac{2}{T} \left[\frac{r^2 - 1}{r^2 + 2rc + 1} \right] + j\frac{2}{T} \left[\frac{2rs}{r^2 + 2rc + 1} \right].$

• Notice that the real part of w is 0 when r = 1 (w is on the imaginary axis), the real part of w is negative when |r| < 1 (w in LHP), and that

the real part of w is positive when |r| > 1 (w in RHP). Therefore, the bilinear transformation does exactly what we want.

• When r = 1,

$$w = j\frac{2}{T}\frac{2\sin(\omega T)}{2+2\cos(\omega T)} = j\frac{2}{T}\tan\left(\frac{\omega T}{2}\right).$$

- That is, in *w*-plane, $H(w)|_{w=j\omega_w}$ is the frequency response for $0 \le \omega_w < \infty$. Straight-line tools work, but frequency axis is warped!
- The following diagram summarizes the relationship between the s-plane, q-plane, and w-plane:

PROCEDURE:

- 1. Convert H(q) to H(w) by $H(w) = H(q)|_{q=\frac{1+(T/2)w}{1-(T/2)w}}$.
- 2. Simplify expression to rational-polynomial in w.
- 3. Factor into zeros and poles in standard "Bode Form".
- 4. Plot the response exactly the same way as an *s*-plane Bode plot. Note: Plots are versus $\log_{10} \omega_w \quad \dots \quad \omega_w = \frac{2}{T} \tan\left(\frac{\omega T}{2}\right)$. Can re-scale axis in terms if ω if we want.
- **EXAMPLE:** Plot the straight-line *w*-plane Bode plot for a system with transfer function:

Let
$$G(q) = \frac{0.368q + 0.264}{q^2 - 1.368q + 0.368}.$$

(1,2)

$$G(w) = \frac{0.368 \left[\frac{1+0.5w}{1-0.5w}\right] + 0.264}{\left[\frac{1+0.5w}{1-0.5w}\right]^2 - 1.368 \left[\frac{1+0.5w}{1-0.5w}\right] + 0.368}$$
$$= \frac{0.368(1+0.5w)(1-0.5w) + 0.264(1-0.5w)^2}{(1+0.5w)^2 - 1.368(1+0.5w)(1-0.5w) + 0.368(1-0.5w)^2}$$
$$= \frac{-0.0381(w-2)(w+12.14)}{w(w+0.924)}.$$

(3)

$$G(j\omega_w) = \frac{-(j\frac{\omega_w}{2} - 1)(j\frac{\omega_w}{12.14} + 1)}{j\omega_w(j\frac{\omega_w}{0.924} + 1)}$$

10³

10³

(4) **Bode Plots** 40 Magnitude (dB) -40 10⁻¹ 10⁰ 10¹ 10² 180 Phase (deg) 90 0 -90 -180 -270 10⁰ 10² 10⁻¹ 10¹ Frequency (warped rad \sec^{-1})

4.4: System ID with transfer-function models

- Having reviewed discrete-time systems, we return to the problem of system ID using transfer-function models.
- Recall that we are assuming a system model with system and noise dynamics specified by G(q) and H(q),

y[k] = G(q)u[k] + H(q)e[k],

with G(q) = B(q)/A(q) and H(q) = C(q)/D(q).

- **ISSUES:** Do all of A(q), B(q), C(q), D(q) exist? And, what are the values for n_k , n_a , n_b , n_c , and n_d ?
 - Typically use time response to estimate delay n_k directly.
 - Then, try certain "standard" structures involving A(q), B(q), etc., to see which fits "best".
 - Involved in this is the selection of model order via some criteria, and validation of the model.

Standard model forms

- Different approaches to using transfer-function models differ primarily on how disturbance is factored into the system response.
- We look at four "standard" model forms that have different properties: some are easier to identify, but others are more general.

Output error model

 The output error (OE) approach models the system as shown in the diagram.

- That is, $G(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)}$ and $H(q, \theta) = 1$, and $y[k] = \frac{B(q, \theta)}{A(q, \theta)}u[k] + e[k].$
- The OE model is parametrized by $\theta = \begin{bmatrix} a_1 & \cdots & a_{n_a} & b_1 & \cdots & b_{n_b} \end{bmatrix}$.
- The filters are defined as

$$A(q, \theta) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$
$$B(q, \theta) = b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}.$$

- The noise source is the difference (error) between the actual and noise-free output.
- Good to use when system dominated by white sensor noise.
- Expect problems when the noise spectrum is <u>shaped</u> (colored noise, process noise). Why?
- Denote the noise-free output by w[k]. Then, the difference equation is

$$w[k] + a_1 w[k-1] + \dots + a_{n_a} w[k-n_a] = b_1 u[k-1] + \dots + b_{n_b} u[k-n_b]$$
$$y[k] = w[k] + e[k].$$

ARMAX model

 The ARMAX (auto regressive with moving average and exogenous (or extra) input) approach models the system as shown in the diagram.

• That is,
$$G(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)}$$
 and $H(q, \theta) = \frac{C(q, \theta)}{A(q, \theta)}$, and
 $A(q, \theta)y[k] = B(q, \theta)u[k] + C(q, \theta)e[k].$

• It is parametrized by $\theta = \begin{bmatrix} a_1 & \cdots & a_{n_a} & b_1 & \cdots & b_{n_b} & c_1 & \cdots & c_{n_c} \end{bmatrix}$.

The filters are defined as

$$A(q, \theta) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$
$$B(q, \theta) = b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}$$
$$C(q, \theta) = 1 + c_1 q^{-1} + \dots + c_{n_c} q^{-n_c}.$$

- Disturbance and input subject to the same poles.
- Good model if shaped or process noise dominates.
- The difference equation is

$$y[k] + a_1 y[k-1] + \dots + a_{n_a} y[k-n_a]$$

= $b_1 u[k-1] + \dots + b_{n_b} u[k-n_b]$
+ $e[k] + c_1 e[k-1] + \dots + c_{n_c} e[k-n_c].$

<u>ARX model</u>

 The ARX (auto regressive with exogenous (or extra) input) approach models the system as shown in the diagram. That is,

- The ARX model is parametrized by $\theta = \begin{bmatrix} a_1 & \cdots & a_{n_a} & b_1 & \cdots & b_{n_b} \end{bmatrix}$.
- The filters are defined as

$$A(q, \theta) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$
$$B(q, \theta) = b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}.$$

- Simplified disturbance model. Not particularly well motivated by any physical intuition, but solution found by very simple numerical method.
- The difference equation is

$$y[k] + a_1 y[k-1] + \dots + a_{n_a} y[k-n_a] = b_1 u[k-1] + \dots + b_{n_b} u[k-n_b] + e[k].$$

Box–Jenkins model

The Box–Jenkins (BJ) approach models the system as shown in the diagram. That is,

$$y[k] = \frac{B(q, \theta)}{A(q, \theta)}u[k] + \frac{C(q, \theta)}{D(q, \theta)}e[k],$$

or $G(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)}$ and
$$H(q, \theta) = \frac{C(q, \theta)}{D(q, \theta)}.$$
$$\frac{u[k]}{A(q)} = \frac{B(q)}{A(q)} \frac{u[k]}{A(q)} = \frac{B(q)}{A(q)} \frac{u[k]}{A(q)} \frac{u[k$$

The Box–Jenkins model is parametrized by

$$\theta = \left[a_1 \cdots a_{n_a} b_1 \cdots b_{n_b} c_1 \cdots c_{n_c} d_1 \cdots d_{n_d} \right].$$

• The filters are defined as

$$A(q, \theta) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$
$$B(q, \theta) = b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}$$

$$C(q, \theta) = 1 + c_1 q^{-1} + \dots + c_{n_c} q^{-n_c}$$
$$D(q, \theta) = 1 + d_1 q^{-1} + \dots + d_{n_d} q^{-n_d}.$$

- Very general form. Includes all others as special cases.
- Denote the noise-free system output by w[k], and the overall disturbance by v[k]. Then, the difference equation is

$$w[k] + a_1w[k-1] + \dots + a_{n_a}w[k-n_a] = b_1u[k-1] + \dots + b_{n_b}u[k-n_b]$$

$$v[k] + d_1v[k-1] + \dots + d_{n_d}v[k-n_a] = e[k] + c_1e[k-1] + \dots + c_{n_c}e[k-n_c]$$

$$y[k] = w[k] + v[k].$$

Generalizing for longer input delay

- All these difference equations assume a single delay in $B(q, \theta)$ only.
- Often need n_k additional delays: $B(q, \theta) = q^{\Gamma n_k} (b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}).$
- Difference equations now of the form
 - $\cdots = b_1 u[k \Gamma \boldsymbol{n_k} 1] + b_2 u[k \Gamma \boldsymbol{n_k} 2] + \cdots$

4.5: Initial model structure selection

- Models are valid for different assumptions on the dynamics, noise.
- Often not clear which is the best to use!
 - Common approach is to try several structures and see if the fit improves (will look at how to compare them later on).
- In addition to the structures themselves, number of delays nk and coefficient order na, nb, nc, and nd not obvious either.

Delay estimation

 One quick way to estimate the delay is to plot the cross-correlation between the output and input. For the "dryer" data,

```
load dryer2
u2 = u2 - mean(u2); y2 = y2 - mean(y2);
x = (-length(u2)+1):(length(u2)-1);
Ryu = xcorr(y2,u2); stem(x,Ryu,'filled');
```


- We see a general noise floor of around 200. So, a time delay of two or three samples looks about right. Should probably try both.
- A second method is to look at unit-pulse- or step-response data (if available), looking for the first non-negligible response point.

- A third method is to use MATLAB's delayest.m. (cf. Topic 4.14)
 - Fits ARX models with different delays to the data, uses a "cost" criteria to determine which one looks most likely.
 - Since ARX is not guaranteed to be best structure, don't believe delayest too much. For above data, it suggests a delay of three samples, but a delay of two samples is probably better.

Coefficient order

- To estimate model order, can use frequency response identification (e.g., spa.m) to get a feel for the Bode plot.
 - "Eyeball" fit poles and zeros to get an idea of how many of each.
 - Pay particular attention to peaks in the magnitude plot, which indicate resonances (lightly damped complex-conjugate pole pair).
 - Slope of magnitude plot of some use, but care must be taken due to frequency warping of discrete-time Bode plots, and uncertainty of whether there are regions where slope doesn't change as much as might be expected due to a near pole-zero cancelation.

• Slope $\approx -40 \, dB$ per decade: at least two more poles than zeros.

- But, how many zeros? Phase plot is pretty useless due to delays.
- Might try a range of model orders from 2 to 5 to see which fits best.
- Typically get a better fit as we increase the order of A(q).
 - Avoid "over fitting" the data—the result looks good on this data set, but much poorer on any other.
- MATLAB selstruc can help determine good starting points.

Polynomial form

- Much of the MATLAB system identification toolbox deals with transfer functions given in a polynomial format.
- We enter polynomials by typing their coefficients in vector form as ascending powers of the delay operator q^{-k} , k = 0, 1, ...

KEY POINT: Delays are denoted by leading zeros in the polynomial. So,

$$\frac{B(q)}{A(q)} = \frac{q^{-3}}{1 - 1.5q^{-1} + 0.7q^{-2}}$$

is entered by $B = [0 \ 0 \ 0 \ 1]$ and $A = [1 \ -1.5 \ 0.7]$.

- Note that the MATLAB control-systems toolbox does this differently:
 - In discrete-time (z form), would normally write this as

$$\frac{z^{-3}}{1 - 1.5z^{-1} + 0.7z^{-2}} = \frac{1}{z^3 - 1.5z^2 + 0.7z},$$

entered as num = 1 and den = [1 - 1.5 0.7 0].

- The two different toolbox representations are equivalent (only) if the lengths of *A* and *B* are equal.
- MATLAB commands to use polynomials in system ID are idpoly and polydata.

4.6: Fitting parametrized model: Simulation or prediction?

- Having chosen n_k and n_a , n_b , n_c , and n_d , it's now time to determine the polynomials A(q), B(q), etc.
- This is an optimization problem:
 - First, much choose what objective we are trying to optimize,
 - Then, develop a "cost function" to achieve this objective,
 - Then, select an appropriate optimization method.

Optimization objectives: Simulation or prediction?

- A very fundamental question we must consider is: what will the final model be used for?
 - Simulation: Given knowledge only of *u*[*k*] up to the present time, estimate the present output *y*[*k*].
 - 1-step prediction: Given knowledge of *u*[*k*] up to the present time, and *y*[*k*] up to the prior time, *k* − 1, estimate present output *y*[*k*].
 - *n*-step prediction: Given knowledge of *u*[*k*] up to the present time, and *y*[*k*] up to a previous time, *k* - *n*, estimate present output *y*[*k*].
- A model optimized for a simulation application will generally match the open-loop response best.
- A model optimized for prediction will use measured data as feedback, and will generally provide better estimates, especially when there is non-white noise impacting the system response.
- Our basic approach will be to find G(q) and possibly H(q) to minimize some measure of modeling error:

- For simulation, ε_s[k] = y[k] ŷ_s[k], where ŷ_s[k] = G(q)u[k], the simulated value of the output at time k given measurements of the input only. (We don't estimate H(q) for a simulation application.)
- For 1-step prediction, ε_p[k] = y[k] − ŷ_p[k | k − 1], where ŷ_p[k | k − 1] is the predicted value of the output at time k given measurements of the output up until (and including) time k − 1.
- For *n*-step prediction, *ϵ_n[k] = y[k] − ŷ_n[k | k − n]*, where *ŷ_n[k | k − n]* is the predicted value of the output at time *k* given measurements of the output up until (and including) time *k − n*.
- The formulations for the predicted $\hat{y}_p[k \mid k-1]$ and $\hat{y}_n[k \mid k-n]$ deserve some attention.
- We start with the assumed form y[k] = G(q)u[k] + H(q)e[k].
- Pre-multiply both sides by $H^{-1}(q)$, assuming that H(q) is monic, minimum-phase, and hence is also stable. This isolates e[k].

$$H^{-1}(q)y[k] = H^{-1}(q)G(q)u[k] + e[k].$$

■ Now, add *y*[*k*] to both sides, and rearrange to get

$$y[k] = (1 - H^{-1}(q)) y[k] + H^{-1}(q)G(q)u[k] + e[k].$$

- Note that the RHS requires knowledge of u[k] up until the present, e[k] at the present time only, and y[k] up until the prior time only.
- To see this last point, let's look at the details of H(q) more closely:

$$H(q) = \frac{C(q)}{D(q)} = \frac{1 + c_1 q^{-1} + c_2 q^{-2} + \dots}{1 + d_1 q^{-1} + d_2 q^{-2} + \dots}$$
$$1 - H^{-1}(q) = \frac{C(q) - D(q)}{C(q)} = \frac{(c_1 - d_1)q^{-1} + (c_2 - d_2)q^{-2} + \dots}{1 + c_1 q^{-1} + c_2 q^{-2} + \dots}.$$

- The numerator has a pure delay term, therefore, $(1 H^{-1}(q)) y[k]$ contains only old values of the output $\{y[s], s \le k 1\}$.
- Therefore, we can use this relationship to predict y[k] from past values of y[k] (etc).
 - Assume that e[k] is white, so best estimate of e[k], given information up to k 1, is $\hat{e}[k] = 0$.
 - Therefore, $\hat{y}_p[k \mid k-1] = (1 H^{-1}(q)) y[k] + H^{-1}(q)G(q)u[k].$
- Can also derive similar relationship for n-step prediction,

$$\hat{y}_n[k \mid k - n] = \left(1 - \overline{H}_n(q)H^{-1}(q)\right)y[k] + \overline{H}_n(q)H^{-1}(q)G(q)u[k],$$

where $\overline{H}_n(q) = \sum_{j=0}^{n-1} h[j]q^{-j}$, which is a truncated version of $H(q)$.

EXAMPLE: For <u>output error</u>, H(q) = 1, and G(q) = B(q)/A(q).

- This gives $(1 H^{-1}(q)) = 0$ and $H^{-1}(q)G(q) = G(q)$.
 - So, $\hat{y}_p[k \mid k-1] = \frac{B(q)}{A(q)}u[k]$, which is not a function of past outputs.

EXAMPLE: For <u>ARX</u>, H(q) = 1/A(q), and G(q) = B(q)/A(q).

• This gives $(1 - H^{-1}(q)) = 1 - A(q)$ and $H^{-1}(q)G(q) = B(q)$.

$$\hat{y}_{p}[k] \overset{\mathsf{Therefore}}{=} (\mathbf{f} - A(q))y[k] + B(q)u[k] \\= -a_{1}y[k-1] - \dots - a_{n_{a}}y[k-n_{a}] + b_{1}u[k-1] + \dots + b_{n_{b}}u[k-n_{b}].$$

- ARX uses old values of y[k] as well as u[k] to predict $\hat{y}_p[k \mid k-1]$.
- Other cases are more complicated.

4.7: Fitting parametrized model: Cost function

- - Note that *ϵ*[*k*] is parametrized by *θ*, which we write explicitly in this section as *ϵ*[*k*; *θ*].
- Can take either a time-domain or frequency-domain approach: both require defining a "cost function" to be minimized.
- In the time domain, might want to choose parameters θ to minimize $V_N(\theta) = \sum_{k=1}^N \epsilon^2[k; \theta].$

• Solution,
$$\hat{\theta} = \arg\min_{\theta} V_N(\theta)$$
 is called the "least squares" solution.

- More generally, might want to minimize $V_N(\theta) = \sum_{k=1}^{N} L(\epsilon[k; \theta])$, where $L(\cdot)$ is a "loss function" where $L \ge 0$ and L is a scalar.
- In the frequency domain, might want to minimize weighted linear least-squares frequency response

$$V_N(\theta) = \sum_{\omega_i} \alpha_i \left| G(e^{j\omega_i}; \theta) - \widehat{G}_N(e^{j\omega_i}) \right|^2,$$

where $G(e^{j\omega_i}; \theta)$ is the model frequency response at frequency ω_i with parameters θ , and $\widehat{G}_N(e^{j\omega_i})$ is the estimated frequency response (using spa.m, for example).

• One of the problems with the linear least-squares frequency fit is that zeros of the system are fit *very poorly*.

- Especially true for lightly damped zeros.
- Reason is that the index assigns a very small penalty to errors in the match of the data/model in the low-gain regions.
 - Near these zeros, the absolute difference in the frequency responses is small (relative errors are large).
- Linear least squares puts too much emphasis on fitting the poles.
- Logarithmic least squares is better for the fitting of the zeros since it weights the ratio of model gain to measurement gain.

$$V_N(\theta) = \sum_{\omega_i} \alpha_i \left| \log(G(e^{j\omega_i}; \theta)) - \log(\widehat{G}_N(e^{j\omega_i})) \right|^2.$$

• Works much better for a system with large dynamic range³.

EXAMPLE: Consider two points in the transfer function

- Measured data: $\widehat{G}(\omega_1) = 10$ and $\widehat{G}(\omega_2) = 0.1$.
- Our model estimates these as: $G(\omega_1; \theta) = 9$ and $G(\omega_2; \theta) = 0.09$.
- Check contribution to the cost functions:

$$V_{\text{lin}} = \underbrace{(10-9)^2}_{1} + \underbrace{(0.1-0.09)^2}_{0.0001 \ll 1}$$
$$V_{\text{lls}} = \underbrace{(\log(10) - \log(9))^2}_{0.0111} + \underbrace{(\log(0.1) - \log(0.09))^2}_{0.0111}.$$

Optimization method

- Most cost functions and models require nonlinear optimization methods, which we look at in the sequel.
- However, a simple solution to the linear least-squares ARX problem exists. We look at this first.
- ³ Sidman, IEEE TAC, 36, p. 1065, 1991.

4.8: Solving the linear least-squares ARX problem

Consider quadratic case first, linear prediction form of ARX, where

$$\hat{y}_{p}[k|k-1] = (1 - A(q))y[k] + B(q)u[k]$$

= $-a_{1}y[k-1] - \dots - a_{n_{a}}y[k-n_{a}] + b_{1}u[k-1] + \dots + b_{n_{b}}u[k-n_{b}]$
= $\theta^{T}\phi[k]$,

where

$$\theta = \begin{bmatrix} a_1 & a_2 & \cdots & a_{n_a} & b_1 & b_2 & \cdots & b_{n_b} \end{bmatrix}^T$$

$$\phi[k] = \begin{bmatrix} -y[k-1] & \cdots & -y[k-n_a] & u[k-1] & \cdots & u[k-n_b] \end{bmatrix}^T.$$

• Note that the prediction error is linear in θ

$$\epsilon_p[k;\theta] = y[k] - \hat{y_p}[k;\theta] = y[k] - \theta^T \phi[k].$$

• So, we can use regression to solve for θ .⁴ Define

$$\begin{aligned} V_N(\theta) &= \sum_{k=1}^N \left(y[k] - \theta^T \phi[k] \right)^2 \\ &= \sum_{k=1}^N \left(y^2[k] - 2\theta^T \phi[k] y[k] + \theta^T \phi[k] \phi^T[k] \theta \right) \\ &= \left(\sum_{k=1}^N y^2[k] \right) - 2\theta^T \left(\sum_{k=1}^N \phi[k] y[k] \right) + \theta^T \left(\sum_{k=1}^N \phi[k] \phi^T[k] \right) \theta \\ &= y_N - 2\theta^T f_N + \theta^T R_N \theta. \end{aligned}$$

⁴ Note, the term "regress" here alludes to the fact that we try to calculate or describe y[k] by "going back" to $\phi[k]$. Also, models such as ARX where $\phi[k]$ contains old values $y[k - \tau]$ of the variable to be explained, y[k], are then partly "auto-regression" models.

• We assume that R_N is invertible, giving

$$V_N(\theta) = \underbrace{y_N - f_N^T R_N^{-1} f_N}_{\text{not a function of }\theta} + \underbrace{(\theta - R_N^{-1} f_N)^T R_N(\theta - R_N^{-1} f_N)}_{\text{non-negative since } R_N \ge 0}.$$

- We get the smallest possible $V_N(\theta)$ when we select $\theta = \hat{\theta}_N = R_N^{-1} f_N$.
- Can also formulate using vectors,

$$X = \begin{bmatrix} \phi[1] & \phi[2] & \cdots & \phi[N] \end{bmatrix}^T$$
$$Y = \begin{bmatrix} y[1] & y[2] & \cdots & y[N] \end{bmatrix}^T,$$

which allows us to write $R_N = X^T X$ and $f_N = X^T Y$.

This also gives

$$V_N = (Y - X\theta)^T (Y - X\theta)$$

and $\hat{\theta}_N = (X^T X)^{-1} X^T Y$ (the least-squares estimate).

• In MATLAB, theta = $X \setminus Y$.

Solving other parameter estimation optimizations

- The prediction ARX problem with quadratic cost function is the only system ID that can be done using linear least squares.
- Other problems require nonlinear optimization, which is quite tricky.
- One fundamental principle is that we know we are at a minima (or maxima) of an objective function when $dV_N(\theta)/d\theta = 0$.
- Comparing to the matrix form of the prior case, we get

$$\frac{\mathrm{d}}{\mathrm{d}\theta}V_N = 2R_N\theta - 2f_N = 0$$
$$\hat{\theta} = R_N^{-1}f_N,$$

which is consistent with the result we obtained.

- In the more general case (*i.e.*, most other model forms),
 - $\epsilon[k; \theta]$ is not linear in θ , and $V_N(\theta)$ is not quadratic in $\epsilon[k; \theta]$.
 - Hence, $V_N(\theta)$ is not quadratic in θ .
 - Optimization is not as simple. No closed-form solutions are available. Nonlinear optimization is required.
- So, next substantial section of notes is an overview of nonlinear optimization, *in general*, using the Newton/quasi-Newton methods.
- We then return to the system identification problem, where we apply these general results to our problem.

4.9: Nonlinear optimization

- Here, we re-cast the problem into more generic notation.⁵
 - Instead of finding $\hat{\theta}$ that minimizes $V_N(\theta)$, we are find x^* that minimizes F(x), where x is a vector and F(x) is a scalar.

$$x^* = \arg\min_x F(x).$$

- This scenario encompasses the ARMAX, OE, and BJ cases, plus many other unconstrained optimization problems.
- Numerical methods for nonlinear optimization are iterative. Typically, this is done using $\hat{x}_{k+1} = \hat{x}_k + \alpha_k p_k$, where,
 - \hat{x}_k is the estimate of the optimizing x^* at algorithm iteration k,
 - p_k is a search direction to look for the minimum, and
 - α_k is a positive constant determined so that an appropriate decrease in the value of F(x) is observed.
 - Note that I am using subscripts to denote iteration number at a specific sample number (*i.e.*, given a fixed set of data, length N). This is different from time sample number, for which I still use square brackets [·], when appropriate.
- Available methods primarily differ in how they find p_k and α_k .
 - Some methods use function values only;
 - Some methods use values of *F* as well as values of its gradient $g(\hat{x}_k)$ (the first derivative vector);
- ⁵ Some references for this section include: L.E. Scales, <u>Introduction to Non-Linear</u> <u>Optimization</u>, Springer-Verlag, 1985, and M.A. Wolfe, <u>Numerical Methods for</u> <u>Unconstrained Optimization: An Introduction</u>, Van Nostrand Reinhold, 1978.

- Others use values of *F*, its gradient, and its Hessian *G*(*x̂*_k) (the second derivative matrix).
- The typical member of the third group corresponds to <u>Newton</u> <u>algorithms</u>, where the search direction is computed as

$$p_k = -G^{-1}(\hat{x}_k)g(\hat{x}_k).$$

 The most important subclass of the second group consists of <u>quasi-Newton algorithms</u>, which somehow form an estimate of the Hessian and then compute

$$p_k = -\widehat{G}^{-1}(\widehat{x}_k)g(\widehat{x}_k).$$

 Methods from the first group generally form gradient estimates by difference approximations and proceed as quasi-Newton methods,

$$p_k = -\widehat{G}^{-1}(\widehat{x}_k)\widehat{g}(\widehat{x}_k).$$

- The basic idea is that the minimum lies (more or less) in the direction of the negative gradient of F(x) with respect to x.
- Via gradient descent, we eventually get to (at least a local) minimum.
 - However, for objective functions having both steep regions and flat regions (or dimensions), gradient descent is very slow.
 - Scaling by the local curvature allows us to take different step sizes in different dimensions, greatly speeding up the search.
 - Note that the scaling G^{-1} is large when the curvature is small (can go long distances before local gradient is invalid estimate of slope), and is small when the curvature is large (can go only a short distance before local gradient no longer reliable indicator of slope).

- Can use fixed value for α_k = α, but generally get better computational performance if we do a line search to find the value for α_k that minimizes F(x) along the search direction p_k. Line search:
 - First looks for bracket [a, b] in which there is a minimum; then
 - Iteratively reduces bracket length until "close enough" to minimum.
- Overall process: Compute p_k ; compute α_k ; update \hat{x}_k ; repeat.
- **NOTE:** \hat{x}_0 tends to be very important.
- **NOTE:** In general, nonlinear optimization will find only a local minimum.
- **NOTE:** Convergence can be very slow.
- **NOTE:** Guarantees on getting a good final answer in a reasonable amount of time? No. But, very often do so anyway.

4.10: Generic nonlinear optimization example

EXAMPLE: Consider the Rosenbrock function, a non-convex problem that is difficult to minimize:

$$F(x) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2,$$

where the global minimum is at $x^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

- Start with $x_0 = \begin{bmatrix} -1.2 & 1 \end{bmatrix}^T$ and see how different methods work.
- We will use fminunc.m from MATLAB's optimization toolbox to try different algorithm possibilities.
- First, create a MATLAB function to implement the Rosenbrock function

```
function F=rosen(x)
  global xpath;
  F=100*(x(1)^2-x(2))^2+(1-x(1))^2;
  xpath=[xpath;x'];
end
```

Next, in a separate script, build up the surface we're trying to minimize

```
global xpath;
x1=[-2:.1:2]'; x2=x1; N=length(x1); FF = zeros(N,N);
for ii=1:N,
   for jj=1:N,
      FF(ii,jj)=rosen([x1(ii) x2(jj)]');
   end
end
```

First, use steepest descent. Lots of iterations required to get solution.

```
xpath=[];
options = optimset('LargeScale','off','HessUpdate','steepdesc',...
'MaxFunEvals',20000,'MaxIter',2000);
[X,FVAL,EXITFLAG,OUTPUT]=fminunc('rosen',[-1.2 1]',options);
```

```
figure; clf; contour(x1,x2,FF',[0:2:10 15:50:1000]); hold on
plot(xpath(:,1),xpath(:,2),'gd'); plot(xpath(:,1),xpath(:,2),'g-');
xlabel('x(1)'); ylabel('x(2)');
title('Rosenbrocks optimization path: Steepest')
plot(-1.2,1,'ro'); plot(1,1,'ro')
text(-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d',...
     OUTPUT.iterations,OUTPUT.funcCount),'fontsize',16);
figure;clf; mesh(x1,x2,FF'); hold on
for ii=1:length(xpath);
  plot3(xpath(ii,1),xpath(ii,2),0.1+rosen(xpath(ii,:)'),'gd',...
        'markersize',5)
end
plot3(-1.2,1,1+rosen([-1.2 1]'),'r.','markersize',25)
plot3(1,1,1+rosen([1 1]'), 'r.', 'markersize', 25)
xlabel('x(1)'); ylabel('x(2)'); zlabel('Value');
title('Rosenbrocks optimization path: Steepest')
campos([-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);
```


 Next, use a quasi-Newton method, with the "Davidson, Fletcher, Powell (DFP) approach" to recursively build up approximate Hessian inverse, using the function and its approximate gradients only.

```
xpath=[];
options = optimset('LargeScale','off','HessUpdate','dfp',...
'MaxFunEvals',5000,'MaxIter',2000);
[X,FVAL,EXITFLAG,OUTPUT] = fminunc('rosen',[-1.2 1]',options);
```

```
figure; clf; contour(x1,x2,FF',[0:2:10 15:50:1000]); hold on
plot(xpath(:,1),xpath(:,2),'gd'); plot(xpath(:,1),xpath(:,2),'g-');
xlabel('x(1)'); ylabel('x(2)');
title('Rosenbrocks optimization path: DFP')
plot(-1.2,1,'ro'); plot(1,1,'ro')
text(-1.8,-1.8,sprintf('Iterations: %d, Fn evals: %d',...
    OUTPUT.iterations,OUTPUT.funcCount),'fontsize',16);
figure; clf; mesh(x1,x2,FF'); hold on
for ii=1:length(xpath);
  plot3(xpath(ii,1),xpath(ii,2),0.1+rosen(xpath(ii,:)'),'gd',...
        'markersize',5)
end
plot3(-1.2,1,1+rosen([-1.2 1]'),'r.','markersize',25)
plot3(1,1,1+rosen([1 1]'),'r.','markersize',25)
xlabel('x(1)'); ylabel('x(2)'); zlabel('Value');
title('Rosenbrocks optimization path: DFP')
campos([-22.248, 21.81, 17143]); xlim([-2 2]); ylim([-2 2]);
```


 Finally, use a quasi-Newton method, with the "Broyden, Fletcher, Goldfarb, Shano (BFGS) approach" to building up the Hessian.

```
xpath=[];
options = optimset('LargeScale','off'); % select quasi-Newton; BFGS
[X,FVAL,EXITFLAG,OUTPUT]=fminunc('rosen',[-1.2 1]',options);
figure; clf; contour(x1,x2,FF',[0:2:10 15:50:1000]); hold on
plot(xpath(:,1),xpath(:,2),'gd'); plot(xpath(:,1),xpath(:,2),'g-');
xlabel('x(1)'); ylabel('x(2)');
```


- Quasi-Newton (BFGS) by far the most efficient of those tried. (It's MATLAB's default for medium-scale problems.)
- It would be fun to spend a lot more time looking at methods for nonlinear optimization, but that isn't really the purpose of this course.
 - So, we press on, switching our attention back to system ID;
 - If you are interested in methods of optimization, take ECE 5570: Optimization Methods for Systems and Control.

4.11: Toolbox methods (1): Frequency response

- MATLAB's system identification toolbox contains commands arx.m, armax.m, bj.m, and oe.m, which use measured system input-output data to produce optimized polynomials A(q), B(q), C(q), and D(q), as appropriate, for each model type.
 - Must supply model delay n_k and model size n_a , n_b , n_c , and n_d .
- The best way to see these functions in action is via example.

EXAMPLE: Consider a continuous-time system

$$G(s) = \frac{1}{s^2 + 0.5s + 1}.$$

- Actual system configured with OE structure (*i.e.*, H(s) = 1).
- First step in simulation is to convert model from continuous time to discrete time using ZOH, sampled at 2 Hz

$$y[k] = G(q)u[k] + e[k],$$

giving the discrete-time transfer function

$$G(q) = \frac{0.1129q^{-1} + 0.1038q^{-2}}{1 - 1.5622q^{-1} + 0.7788q^{-2}}.$$

- Used noise with $\mathbb{E}[e^2[k]] = \sigma^2 \approx 0.15$, but I scaled its power automatically in code to be equal to 1/4 of signal power.
- Simulate and plot random input-output sequence:

```
%% Modified from code originally by Jonathan P. How
%% Part 1: Setup
clear; clc; close all
Npts=512; T = 0.5; t=(0:1:Npts-1)*T; % # data points, sample period
RandStream.setGlobalStream(RandStream('mcg16807','Seed', 15));
```

```
nn=1; dd=[1 .5 1]; % continuous-time system dynamics
[num,den]=c2dm(nn,dd,T,'zoh'); % discrete-time system dynamics
w_arx=logspace(-2,0,300)*pi/T;
% compute input sequence for identification
u = idinput (Npts, 'prbs'); % input signal for identification
yc = dlsim(num,den,u); % compute "clean" output of G
v = randn(Npts, 1);
                      % noise - note that this is white, gaussian
LL = 0.25*(yc'*yc)/(v'*v); % scale so energy in sensor noise 1/4 times
                                      the energy in the "clean" signal
v = sqrt(LL) *v;
                                   응
y = yc+v;
                          % actual output y=Gu+v
Z = iddata(y, u, T);
                          % data available to identification
% compute input sequence for validation
u_val = idinput(Npts, 'prbs'); % input signal for validation
yc_val = dlsim(num,den,u_val); % "clean" output of G
v_val = sqrt(LL) *randn(Npts,1); % noise - white, gaussian
y val = yc val+v val;
                               % actual output y=Gu+v
Z_val = iddata(y_val,u_val,T); % data available for validation
% plot portions of input and output signals after initial transient
figure; plot(t,[u v]); legend('u[k]','v[k]');
title('Inputs to the system being identified');
xlabel('Time (s)'); ylabel('Amplitude (unitless)');
figure; plot(t,[yc y]); legend('"clean" y_c[k]', 'measured y[k]');
title('Outputs from the system being identified');
```

```
xlabel('Time (s)'); ylabel('Amplitude (unitless)');
```


Identify system models for several different model structures, and show Bode plots of the results:

```
% frequency response of actual system, and "SPA" frequency resp model
[mag,ph,w]=dbode(num,den,T,w_arx); % get "true" magnitude and phase resp
G = \text{spa}(Z, 64, w, [], T); [amp, phas, w] = \text{bode}(G); w = \text{squeeze}(w);
amp = squeeze(amp); phas = squeeze(phas);
% ARX model with na=2; nb=2; nk=1 (ARX221)
M_arx221 = arx(Z, 'na', 2, 'nb', 2, 'nk', 1);
[m_arx221,p_arx221,w_arx221]=bode(M_arx221); w_arx221 = squeeze(w_arx221);
m_arx221 = squeeze(m_arx221); p_arx221 = squeeze(p_arx221);
[a_arx221,b_arx221,c_arx221,d_arx221,f_arx221] = polydata(M_arx221);
% ARX model with na=4; nb=4; nk=1 (ARX441)
M_arx441 = arx(Z, 'na', 4, 'nb', 4, 'nk', 1);
[m_arx441,p_arx441,w_arx441]=bode(M_arx441); w_arx441 = squeeze(w_arx441);
m_arx441 = squeeze(m_arx441); p_arx441 = squeeze(p_arx441);
[a_arx441, b_arx441, c_arx441, d_arx441, f_arx441] = polydata(M_arx441);
% ARMAX model with na=2; nb=2; nc=2; nk=1 (ARMAX2221)
M_armax=armax(Z, 'na', 2, 'nb', 2, 'nc', 2, 'nk', 1);
[a_armax,b_armax,c_armax,d_armax,f_armax]=polydata(M_armax);
[m_armax,p_armax,w_armax]=bode(M_armax); w_armax = squeeze(w_armax);
m_armax = squeeze(m_armax); p_armax = squeeze(p_armax);
% Box-Jenkins model with nb=2; nc=2; nd=2; nf=2; nk=1 (BJ22221)
y(t) = [B(q)/F(q)] u(t-nk) + [C(q)/D(q)] e(t)
M_bj=bj(Z, 'nb', 2, 'nc', 2, 'nd', 2, 'nf', 2, 'nk', 1);
[m_bj,p_bj,w_bj]=bode(M_bj); w_bj = squeeze(w_bj);
m_bj = squeeze(m_bj); p_bj = squeeze(p_bj);
[a_bj,b_bj,c_bj,d_bj,f_bj]=polydata(M_bj);
% OE model with nb=2; nf=2; nk=1;
M_oe = oe(Z, 'nb', 2, 'nf', 2, 'nk', 1);
[m_oe,p_oe,w_oe]=bode(M_oe); w_oe = squeeze(w_oe);
m_oe = squeeze(m_oe); p_oe = squeeze(p_oe);
[a_oe, b_oe, c_oe, d_oe, f_oe] = polydata(M_oe);
% Now, plot Bode plots
figure; loglog(w,mag,w,amp,w_arx221,m_arx221,w_arx441,m_arx441);
title('Bode mag. plots of several system id models');
```

```
ylabel('Magnitude'); xlabel('Frequency (rad s^{-1})');
legend('Actual', 'SPA', 'ARX221', 'ARX441'); axis([.08 8 1e-2 5]);
figure; semilogx(w,ph,w,phas,w_arx221,p_arx221,w_arx441,p_arx441);
title('Bode phase plots of several system id models');
xlabel('Frequency (rad s^{-1})'); ylabel('Phase (deg)');
legend('Actual', 'SPA', 'ARX221', 'ARX441'); axis([.08 8 -270 0]);
figure; loglog(w,mag,w_oe,m_oe,w_armax,m_armax,w_bj,m_bj);
title('Bode mag. plots of several system id models');
ylabel('Magnitude'); xlabel('Frequency (rad s^{-1})');
legend('Actual', 'OE221', 'ARMAX2221', 'BJ22221'); axis([.08 8 1e-2 5]);
figure; semilogx(w,ph,w_oe,p_oe,w_armax,p_armax,w_bj,p_bj);
title('Bode phase plots of several system id models');
xlabel('Frequency (rad s^{-1})'); ylabel('Phase (deg)');
legend('Actual', 'OE221', 'ARMAX2221', 'BJ22221'); axis([.08 8 -270 0]);
```


4.12: Toolbox methods (2): Unit-pulse response, residuals

 We continue the prior example by looking at the true and estimated system discrete-time unit-pulse responses.

```
Ntime=30;
         = dimpulse(num, den, Ntime);
y act
y_arx221 = dimpulse(b_arx221,a_arx221,Ntime);
y_arx441 = dimpulse(b_arx441,a_arx441,Ntime);
y_armax = dimpulse(b_armax,a_armax,Ntime);
         = dimpulse(b_oe, f_oe, Ntime);
y_oe
y_bj
         = dimpulse(b_bj,f_bj,Ntime);
figure; stem([0:Ntime-1]*T,[y_act y_arx221 y_arx441],'filled'); hold on
stem([0:Ntime-1] *T, y_act, 'filled');
legend('True system', 'ARX221', 'ARX441');
title('Discrete impulse responses')
xlabel('Time (sec)'); ylabel('Output amplitude')
figure; stem([0:Ntime-1]*T,[y_act y_armax y_oe y_bj],'filled'); hold on
stem([0:Ntime-1]*T,y_act,'filled');
legend('System', 'ARMAX2221', 'OE221', 'BJ22221');
title('Discrete impulse responses')
xlabel('Time (sec)'); ylabel('Output amplitude')
```

Here are the impulse responses of the various methods attempted.

• We can also tabulate transfer-function coefficients:

```
[' Act A
[['Act B
            ', num2str(num, 4)]
                                              ', num2str(den, 4)]; ...
['ARX221 B ',num2str(b_arx221,4)] [' ARX221 A ',num2str(a_arx221,4)];...
ARMAX B
          ',num2str(b_armax,4)]
                                   ARM A
                                                ', num2str(a_armax, 4)]; ...
            ',num2str(b_bj,4)]
                                                ',num2str(f_bj,4)]; ...
 ['BJ B
                                   [' BJ
                                         Α
           ', num2str(b_oe, 4)]
                                                ',num2str(f_oe,4)]]
IOE B
                                   [' OE A
```

- Values for this example are tabulated below:
 - Second-order ARX isn't even close.
 - Fourth-order ARX isn't directly comparable.
 - Other three provide good estimates of $\hat{G}(q)$.

	b_0	b_1	b_2	a_0	a_1	a_2
Actual	0	0.1129	0.1038	1	-1.562	0.7788
ARX221	0	0.1309	0.1538	1	-0.689	0.0154
ARMAX2221	0	0.1144	0.0941	1	-1.569	0.7874
BJ22221	0	0.1153	0.0940	1	-1.569	0.7872
OE221	0	0.1148	0.0948	1	-1.568	0.7869

Model validation: A first step

- Usually we do not know the "actual system" dynamics, so how do we establish if our model is good?
- Various types of tests can be performed:
 - Prediction and simulation errors,
 - Frequency-response fit.
- Make sure you use different data to validate (if possible).
- Can also perform very detailed analysis of the <u>residuals</u>.

$$\epsilon[k] = y[k] - \hat{y}[k \mid k - 1]$$

$$= y[k] - (1 - H^{-1}(q)) y[k] - H^{-1}(q)G(q)u[k]$$

= $H^{-1}(q) (y[k] - G(q)u[k]).$

- Called the <u>innovations process</u> and it contains a lot of information about the quality of our fit.
- A first desirable property of the residuals is that they be zero mean and normally distributed (at least symmetric).
 - Analyze using a histogram of $\epsilon[k]$.
- We can also use the residuals $\epsilon^2[k]$ to estimate σ^2

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{k=1}^{N} \epsilon^2[k].$$

- Natural if H(q) = 1 as $\epsilon[k] = y[k] \hat{y}[k]$ is a good estimate of e[k].
- Residuals can be computed as:

```
e_arx2 = resid(M_arx221,Z); e_arx2 = e_arx2.OutputData;
e_arx4 = resid(M_arx441,Z); e_arx4 = e_arx4.OutputData;
e_arm = resid(M_armax,Z); e_arm = e_arm.OutputData;
e_bj = resid(M_bj,Z); e_bj = e_bj.OutputData;
e_oe = resid(M_oe,Z); e_oe = e_oe.OutputData;
mean([v e_arx2 e_arx4 e_arm e_bj e_oe])'
```

Approximate noise variance can be computed as:

```
[['sigma^2 arx ',sprintf('%1.4f',M_arx221.NoiseVariance)];...
['sigma^2 arm ',sprintf('%1.4f',M_armax.NoiseVariance)];...
['sigma^2 BJ ',sprintf('%1.4f',M_bj.NoiseVariance)];...
['sigma^2 OE ',sprintf('%1.4f',M_oe.NoiseVariance)];...
['sigma^2 act ',sprintf('%1.4f',LL)]]
```

- Results shown below for noise-mean and noise-power estimation
 - Again, second-order ARX not even close.

• Other three provide good estimates.

	Actual	ARX221	ARMAX	BJ2221	OE221
Mean	-0.0221	-0.0087	-0.0272	-0.0281	-0.0249
σ^2	0.1118	0.2206	0.1085	0.1091	0.1083

Look for symmetry and normal distribution in histograms of residuals:

```
% Plot a histogram of the residuals for ARX221
figure; hist([e_arx2 v],-2:0.2:2); axis([-1.6 1.6 0 160])
title('Residual histogram for ARX221');
ylabel('Count');xlabel('Value of residual')
legend('Model fit','Actual');

% Similar for the other cases. Omitting code for figure formatting...
figure; hist([e_arx4 v],-2:0.2:2);
figure; hist([e_arm v],-2:0.2:2);
figure; hist([e_oe v],-2:0.2:2);
```


 Again, ARX models do not match data very well; ARMAX, BJ and OE much better.

4.13: Toolbox methods (3): Model validation using correlations

- Two other desirable properties of residuals are:
 - White: We want $\epsilon[k]$ to look like what we assumed for e[k].
 - Residuals uncorrelated with past inputs: If there are traces of past inputs in the residuals, then a part of *y*[*k*] that originates from the input was not captured well in our model (bad).
- Analyze for whiteness by computing residual autocorrelation

$$\widehat{R}_{\epsilon}^{N}[\tau] = \frac{1}{N} \sum_{k=\tau}^{N} \epsilon[k] \epsilon[k-\tau],$$

which we desire to be (roughly) zero everywhere except at $\tau = 0$.

 Analyze the second by computing cross-correlation between residuals and input

$$\widehat{R}_{\epsilon u}^{N}[\tau] = \frac{1}{N} \sum_{k=\tau}^{N} \epsilon[k] u[k-\tau],$$

where $\tau > 0$ correlates $\epsilon[k]$ with old $u[k - \tau]$, and so we desire $\widehat{R}_{\epsilon u}^{N}[\tau]$ to be (roughly) zero for $\tau > 0$.

- Both analysis tests of the correlation graph need a measure of "small enough," which must be developed from the data as well.
- Can develop this by analyzing the statistics of the residuals.
- **WHITENESS:** The numbers $\widehat{R}_{\epsilon}^{N}$ carry information regarding whether the residuals can be regarded as white.
 - We can test for whiteness by first defining

$$r_{N,M} = \frac{\sqrt{N}}{\widehat{R}_{\epsilon}[0]} \left[\widehat{R}_{\epsilon}[1] \cdots \widehat{R}_{\epsilon}[M] \right]^{T}.$$

- Then, according to the central limit theorem, as $N \to \infty$, $r_{N,M}$ will be normally distributed with zero mean, and unit variance.
- Thus, if we sum together squares of $r_{N,M}$,

$$\zeta_{N,M} = \frac{N}{\left(\widehat{R}_{\epsilon}^{N}[0]\right)^{2}} \sum_{\tau=1}^{M} \left(\widehat{R}_{\epsilon}^{N}[\tau]\right)^{2}$$

should be asymptotically $\chi^2(M)$ distributed.

- So, we develop an *overall* test on the residuals by checking whether $\zeta_{N,M}$ passes the test of being $\chi^2(M)$ distributed. That is, by checking that $\zeta_{N,M} < \chi^2_{\alpha}(M)$.
- More instructive is to look at the residuals *individually*, using the <u>confidence intervals</u> for a normal distribution.
 - For a 95% confidence level, we can use the ± 1.96 bounds on each element of $r_{N,M}[\tau]$ to decide if the autocorrelation is small for $\tau > 0$.
 - Plot $r_{N,M}[k]$ for $1 \le k \le M$.
 - ◆ Test for normality by ensuring that r_{N,M}[k] within the confidence interval for all k.

CROSSCORRELATION TEST: As $N \to \infty$ can show $\sqrt{N} \widehat{R}_{\epsilon u}[\tau]$ is normally

distributed, with zero mean and variance $P_r = \sum_{k=1}^{\infty} R_{\epsilon}[k]R_u[k]$.

- Can perform a normality test on $\widehat{R}_{\epsilon u}[\tau]$ by checking if $|\widehat{R}_{\epsilon u}[\tau]| \leq 1.96 \sqrt{P_r/N}$ for all τ .
- If $\widehat{R}_{\epsilon u}[\tau]$ is outside these bounds, then for those values of τ , $\epsilon[k]$ and $u[k-\tau]$ are probably dependent.
- Dependency for small τ could imply the need for smaller n_k .

OTHER TESTS: MATLAB system ID toolbox has validation functions.

- compare.m compare model's output with actual output.
- sim.m simulate a model (old function = idsim.m).
- pe.m compute prediction errors (the longer the prediction horizon, the more demanding the modeling task).
- predict.m predict future outputs.
- resid.m compute and test residuals.
- Try at least one of these, never using same data to create and validate a model.
 - A larger model will always give a better fit (a lower value of $V_N(\theta)$).
 - Must use new data to compare. Good models will still give good predictions on the new data as well.
- Problem with using same data for model creation and validation is that model will attempt to fit the randomness of the noise.
 - Since noise varies from run to run, this is counterproductive.
 - If only one data set is available, split in half: one half for training, one for validation.

EXAMPLE: Calculated residuals for the previous system ID example.

```
% Create a new figure; call "resid" with no outputs to plot residuals
figure; resid(M_arx221,Z);
% Do some fancy MATLAB handle graphics calls to relabel axes
h = get(gcf,'children'); xlabel(h(1),'Lag'); xlabel(h(2),'Lag');
title(h(1),'Cross correlation R_{\epsilonu} for ARX221');
title(h(2),'Autocorrelation R_{\epsilon} for ARX221');
% For the following, I have omitted the axes-relabeling code
```

figure; resid(M_arx441,Z); figure; resid(M_armax,Z);
figure; resid(M_bj,Z); figure; resid(M_oe,Z);

4.14: Toolbox methods (4): ARX model size

- MATLAB toolbox also has routines to help determine a good model size for the ARX structure.
- There is a tradeoff between model fidelity and accuracy, so researchers have developed modified cost functions of the form J(θ, d) = V_N(θ)(1 + U_N(d)).
 - $V_N(\theta)$ is the standard cost: decreases with increase in model size.
 - *U_N(d)* provides a measure of the complexity of the model: increases with increase in model size.
- Two common criteria for $U_N(d)$ are (where $d = \dim(\theta)$):
 - Akaike information criterion (AIC): $U_N(d) = 2d/N$.
 - Minimum description length (MDL): $U_N(d) = d \log(N)/N$.
- Both have strong information-theoretic background, which we won't discuss here. They generally give (somewhat) different "optimum" answers, so the "best" model turns out to be somewhat subjective.
- The objective now is to minimize J over all available d and θ .
 - This is a hybrid optimization problem, since d is integer, and θ is a vector of real numbers.
 - To make tractable, must first select a set of candidate model structures, for which *d* is known.
 - Then, for each structure, find the optimum $V_N(\theta)$.
 - Note that U_N(d) will be a constant in this optimization, so it does not play a direct role.
 - Can use any optimization method from before without change.

- For each d, select the model structure having the lowest $V_N(\theta)$.
- Finally, plot $J(\theta, d)$; select model with overall lowest value.
- Note that this can require *lots* of optimization time.
 - Most facile for ARX structure due to speed of ARX parameter optimization, so MATLAB has this built in (see example below).
 - Guidance: If validation set Z_val is different from training set Z, then choose "best fit" structure. Otherwise, choose either MDL or AIC structure.
 - However, can also be done (manually) for any set of structures, where you compute V using your own methods, then use selstruc(V) for final selection.
- **EXAMPLE:** In prior example, we found that ARX221 and ARX441 did not do very good job of modeling system.
 - Probably need a larger model: Typical problem with ARX.
 - Optimize ARX models where:
 - Numerator: $n_b \in \{1 \dots 15\},\$
 - Denominator: $n_a \in \{1 ... 15\},\$
 - Delays: $n_k \in \{1 \dots 5\}$.
 - Plot of V_N(θ) versus number of parameters.


```
NN = struc(1:15,1:15,1:5); % define range of structures
V = arxstruc(Z,Z_val,NN); % compute cost for each one
plot(sum(V(2:4,1:end-1)),V(1,1:end-1),'x');
xlabel('Number of parameters'); ylabel('Cost function');
title('Costs for all models investigated');
```

- See right away that there are many poor choices! With only five parameters, would get very poor fit.
- Can also use selstruc
 GUI to manually select best model for each overall size.
 - For MDL, fifteen parameters: 8,6,1;
 - For AIC, sixteen parameters: 8,7,1.

Frequency response plots show that ARX-AIC and ARX-MDL are very similar and much better fits to the actual dynamics. Bode magnitude plot of different models

Histograms look much better than ARX221 and ARX441.
Residual bistogram for ARX_AIC

Both pass the correlation tests with flying colors.

- Note: This approach automatically takes care of the delay estimation and model-order estimation problems that we discussed earlier.
- So, these give much better models, but much larger than what we have used for the other approaches.
 - Very typical problem: ARX is not the ideal structure.
 - So, will generally be better off trying this approach with multiple non-ARX model structures.

4.15: Example with nonwhite noise

- Previous examples had white Gaussian noise, added directly in OE form. Will now try something harder.
- For valid comparison, try same experiment, but with nonwhite noise.
- Try more complicated scenario with

$$H(q) = \frac{1 - 1.633q^{-1} + 0.7567q^{-2}}{1 - 1.8623q^{-1} + 0.9851q^{-2}}.$$

- Introduces broadband noise plus narrowband noise at 0.7 rad s^{-1} .
- Now must match both G(q) and H(q) to do a good job.
 - *H*(*q*) and *G*(*q*) have a different denominator, so expect both ARX and ARMAX to struggle.
 - Also $|H(q)| \neq 1$ so OE should also be poor.
- Noise v[k] scaled to be 1/4 input signal's power, as before.

```
nne=[1 .5 .5]; dde=[1 .03 .5]; % cts H dynamics
[nume,dene] = c2dm(nne,dde,T); %ZOH conversion is default for TF's
nume = nume/nume(1);
                    % scaling to make the polynomial monic
u = idinput(Npts, 'prbs'); % input signal for identification
yc = dlsim(num,den,u); % compute "clean" output of G
e = randn(Npts, 1);
                          % dist
v = dlsim(nume,dene,e); % filtered dist
LL = 0.25*(yc'*yc)/(v'*v); % scale so energy in sensor noise 1/4 times
e = sqrt(LL) *e;
                          % scale both
                          % the energy in the "clean" signal
v = sqrt(LL) *v;
y = yc + v;
                          % actual output y=Gu+v
Z = iddata(y, u, T);
                          % data available to identification
% similar process for validation set
```

Correlation in noise not necessarily obvious.

• Some numerical results for the transfer-function coefficients of G(q) are tabulated below: ARMAX, OE good; BJ better.

	b_0	b_1	b_2	a_0	a_1	a_2
Actual	0	0.1129	0.1038	1	-1.562	0.7788
ARX221	0	0.1200	0.1106	1	-1.199	0.4338
ARMAX2221	0	0.1181	0.0868	1	-1.581	0.7984
BJ22221	0	0.1125	0.1002	1	-1.566	0.7841
OE221	0	0.1053	0.0920	1	-1.573	0.7989

• ARX441 gives reasonable fit to G(q), but BJ, ARMAX, OE look better.

ARX441 gives reasonable impulse response; BJ, ARMAX, OE better.

• Some numerical results for the transfer-function coefficients of H(q) are tabulated below: ARMAX and BJ only ones even close.

	<i>c</i> ₀	<i>C</i> ₁	<i>C</i> ₂	d_0	d_1	d_2
Actual	1	-1.634	0.7567	1	-1.862	0.9851
ARX221	1	0	0	1	-1.199	0.4338
ARMAX2221	1	-1.122	0.5905	1	-1.581	0.7984
BJ22221	1	-1.673	0.7865	1	-1.872	0.9955
OE221	1	0	0	1	0	0

• Bode plots of $\widehat{H}(q)$ also show BJ to be far superior to other methods.

• Results for noise mean and noise-power estimation of e[k] (not v[k])

	Actual	ARX221	ARMAX	BJ2221	OE221
Mean	-0.0117	-0.0026	-0.0071	-0.0155	-0.0197
σ^2	0.0310	0.0750	0.0418	0.0302	0.1038

Residuals: ARX221, ARX441, ARMAX, OE(!) fail. BJ passes well.

4.16: Model quality: Bias error

- What do we mean by a good model?
 - Close to the "true description," but that usually doesn't exist.
- Factors to keep in mind:
 - "Model quality" depends on intended use: simulation model, or prediction model for control design.
- Model quality associated with "model stability"
 - Does it change much as we look at different segments of the data?
- Need to quantify these model errors: bias and variance.
- Want a model with low bias and low variance!
- All model types have bias/variance problems, but ARX easiest (only?) case to analyze.
 - Also most pronounced.

Types of model errors

- 1. Variance errors:
 - Repeat experiment with same deterministic input u[k] but different disturbance sequence v[k].
 - Solve for model parameters: will get different values each time because the noise changes.
 - Variance errors can typically be reduced by collecting more data (want N → ∞).
- 2. Bias errors:

- Systematic errors that occur because the model chosen is not capable of describing the system dynamics.
- If we repeat the experiment, will get same (expected) values each time because of deficiency of model structure.
 - Even with no noise.
 - Model structure too small or wrong type.

Typical problems

- Consider what happens when the linear regression analysis has a non-zero mean plus white noise for e[k].
- Turns out that ARX performance is very sensitive to this type of "coloring" in the noise (bias).

SIMPLE EXAMPLE: Let y[k] + ay[k-1] = bu[k-1] + e[k].

- Let the input be white Gaussian noise: $u[k] \sim \mathcal{N}(0, 1)$.
- Consider two disturbance cases:
 - 1. Let the disturbance be white Gaussian noise: $e[k] \sim \mathcal{N}(0, 1)$.
 - 2. Let the disturbance have an unknown bias: $e[k] \sim \mathcal{N}(1, 1)$.
- We use a = 0.9, b = 0.25, and N = 1024.
- After averaging over ten different input-output sequences,
 - 1. Case 1 results: $\hat{a} = 0.9028$, $\hat{b} = 0.2563$.
 - 2. Case 2 results: $\hat{a} = 0.8128$, $\hat{b} = 0.2652$.
 - ARX performance with the non-white noise is quite poor (even though the "true" system is ARX).

Residual analysis shows us that there is a real problem here.

- Two possible solutions: de-trend or estimate the offset.
- detrend(x, 'constant') is an ad hoc approach that works well.
 - Work with modified model:

$$A(q)(y[k] - \overline{y}) = B(q)(u[k] - \overline{u}) + \widetilde{e}[k].$$

• Use the modified data $(u[k] - \overline{u}, y[k] - \overline{y})$ to estimate the parameters in A(q) and B(q).

- For our example, case 2, we get $\hat{a} = 0.9029$ and $\hat{b} = 0.2565$ using de-trended data. Very similar to the results for case 1.
 - You should nearly always detrend *y*[*k*] and *u*[*k*] data.
- The second solution is to estimate the offset.
- Write e[k] = e₀ + w[k], where e₀
 is a constant offset and w[k] is
 zero-mean white noise.
- Modify the estimation scheme so that we can estimate e₀ also.

$$y[k] = -ay[k-1] + bu[k-1] + e_0 + w[k]$$
$$= \begin{bmatrix} -y[k-1] & u[k-1] & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ e_0 \end{bmatrix} + w[k].$$

- This is a standard form, but now $\theta = \begin{bmatrix} a & b & e_0 \end{bmatrix}^T$.
- For the example given above, I solved the least-squares problem with handwritten code, averaged over ten runs, and got â = 0.9029, *b* = 0.2565, and ê₀ = 1.0005.

4.17: Bias problems in ARX WLS solution

- Consider the least-squares ARX optimization in Topic 4.8.
- Wrote prediction model as $\hat{Y} = X\theta$.
- The weighted cost function was $V_N = (Y \hat{Y})^T W(Y \hat{Y})$.
- This gives $\hat{\theta} = (X^T W X)^{-1} X^T W Y$.
- What is the bias in this estimate? Measure this by computing $\mathbb{E}[\theta \hat{\theta}]$. Want bias to be zero.

CALCULATION: Compute

$$\theta - \hat{\theta} = \theta - (X^T W X)^{-1} X^T W Y.$$

• Assume that *Y* has the form $Y = X\theta + e$. Then

$$\theta - \hat{\theta} = \theta - (X^T W X)^{-1} X^T W X \theta - \underbrace{(X^T W X)^{-1} X^T W}_{-X_W^L} e$$
$$= -X_W^{-L} e,$$

SO

$$\mathbb{E}[\theta - \hat{\theta}] = -\mathbb{E}[X_W^{-L}e].$$

• If the matrices *X* and *W* are deterministic and known, then $\mathbb{E}[\theta - \hat{\theta}] = -X_W^{-L}\mathbb{E}[e].$

• So, WLSE is unbiased for zero-mean disturbances in this case.

- Big problem: For the WLSE we care about in the ARX case, $X = \begin{bmatrix} \phi[1] \cdots \phi[N] \end{bmatrix}^T$ so is explicitly a function of measured data.
- So, we cannot pull out the X_W^{-L} term. We are stuck with the bias.

$$\mathbb{E}[\theta - \hat{\theta}] = -\mathbb{E}[(X^T W X)^{-1} X^T W e] \neq 0 \quad \text{in general.}$$

- One last exception: If e[k] is white, it will not be correlated with past data in X.
 - Therefore, $\mathbb{E}[\theta \hat{\theta}] = -\mathbb{E}[X_W^{-L}]\mathbb{E}[e] = 0.$
- In general, WLSE tends to be biased, but the bias tends to be quite small with high SNRs.
- **EXAMPLE:** Another example of problems with bias in parameter estimates.
 - Actual system has A(q)y[k] = B(q)u[k] + C(q)e[k], with

•
$$A(q) = 1 + a_0 q^{-1}$$
, $B(q) = b_0 q^{-1}$, and $C(q) = 1 + c_0 q^{-1}$.

- u[k] and e[k] independent white noises.
- Model this with ARX form

$$\hat{y}[k;\theta] = -ay[k-1] + bu[k-1]$$
$$= \theta^T \phi[k],$$

which ignores the dynamics in the error input (assumes $c_0 = 0$).

Now, compute the "prediction error variance." Since

•
$$V_N = \frac{1}{N} \sum_{k=1}^{N} \epsilon^2[k; \theta]$$
, which is approximately $\mathbb{E}[\epsilon^2[k; \theta]]$ for large N ,

- As $N \to \infty$, V_N is a good estimate of the prediction-error variance.
- That is, as $N \to \infty$, we can work with either V_N or $\overline{V} = \mathbb{E}[\epsilon^2]$.
- The latter is directly computable, which allows for interesting analytical comparison.

New cost

∎⊺

$$\overline{V} = \mathbb{E}[\epsilon^{2}] = \mathbb{E}[(y[k] - \hat{y}[k;\theta])^{2}]$$

$$= \mathbb{E}[(y[k] + ay[k-1] - bu[k-1])^{2}]$$

$$: (see appendix)$$

$$= r_{0}(1 + a^{2} - 2aa_{0}) + b^{2} - 2bb_{0} + 2ac_{0},$$
with $r_{0} = \mathbb{E}[y^{2}[k]] = (b_{0}^{2} + c_{0}^{2} - 2a_{0}c_{0} + 1)(1 - a_{0}^{2})^{-1}.$
To optimize, $\theta^{*} = \arg\min_{\theta} \overline{V},$

$$\frac{\partial \overline{V}}{\partial a} = r_{0}(2a - 2a_{0}) + 2c_{0} = 0$$

where $c_0/r_0 \approx 1/\text{SNR}$. Also

$$\frac{\partial \overline{V}}{\partial b} = 2b - 2b_0 = 0$$
$$\implies b^* = b_0.$$

 $a^* = a_0 - c_0 / r_0,$

The costs are

$$\overline{V}(\theta^*) = 1 + c_0^2 (1 - 1/r_0)$$

 $\overline{V}(\theta_0) = 1 + c_0^2,$

so $\overline{V}(\theta^*) < \overline{V}(\theta_0)$.

- By minimizing V_N for large N we expect our estimates to converge to θ^* because of the lower value of \overline{V} .
- But, these are biased since $\theta^* \neq \theta_0$.
- But, for this assumed model class, θ^* gives a better predictor since $V(\theta^*) < V(\theta_0)$.

NUMERICAL EXAMPLE: Confirmation of the above calculations.

- System has y[k] + 0.9y[k-1] = 0.25u[k-1] + e[k] + 0.7e[k-1]. So, $\theta_0 = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} = \begin{bmatrix} 0.9 \\ 0.25 \end{bmatrix}$.
- We can compute $r_0 = 1.54$, so we expect $a^* = a_0 c_0/r_0 = 0.4453$ and $b^* = b_0$. That is,

$$\theta^* = \begin{bmatrix} a^* \\ b^* \end{bmatrix} = \begin{bmatrix} 0.4453 \\ 0.25 \end{bmatrix}$$

• Averaged ARX results over ten runs for several values of N.

$$\hat{\theta}_{1024} = \begin{bmatrix} 0.4580\\ 0.2530 \end{bmatrix}, \quad \hat{\theta}_{4096} = \begin{bmatrix} 0.4501\\ 0.2508 \end{bmatrix}, \quad \hat{\theta}_{16384} = \begin{bmatrix} 0.4485\\ 0.2525 \end{bmatrix}$$

- Note that $\overline{V}(\theta_0) = 1.49$ and $\overline{V}(\theta^*) = 1.17$.
- Algorithm gives us the best possible predictor, but this does not necessarily mean we get a good model.
- Average ten ARMAX models: $\theta^*_{\text{ARMAX}} = \begin{bmatrix} 0.9025 & 0.2520 & 0.7038 \end{bmatrix}^T$, which gives a good fit with low bias.
- Conclusion: If the model type or size is wrong, we will get a bias in the parameters.

Variance errors

- Assume that our estimate has zero bias.
- Can show that, if θ_0 is the value of the actual parameters, then

$$P_N = \mathbb{E}[(\hat{ heta}_N - heta_0)(\hat{ heta}_N - heta_0)^T] pprox rac{\sigma^2}{N} \overline{R}^{-1},$$

where σ^2 is the variance of the added noise e[k], and $\overline{R} = \mathbb{E}[\psi(k, \theta_0)\psi^T(k, \theta_0)]$ where

$$\psi(k,\theta_0) = \frac{\mathrm{d}}{\mathrm{d}\theta}\hat{y}[k,\theta]\Big|_{\theta_0}$$

which is the gradient of prediction with respect to θ .

- Covariance decreases with less noise and/or more data.
- Quality of $\hat{\theta}_N$ depends on sensitivity of prediction to θ (ψ).
 - Small sensitivity means that ψ is small, so \overline{R} is small, and \overline{R}^{-1} is large, so variance is large.
- Of course, to be of any use, we need to estimate \overline{R} and σ^2 .

$$\hat{R}_N = \frac{1}{N} \sum_{k=1}^N \psi(k; \hat{\theta}_N) \psi^T(k; \hat{\theta}_N)$$
$$\hat{\sigma}_N^2 = \frac{1}{N} \sum_{k=1}^N \epsilon^2[k; \hat{\theta}_N]$$
$$\hat{P}_N = \frac{1}{N} \hat{\sigma}_N^2 \hat{R}_N^{-1}.$$

• For ARX, $\hat{y}[k] = \theta^T \phi[k]$ and $\frac{d}{d\theta} \hat{y}[k] = \phi[k]$, so $\phi[k] = \begin{bmatrix} -y[k-1] \\ u[k-1] \end{bmatrix}$.

- This gives $\overline{R} = \mathbb{E}[\psi \psi^T] = \begin{bmatrix} R_y[0] & R_{yu}[0] \\ R_{yu}[0] & R_u[0] \end{bmatrix}$.
- We now see that the selection of u[k] explicitly plays a role in the accuracy of our estimates through R_u and R_{yu}.

These tools allow us to display confidence bounds for the models we develop.

Where from here?

- Transfer functions great for analysis and design of predictors for and control of LTI SISO systems.
- But, much harder to use for MIMO systems, and much harder to identify transfer-function models for MIMO systems.
- Also, nonlinear optimization required for all but simplest transfer-function approaches, which can get "stuck" in local minima, yielding sub-optimal models.
- "State space" models are an alternate way to describe system dynamics.
 - Work great for multi-input, multi-output systems.
 - Can provide access to what goes on inside a system in addition to an input-output mapping only (however, a system-ID model will not automatically provide this insight).
 - Allow new analysis and synthesis tools for estimation and control that are *very* powerful.
- Furthermore, deterministic globally optimal solutions exist to the system-ID problem. No local minima.
- So, our next topic is a preview of state-space systems (prior exposure helpful, but not necessary).
- From there, we will continue to explore a number of system-ID approaches for state-space models.

Appendix: Variance calculations for bias example

• These calculations are for the example in Topic 4.17.

$$\mathbb{E}[y^{2}[k]] = \mathbb{E}[(-a_{0}y[k-1] + b_{0}u[k-1] + e[k] + c_{0}e[k-1])^{2}]$$

$$(-a_{0})^{2}\mathbb{E}[y^{2}[k-1]] = a_{0}^{2}\mathbb{E}[y^{2}[k]]$$

$$-2a_{0}b_{0}\mathbb{E}[y[k-1]u[k-1]] = 0$$

$$-2a_{0}\mathbb{E}[y[k-1]e[k]] = 0$$

$$-2a_{0}c_{0}\mathbb{E}[y[k-1]e[k-1]] = -2a_{0}c_{0} \times$$

$$\mathbb{E}[(-a_{0}y[k-2] + b_{0}u[k-2] + e[k-1] + c_{0}e[k-2])e[k-1]]$$

$$= -2a_{0}c_{0}$$

$$b_{0}^{2}\mathbb{E}[u^{2}[k-1]] = b_{0}^{2}$$

$$\mathbb{E}[u[k-1]e[k]] = \mathbb{E}[u[k-1]e[k-1]] = 0$$

$$\mathbb{E}[e^{2}[k]] + 2c_{0}\mathbb{E}[e[k]e[k-1]] + c_{0}^{2}\mathbb{E}[e^{2}[k-1]]$$

$$= 1 + c_{0}^{2}$$
so,
$$\mathbb{E}[y^{2}[k]] = a_{0}^{2}\mathbb{E}[y^{2}[k]] - 2a_{0}c_{0} + b_{0}^{2} + 1 + c_{0}^{2}$$

$$= (b_{0}^{2} + 1 + c_{0}^{2} - 2a_{0}c_{0})(1 - a_{0}^{2})^{-1}.$$

Also

$$\mathbb{E}[(y[k] - \hat{y}[k])^2] = \mathbb{E}[(y[k] + ay[k-1] - bu[k-1])^2]$$

$$\mathbb{E}[y^2[k]] = r_0$$

$$2a\mathbb{E}[y[k]y[k-1]] = 2a\mathbb{E}[(-a_0y[k-1] + b_0u[k-1] + e[k] + c_0e[k-1])y[k-1]]$$

$$= 2(-aa_0\mathbb{E}[y^2[k]] + ac_0)^2$$

 $2\mathbb{E}[y[k](-bu[k-1])] = -2b\mathbb{E}[(-a_0y[k-1]+b_0u[k-1]+e[k]+c_0e[k-1])u[k-1]]$ $= -2bb_0$ $b^2\mathbb{E}[u^2[k-1]] = b^2$ $\mathbb{E}[a[y[k-1]bu[k-1]] = 0$ $\mathbb{E}[(ay[k-1])^2] = a^2\mathbb{E}[y^2[k]]$ SO, $\mathbb{E}[(y[k] - \hat{y}[k])^2] = r_0(1 + a^2 - 2aa_0) + b^2 + 2ac_0 - 2bb_0.$