
ECE5560: System Identification 1–1

Introduction to System Identification

1.1: Background concepts

■ The goal of system identification is to develop an “appropriate”

mathematical model of a specific dynamic system using observed

data combined with:

1. Basic mechanics and dynamics, and

2. Prior knowledge of relationships between signals.

■ Generally, models can be of different types

� White box: A physical/analytical description of the dynamics of a

system for which a lot of information is known a priori. For

example, F.t/ D ma.t/, or V.t/ D RI.t/, and so forth.

◆ Once the model description is determined, system identification

comprises measuring the unknown parameters directly, or

performing experiments designed to infer the parameter values

indirectly.

◆ We do not look at white-box system identification in this course.

� Black box: A completely empirical description of the dynamics of a

system for which essentially no information is known a priori.

◆ This is the focus of this course.

� Gray box: A combination of the two.

◆ If the “known” white-box part can be subtracted out, the

unknown part may be identified using methods from this course.
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KEY RULE: Don’t estimate what you know.

■ System identification is not the end of the story.

■ It is best for preliminary analysis to get initial quick-and-dirty solu-

tions to problems, or as a last resort.

■ The models we identify will be primarily input/output models.

� Even though we will look at state-space methods, the identified

state may not correspond directly to any physical state description.

� If that is desired, prior knowledge must be incorporated into the

methods to enforce this relationship via constraints.

■ System ID, in general, tends to be very experimental, heuristic.

� We will develop some essential tools required to perform the task

BUT

It will take many more tries (years?) to develop the intuition

necessary to get good, low-order models.

� Need to work with real data as much as possible.

■ Why do system ID?

� Can develop models for systems with very complex dynamics

and/or systems with unknown physical parameter values.

� Really should be done in parallel with the development of an

analytic model (well-formed formula, WFF).

■ End use of model dictates model accuracy requirements:

� For use in control system design,

� Estimation (of states not available),
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� Prediction (of response to different inputs).

■ System identification process: Iterative on many levels

Start
here Prior

knowledge
Design

experiment

Choose
model

structure

Choose
criterion

of fit

Collect
data

Collect
data

Calculate
model

Validate
model

Okay: Use it!

Not okay:

Learned

something!

So, revise

EXPERIMENT: Need to design experiment well to get useful data.

MODEL STRUCTURE: Many choices, pick one based on our

understanding of system dynamics.

FIT CRITERION: Used by optimization to determine model parameters.

CALCULATE MODEL: Optimization to select model parameters.

EVALUATION: Validate model to make sure that the fit is reasonable.

Issues encountered when performing system ID

Some issues with experiment design

■ Open loop or closed loop?

� Often no choice (e.g., if system is open-loop unstable), but,

� Closed loop introduces many complicating factors.

■ What is the input sequence?

� Frequency content has big impact!
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� Actuator limits interfere (slew rates, saturation).

■ What sampling rate and data length (memory)?

■ Data filtering: Must deal with drifts, biases, outliers; attenuate noise.

Some issues with model structure

NON-PARAMETRIC: Frequency response plot, or impulse response. We

focus on these models during first weeks of the course.

PARAMETRIC: Capture dynamics in a simple parametrized structure. For

example, transfer-function form

G.s/ D

s C �

s

2

C �

1

s C �

2

.

We focus on these for the rest of the course (first: transfer functions;

next: state space).

SYSTEM CLASS: For example, linear versus nonlinear (we focus on linear

models, but text also talks about nonlinear).

MODEL SIZE: For example, number of poles and zeros of system transfer

function and disturbance transfer function. Also, how many delays

between input and output?

Some issues with fitting the model

■ Big tradeoff between accuracy of final model and ease of solution in

finding a decent model.

■ Significant degree of user input required.

■ Does the process always work?
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Some issues with validation

■ Different data sets used to create model and validate model.

■ Validation method chosen depends on ultimate use of model (e.g.,

prediction versus estimation).

� Time- and frequency-domain analysis of the error.

� Stochastic analysis of the residual error.

■ Does result imply that we should make changes to:

� Experiment (input sequence),

� Model choice (order, type, . . . ),

� Objective function for fit,

� Optimization procedure,

� All of the above?
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1.2: Dryer example

■ Data from a laboratory model of a hair dryer.

� Input: Current applied to some heating elements (resistors).

� Fan blows the air past the heating coils.

� Output. Thermistor measures the temperature variations.

� Below: Main I/O data set (left), and validation I/O data set (right).
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■ Making a physical model would require that we understand:

� How the coils respond to applied current (heat source efficiency).

� How the air and coils interact (heating/cooling).

� Air flow propagation through nozzle.

■ Can try to make a model from the measured data only
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� Rich input sequence, and fairly complex response.

■ By the processes that we will develop in this course, we can develop

a discrete time model for this system.

� Typically start by plotting “Bode” plot of data to get an idea of likely

system order, number of poles/zeros.

◆ Note that the rapidly decreasing phase is an indicator of pure

delay terms e

�s� in the transfer function.

� So, also plot estimated step response to get an idea of how many

delays. In this case, around three samples.

◆ Can also use GUI tool to select model “size.”
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■ We use some built-in routines in MATLAB to estimate the model,

which gives us the following output (“q�1” = unit delay):

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)

A(q) = 1 - 0.9938 (+-0.04529) q^-1 + 0.05448 (+-0.06351) q^-2

- 0.04001 (+-0.06316) q^-3 + 0.1896 (+-0.05791) q^-4

- 0.06689 (+-0.0229) q^-5

B(q) = 0.06668 (+-0.001582) q^-3 + 0.05999 (+-0.003462) q^-4

+ 0.01748 (+-0.004437) q^-5 - 0.00555 (+-0.004403) q^-6

- 0.005821 (+-0.003185) q^-7

Estimated using ARX on data set ze

Loss function 0.0015097 and FPE 0.00157009

Sampling interval: 0.08 sec

Created: 08-Jan-2011 17:10:44

Last modified: 08-Jan-2011 17:10:44

■ In terms of performance, we care about how well the model predicts

and simulates.

� Plots show prediction and prediction errors in time and frequency

domain (the latter with 3� error bounds):
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■ We can also do “residual analysis” to see if we’ve squeezed all the

information from the data.
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■ Model provides reasonable fit.

� No obvious structure to the

residual errors, which will be

one of our discriminators.

■ So, to proceed in this course,

we will need to develop tools in:

� Analysis of linear systems,

� Stochastic processes and

random variables,

� Discrete model structures

and nonlinear optimization,

� And more. . .
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Where from here?

■ We first focus our attention on some background topics, which blend

well with nonparametric system identification.

■ We then look at transfer-function models, and methods to identify the

transfer function parameters.

■ Our final topic is MIMO state-space models and system identification.

■ Will try to blend techniques into (nearly) every lecture, so that theory

and practice have good blend.

■ Course goal is a practical survey of the most important methods used.
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Appendix: Code for example

load dryer2; % load example data from sysid toolbox

Ts = 0.08; % assumed sample period for data

% Remove equilibrium values from primary data and validation data

u2 = u2 - mean(u2); y2 = y2 - mean(y2);

ue = u2(1:length(u2)/2); uv = u2(length(u2)/2+1:end);

ye = y2(1:length(y2)/2); yv = y2(length(y2)/2+1:end);

% Create iddata objects for sysid toolbox to work with

% If you want to see "inside", use "get(ze)" or "get(zv)"

ze = iddata(ye,ue,Ts); zv = iddata(yv,uv,Ts);

% Set some properties of the objects

ze.InputName = 'Current'; ze.InputUnit = 'A';

ze.OutputName = 'Temperature'; ze.OutputUnit = '\circC';

ze.TimeUnit = 'sec'; zv.TimeUnit = 'sec';

zv.InputName = 'Current'; zv.InputUnit = 'A';

zv.OutputName = 'Temperature'; zv.OutputUnit = '\circC';

% Plot input/output data for main and validation data sets

figure(1); clf; plot(ze); figure(2); clf; plot(zv);

% Estimate frequency-response model to get a feel for how many poles/zeros

Ge = spa(ze); figure(3); clf; bode(Ge);

% Estimate step-response model to get a feel for how many input delays

figure(4); clf; step(impulseest(ze),2); xlim([-1 2]);

% Can also do this to estimate how many delays

nk = delayest(ze); % responds with "3"

% Select the most likely structure size for this data (ARX model)

NN = struc(2:5,1:5,nk);

theStruc = selstruc(arxstruc(ze(:,:,1),zv(:,:,1),NN)); % use [5 5 3]

% Do the ID, using this ARX model type

Marx = arx(ze,theStruc);

present(Marx) % display identified model, with uncertainties

marxPoles = roots(Marx.a) % e.g., get some info from the model

figure(5); clf; compare(zv,Marx)
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title('Comparing data to prediction');

legend('location','best');

figure(6); clf; resid(zv,Marx)

h = get(gcf,'Children');

title(h(1),'Correlation of output residuals');

title(h(2),'Correlation b/w input current and residuals');

xlabel(h(1),'Lag'); xlabel(h(2),'Lag');

figure(7); clf;

yp = predict(Marx,zv,10); % how good at predicting 10 samples ahead?

plot(Ts*(1:length(ue)),[zv.OutputData yp.OutputData]);

legend('Actual data','Predicted data');

xlabel(strcat('Time (', zv.TimeUnit,')'));

ylabel(strcat(zv.OutputName,' (',zv.OutputUnit,')'));

title('Comparing system output to predicted output');

figure(8); clf;

err = pe(Marx,zv); % compute prediction error

h = bodeplot(spa(err,[],logspace(-2,2,200))); showConfidence(h,3);

title('Power spectrum for e@Temperature');
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