
ECE5550: Applied Kalman Filtering A–1

LINEAR ALGEBRA (MATRIX) REVIEW

A.1: Terminology and notation

■ Kalman filters require that the system whose state is being estimated
be represented by a model in “state space” form.

■ This form, and hence the Kalman filter method, relies heavily on
matrix/vector operations.

■ This set of notes reviews the mechanics of matrix manipulation. An
attempt is also made to aid intuition.

■ A matrix is a rectangular array of scalars written between brackets.

EXAMPLE:

A =

⎡

⎢⎣
0.1 1.2 −2.4 0.4
0.5 −0.2 1.3 −2.5

−0.2 1.1 9.5 −1.8

⎤

⎥⎦ .

■ An important attribute of a matrix is its size or dimension:

■ Always measured in number of rows × number of columns.
Above: 3 × 4.

■ The entries or coefficients are the values in the array.

■ The i, j entry is the value in the i th row and the j th column.

■ The i, j th entry in matrix A is Ai j which is a number.

■ The positive integers i and j are called the (row and column,
respectively) indices.
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■ In MATLAB:
A = [0.1, 1.2, -2.4, 0.4; 0.5, -0.2, 1.3, -2.5; -0.2, 1.1, 9.5, -1.8];

EXAMPLE: A13 = −2.4, A31 = −0.2. The row index of the bottom row is 3,
the column index of the first column is 1.

■ In MATLAB:
result = A(1,3);

■ A matrix with only one column (i.e., size of n × 1) is called a column
vector, or just a vector.

■ Sometimes, size is specified by calling it an n-vector.

■ Entries are denoted with just one subscript (the other is “1”) as in v3.

■ The entries are sometimes called the components of the vector.

EXAMPLE:

v =

⎡

⎢⎣
3

0.5
−1

⎤

⎥⎦

is a 3-vector (or 3 × 1 matrix); its third component is v3 = −1.

■ Similarly, a matrix with a single row (size 1 × n) is a row vector.

EXAMPLE:
w =

[
8 −1 0.1

]

is a row vector (or 1 × 3 matrix); its second component is w2 = −1.

■ Sometimes a 1 × 1 matrix is considered to be the same as a scalar,
i.e., a number.

■ Two matrices are equal if they are the same size and all the
corresponding entries (which are numbers) are equal.
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Notational conventions

■ Some authors try to use notation that helps the reader distinguish
between matrices, vectors and scalars.

■ For example,

• Greek letters (α, β, . . .) might be used for numbers;

• Lowercase letters (a, x, y, . . .) might be used for vectors;

• Uppercase letters (A, B, . . .) for matrices.

■ Other notational conventions include matrices given in bold font (H),
or vectors written with arrows above them (a⃗).

■ But, there are about as many notational conventions as authors!

■ Be prepared to figure out what things are (i.e., scalars, vectors,
matrices) despite the author’s notational scheme (if any exists!).

Zero matrices

■ The zero matrix (of size m × n) has all entries equal to zero.

■ Sometimes written as 0m×n where subscript denotes size.

■ Often just written as 0, the same symbol used to denote the number 0.

■ You need to figure out the size of the zero matrix from the context.

■ Zero matrices of different sizes are different matrices, even though we
use the same symbol (i.e., 0).

■ In programming, this is called overloading; we say that the symbol 0 is
overloaded because it can mean different things depending on its
context (i.e., the equation it appears in).
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■ When a zero matrix is a (row or column) vector, we call it a zero (row
or column) vector.

Identity matrices

■ An identity matrix is another common matrix.

■ It is always square, i.e., has the same number of rows as columns.

■ Its diagonal entries, i.e., those with equal row and column indices, are
all equal to 1.

■ Its off-diagonal entries, i.e., those with unequal row and column
indices, are equal to 0.

■ Identity matrices are denoted by the letter I . Sometimes a subscript
denotes the size, as in I3 or maybe I2×2.

■ Often, size must be determined from context (as for zero matrices).

■ Formally, the identity matrix is defined by

Ii j =
{

1, i = j;
0, i ̸= j .

EXAMPLES:
[

1 0
0 1

]

,

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎦
,

which are 2 × 2 and 4 × 4 identity matrices. Remember that both are
denoted by the same symbol—I .

■ In MATLAB:
I2 = eye(2);

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, Gregory L. Plett



ECE5550, LINEAR ALGEBRA (MATRIX) REVIEW A–5

A.2: Matrix operations: Transpose, addition, subtraction

■ Matrices may be manipulated and combined in various operations to
form other matrices.

Matrix transpose

■ If A is an m × n matrix, its transpose, denoted AT (or sometimes A′),
is the n × m matrix given by

[
AT ]

i j = A ji .

■ In other words, the rows and columns of A are transposed in AT .

EXAMPLE: ⎡

⎢⎢⎢⎢⎣

1 2 3
4 5 6
7 8 9
1 2 3

⎤

⎥⎥⎥⎥⎦

T

=

⎡

⎢⎣
1 4 7 1
2 5 8 2
3 6 9 3

⎤

⎥⎦ .

■ Note that transposition converts row vectors into column vectors, and
vice versa.

■ If we transpose a matrix twice, we get back the original matrix:(
AT )T = A.

■ If a matrix equals its own transpose, that matrix is said to be
symmetric. Symmetric matrices will come up a lot in this course, and
have special properties that we will find very useful.

■ In MATLAB, there are two different transpose operators:

Atranspose1 = A'; % Conjugate (Hermetian) transpose
Atranspose2 = A.'; % True transpose
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Matrix addition and subtraction

■ Two matrices of the same size can be added together to form another
matrix (of the same size) by adding the corresponding entries.

■ Matrix addition is denoted by the symbol +. (Thus the symbol + is
overloaded to mean scalar addition when scalars appear on its left-
and right-hand side, and matrix addition when matrices appear on its
left- and right-hand sides.)

EXAMPLE: [
1 2
3 4

]

+
[

5 6
7 8

]

=
[

6 8
10 12

]

.

■ Note that (row or column) vectors of the same size can be added, but
you cannot add together a row vector and a column vector (except if
they are both scalars!).

■ Matrix subtraction is similar:

■ In MATLAB:

result = [1 2; 3 4] + [5 6; 7 8];

EXAMPLE: [
1 2
3 4

]

− I =
[

0 2
3 3

]

.

■ Note that this gives an example where we have to figure out what size
the identity matrix is. Since you can only add (or subtract) matrices of
the same size, we conclude that I must refer to a 2 × 2 identity matrix.

■ In MATLAB:

result = [1 2; 3 4] - eye(2);
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■ Matrix addition is commutative; i.e., if A and B are matrices of the
same size, then A + B = B + A.

■ It is also associative; i.e., (A + B) + C = A + (B + C), so we write
both as A + B + C .

■ We always have A + 0 = 0 + A = A; i.e., adding the zero matrix has
no effect.

Scalar multiplication

■ If we multiply a matrix by a scalar, the resulting matrix has every entry
multiplied by the scalar.

■ Usually denoted by juxtaposition, with the scalar on the left, as in

(−2)

⎡

⎢⎣
1 4
2 5
3 6

⎤

⎥⎦ =

⎡

⎢⎣
−2 −8
−4 −10
−6 −12

⎤

⎥⎦ .

■ In MATLAB:

result = (-2) * [1 4; 2 5; 3 6];

■ Sometimes you see scalar multiplication with the scalar on the right,
or even scalar division with the scalar shown in the denominator
(which just means scalar multiplication by one over the scalar), as in

⎡

⎢⎣
1 4
2 5
3 6

⎤

⎥⎦ · 2 =

⎡

⎢⎣
2 8
4 10
6 12

⎤

⎥⎦ ,

[
1 3 5
2 4 6

]

2
=

[
0.5 1.5 2.5
1 2 3

]

,

but these look ugly.
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■ Scalar multiplication obeys several laws you can determine for
yourself. e.g., if A is any matrix and α, β are any scalars, then

(α + β)A = αA + β A.

■ It is useful to identify the symbols above. The + sign on the left is the
addition of scalars. The + sign on the right denotes matrix addition.

■ Another simple property is (αβ)A = (α)(β A), where α and β are
scalars and A is a matrix. On the left side we have scalar-scalar
multiplication (αβ) and scalar-matrix multiplication; on the right side
we see two cases of scalar-matrix multiplication.

■ Note that 0 · A = 0 (where the left-hand zero is the scalar zero, and
the right-hand zero is a matrix zero of the same size as A).
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A.3: Matrix operations: Multiplication, powers, inverse

Matrix multiplication

■ It is also possible to multiply two matrices using matrix multiplication.

■ You can multiply two matrices A and B provided that their dimensions
are compatible, which means that the number of columns of A equals
the number of rows of B.

EXAMPLE:
Am×p Bp×n = Cm×n.

■ The product is defined by

Ci j =
p∑

k=1

Aik Bkj = Ai1B1 j +· · ·+ Aip Bpj, i = 1, . . . , m, j = 1, . . . , n.

■ This looks complicated, but is not too difficult.
⎡

⎢⎢⎢⎢⎢⎢⎣

A11 · · · A1p
... ...

Ai1 · · · Aip
... ...

Am1 · · · Amp

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
B11 · · · B1 j · · · B1n
... ... ...

Bp1 · · · Bpj · · · Bpn

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 · · · C1n
... ...

Ci j
... ...

Cm1 · · · Cmn

⎤

⎥⎥⎥⎥⎥⎥⎦

■ To find the i, j th entry of the product C = AB, you need to know the
i th row of A and the j th column of B.

■ The summation above can be interpreted as “moving left-to-right
along the row i of A while moving top-to-bottom down column j of B.
As you go, keep a running sum of the product of entries: one from A
and one from B.”
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■ Now we can explain why I is called the identity matrix: If A is any
m × n matrix, then AI = A and I A = A, i.e., when you multiply a
matrix by an identity matrix, it has no effect. (The identity matrices in
AI = A and I A = A have different sizes—what are they?)

■ One VERY important fact is that matrix multiplication is not (in
general) commutative. We DON’T have AB = B A. In fact B A may
not even make sense (due to dimensions) and even if it does make
sense, it may have different dimension than AB so that equality in
AB = B A is meaningless.

EXAMPLE: If A is 2 × 3 and B is 3 × 4 then AB makes sense, and is 2 × 4.
B A does not make sense.

EXAMPLE: Even if both make sense (as in when both are square, for
example) AB ̸= B A in general

[
1 2
3 4

] [
5 6
7 8

]

=
[

19 22
43 50

]

,

[
5 6
7 8

] [
1 2
3 4

]

=
[

23 34
31 46

]

.

■ In MATLAB:

result = [1 2; 3 4] * [5 6; 7 8];

■ Matrix multiplication is associative; i.e., (AB)C = A(BC). Therefore,
we write a product as ABC .

■ Matrix multiplication is also associative with scalar multiplication; i.e.;
α(AB) = (αA)B.

■ Matrix multiplication distributes across matrix addition:
A(B + C) = AB + AC , and (A + B)C = AC + BC .
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Matrix–vector product

■ A very important type of matrix multiplication: matrix-vector product.

EXAMPLE:
y = Ax ,

where A is an m × n matrix, x is an n-vector and y is an m-vector.

■ We can think of matrix-vector multiplication (with an m × n matrix) as
a function that transforms n-vectors into m-vectors. The formula is:

yi = Ai1x1 + · · · + Ainxn, i = 1, . . . , m.

Inner product

■ Another special case is the product of a row vector with a column
vector with the same number of elements.

■ Then vw makes sense, and has size 1 × 1 (i.e., a scalar).

■ vw = v1w1 + · · · + vnwn. This often occurs in the form x T y where x
and y are both column n-vectors. In this case the product is called the
inner product or dot product of the vectors x and y. Other notation is:
⟨x, y⟩ or x · y.

Matrix powers

■ When a matrix A is square, then it makes sense to multiply A by
itself; i.e., to form A · A. We call this A2. Similarly, k copies multiplied
together are Ak.

■ Non-integer powers, such as A
1
2 =

√
A, are pretty tricky.

• They might not make sense, or be ambiguous, unless certain
conditions on A hold.
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• We will need to be able to compute
√

A later, and will discuss it
more at that point in time.

■ By convention, we set A0 = I (usually only when A is invertible).

Matrix inverse

■ If A is square, and there is a matrix F such that F A = I , then we say
that A is invertible or nonsingular. We call F the inverse of A, and
denote it A−1. Then, A−k = (A−1)k.

■ It is important to note that not all square matrices are invertible. For
example, the zero matrix never has an inverse. A less-obvious
example is to show that [

1 −1
−2 2

]

does not have an inverse.

■ As an example of a matrix inverse, we have
[

1 1
1 2

]−1

=
[

2 −1
−1 1

]

(you should check this!)

■ In MATLAB:
result = inv([1 1; 1 2]);

■ It is very useful to know the general formula for a 2 × 2 matrix inverse.
[

a b
c d

]−1

= 1
ad − bc

[
d −b

−c a

]

provided ad − bc ̸= 0. (If ad − bc = 0, the matrix is not invertible.)

■ When a matrix is invertible,
(

A−1)−1 = A.
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Useful identities

■ Here are a few useful identities. This list is not complete!

1. Transpose of product: (AB)T = BT AT .
2. Transpose of sum: (A + B)T = AT + BT .
3. Inverse of product: (AB)−1 = B−1 A−1 provided A and B are square

and invertible.
4. Products of powers: Ak Al = Ak+l (for k, l ≥ 1 in general, and for all

k, l if A is invertible).

Block matrices and submatrices

■ Sometimes it is convenient to form matrices whose entries are
themselves matrices.

[
A B C

]

[
F I
0 G

]

.

where A, B, C, F and G are matrices (as are 0 and I ). Such
matrices are called block matrices.

■ Block matrices need to have the right dimensions to fit together.

EXAMPLE:

A =
[

1 2
0 2

]

B =
[

3
1

]

C =
[

1 0
]

D =
[

0
]
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[
A B
C D

]

=

⎡

⎢⎣
1 2 3
0 2 1
1 0 0

⎤

⎥⎦ .

■ Block matrices may be added and multiplied as if the entries were
numbers, provided the corresponding entries have the right size and
you are careful about the order of multiplication.

[
A B
C D

] [
X
Y

]

=
[

AX + BY
C X + DY

]

,

provided the products AX, BY, C X and DY make sense.

■ In MATLAB:

bigMatrix = [A, B; C, D];
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A.4: Linear equations and matrices

Linear functions

■ Suppose function f takes n-vectors as input and returns m-vectors.

■ We say that f is linear iff

SCALING: For any n-vector x and scalar α, f (αx) = α f (x).

SUPERPOSITION: For any n-vectors x and y, f (x + y) = f (x) + f (y).

■ Such a function may always be represented as a matrix-vector
multiplication f (x) = Ax .

■ Conversely, all functions represented by f (x) = Ax are linear.

■ We can also write the function in explicit form, where f (x) = y as

yi =
n∑

j=1

Ai j x j = Ai1x1 + · · · + Ainxn, i = 1, . . . , m.

This gives a simple interpretation of Ai j : it gives the coefficient by
which yi depends on x j .

Linear equations

■ Any set of m linear equations in (scalar) variables x1, . . . xn can be
represented by Ax = b, where x is a vector made from the variables,
A is a m × n matrix and b is a m-vector.

EXAMPLE:
1 + x2 − x3 = −2x1, x3 = x2 − 2.

■ Rewrite the equations with the variables lined up in columns, and the
constants on the right-hand side.
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2x1 +x2 −x3 = −1
0x1 −x2 +x3 = −2.

■ Now it is easy to rewrite the equations as a single matrix equation
[

2 1 −1
0 −1 1

] ⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =
[

−1
−2

]

,

so we have two equations in three variables as Ax = b where

A =
[

2 1 −1
0 −1 1

]

, x =

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ , b =
[

−1
−2

]

.

Solving linear equations

■ Suppose we have n linear equations in n variables x1, . . . , xn, written
in the compact matrix notation Ax = b.

■ A is a n × n matrix; b is an n-vector. Suppose that A−1 exists. Multiply
both sides of Ax = b by A−1.

A−1(Ax) = A−1b

I x = A−1b

x = A−1b.

■ We have solved the simultaneous equations.

■ We can’t always solve n simultaneous equations for n variables. One
or more of the equations may be redundant (i.e., may be obtained
from the others), or the equations may be inconsistent (i.e., x1 = 1,
and x1 = 2).
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■ When these pathologies occur, A is singular (non-invertible).
Conversely, when A is non-invertible, the equations are either
redundant or inconsistent.

■ From a practical point of view, either you don’t have enough equations
or you have the wrong ones. Otherwise, A−1 exists, and you can
solve x = A−1b.

Solving linear equations in practice

■ When we solve linear equations by computer, we don’t use x = A−1b,
although it would work. Practical methods compute x = A−1b directly.

■ A may be large, sparse, or poorly conditioned. There exist efficient
methods to handle each case.

■ In MATLAB,

x=A\b;

The determinant function

■ Consider the set of equations

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

or [
a11 a12

a21 a22

] [
x1

x2

]

=
[

b1

b2

]

.

■ Multiply the first equation by a22 and the second equation by −a12.
Add the resulting two equations:
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a11a22x1 + a12a22x2 = a22b1

−a12a21x1 − a12a22x2 = −a12b2

(a11a22 − a12a21︸ ︷︷ ︸
det(A)

)x1 = a22b1 − a12b2

so we can solve for x1.

■ Multiply first equation by −a21 and the second by a11. Add the
resulting two equations:

−a11a21x1 − a12a21x2 = −a21b1

a11a21x1 + a11a22x2 = a11b2

(a11a22 − a12a21︸ ︷︷ ︸
det(A)

)x2 = a11b2 − a21b1

so we can solve for x2.

■ Determinants come up naturally when solving systems of equations.

2 × 2 :

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21

3 × 3 :

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
=

a11a22a33 + a12a23a31

+a13a21a32 − a13a22a31

−a11a23a32 − a12a21a33,

and so forth.

■ In MATLAB:

result = det(A);

■ A−1 = adj(A)

det(A)
, det(AB) = det(A) det(B) when both are square, and

det(AT ) = det(A).
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A.5: Interpreting y = Ax

■ Consider the system of linear equations

y1 = A11x1 + A12x2 + · · · + A1nxn

y2 = A21x1 + A22x2 + · · · + A2nxn

...

ym = Am1x1 + Am2x2 + · · · + Amnxn

which can be written as y = Ax , where

y =

⎡

⎢⎢⎢⎢⎣

y1

y2
...

ym

⎤

⎥⎥⎥⎥⎦
, A =

⎡

⎢⎢⎢⎢⎣

A11 A12 · · · A1n

A21 A22 · · · A2n
... . . . ...

Am1 Am2 · · · Amn

⎤

⎥⎥⎥⎥⎦
, x =

⎡

⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤

⎥⎥⎥⎥⎦
.

■ Some interpretations of y = Ax :

■ y is measurement or observation; x is unknown to be determined

■ x is “input” or “action”; y is “output” or “result”.

■ y = Ax defines a function that maps x ∈ Rn into y ∈ Rm.

■ Ai j is the gain factor from the j th input (x j) to the i th output (yi).

■ Thus,

• i th row of A concerns i th output.

• j th column of A concerns j th input.

• A27 = 0 means 2nd output (y2) doesn’t depend on 7th input (x7).

• |A31| ≫ |A3 j | for j ̸= 1 means y3 mostly depends on x1.

• |A52| ≫ |Ai2| for i ̸= 5 means x2 mostly affects y5.
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Interpreting y = Ax via the columns of A: ai

■ Write A in terms of its columns

A =
[

a1 a2 · · · an

]
,

where a j ∈ Rm.

■ Then, y = Ax can be written as

y = x1a1 + x2a2 + · · · + xnan

(note: x j ’s are scalars, a j ’s are m-vectors)

■ y is a linear combination or mixture of the columns of A.

■ Coefficients of x give coefficients of mixture.

EXAMPLE:

A =
[

1 −1
2 1

]

, x =
[

1.0
−0.5

]

, y =
[

1.5
1.5

]

.

x = (1, −0.5)

Ax = (1)a1 + (−0.5)a2

= (1.5, 1.5)

a1

a2

Interpreting y = Ax via the eigenvectors/eigenvalues of A

■ “Eigen” is a German word meaning (roughly) “characteristic”.
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■ The eigenvectors and eigenvalues of a matrix A characterize its
behavior.

■ An eigenvector is a vector satisfying

Av = λv ,

where λ is a (possibly complex) constant, and v ̸= 0.

■ That is, multiplying by A does nothing to the vector except change its
length!

■ This is a very unusual vector. There are usually only n of them if A
has size n × n.

■ Note that if v is an eigenvector, kv is also an eigenvector—so
eigenvectors are often normalized to have unit length: ∥v∥ = 1.

■ The constant λ is an eigenvalue. Specifically, it is the eigenvalue
associated with eigenvector v .

■ Since there are (usually) n eigenvectors with n corresponding
eigenvalues, we label the eigenvectors and eigenvalues vi and λi

where 1 ≤ i ≤ n.

Why is this important?

■ Suppose we have a vector x = v1 + 2v2. Then, Ax = λ1v1 + 2λ2v2.

■ That is, if we decompose the input into “eigenvector coordinates,” then
multiplication by A is simply adding together scaled eigenvectors.

■ Assume that v1, v2, . . . vn are linearly independent.

Avi = λivi i = 1, 2, . . . , n
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A
[

v1 v2 . . . vn

]

︸ ︷︷ ︸
V

=
[

v1 v2 . . . vn

]
⎡

⎢⎣
λ1 0

. . .

0 λn

⎤

⎥⎦

︸ ︷︷ ︸
$

■ AV = V $ ➠ V −1 AV = $ or A = V $V −1.

■ Then, we can write y = Ax as

y = V $V −1x .

■ V −1 decomposes x into the “eigenvector coordinates”. $ is a
diagonal matrix multiplying each component of the resulting vector by
the eigenvalue associated with that component, and V puts
everything back together.

■ Thus, eigenvectors are the “directions” of matrix A, and the
eigenvalues are the magnifications along those directions.

■ To find eigenvalues, consider that (λI − A)v = 0.

■ Since v ̸= 0 λI − A must drop rank for some value of λ associated
with v . A matrix which is not full rank has zero determinant. So, we
can solve for the eigenvalues by solving

det(λI − A) = 0,

■ Note that there are very efficient and numerically robust methods of
finding eigenvectors and eigenvalues. These methods do not use the
determinant rule, above. The determinant rule is useful for
mathematical analysis.

■ In MATLAB,
[V,Lambda] = eig(A);
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