
ECE5550: Applied Kalman Filtering 9–1

SIMULTANEOUS STATE AND PARAMETER
ESTIMATION USING KALMAN FILTERS

9.1: Parameters versus states

� Until now, we have assumed that the state-space model of the
system whose state we are estimating is known and constant.

� However, the system model may not be entirely known: We may wish
to adapt numeric values within the model to better match the model’s
behavior to the true system’s behavior.

� Also, certain values within the system may change very slowly over
the lifetime of the system—it would be good to track those changes.

� For example, consider a battery cell. Its state-of-charge can traverse
its entire range within minutes. However, its internal resistance might
change as little as 20% in a decade or more of regular use.

• The quantities that tend to change quickly comprise the state of
the system, and

• The quantities that tend to change slowly comprise the
time-varying parameters of the system.

� We know that Kalman filters may be used to estimate the state of a
dynamic system given known parameters and noisy measurements.

� We may also use (nonlinear) Kalman filters to estimate parameters
given a known state and noisy measurements.
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� In this section of notes we first consider how to estimate the
parameters of a system if its state is known.

� Next, we consider how to simultaneously estimate both the state and
parameters of the system using two different approaches.

The generic approach to parameter estimation

� We denote the true parameters of a particular model by θ .

� We will use Kalman filtering techniques to estimate the parameters
much like we have estimated the state. Therefore, we require a model
of the dynamics of the parameters.

� By assumption, parameters change very slowly, so we model them as
constant with some small perturbation:

θk = θk−1 + rk−1.

� The small white noise input rk is fictitious, but models the slow drift in
the parameters of the system plus the infidelity of the model structure.

� The output equation required for Kalman-filter system identification
must be a measurable function of the system parameters. We use

dk = hk(xk, uk, θ, ek),

where h(·) is the output equation of the system model being
identified, and ek models the sensor noise and modeling error.

� Note that dk is usually the same measurement as zk, but we maintain
a distinction here in case separate outputs are used. Then,
Dk = {d0, d1, . . . , dk}. Also, note that ek and vk often play the same
role, but are considered distinct here.
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� We also slightly revise the mathematical model of system dynamics

xk = fk−1(xk−1, uk−1, θ,wk−1)

zk = hk(xk, uk, θ, vk),

to explicitly include the parameters θ in the model.

� Non-time-varying numeric values required by the model may be
embedded within f (·) and h(·), and are not included in θ .
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9.2: EKF for parameter estimation

� Here, we show how to use EKF for parameter estimation.

� As always, we proceed by deriving the six essential steps of
sequential inference.

EKF step 1a: Parameter estimate time update.

� The parameter prediction step is approximated as

θ̂−
k = E[θk−1 + rk−1 | Dk−1]

= θ̂+
k−1.

� This makes sense, since the parameters are assumed constant.

EKF step 1b: Error covariance time update.

� The covariance prediction step is accomplished by first computing θ̃−
k .

θ̃−
k = θk − θ̂−

k = θk−1 + rk − θ̂+
k−1

= θ̃+
k−1 + rk.

� We then directly compute the desired covariance

E[θ̃−
k (θ̃−

k )T ] = E[(θ̃+
k−1 + rk)(θ̃

+
k−1 + rk)

T ]

= �+
θ̃ ,k−1

+ �r̃ .

� The time-updated covariance has additional uncertainty due to the
fictitious noise “driving” the parameter values.

EKF step 1c: Output estimate.

� The system output is estimated to be

d̂k = E[h(xk, uk, θ, ek) | Dk−1]

≈ hk(xk, uk, θ̂
−
k , ēk).
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� That is, it is assumed that propagating θ̂−
k and the mean estimation

error is the best approximation to estimating the output.

EKF step 2a: Estimator gain matrix.

� The output prediction error may then be approximated

d̃k = dk − d̂k

= hk(xk, uk, θ, ek) − hk(xk, uk, θ̂
−
k , ēk),

using again a Taylor-series expansion on the first term.

dk ≈ hk(xk, uk, θ̂
−
k , ēk)

+ dhk(xk, uk, θ, ek)

dθ

∣∣∣∣
θ=θ̂−

k︸ ︷︷ ︸
Defined as Ĉθ

k

(θ − θ̂−
k )

+ dhk(xk, uk, θ, ek)

dek

∣∣∣∣
ek=ēk︸ ︷︷ ︸

Defined as D̂θ
k

(ek − ēk).

� From this, we can compute such necessary quantities as

�d̃,k ≈ Ĉ θ
k �−

θ̃ ,k
(Ĉ θ

k )T + D̂θ
k �ẽ(D̂θ

k )
T ,

�−
θ̃ d̃,k

≈ E[(θ̃−
k )(Ĉ θ

k θ̃
−
k + D̂θ

k ẽk)
T ]

= �−
θ̃ ,k

(Ĉ θ
k )T .

� These terms may be combined to get the Kalman gain

Lθ
k = �−

θ̃ ,k
(Ĉ θ

k )T [Ĉ θ
k �−

θ̃ ,k
(Ĉ θ

k )T + D̂θ
k �ẽ(D̂θ

k )
T ]−1.

� Note, by the chain rule of total differentials,
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dhk(xk, uk, θ, ek) = ∂hk(xk, uk, θ, ek)

∂xk
dxk + ∂hk(xk, uk, θ, ek)

∂uk
duk +

∂hk(xk, uk, θ, ek)

∂θ
dθ + ∂hk(xk, uk, θ, ek)

∂ek
dek

dhk(xk, uk, θ, ek)

dθ
= ∂hk(xk, uk, θ, ek)

∂xk

dxk

dθ
+ ∂hk(xk, uk, θ, ek)

∂uk

duk

dθ︸︷︷︸
0

+

∂hk(xk, uk, θ, ek)

∂θ
+ ∂hk(xk, uk, θ, ek)

∂ek

dek

dθ︸︷︷︸
0

= ∂hk(xk, uk, θ, ek)

∂θ
+ ∂hk(xk, uk, θ, ek)

∂xk

dxk

dθ
.

� But,
dxk

dθ
= ∂ fk−1(xk−1, uk−1, θ,wk−1)

∂θ
+ ∂ fk−1(xk−1, uk−1, θ,wk−1)

∂xk−1

dxk−1

dθ
.

� The derivative calculations are recursive in nature, and evolve over
time as the state evolves.

� The term dx0/dθ is initialized to zero unless side information gives a
better estimate of its value.

� To calculate Ĉ θ
k for any specific model structure, we require methods

to calculate all of the above the partial derivatives for that model.

EKF step 2b: State estimate measurement update.

� The fifth step is to compute the a posteriori state estimate by
updating the a priori estimate using the estimator gain and the output
prediction error dk − d̂k

θ̂+
k = θ̂−

k + Lθ
k(dk − d̂k).
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EKF step 2c: Error covariance measurement update.

� Finally, the updated covariance is computed as

�+
θ̃ ,k

= �−
θ̃ ,k

− Lθ
k�d̃,k(Lθ

k)
T

= �−
θ̃ ,k

− Lθ
k�d̃,k(�d̃,k)

−T (�−
θ̃ d̃,k

)T

= �−
θ̃ ,k

− Lθ
kĈ θ

k �−
θ̃ ,k

= (I − Lθ
kĈ θ

k )�−
θ̃ ,k

.

� EKF for parameter estimation is summarized in a later table.

Notes:

� We initialize the parameter estimate with our best information re. the
parameter value: θ̂+

0 = E[θ0].

� We initialize the parameter estimation error covariance matrix:

�+
θ̃ ,0

= E[(θ − θ̂+
0 )(θ − θ̂+

0 )T ].

� We also initialize dx0/dθ = 0 unless side information is available.
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Summary of the nonlinear extended Kalman filter for parameter estimation

Nonlinear state-space model:
θk+1 = θk + rk,

dk = hk(xk, uk, θk, ek).

where rk and ek are independent Gaussian noise processes with means zero

and ē, respectively, and having covariance matrices �r̃ and �ẽ, respectively.

Definition: Ĉθ
k = dhk(xk, uk, θ, ek)

dθ

∣∣∣∣
θ=θ̂−

k

D̂θ
k = dhk(xk, uk, θ, ek)

dek

∣∣∣∣
ek=ēk

Caution: Be careful to compute Ĉθ
k using recursive chain rule described in notes!

Initialization: For k = 0, set

θ̂+
0 =E[θ0]

�+
θ̃ ,0

=E[(θ0 − θ̂+
0 )(θ0 − θ̂+

0 )T ].
dx0

dθ
= 0, unless side information is available.

Computation: For k = 1, 2, . . . compute:

Param. estimate time update: θ̂−
k = θ̂+

k−1.

Error covariance time update: �−
θ̃ ,k

=�+
θ̃ ,k−1

+ �r̃ .

Output estimate d̂k = hk(xk, uk, θ̂−
k , ēk).

Kalman gain matrix: Lθ
k =�−

θ̃ ,k
(Ĉθ

k )T [Ĉθ
k �−

θ̃ ,k
(Ĉθ

k )T + D̂θ
k �ẽ(D̂θ

k )
T ]−1.

Param. estimate meas. update: θ̂+
k = θ̂−

k + Lθ
k [dk − d̂k].

Error covariance meas. update: �+
θ̃ ,k

= (I − Lθ
k Ĉθ

k )�−
θ̃ ,k

.
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9.3: SPKF for parameter estimation

� To use SPKF in a parameter estimation problem, we first define an
augmented random vector θa that combines the randomness of the
parameters and sensor noise. This augmented vector is used in the
estimation process as described below.

SPKF step 1a: Parameter estimate time update.

� Due to the linearity of the parameter dynamics equation, we have
θ̂a,−

k = θ̂a,+
k−1 (same as for EKF).

SPKF step 1b: Error covariance time update.

� Again, due to the linearity of the parameter dynamics equation, we
have �a,−

θ̃ ,k
= �a,+

θ̃ ,k−1
+ �a

r̃ ,k−1 (same as for EKF).

SPKF step 1c: Estimate system output dk.

� To estimate the system output, we require a set of sigma points
describing the output.

� This in turn requires a set of p + 1 sigma points describing θa,−
k , which

we will denote as Wa,−
k .

Wa,−
k =

{
θ̂a,−

k , θ̂a,−
k + γ

√
�a,−

θ̃ ,k
, θ̂a,−

k − γ
√

�a,−
θ̃ ,k

}
.

� From the augmented sigma points, the p + 1 vectors comprising the
parameters portion Wθ,−

k and the p + 1 vectors comprising the
modeling error portion We,−

k are extracted.

� The output equation is evaluated using all pairs of Wθ,−
k,i and We,−

k,i

(where the subscript i denotes that the i th vector is being extracted
from the original set), yielding the sigma points Dk,i for time step k.
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� That is, Dk,i = h(xk, uk,Wθ,−
k,i ,We,−

k,i ).

� Finally, the output estimate is computed as

d̂−
k = E[hk(xk, uk, θ, ek) | Dk−1]

≈
p∑

i=0

α(m)
i hk(xk, uk,Wθ,−

k,i ,We,−
k,i ) =

p∑
i=0

α(m)
i Dk,i .

SPKF step 2a: Estimator gain matrix Lθ
k .

� To compute the estimator gain matrix, we must first compute the
required covariance matrices.

�d̃,k =
p∑

i=0

α(c)
i (Dk,i − d̂k)(Dk,i − d̂k)

T

�−
θ̃ d̃,k

=
p∑

i=0

α(c)
i (Wθ,−

k,i − θ̂a,−
k )(Dk,i − d̂k)

T .

� Then, we simply compute Lθ
k = �−

θ̃ d̃,k
�−1

d̃,k
.

SPKF step 2b: State estimate measurement update.

� The fifth step is to compute the a posteriori state estimate by
updating the a priori estimate using the estimator gain and the output
prediction error dk − d̂k

θ̂a,+
k = θ̂a,−

k + Lθ
k(dk − d̂k).

SPKF step 2c: Error covariance measurement update.

� The final step is calculated directly from the optimal formulation:

�a,+
θ̃ ,k

= �a,−
θ̃ ,k

− Lθ
k�d̃,k(Lθ

k)
T .
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Summary of the nonlinear SPKF for parameter estimation

Nonlinear state-space model:
θk+1 = θk + rk,

dk = hk(xk, uk, θk, ek).

where rk and ek are independent Gaussian noise processes with means zero

and ē, respectively, and having covariance matrices �r̃ and �ẽ, respectively.

Definitions: Let

θa
k = [θ T

k , eT
k ]T , Wa

k = [(Wθ
k )T , (We

k )
T ]T , p = 2 × dim(θa

k ).

Initialization: For k = 0, set

θ̂+
0 =E[θ0] θ̂a,+

0 =E[θa
0 ] = [(θ̂+

0 )T , ē]T .

�+
θ̃ ,0

=E[(θ0 − θ̂+
0 )(θ0 − θ̂+

0 )T ] �a,+
θ̃ ,0

=E[(θa
0 − θ̂a,+

0 )(θa
0 − θ̂a,+

0 )T ]

= diag (�+
θ̃ ,0

, �ẽ).

Computation: For k = 1, 2, . . . compute:

Param. estimate time update: θ̂−
k = θ̂+

k−1.

Error covariance time update: �−
θ̃ ,k

=�+
θ̃ ,k−1

+ �r̃ .

Output estimate: Wa,−
k = {

θ̂a,−
k , θ̂a,−

k + γ
√

�a,−
θ̃ ,k

, θ̂a,−
k − γ

√
�a,−

θ̃ ,k

}
.

Dk,i = hk(xk, uk,Wθ,−
k,i ,We,−

k,i ).

d̂k =
p∑

i=0

α
(m)
i Dk,i .
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Summary of the nonlinear SPKF for parameter estimation (cont.)

Computation (continued):

Estimator gain matrix: �d̃,k =
p∑

i=0

α(c)
i (Dk,i − d̂k)(Dk,i − d̂k)

T .

�−
θ̃ d̃,k

=
p∑

i=0

α(c)
i (Wθ,−

k,i − θ̂−
k )(Dk,i − d̂k)

T .

Lθ
k =�−

θ̃ d̃,k
�−1

d̃,k
.

Param. estimate measurement update: θ̂+
k = θ̂−

k + Lθ
k(dk − d̂k).

Error covariance measurement update: �+
θ̃ ,k

=�−
θ̃ ,k

− Lθ
k�d̃,k(Lθ

k)
T .

Parameter estimation using SR-SPKF

� We can also apply SR-SPKF to estimate parameters.

� The biggest difficulty is updating the predicted state covariance in a
computationally efficient way.

� We want an efficient square-root match to �−
θ̃ ,k

= �+
θ̃ ,k−1

+ �r̃ .

� We can approximate this in a square-root sense by
S−

θ̃ ,k
= S+

θ̃ ,k−1
+ Dr,k−1, where we define (a diagonal matrix)

Dr,k−1 = − diag{S+
θ̃ ,k−1

} +
√

diag{S+
θ̃ ,k−1

}2 + diag{�r̃}.
� This is not an exact update, but it does force the diagonal of �−

θ̃ ,k
to be

correct.

� In the following table, the measurement noises are assumed to be
additive. If they are not, then we must augment the parameters θ̂−

k

with measurement noise in the output estimate section.
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Summary of the square-root sigma-point Kalman filter for parameter estimation

Nonlinear state-space model:
θk = θk−1 + rk−1

dk = hk(xk, uk, θk) + ek,

where rk and ek are independent, Gaussian noise processes with means 0 and
ē and having covariance matrices �r̃ and �ẽ, respectively.

Definition: Let

Dr,k−1 =− diag{S+
θ̃ ,k−1

} +
√

diag{S+
θ̃ ,k−1

}2 + diag{�r̃ } p = 2 × dim(θk).

Initialization: For k = 0, set

θ̂+
0 =E[θ0] S+

θ̃ ,0
= chol

{
E[(θ0 − θ̂+

0 )(θ0 − θ̂+
0 )T ]

}
Computation: For k = 1, 2, . . . compute:

Param. estimate time update: θ̂−
k = θ̂+

k−1.

Error covariance time update: S−
θ̃ ,k

= S+
θ̃ ,k−1

+ Dr,k−1.

Output estimate: Wk = {
θ̂−

k , θ̂−
k + γ S−

θ̃ ,k
, θ̂−

k − γ S−
θ̃ ,k

}
Dk,i = hk(xk, uk,Wk,i) + ē.

d̂k =
p∑

i=0

α(m)
i Dk,i .

Estimator gain matrix: Sd̃,k = qr

{[√
α

(c)
i (Dk,(0:p) − d̂k)

√
�e

]T
}T

.

�−
θ̃ d̃,k

=
p∑

i=0

α(c)
i (Wk,i − θ̂−

k )(Dk,i − d̂k)
T .

Lθ
k =�−

θ̃ d̃,k

(
ST

d̃,k
Sd̃,k

)−1
(solved by backsubst.).

Param. estimate meas. update: θ̂+
k = θ̂−

k + Lθ
k(dk − d̂k).

Error covar. meas. update: S+
θ̃ ,k

= downdate
{

S−
θ̃ ,k

, Lθ
k Sd̃,k

}
.
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9.4: Simultaneous state and parameter estimation

� We have now seen how to use Kalman filters to perform state
estimation and parameter estimation independently.

� How about both at the same time?

� There are two approaches to doing so: Joint estimation and dual
estimation. These are discussed in the next sections.

Generic joint estimation

� In joint estimation, the state vector and parameter vector are
combined, and a Kalman filter simultaneously estimates the values of
this augmented state vector.

� It has the disadvantages of large matrix operations due to the high
dimensionality of the resulting augmented model and potentially poor
numeric conditioning due to the vastly different time scales of the
states (including parameters) in the augmented state vector.

� However, it is quite straightforward to implement. We first combine
the state and parameter vectors to form an augmented state such
that the dynamics may be represented by[

xk

θk

]
=

[
fk−1(xk−1, uk−1, θk−1, wk−1)

θk−1 + rk−1

]
zk = hk(xk, uk, θk, vk).

� Note that to simplify notation, we will refer to the vector comprising
both the present state and the present parameters as Xk, the vector
comprising the present process noise and present parameter noise
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as Wk, and the equation combining the dynamics of the state and the
dynamics of the parameters as F. This allows us to write

Xk = Fk−1(Xk−1, uk−1, Wk−1)

zk = hk(Xk, uk, vk).

� With the augmented model of the system state dynamics and
parameter dynamics defined, we apply a nonlinear KF method.

Generic dual estimation

� In dual estimation, separate Kalman filters are used for state
estimation and parameter estimation.

� The computational complexity is smaller and the matrix operations
may be numerically better conditioned.

� However, by decoupling state from parameters, any cross-correlations
between changes are lost, leading to potentially poorer accuracy.

� The mathematical model of state dynamics again explicitly includes
the parameters as the vector θk:

xk = fk−1(xk−1, uk−1, wk−1, θk−1)

zk = hk(xk, uk, vk, θk−1).

� Non-time-varying numeric values required by the model may be
embedded within f (·) and h(·), and are not included in θk. We also
slightly revise the mathematical model of parameter dynamics to
explicitly include the effect of the state equation.

θk = θk−1 + rk−1

dk = hk

(
fk−1(xk−1, uk−1, w̄k−1, θk−1), uk, ek, θk−1

)
.
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� The dual filters can be viewed by drawing a block diagram. (The
interactions will be made clearer later)

Time Update
KFx

Time Update
KFθ

Measurement
Update KFx

Measurement
Update KFθ

x̂+
k−1

θ̂+
k−1

θ̂−
k

x̂+
k

θ̂+
k

�−
x̃,k

�−
θ̃ ,k

�+
x̃,k−1

�+
θ̃ ,k−1

zk

uk−1

uk

� We see that the process essentially comprises two Kalman filters
running in parallel—one adapting the state and one adapting
parameters—with some information exchange between the filters.
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9.5: EKF and SPKF joint and dual estimation

Joint state and parameter estimation via EKF

� Applying EKF to the joint estimation problem is straightforward. But,
don’t forget the recursive calculation of dF/dX.

Dual state and parameter estimation via EKF

� Two EKFs are implemented, with their signals mixed.

� Again, we need to be careful when computing Ĉ θ
k , which requires a

total-differential expansion to be correct

Ĉ θ
k = dhk(x̂−

k , uk, θ)

dθ

∣∣∣∣
θ=θ̂−

k

dhk(x̂−
k , uk, θ)

dθ
= ∂hk(x̂−

k , uk, θ)

∂θ
+ ∂hk(x̂−

k , uk, θ)

∂ x̂−
k

dx̂−
k

dθ

dx̂−
k

dθ
= ∂ fk−1(x̂+

k−1, uk−1, θ)

∂θ
+ ∂ fk−1(x̂+

k−1, uk−1, θ)

∂ x̂+
k−1

dx̂+
k−1

dθ

dx̂+
k−1

dθ
= dx̂−

k−1

dθ
− Lx

k−1
dhk−1(x̂−

k−1, uk−1, θ)

dθ
,

� This assumes that Lx
k−1 is not a function of θ (Its is—weakly—so that

it is not usually worth the extra computation to include the effects of
Lx

k−1 as a function of θ).

� The three total derivatives are computed recursively, initialized with
zero values.
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Summary of the nonlinear extended Kalman filter for joint estimation

State-space model:

 xk

θk

=
 fk−1(xk−1, uk−1, wk−1, θk−1)

θk−1 + rk−1


zk = hk(xk, uk, vk, θk),

or
Xk = Fk−1(Xk−1, uk−1, W

zk = hk(Xk, uk, vk),

where wk, rk, and vk are independent, Gaussian noise processes of covariance
matrices �w̃, �r̃ , and �ṽ , respectively. For brevity, we let Xk = [x T

k , θ T
k ]T , Wk =

[wT
k , r T

k ]T and �W̃ = diag(�w̃, �r̃).

Definitions:
Âk = dFk(Xk, uk, Wk)

dXk

∣∣∣∣
Xk=X̂+

k

B̂k = dFk(Xk, uk, Wk)

dWk

∣∣∣∣
Wk=W̄k

Ĉk = dhk(Xk, uk, vk)

dXk

∣∣∣∣
Xk=X̂−

k

D̂k = dhk(Xk, uk, vk)

dvk

∣∣∣∣
vk=v̄k

.

Initialization: For k = 0, set

X̂+
0 =E[X0]

�+
X̃,0

=E[(X0 − X̂+
0 )(X0 − X̂+

0 )T ]

Computation: For k = 1, 2, . . . compute:

State estimate time update: X̂−
k = Fk−1(X̂+

k−1, uk−1, W̄k−1).

Error covariance time update: �−
X̃,k

= Âk−1�
+
X̃,k−1

ÂT
k−1 + B̂k−1�W̃ B̂T

k−1.

Output estimate: ẑk = hk(X̂−
k , uk, v̄k).

Estimator gain matrix: Lk =�−
X̃,k

ĈT
k [Ĉk�

−
X̃,k

ĈT
k + D̂k�ṽ D̂T

k ]−1.

State estimate measurement update: X̂+
k = x̂−

k + Lk(zk − ẑk).

Error covariance measurement update: �+
X̃,k

= (I − LkĈk)�
−
X̃,k

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, SIMULTANEOUS STATE AND PARAMETER ESTIMATION 9–19

Summary of the dual extended Kalman filter for state and parameter estimation

Nonlinear state-space models:
xk+1 = fk(xk, uk, θk, wk)

and
θk+1 = θk + rk,

zk = hk(xk, uk, θk, vk) dk = hk(xk, uk, θk, ek).

where wk, vk , rk and ek are independent Gaussian noise processes with means
w̄, v̄, r̄ , and ē and covariace matrices �w̃, �ṽ , �r̃ and �ẽ, respectively.

Definitions: Âk = d fk(xk, uk, θ̂−
k , wk)

dxk

∣∣∣∣∣
xk=x̂+

k

B̂k = d fk(xk, uk, θ̂−
k , wk)

dwk

∣∣∣∣∣
wk=w̄

Ĉx
k = dhk(xk, uk, θ̂−

k , vk)

dxk

∣∣∣∣∣
xk=x̂−

k

D̂x
k = dhk(xk, uk, θ̂−

k , vk)

dvk

∣∣∣∣∣
vk=v̄

Ĉθ
k = dhk(x̂−

k , uk, θ, ek)

dθ

∣∣∣∣
θ=θ̂−

k

D̂θ
k = dhk(x̂−

k , uk, θ, ek)

dek

∣∣∣∣
ek=ē

Initialization: For k = 0, set

θ̂+
0 =E[θ0], �+

θ̃ ,0
=E[(θ0 − θ̂+

0 )(θ0 − θ̂+
0 )T ].

x̂+
0 =E[x0], �+

x̃,0 =E[(x0 − x̂+
0 )(x0 − x̂+

0 )T ].

Computation: For k = 1, 2, . . . compute:

Time update for the weight filter: θ̂−
k = θ̂+

k−1

�−
θ̃ ,k

=�+
θ̃ ,k−1

+ �r̃

Time update for the state filter: x̂−
k = fk−1(x̂+

k−1, uk−1, θ̂−
k , w̄)

�−
x̃,k = Âk−1�

+
x̃,k−1 ÂT

k−1 + B̂k−1�w̃ B̂T
k−1

Meas. update for the state filter: Lx
k =�−

x̃,k(Ĉ
x
k )T [Ĉx

k �−
x̃,k(Ĉ

x
k )T + D̂x

k �ṽ(D̂x
k )T ]−1

x̂+
k = x̂−

k + Lx
k [zk − hk(x̂−

k , uk, θ̂−
k , v̄)]

�+
x̃,k = (I − Lx

k Ĉx
k )�−

x̃,k
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Summary of the dual EKF for state and parameter estimation (cont.)

Computation (cont.): For k = 1, 2, . . . compute:

Meas. update for the weight filter: Lθ
k =�−

θ̃ ,k
(Ĉθ

k )T [Ĉθ
k �−

θ̃ ,k
(Ĉθ

k )T + D̂θ
k �ẽ(D̂θ

k )
T ]−1

θ̂+
k = θ̂−

k + Lθ
k [zk − hk(x̂−

k , uk, θ̂−
k , ē)]

�+
θ̃ ,k

= (I − Lθ
k Ĉθ

k )�−
θ̃ ,k

Summary of the nonlinear sigma-point Kalman filter for joint estimation

State-space model:

 xk

θk

=
 fk−1(xk−1, uk−1, wk−1, θk−1)

θk−1 + rk−1


zk = hk(xk, uk, vk, θk),

or
Xk = Fk−1(Xk−1, uk−1, W

zk = hk(Xk, uk, vk),

where wk, rk, and vk are independent, Gaussian noise processes with means w̄,
r̄ , and v̄, and covariance matrices �w̃, �r̃ , and �ṽ , respectively. For brevity, we
let Xk = [x T

k , θ T
k ]T , Wk = [wT

k , r T
k ]T and �W̃ = diag(�w̃, �r̃).

Definitions: Let

Xa
k = [XT

k , WT
k , vT

k ]T , X a
k = [(XX

k )T , (XW
k )T , (X v

k )T ]T , p = 2 × dim(Xa
k).

Initialization: For k = 0, set

X̂+
0 =E[X0] X̂a,+

0 =E[Xa
0] = [(X̂+

0 )T , W̄, v̄]T .

�+
X̃,0

=E[(X0 − X̂+
0 )(X0 − X̂+

0 )T ] �a,+
X̃,0

=E[(Xa
0 − X̂a,+

0 )(Xa
0 − X̂a,+

0 )T ]

= diag (�+
X̃,0

, �W̃, �ṽ).
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Summary of the nonlinear SPKF for joint estimation (cont.)

Computation: For k = 1, 2, . . . compute:

State estimate time update: X a,+
k−1 = {

X̂a,+
k−1, X̂a,+

k−1 + γ
√

�a,+
X̃,k−1

, X̂a,+
k−1 − γ

√
�a,+

X̃,k−1

}
.

XX,−
k,i = Fk−1(XX,+

k−1,i , uk−1,XW,+
k−1,i).

X̂−
k =

p∑
i=0

α
(m)
i XX,−

k,i .

Error covariance time update: �−
X̃,k

=
p∑

i=0

α(c)
i (XX,−

k,i − X̂−
k )(XX,−

k,i − X̂−
k )T .

Output estimate: Zk,i = hk(XX,−
k,i , uk,X v,+

k−1,i).

ẑk =
p∑

i=0

α(m)
i Zk,i .

Estimator gain matrix: �z̃,k =
p∑

i=0

α(c)
i (Zk,i − ẑk)(Zk,i − ẑk)

T .

�−
X̃z̃,k

=
p∑

i=0

α
(c)
i (XX,−

k,i − X̂−
k )(Zk,i − ẑk)

T .

Lk = �−
X̃z̃,k

�−1
z̃,k .

State estimate meas. update: X̂+
k = X̂−

k + Lk(zk − ẑk).

Error covariance meas. update: �+
X̃,k

= �−
X̃,k

− Lk�z̃,k LT
k .

Joint state and parameter estimation via SPKF

� This is a standard SPKF with the state vector augmented with
parameters.

Dual state and parameter estimation via SPKF

� This, just like dual estimation using EKF, uses to filters. Both employ
the SPKF algorithm and intermix signals.
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Summary of the sigma-point Kalman filter for dual state and parameter estimation

Nonlinear state-space models:

xk = fk−1(xk−1, uk−1, wk−1, θk−1)

and
θk = θk−1 + rk−1,

zk = hk(xk, uk, vk, θk) dk = hk( fk−1(xk−1, uk−

uk, v̄k, θk−1

where wk, vk, rk and ek are independent, Gaussian noise processes with means
w̄, v̄, r̄ , and ē, and covariance matrices �w̃, �ṽ , �r̃ and �ẽ, respectively.

Definitions: xa
k = [x T

k , wT
k , vT

k ]T , X a
k = [(X x

k )T , (Xw
k )T , (X v

k )T ]T , p = 2 × dim(xa
k ).

Initialization: For k = 0, set

θ̂+
0 =E[θ0], �+

θ̃ ,0
=E[(θ0 − θ̂+

0 )(θ0 − θ̂+
0 )T ].

x̂+
0 =E[x0], x̂ a,+

0 =E[xa
0 ] = [(x̂+

0 )T , w̄, v̄]T .

�+
x̃,0 =E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]. �a,+

x̃,0 =E[(xa
0 − x̂ a,+

0 )(xa
0 − x̂ a,+

0 )T ]

= diag (�+
x̃,0, �w, �v).

Computation: For k = 1, 2, . . . compute:

Parameter estimate time update: θ̂−
k = θ̂+

k−1.

Parameter covariance time update: �−
θ̃ ,k

=�+
θ̃ ,k−1

+ �r̃ .

State estimate time update: X a,+
k−1 = {

x̂ a,+
k−1, x̂ a,+

k−1 + γ
√

�a,+
x̃,k−1, x̂ a,+

k−1 − γ
√

�a,+
x̃,k−1

}
.

X x,−
k,i = fk−1(X x,+

k−1,i , uk−1,Xw,+
k−1,i , θ̂−

k ).

x̂−
k =

p∑
i=0

α
(m)
i X x,−

k,i .

State covariance time update: �−
x̃,k =

p∑
i=0

α(c)
i (X x,−

k,i − x̂−
k )(X x,−

k,i − x̂−
k )T .

(continued. . . )
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Summary of the dual sigma-point Kalman filter (continued)

Computation (continued): For k = 1, 2, . . . compute:

Output estimate, param. filter: Wk = {
θ̂−

k , θ̂−
k + γ

√
�−

θ̃ ,k
, θ̂−

k − γ
√

�−
θ̃ ,k

}
.

Dk,i = hk( fk−1(x̂+
k−1, uk−1, w̄k−1,Wk,i), uk, v̄k,Wk,i).

d̂k =
p∑

i=0

α
(m)
i Dk,i

Output estimate, state filter: Zk,i = hk(X x,−
k,i , uk,X v,+

k−1,i , θ̂−
k ).

ẑk =
p∑

i=0

α(m)
i Zk,i .

State filter gain matrix: �z̃,k =
p∑

i=0

α(c)
i (Zk,i − ẑk)(Zk,i − ẑk)

T .

�−
x̃ z̃,k =

p∑
i=0

α(c)
i (X x,−

k,i − x̂−
k )(Zk,i − ẑk)

T .

Lx
k =�−

x̃ z̃,k�
−1
z̃,k .

Parameter filter gain matrix: �d̃,k =
p∑

i=0

α(c)
i (Dk,i − d̂k)(Dk,i − d̂k)

T .

�−
θ̃ d̃,k

=
p∑

i=0

α
(c)
i (Wk,i − θ̂−

k )(Dk,i − d̂k)
T .

Lθ
k =�−

θ̃ d̃,k
�−1

d̃,k
.

State estimate meas. update: x̂+
k = x̂−

k + Lx
k (zk − ẑk).

State covariance meas. update: �+
x̃,k =�−

x̃,k − Lx
k�z̃,k(Lx

k )
T .

Param. estimate meas. update: θ̂+
k = θ̂−

k + Lθ
k(zk − d̂k).

Parameter covar. meas. update: �+
θ̃ ,k

=�−
θ̃ ,k

− Lθ
k�d̃,k(Lθ

k)
T .
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Ensuring correct convergence

� Dual and joint filtering will adapt x̂ and θ̂ so that the model
input-output relationship matches the system’s input-output data as
closely as possible.

� There is no built-in guarantee that the state of the model converges to
anything with physical meaning.

� Usually, when employing a Kalman filter, we are concerned that the
state converge to a very specific meaning.

� Special steps must be taken to ensure that this occurs.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett


