
ECE5550: Applied Kalman Filtering 8–1

MULTI-TARGET, MULTI-MODEL TRACKING

8.1: Introduction and a long example

■ A common application of Kalman filtering is to attempt to localize a

stationary or mobile target in some coordinate system.

■ This target may be friendly (search and rescue operation) or hostile

(military application), but in neither case do we know the driving input

uk to the target dynamics

xk D fk�1(xk�1, uk�1, wk�1) but, uk�1 is unknown

zk D hk(xk, uk, vk) but, uk is unknown.

■ Therefore, we must treat uk as a random signal where, arguably, the

Gaussian assumption breaks down.

■ So, we often rely on very simple models based on physical first

principles of lumped objects. e.g., NCV by Newton’s first law
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■ Our position/velocity estimate is not as accurate as it might be

� The model does not precisely describe the dynamics of the system

being tracked;

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018 2022, Gregory L. Plett



ECE5550, MULTI-TARGET, MULTI-MODEL TRACKING 8–2

� We don’t know uk.

■ But, covariance still has a geometric interpretation (hyper-ellipsoid)

that is very helpful in pin-pointing geographic uncertainty of the object

being tracked, and provides hints as to where to point sensors to look

for the object at the next time step.

Extended illustrative example

■ Consider an infrared camera mounted in a ball gimbal on a military

aircraft. We wish to detect and track missiles fired at our aircraft.1

■ In each image where a missile is present, we want to compute:

1. Our best estimate of the missile position in frame k given k

observations, so that we have the best possible battlefield

situational awareness.

2. Our best estimate of where the missile position will be in frame

k C 1 given k observations, so we can point the ball gimbal to

maintain target lock.

■ Assumptions

1. We acquire the target when it is still far away. It will appear as a

single very bright pixel, perhaps surrounded by several relatively

dimmer pixels that are somewhat brighter than the background.

2. The frame rate of our camera is very fast compared to the

kinematics of the target. Thus, the target is capable of only

negligible accelerations from frame to frame.

1
Example adapted from J.P. Havlicek’s course notes for ECE5283: Kalman Filtering, Ch. 5, University of Oklahoma, 2003.
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■ In general, we may wish to simultaneously track several different

targets, maintaining independent “target tracks”:

� We will use a separate Kalman filter for each target.

� We will mention different ways to associate measurements to

targets (gating and different methods of data association).

Target extraction

■ We will first apply a nonlinear filter to detect the target(s).

■ The main idea is this: At each pixel, formulate an estimate of the

background. Subtract the background estimate from the pixel.

Ii�1, j�1 Ii, j�1 Ii�1, jC1

Ii�1, j Ii, j IiC1, j

Ii�1, jC1 Ii, jC1 IiC1, jC1

■ Background estimate D median of eight nearest neighbors D Mi, j .

■ Filter output Yi, j D Ii, j � Mi, j .

■ The median-filtered image is then thresholded.

� We could use an absolute threshold, a relative threshold (based,

e.g., on the variance of the neighborhood), or both.

� Pixels that pass the threshold are called exceedances. They are

candidate targets, denoted Ei, j .

■ Each time we receive a new frame, we do two things:

1. Associate exceedances with existing tracks and use the

associated exceedances as observations to update existing tracks.
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2. Consider starting new tracks on any exceedances that do not

associate with already existing tracks.

Gating

■ A “track gate” is a rectangular window

centered on the estimated position of an

existing track or a candidate new track.

■ Let G be the width and height of the gate.

■

︸ ︷︷ ︸
G pixels

}
G pixels

■ Typically, the gate size is varied during tracking.

■ We will stipulate minimum and maximum values for G.

■ Typically, for a new track, G starts out at Gmax.

■ Why vary the gate size?

� For a candidate new track, our knowledge of the true track position

is typically poor. So, we want a large, or “loose” gate to be sure we

pick up all the exceedances associated with the track.

� For an existing track, if the measurements have not been agreeing

well with the predictions, we also want a large gate for the same

reasons as above.

� For an existing track where the measurements and predictions

have been in good agreement, however, we want the gate to be

small, or “tight.”

� Since only exceedances within the gate will be included in the

observed threshold calculation, a tight gate means less noise in

the centroid calculation.
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■ Note: Henceforth, we consider only tracking in the horizontal

direction. Vertical tracking is analogous.

Gating and association: Update of existing tracks

■ For each existing track, we have a predicted position Oξ�k D A OξCk�1.

■ When frame k arrives, we apply the spatial filter and threshold(s) to

detect exceedances.

■ For each track, we place the track gate at the predicted location Oξ�k

and compute the centroid of the exceedances in the gate. This

centroid is the observation zk for the track.

■ The measurement noise arises from the discrete nature of the

camera focal plane array detector, thermal noise, and imperfections in

the gating and target extraction processing.

■ Centroid calculation

zk D

∑
m,n2Gate m Em,n∑

m,n2Gate Em,n

where

Ei, j D





Yi, j , Yi, j � thresholdI

0, else.

■ Note, the standard deviation of the exceedances in the gate is also

sometimes used in the calculation of G, the gate size.

■ For each existing track, its zk is used to update the Kalman filter.

New track starts

■ In any given frame, there may be exceedances that do not fall near

the gate of any existing track (i.e., do not “associate.”)
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■ A default sized gate is placed around such exceedances and they

become candidates for new tracks.

■ Since spurious bright spots may occur due to reflections, sun glints,

and so forth, we don’t start a new track right away.

■ Instead, we require the candidate track to persist for some small

number of frames before we actually start a new track. This is called

the “persistence test” or the “temporal correspondence test.”

■ For the NCV model, we use the most recent two measurements to

initialize a track, as we discussed in chapter 4 of the notes

6C

x̃,0 D




6
Qv

6
Qv

T
6

Qv

T

26
Qv C 6w̃T 4/4

T 2




Ox0 D




z0

z0 � z
�1

T


 .

Track coasting

■ Sometimes a target is temporarily obscured.

■ In this case, there will be no exceedances in the track gate of the

existing track.

■ When this occurs, we need to “coast” the track.

■ This involves two steps:

1. Open the track gate up to the maximum size.

2. Allow the state equation to evolve with no input.

■ If the number of missed detections exceeds a set limit, then the track

is terminated. This is called “track loss” or “track deletion.”

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018 2022, Gregory L. Plett



ECE5550, MULTI-TARGET, MULTI-MODEL TRACKING 8–7

■ It may be helpful to restart the Kalman filter upon reacquisition.

Track crossings

■ Sometimes two targets will cross one another.

■ When this happens, the track gates overlap.

■ In this case, it may not be possible to resolve the individual targets.

■ The best thing we can do is coast both tracks and hope to reacquire

the targets when they separate.

■ It may be helpful to restart the Kalman gains upon reacquisition.

Track merge

■ Sometimes two tracks will cross and never come apart again.

■ In this case, we merge the tracks.

■ The simplest way to do this is to keep the track that best agrees with

the observations and delete the other track.

■ This is called a “track merge.”

■ It should be noted in the history of the deleted track that it was

deleted due to a merge. Later offline analysis of both tracks may

reveal insight into what actually happened.
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8.2: Data association

■ When tracking multiple targets, there is ambiguity as to which

measurement corresponds to which target track.

■ Making associations between measured target positions and target

tracks is generally known as the data association problem.

■ Associations are generally made according to some distance function

between the predicted state of the target and the measured state.

■ Note that distance is not limited to position; it may also consist of

features such as color. This becomes especially important for targets

that may come close to or cross one another.

■ Popular association algorithms for single-target-at-a-time applications

are based on the following schemes:

� Nearest Neighbor: This algorithm always updates the tracking filter

with the measurement closest to the predicted state.

� Multi-Hypothesis Track Splitting: This scheme creates a new

hypothesis track for every measurement that is in the validation

region, and prunes unlikely tracks using a likelihood ratio.

� Probabilistic Data Association: Each measurement affects the

tracking filter to a degree based on the probability that it is the

correct given the predicted state.

� Optimal Bayesian Filter: This variation of Probabilistic Data

Association splits multiple tracks, like the Multi-Hypothesis

algorithm, and eliminates unlikely tracks.

■ For multiple sensors and multiple targets, the problem becomes

increasingly complex. Common association algorithms are:
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� Joint Likelihood: This variation on the Multi-Hypothesis Track

Splitting algorithm above extends to multiple tracks.

� Joint Probabilistic Data Association: This algorithm updates the

filter for each track based on a joint probability of association

between the latest set of measurements and each track.

� Multiple Hypothesis Joint Probabilistic: This variation of the

Optimal Bayesian Filter uses joint probabilities among multiple

track associations for multiple hypotheses. It is by far the most

computationally complex algorithm, and requires intelligent

pruning techniques. It is NP-complete, which provides

considerable incentive to find non-exhaustive ways to search the

space of possible associations to maximize the joint probability.

■ Sadly, these methods are beyond the scope of our class.
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8.3: Tracking with polar measurements and a Cartesian state

■ It is often most convenient to express the state dynamics of a target in

Cartesian coordinates.

■ However, in active sonar and radar systems, the measurement is

returned in polar coordinates.

■ To handle this case, we can either

1. Use a nonlinear KF (with output equation in polar coordinates), or

2. Compute an “equivalent” measurement in Cartesian coordinates

from the true measurement in polar coordinates.

■ Here, we handle the second case, which would be trivial except for

the noises involved.2

■ We measure (where E[Qr] D 0, E[ Qθ] D 0, and Qr and Qθ are uncorrelated)

rm D r C Qr and θm D θ C

Qθ .

■ A standard conversion to Cartesian coordinates gives

xm D rm cos θm and ym D rm sin θm.

■ The errors in each coordinate can be found by expanding

xm D x C Qx D (r C Qr) cos(θ C

Qθ)

ym D y C Qy D (r C Qr) sin(θ C

Qθ).

■ Using trigonometric identities, we obtain

Qx D r cos θ(cos Qθ � 1) � Qr sin θ sin Qθ � r sin θ sin Qθ C Qr cos θ cos Qθ

2
From: Lerro, D. and Bar-Shalom, Y., “Tracking with debiased consistent converted measurements versus EKF” IEEE

Trans. Aerospace and Electronic Systems, 29(3), July 1993, 1015–22.
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Qy D r sin θ(cos Qθ � 1) C Qr cos θ sin Qθ C r cos θ sin Qθ C Qr sin θ cos Qθ ,

which are not independent, and each coordinate error depends on

the true range and bearing as well as the errors in range and bearing.

■ The mean and variance of the errors can be found by assuming

zero-mean Gaussian errors in the polar measurements. In this case

E[cos Qθ] D e�σ 2
θ /2, E[sin Qθ] D 0, E[sin Qθ cos Qθ] D 0I

E[cos2
Qθ] D

1 C e�2σ 2
θ

2
, E[sin2

Qθ] D
1 � e�2σ 2

θ

2
.

■ The true mean error of the (xm,ym) conversion is then

µt(r, θ) D

[
E[ Qx j r, θ]

E[ Qy j r, θ]

]
D

[
r cos θ(e�σ 2

θ /2
� 1)

r sin θ(e�σ 2
θ /2

� 1)

]
.

■ The true values of the elements of the converted measurement

covariance are (much unpleasant trig manipulation omitted)

611
Qv,t D var( Qx j r, θ)

D r2e�σ 2
θ [cos2 θ(cosh(σ 2

θ ) � 1) C sin2 θ sinh(σ 2
θ )]

Cσ 2
r e�σ 2

θ [cos2 θ cosh(σ 2
θ ) C sin2 θ sinh(σ 2

θ )]

622
Qv,t D var( Qy j r, θ)

D r2e�σ 2
θ [sin2 θ(cosh(σ 2

θ ) � 1) C cos2 θ sinh(σ 2
θ )]

Cσ 2
r e�σ 2

θ [sin2 θ cosh(σ 2
θ ) C cos2 θ sinh(σ 2

θ )]

612
Qv,t D cov( Qx, Qy j r, θ)

D sin θ cos θe�2σ 2
θ [σ 2

r C r2(1 � eσ 2
θ )].

■ Ideally, we would subtract the mean error from the conversion, and

use the 6
Qv,t matrices in the measurement update.
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■ However, they are uncomputable since we do not know r and θ (we

know only rm and θm).

■ We can, however, compute the average true bias and the average

true covariance.

■ The average true bias is (unpleasant trig again omitted)

E[µt(r, θ) j rm, θm] D

[
rm cos θm(e�σ 2

θ
� e�σ 2

θ /2)

rm sin θm(e�σ 2
θ
� e�σ 2

θ /2)

]
.

■ The average true covariance matrix has elements

611
Qv,a D r2

me�2σ 2
θ [cos2 θm(cosh 2σ 2

θ � cosh σ 2
θ ) C sin2 θm(sinh 2σ 2

θ � sinh σ 2
θ )]

C σ 2
r e�2σ 2

θ [cos2 θm(2 cosh 2σ 2
θ � cosh σ 2

θ )

C sin2 θm(2 sinh 2σ 2
θ � sinh σ 2

θ )]

622
Qv,a D r2

me�2σ 2
θ [sin2 θm(cosh 2σ 2

θ � cosh σ 2
θ ) C cos2 θm(sinh 2σ 2

θ � sinh σ 2
θ )]

C σ 2
r e�2σ 2

θ [sin2 θm(2 cosh 2σ 2
θ � cosh σ 2

θ )

C cos2 θm(2 sinh 2σ 2
θ � sinh σ 2

θ )]

612
Qv,a D sin θm cos θme�4σ 2

θ [σ 2
r C (r2

m C σ 2
r )(1 � eσ 2

θ )].

■ Note that the average covariance is larger than the true covariance

conditioned on the exact position as it takes into account the

additional errors incurred by evaluating it at the measured position.

■ Thus, the final polar-to-Cartesian unbiased consistent conversion

which corrects for the average bias is

z D

[
rm cos θm(1 � e�σ 2

θ
C e�σ 2

θ /2)

rm sin θm(1 � e�σ 2
θ
C e�σ 2

θ /2)

]
,
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and

6
Qv D 6

Qv,a D

[
611

Qv,a 612
Qv,a

612
Qv,a 622

Qv,a

]
.

■ Note that the corrections to 6
Qv are time varying, so must be

computed for every measurement.

■ Ironically, a true nonlinear Kalman filter may be less complex than

applying these corrections to a linear Kalman filter!
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8.4: The interacting-multiple-model Kalman filter

■ A target that we wish to track may have a number of significantly

distinct modes of operation, numbered 1 . . . M.

■ For example, a target may act like NCV for a period of time, then NCP

for another period of time, then follow a coordinated turn, etc.

■ The IMM-KF operates multiple Kalman filters in parallel, and carefully

blends state and covariance from each filter to make a composite

state estimate and covariance.3

■ The IMM-KF also computes a PMF corresponding to the filter’s

estimate of the likelihood that the target is operating in modes 1. . . M.

■ An additional input required by IMM is a matrix containing the

probability of transitioning from mode i to mode j :

pi j D Pr(mk D j j mk�1 D i),

where mk is the mode at time k.
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...
...
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Interaction step #1 Filtering step #2 Combination step #3

3
A good external reference is: Mazor, E., Averbuch, A., Bar-Shalom, Y., and Dayan, J., “Interacting multiple model methods

in target tracking: A survey,” IEEE Trans. Aerospace and Electronic Systems, 34(1), Jan. 1998, 103–123.
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■ The IMM repeatedly executes three steps per iteration: interaction,

filtering, and combination. This is shown in the diagram:

� Step 1 is the interaction between the filters;

� Step 2 is the individual filter update; and

� Step 3 combines filter information to create the output information.

Interaction

■ The estimates and covariances from the M independent KFs (from

the prior time step) are blended together to produce the inputs to the

M independent KFs for this time step.

■ We first compute the conditional probability

µi j j,k�1 D Pr(mk�1 D i j mk D j,Zk�1)

■ Note that a version of Bayes’ rule that applies is:

Pr(A j B, C) D
Pr(B j A, C) Pr(A j C)

Pr(B j C)
.

■ So, we have

µi j j,k�1 D Pr(mk�1 D i j mk D j,Zk�1)

D

Pr(mk D j j mk�1 D i,Zk�1) Pr(mk�1 D i j Zk�1)

Pr(mk D j j Zk�1)

D

1

Nc j

pi j Pr(mk�1 D i j Zk�1) D
1

Nc j

pi jµi,k�1,

where Nc j D Pr(mk D j j Zk�1) D

M∑

iD1

pi jµi,k�1.
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■ Then we blend together all state outputs from the prior step according

to the probability that they could have contributed to the state at this

time step.

■ The modified input state to filter j at time step k is

Ox
(mod)
j,k�1 D E

[
xk�1 j mk D j,Zk�1

]

D

M∑

iD1

OxCi,k�1 Pr(mk�1 D i j mk D j,Zk�1)

D

M∑

iD1

OxCi,k�1µi j j,k�1.

■ The covariance of Ox
(mod)
j,k�1 can be found as

6
(mod)
Qx j,k�1

D E

[
(xk�1 � Ox

(mod)
j,k�1)(xk�1 � Ox

(mod)
j,k�1)

T
]

D

M∑

iD1

E

[
(xk�1 � Ox

(mod)
j,k�1)(xk�1 � Ox

(mod)
j,k�1)

T
j mk D j

]
µi j j,k�1

D

M∑

iD1

E

[
(xk�1 � OxCi,k�1 C OxCi,k�1 � Ox

(mod)
j,k�1) �

(xk�1 � OxCi,k�1 C OxCi,k�1 � Ox
(mod)
j,k�1)

T
j mk D j

]
µi j j,k�1

D

M∑

iD1

E

[
(xk�1 � OxCi,k�1)(xk�1 � OxCi,k�1)

T
j mk D j

]
µi j j,k�1

C

M∑

iD1

( OxCi,k�1 � Ox
(mod)
j,k�1)E

[
xk�1 � OxCi,k�1 j mk D j

]
︸ ︷︷ ︸

0

µi j j,k�1
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C

M∑

iD1

E

[
xk�1 � OxCi,k�1 j mk D j

]
︸ ︷︷ ︸

0

( OxCi,k�1 � Ox
(mod)
j,k�1)

T µi j j,k�1

C

M∑

iD1

( OxCi,k�1 � Ox
(mod)
j,k�1)( Ox

C

i,k�1 � Ox
(mod)
j,k�1)

T µi j j,k�1

D

M∑

iD1

E

[
(xk�1 � OxCi,k�1)(xk�1 � OxCi,k�1)

T
j mk D j

]
µi j j,k�1

C

M∑

iD1

[ OxCi,k�1 � Ox
(mod)
j,k�1][ OxCi,k�1 � Ox

(mod)
j,k�1]T µi j j,k�1

D

M∑

iD1

{
6C

Qxi,k�1
C [ OxCi,k�1 � Ox

(mod)
j,k�1][ OxCi,k�1 � Ox

(mod)
j,k�1]T

}
µi j j,k�1.

■ The first term is the mixture of the prior covariances, and the second

term is due to the “spread of the means” of the individual filters.

Filtering

■ After the interaction step, one time step for each of the M Kalman

filters is then executed.

■ Each filter outputs the present state and covariance estimate for that

mode, as well as the likelihood of the present measurement given

that the target is in mode j :

3 j,k D N (zk � Oz j,k,6Qz j,k
)

D

1

(2π)n/2
∣∣6

Qz j,k

∣∣1/2
exp

(
�

1

2
(zk � Oz j,k)

T 6�1
Qz j,k

(zk � Oz j,k)

)
.
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Combination

■ The final step is to combine the results of the M filters to get an

overall target state estimate and a probability distribution on the mode

random variable.

■ We first compute the a posteriori probability of being in mode j at

time k

µ j,k D Pr(mk D j j Zk) D Pr(mk D j j Zk�1, zk)

D

f (zk j mk D j,Zk�1) Pr(mk D j j Zk�1)

Pr(zk)

D

1

c
3 j,k

M∑

iD1

Pr(mk D j j mk�1 D i,Zk�1) Pr(mk�1 D i j Zk�1)

D

1

c
3 j,k

M∑

iD1

pi jµi,k�1

D

1

c
3 j,k Nc j ,

where c is a normalizing constant to ensure that µ j,k sums to 1.

■ Then, the filter output is computed as a mixture of the individual filter

estimates, according to the likelihood of the target being in the mode

of that filter

OxCk D

M∑

jD1

OxCj,kµ j,k

6C

Qx,k D

M∑

jD1

{
6C

Qx j,k
C [ OxCj,k � OxCk ][ OxCj,k � OxCk ]T

}
µ j,k.

■ Then, the state is computed as a weighted combination of the

individual filter state estimates.
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■ Likewise, the covariance is computed as a weighted combination of

the individual filter covariance estimates.
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8.5: Code for IMM

■ The code in this section implements one iteration of the IMM.

■ The inputs comprise the present system input u D uk (which is often

zero), the present measurement z D zk, immState, and immData.

■ The immData variable has fields:

� txprob: This is the state transition matrix pi j .

� A, B, C, D: The system’s discrete-time A, B, C , and D matrices, in a

three-dimensional array, with the third dimension being the mode.

� Sw, Sv: The system’s discrete time noise matrices 6w̃ and 6
Qv , in a

three-dimensional array, with the third dimension being the mode.

■ The immState variable has fields:

� mode: An M � 1 vector comprising the probability of being in any

particular mode at this point in time. Corresponds to µi,k for all

values of i 2 f1 � � � Mg at this time step k.

� X: An n � M matrix comprising the state estimate of each KF. Each

column of X contains one KF state estimate.

� SX: An n2
� M matrix comprising the covariance matrices of each

KF. Each column contains one covariance matrix in columnar form.

� xhat: The output combined state estimate OxCk from the filter for

this time step.

� SigmaX: The output combined covariance estimate 6C

Qx,k from the

filter for this time step.

■ Some of the code is pretty tricky and bears closer examination.

■ Some very efficient MATLAB matrix operations replace loops.
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function immState = iterIMM(uold,unew,z,immState,immData)

modes = size(immData.A,3);

nx = size(immData.A,1);

% Interaction step

% 1) Compute cbar = sum(p(i,j)*mu(i,k-1))

cbar = immData.txprob'*immState.mode;

% 2) Compute mu(i|j,k-1) = 1/cbar * p(i,j)*mu(i,k-1)

modeij = immData.txprob.*(immState.mode*(cbar.^(-1))');

modeij(isnan(modeij)) = 0; % take care of impossible final states

% 3) Compute xhat(mod)

x0 = immState.X*modeij;

% 4) Compute Sigma(mod). [Fixed error in Bar-Shalom IMM code here]

Sx0 = immState.SX; Sx1 = immState.SX; % reserve space for Sx0,Sx1

for j = 1:modes,

xk1 = immState.X(:,j); Sx = xk1*xk1'; Sx0(:,j) = Sx(:);

xk1 = x0(:,j); Sx = xk1*xk1'; Sx1(:,j) = Sx(:);

end

Sx0 = (immState.SX + Sx0)*modeij - Sx1; % verified

% Filtering step

Lambda = zeros(size(cbar)); Sx = zeros(nx);

for j = 1:modes,

% 0) Set up variables for this filter

xhat = x0(:,j); Sx(:) = Sx0(:,j);

A = immData.A(:,:,j); B = immData.B(:,:,j);

C = immData.C(:,:,j); D = immData.D(:,:,j);

Sw = immData.Sw(:,:,j); Sv = immData.Sv(:,:,j);

% 1a) State estimate time update

xhat = A*xhat + B*uold;

% 1b) State covariance time update

Sx = A*Sx*A' + Sw;

% 1c) Output estimate

zhat = C*xhat + D*unew;

% 2a) Filter gain matrix

Py = (C*Sx*C'+Sv); L = Sx*C'/Py;

% 2b) State estimate measurement update

immState.X(:,j) = xhat + L*(z-zhat);

% 2c) State covariance measurement update

Sx = Sx - L*Py*L'; immState.SX(:,j) = Sx(:);

Lambda(j) = max(1e-9,exp(-0.5 * ((z-zhat)^2/Py)) / ...

sqrt(2*pi*Py)); % much faster than normpdf
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end

% Combination step

% 1) Compute PMF of being in mode j: mu(j,k)

immState.mode = Lambda.*cbar;

immState.mode = immState.mode/sum(immState.mode);

% 2) Compute composite state estimate

immState.xhat = immState.X*immState.mode;

% 3) Compute composite covariance estimate

modeSx = immState.SX;

for j=1:modes

xk1=immState.X(:,j)-immState.xhat;

Sx=xk1*xk1'; modeSx(:,j)=Sx(:);

end

immState.SigmaX(:) = (immState.SX+modeSx)*immState.mode;

■ The following is example driver code for this subroutine:

� A one-dimensional tracking case is considered

� The true system uses an NCV model for 100 iterations, then an

NCP model for 100 iterations.

% Set up model 1 for mode 1: NCV model, one dimensional, T=1

% Start with continuous-time; convert to discrete-time

Ac = [0 1; 0 0]; Bc = [0; 1]; Swc = 1;

Z = [-Ac Bc*Swc*Bc'; zeros(size(Ac)) Ac'];

C = expm(Z*1); A1 = C(3:4,3:4)'; Sw1 = A1*C(1:2,3:4);

B1 = [1^2/2; 1]; C1 = [1 0]; Sv1 = 0.2;

% Set up model 2 for mode 2: NCP model, one dimensional, T=1

% Start with continuous-time; convert to discrete-time

Ac = [0 0; 0 0]; Bc = [1; 0]; Swc = 1;

Z = [-Ac Bc*Swc*Bc'; zeros(size(Ac)) Ac'];

C = expm(Z*1); A2 = C(3:4,3:4)'; Sw2 = A2*C(1:2,3:4);

B2 = [1; 0]; C2 = [1 0 ]; Sv2 = 0.1;

% Populate the immData and immState structures

immData = [];

immData.txprob = [0.95 0.05; 0.05 0.95];

immData.A(:,:,1) = A1; immData.A(:,:,2) = A2;

immData.B(:,:,1) = B1; immData.B(:,:,2) = B2;
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immData.C(:,:,1) = C1; immData.C(:,:,2) = C2;

immData.D(:,:,1) = 0; immData.D(:,:,2) = 0;

immData.Sw(:,:,1) = Sw1; immData.Sw(:,:,2) = Sw2;

immData.Sv(:,:,1) = Sv1; immData.Sv(:,:,2) = Sv2;

immState = [];

immState.mode = [0.8; 0.2]; % a-priori likelihood for each mode

immState.X = [0 0; 0.3 0.3]; % initialize both modes to same estimate

immState.SX = [0.1 0.1; 0 0; 0 0; 0.1 0.1];

immState.xhat = [0; 0]; % these two are outputs, not inputs, but I'll set

immState.SigmaX = [0.1 0; 0 0.1]; % them anyway

% Generate the true system data

xtrue = zeros([2,201]);

z = zeros(1,200);

for k = 1:100,

xtrue(:,k+1) = A1*xtrue(:,k) + chol(Sw1,'lower')*randn([2 1]);

z(k) = C1*xtrue(:,k) + sqrt(Sv1)*randn(1);

end

for k = 101:200,

xtrue(:,k+1) = A2*xtrue(:,k) + sqrt(Sw2)*randn([2 1]);

z(k) = C2*xtrue(:,k) + sqrt(Sv2)*randn(1);

end

figure(1); clf; plot(xtrue(1,:)); hold on;

% Run the IMM on this data

xhatstore = zeros([2,200]);

modestore = zeros([2,200]);

sigmastore = zeros([4,200]);

for k = 1:200,

immState = iterIMM(0,0,z(k),immState,immData);

xhatstore(:,k) = immState.xhat;

sigmastore(:,k) = immState.SigmaX(:);

modestore(:,k) = immState.mode;

end

hold on; plot(xhatstore(1,:),'r');

title('True and estimated position'); xlabel('Iteration');

ylabel('Position (m)'); a = axis; axis([0 201 a(3) a(4)]);

figure(2); clf; plot(xtrue(1,1:200)-xhatstore(1,:)); hold on;

plot(3*sqrt(sigmastore(1,:)),'k--','linewidth',0.5);

plot(-3*sqrt(sigmastore(1,:)),'k--','linewidth',0.5);
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title('Tracking error and bounds');

xlabel('Iteration'); ylabel('Error (m)'); axis([0 201 -1.5 1.5]);

figure(3); clf; plot(modestore');

hold on; plot([0 201],[0.5 0.5],'k--','linewidth',0.5);

title('Estimated mode PMF values'); xlabel('Iteration');

ylabel('Probability'); axis([0 201 -0.05 1.05]);

■ The following graphs show sample output from this code
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■ Some comments:

� The state estimate is always very good;

� The error bounds improve during NCP (calmer dynamics);

� The mode tracking is very good: Errors only when NCV is actually

stopped, or NCP is actually moving more than a negligible amount.
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