
ECE5550: Applied Kalman Filtering 7–1

PARTICLE FILTERS
1

7.1: Numeric integration to solve Bayesian recursion

■ Recall from Chap. 4 that the optimal Bayesian recursion is to:

� Compute the pdf for predicting xk given all past observations

f (xk j Zk�1) D

∫

Rxk�1

f (xk j xk�1) f (xk�1 j Zk�1) dxk�1.

� Update the pdf for estimating xk given all observations via

f (xk j Zk) D
f (zk j xk) f (xk j Zk�1)

f (zk j Zk�1)
.

■ If we knew how to compute these pdfs, then we could find any

desired estimator; e.g., mean, median, mode, whatever.

■ So far, we have assumed that computing these pdfs is intractable, so

have made approximations to arrive at the KF, EKF, and SPKF.

■ We now revisit this assumption.

Numeric integration

■ The prediction step requires evaluating an integral.

■ Normalization of f (xk j Zk) via its denominator requires an integral

f (zk j Zk�1) D

∫

Rxk

f (zk j xk) f (xk j Zk�1) dxk.

1 The contents of this chapter of notes, including the MATLAB examples, are very closely

based on the excellent course materials and lecture videos prepared by Prof. James

McNames at Portland State University for “ECE 510 State Space Tracking,” and are

used with his permission and my gratitude.
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■ If state dimension n is large (e.g., n � 3), evaluation of these multi-

dimensional integrals may be impractical, even with modern CPUs.

■ Computation needed for a given precision scales exponentially with n.

� The particle filter will explore some clever ways to avoid this issue.

� But, first, we look at numeric integration for low-order problems.

■ Suppose that we wish to evaluate

the definite integral

integral D

∫ xmax

xmin

g(x) dx .

■ The rectangular rule approximates

g(x) as piecewise constant. 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5
Rectangular integration

x

g
(x

)

■ Let Nr be the number of constant regions.

■ Then, the width of each region is w D (xmax � xmin)/Nr , and the

integral can be approximated as

integral �

Nr�1∑

iD0

w � g(xmin C (i C 1/2)w).

■ The trapezoidal rule approximates

the function as piecewise linear.

■ The integral approximation is

integral � w

[
g(xmin)C g(xmax)

2

C

Nr�1∑

iD1

g(xmin C iw)

]
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Application to Bayesian inference

■ Can write prediction step as

f (xk j Zk�1) D

∫ xmax

xmin

f (xk j xk�1) f (xk�1 j Zk�1) dxk�1

D

∫ xmax

xmin

g(xI xk,Zk�1) dx

� w
[
g(xminI xk,Zk�1)C g(xmaxI xk,Zk�1)

]
/2

Cw

Nr�1∑

iD1

g(xmin C iwI xk,Zk�1).

■ If we can compute this integral for every value of xk, can directly

estimate posterior distribution f (xk j Zk).

■ Limiting factor is precision vs. speed: Each integral requires O(Nr)

calculations at each of Nr evaluation points, or O(N 2
r ) operations.

TRACKING EXAMPLE: We wish to track time-varying xk for model

xkC1 D αxk C wk

zk D 0.1x3
k C vk

where wk � N (0, σ 2
w) and vk � N (0, σ 2

v ) are mutually uncorrelated

and IID.

■ For the prediction step, we numerically integrate to approximate

f (xk j Zk�1) D

∫

Rxk�1

f (xk j xk�1) f (xk�1 j Zk�1) dxk�1.

■ For the time-update step, we directly compute

f (xk j Zk) D
f (zk j xk) f (xk j Zk�1)

f (zk j Zk�1)
.
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■ Note that the process model gives us

f (xk j xk�1) � N (αxk�1, σ
2
w)

and the measurement model gives us

f (zk j xk) � N (0.1x3
k , σ

2
v ).

■ For this example, let σw D 0.2, σv D 0.1, α D 0.99, and x0 � N (0, σ 2
w).

■ Note that f (x0 j Z0) needs to be specified, where

f (x0 j Z0) D
f (z0 j x0) f (x0 j Z�1)

f (z0 j Z�1)
.

■ Since Z
�1 is unknown, we assume f (x0 j Z�1) D f (x0) � N (0, σ 2

w).

■ Simulation run for 200 samples, range of integration from �3 to 3 with

Nr D 500 regions.

■ If we are able to find/approximate f (xk j Zk), we can compute mean,

median, mode, whatever.

� Can plot these point estimates as functions of time.

� Alternately, can plot the sequence of distributions as a pseudo-

color image (black is low probability; white is high probability).
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% Code originally based on AngleTrackingExample.m by James McNames

% of Portland State University

clear; close all;

% Define User-Specified Parameters

nSamples = 201;

xMin = -3;

xMax = 3;

measurementNoiseSigma = 0.1;

processNoiseSigma = 0.2;

nRegions = 500;

alpha = 0.99;

% Create Sequence of Observations from Model

x = zeros(nSamples+1,1); % time [0..nSamples]

z = zeros(nSamples ,1); % time [0..nSamples-1]

x(1) = randn(1)*processNoiseSigma; % initialize x{0} ~ N(0,sigmaw^2)

for k=1:nSamples

x(k+1) = alpha*x(k) + randn(1)*processNoiseSigma;

z(k ) = 0.1*x(k)^3 + randn(1)*measurementNoiseSigma;

end

x = x(1:nSamples); % constrain to [0..nSamples-1]

% Recursively Estimate the Marginal Posterior

xIntegration = linspace(xMin,xMax,nRegions).';

width = mean(diff(xIntegration));

posteriorFiltered = zeros(nRegions,nSamples);

posteriorPredicted = zeros(nRegions,1);

xHatMedian = zeros(nSamples,1);

xLower = zeros(nSamples,1);

xUpper = zeros(nSamples,1);

% initialize pdf for f(x{0})

prior = normpdf(xIntegration,0,processNoiseSigma);

% compute f(z{0}|x{0})*f(x{0}|Z{-1}) = f(z{0}|x{0})*f(x{0})

posteriorFiltered(:,1) = normpdf(z(1),0.1*xIntegration.^3,...

measurementNoiseSigma).*prior;

% compute f(x{0}|Z{0})=f(z{0}|x{0})*f(x{0}|Z{-1})/[normalizing cst]
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posteriorFiltered(:,1) = posteriorFiltered(:,1)/trapz(xIntegration,...

posteriorFiltered(:,1));

for k=2:nSamples

for cRegion=1:nRegions % find f(x{k}=x{i}|x{k-1}) for each x{i}

% compute f(x{k}|x{k-1})

prior = normpdf(xIntegration(cRegion),alpha*xIntegration,...

processNoiseSigma);

% compute f(x{k}|Z{k-1})=integral[ f(x{k}|x{k-1})*f(x{k-1}|Z{k-1}) ]

posteriorPredicted(cRegion) = trapz(xIntegration,...

prior.*posteriorFiltered(:,k-1));

end

% compute f(z{k}|x{k})

likelihood = normpdf(z(k),0.1*xIntegration.^3,measurementNoiseSigma);

% compute f(x{k}|Z{k-1})*f(z{k}|x{k})

posteriorFiltered(:,k) = likelihood.*posteriorPredicted;

% normalize to get f(x{k}|Z{k})

posteriorFiltered(:,k) = posteriorFiltered(:,k)/trapz(xIntegration,...

posteriorFiltered(:,k));

% Find median, 95% confidence interval

percentiles = cumtrapz(xIntegration,posteriorFiltered(:,k));

iMedian = find(percentiles <= 0.5,1,'last');

iLower = find(percentiles <= 0.025,1,'last');

if isempty(iLower), iLower = 1; end;

iUpper = find(percentiles >= 0.975,1,'first');

if isempty(iUpper), iUpper = length(xIntegration); end

xHatMedian(k) = xIntegration(iMedian);

xLower(k) = xIntegration(iLower);

xUpper(k) = xIntegration(iUpper);

end

[~,iMax] = max(posteriorFiltered);

xHatMode = xIntegration(iMax);

xHatMean = xIntegration'*posteriorFiltered.*width;

% Plot true state and observed sequence

figure(10); clf;

ax = plotyy(0:nSamples-1,x,0:nSamples-1,z);

legend('True state x_k','Measured z_k');

ylabel(ax(1),'x_k'); ylabel(ax(2),'z_k');

title('Signals for tracking example');

xlabel('Iteration k');
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% Plot The Filtered Posterior

figure(3); clf; colormap('bone')

imagesc(0:nSamples-1,xIntegration,posteriorFiltered); hold on

caxis([0,prctile(posteriorFiltered(:),95)]); % more white on plot

hp = plot(0:nSamples-1,x,'.',0:nSamples-1,xHatMode,'.',...

0:nSamples-1,xHatMean,'.',0:nSamples-1,xHatMedian,'.',...

[0:nSamples-1,0:nSamples-1],[xUpper; xLower],'.');

set(hp,'markersize',12)

xlabel('Iteration k'); ylabel('x_k'); title('Posterior probability of x');

xlim([0 nSamples-1]); ylim([xMin xMax]);

legend(hp,{'True','Mode','Mean','Median','95% conf.'},...

'location','eastoutside');
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7.2: Monte-Carlo integration and the importance density

■ Finding the optimal solution via numeric integration is usually not

practical since it requires operation over a high-dimensional space.

■ We need to find a way to beat the “curse of dimensionality” and get

good approximate results using less computation.

THE PROBLEM: Consider the problem of numerically integrating g(x),

where we can evaluate g(x) at any point x that we like:

µ D

∫
g(x) dx .

A POSSIBLE SOLUTION: Monte-Carlo methods “factor” g(x) and write

µ D

∫ [
g(x)

f (x)

]
f (x) dx ,

where f (x) is interpreted as a pdf.

■ Then, the integral can be interpreted as µ D E[g(x)/ f (x)].

■ Why does this help? The key idea is to write the integral as an

expectation, then approximate the expectation with a sample mean

based on sampling from the known pdf f (x).

■ That is, suppose we draw N � 1 random samples from pdf f (x).

Then,

µ D

∫ [
g(x)

f (x)

]
f (x) dx D E

[
g(x)

f (x)

]
�

1

N

N∑

iD1

g(x (i))

f (x (i))
,

where x (i) is the i th sample drawn from f (x), not x to the power i .

■ If the samples are independent, then the estimate is unbiased and

will “almost surely” converge to µ as N !1.
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■ Can choose f (x) however we like, as long as its support is a superset

of the support of g(x).

� Can choose f (x) uniform, Gaussian, whatever;

� Doesn’t influence convergence; does affect rate of convergence.

EXAMPLE: Suppose we are given a random process yk D cos(vk) where

vk � N (0, σ 2
v ) and we wish to estimate

E[y] D

∫
1

�1

cos(v)
1√

2πσ 2
v

exp

(
�v2

2σ 2
v

)
dv .

■ We draw Gaussian RVs with zero mean and standard deviation σv

and compute

1

N

N∑

iD1

cos(v (i)).

N = 10000; sv = 0.75;

v = sv*randn(1,N); y = cos(v);

Ey = cumsum(y)./(1:N); plot(1:N,Ey); 0 2000 4000 6000 8000 10000
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■ The “true mean” can be found as exp(�σ 2
v /2), or numerically.

■ We see quite fast convergence to the neighborhood of the solution.

Reconsidering our problem

■ In the prediction step, the integral we need to evaluate is already in

the right form. That is,

f (xk j Zk�1) D

∫

Rxk�1

f (xk j xk�1) f (xk�1 j Zk�1) dxk�1

is in the form

something D

∫
fn(xk�1) f (xk�1) dxk�1.
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■ To use a Monte-Carlo method to compute the integral, we need to

draw random numbers from the posterior distribution f (xk�1 j Zk�1).

� Problem: Unless this pdf is uniform or Gaussian or some other

well-known distribution, we don’t know how to do this.

� That is, we may be able to evaluate the pdf at specific points

(probably not, but we’ll deal with that issue later) but we cannot

draw IID random samples from the distribution.

� However, there are other random number generators that we can

draw samples from—how to use this?

■ We define an importance density q(x), which is a known pdf from

which we are able to draw random samples.

■ Then, if we wish to evaluate

µ D

∫
g(x) f (x) dx ,

but cannot, since we cannot draw random values from f (x), we could

instead consider

µ D

∫
g(x) f (x)

q(x)
� q(x) dx ,

where we can draw samples from q(x).

■ Then

OµN D
1

N

N∑

iD1

g(x (i)) f (x (i))

q(x (i))
D

1

N

N∑

iD1

g(x (i))w(x (i)),

where w(x (i)) D f (x (i))/q(x (i)).

■ This requires that q(x) have support (i.e., q(x) > 0) everywhere f (x)

has support.
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EXAMPLE: Same as before, want to find E[y], where y D cos(v) and

v � N (0, σ 2
v ). But, we now assume that we have only a uniform

random number generator.

■ Range of uniform RV was chosen

to be �4σv.

N = 10000; sv = 0.75;

q = 8*sv*(rand([1 N])-0.5);

y = cos(q).*exp(-q.^2/(2*sv^2)) ...

/sqrt(2*pi*sv^2)/(1/(8*sv));

Ey = cumsum(y)./(1:N);

■ Convergence is slower than before.
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■ Nonetheless, we get the same value in the end.
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7.3: Weight normalization and impulse functions

Weight normalization

■ We are getting closer to being able to evaluate the desired equations

f (xk j Zk�1) D

∫

Rxk�1

f (xk j xk�1) f (xk�1 j Zk�1) dxk�1.

f (xk j Zk) D
f (zk j xk) f (xk j Zk�1)

f (zk j Zk�1)
.

■ Typically, we do not calculate f (zk j Zk�1) because

� It involves evaluation of an integral

� It does not depend on xk

� It serves only to normalize the posterior so

∫
f (xk j Zk) dxk D 1.

■ Thus, we will choose to evaluate something that is only proportional

to the posterior—not the posterior itself.

■ How does this affect Monte-Carlo integration?

■ Assume that we know a function that is proportional to f (x). Call it

Qf (x) D c f (x), where c is an unknown constant.

■ This will bias our estimate

Oµb D

∫
g(x) Qf (x) dx �

1

N

N∑

iD1

g(x (i))
Qf (x (i))

q(x (i))
D c

1

N

N∑

iD1

g(x (i)) f (x (i))

q(x (i))
D c Oµ.

■ We can compute the bias if we (conceptually) replace the arbitrary

function g(x) by 1. That is, we seek to find E[1] D 1 to expose the

bias.

Oµ1 D

∫
1 � Qf (x) dx �

1

N

N∑

iD1

1 �
Qf (x (i))

q(x (i))
D c

1

N

N∑

iD1

f (x (i))

q(x (i))
︸ ︷︷ ︸

1

D c.
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■ So, c D
1

N

N∑

iD1

Qf (x (i))

q(x (i))
D

1

N

N∑

iD1

w̃(x (i)).

■ If we divide our biased estimate by this constant, we remove the bias.

■ So, in general, for any g(x),

OµN D
1

N

N∑

iD1

g(x (i))
f (x (i))

q(x (i))
D

1

N

N∑

iD1

g(x (i))w(x (i))

D

1

N

N∑

iD1

g(x (i))

(
w̃(x (i))

1
N

∑N
iD1 w̃(x (i))

)

D

N∑

iD1

g(x (i))w�(x (i)),

where w�(x (i)) D
w̃(x (i))

∑N
iD1 w̃(x (i))

.

■ This last step is called weight normalization.

The impulse function

■ We are making excellent progress in the development of background

to the particle filter.

■ One remaining concept relates to how we will represent the

probability density functions that are recursively updated.

■ It turns out that we will use the multidimensional Dirac delta (impulse)

function to do so.

�

∫
δ(x) dx D 1 and δ(x � a) D 0 8 x 6D a.

■ From these properties, can show f (a) D

∫
f (x)δ(x � a) dx .
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■ A multivariable impulse is defined as

δ(x) D
∏

i

δ(xi) D δ(x0)δ(x1) � � � δ(xn),

where xi is the i th element of vector x .

■ Particle filters represent the joint posterior as a sum of impulses.

■ To investigate this, consider a simple example with a Gaussian pdf.

■ If we model the pdf as Of (x) D
1

N

N∑

iD1

δ(x � x (i)), where x (i) are IID

samples drawn from f (x), then substitution of Of (x) into our integral to

find a mean is

µ D

∫
g(x) f (x) dx

Oµ D

∫
g(x) Of (x) dx D

∫
g(x)

1

N

N∑

iD1

δ(x � x (i)) dx

D

1

N

N∑

iD1

∫
g(x)δ(x � x (i)) dx D

1

N

N∑

iD1

g(x (i)).

■ So, using our approximation Of (x), we arrived at the same estimator

as derived earlier based on Monte-Carlo integration.

■ But, is it fair to say Of (x) � f (x)?

■ The figure draws N D 100 impulses

sampled from f (x) without arrows

(for clarity), superimposed on f (x).

■ Hard to argue any equivalence

except under an integral. −5 −4 −3 −2 −1 0 1 2 3 4 5
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■ This is a kind of scatter plot, but if you were given only the impulses it

would have been tricky to guess the true shape of the distribution.

■ In some sense, f (x) and Of (x) are nothing alike. They are alike in that∫
g(x) f (x) dx �

∫
g(x) Of (x) dx and

F(x) D

∫ x

�1

f (α) dα �

∫ x

�1

Of (α) dα.

■ So, we can calculate percentiles (including median) from Of (x).

■ But, there is no obvious way to calculate mode of f (x) from Of (x).2

■ Also, in our application, we won’t be able to draw samples from f (x),

but will instead draw samples from an importance density q(x).

■ The equivalent effect on the estimated pdf is to weight it

Of (x) D
∑

i

w(i)δ(x � x (i)), w(i)
D f (x (i))/q(x (i)).

■ This converges in the same

manner as the unweighted

approximation of the pdf.

■ In example, q(x) is the student-t

distribution with two degrees of

freedom. −4 −3 −2 −1 0 1 2 3 4
0
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■ In general, f (x (i)) 6D q(x (i)), so w(i)
6D 1.

2 Can use Viterbi particle filters — see Prof. McNames’ course notes and videos for

details.
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7.4: Sequential importance sampling

■ At last, we get to our first particle-filter algorithm!

■ Our goal is to estimate either the joint or marginal pdf

f (Xk j Zk) or f (xk j Zk).

■ Note that the first is the pdf of the entire trajectory up to time k,

Xk D fx0, x1, . . . , xkg. Very high (and growing) dimension.

KEY IDEA: We assume that the joint pdf can be expressed as

Of (Xk j Zk) D

Np∑

iD1

w
(i)
k δ(Xk � X

(i)
k ),

Np∑

iD1

w
(i)
k D 1.

■ This is a discrete weighted approximation to true posterior f (Xk j Zk),

parameterized and completely defined by fX
(i)
k , w

(i)
k g

Np

iD1.

■ To find these parameters efficiently, we desire a recursive algorithm.

■ First, we will need to select an importance density for the prediction

step because we cannot sample from the pdfs.

■ Any pdf (including an important density) must factor

q(Xk j Zk) D q(xk j Xk�1,Zk)q(Xk�1 j Zk).

■ We choose an importance density that factors

q(Xk j Zk) D q(xk j Xk�1,Zk)q(Xk�1 j Zk�1).

■ Not quite recursive, so again, we narrow down the kind of importance

density that we will use by requiring that it satisfy

q(Xk j Zk) D q(xk j xk�1, zk)q(Xk�1 j Zk�1).
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■ This factoring permits samples of the trajectory X
(i)
k to be created

sequentially after each observation zk is made by appending x
(i)
k to

X
(i)
k�1, where x

(i)
k is made from zk and x

(i)
k�1 only.

� Note: x
(i)
k is kth member of particle X

(i)
k , where particle comprises

entire trajectory and x
(i)
k is only the most recent point in trajectory;

� Similarly, x
(i)
k�1 is penultimate point X

(i)
k , or final point in X

(i)
k�1.

■ We will also need a weight-update equation

w
(i)
k /

f (X
(i)
k j Zk)

q(X
(i)
k j Zk)

.

■ The samples are chosen by importance sampling, where the samples

are taken at the particle locations X
(i)
k , and we get to choose the

importance density q(Xk j Zk).

■ We’ll say more on choosing q(�) later, but for now we can assume

we’ve chosen one (e.g., Gaussian).

■ To compute the weights, we’ll also need to be able to recursively

calculate f (X
(i)
k j Zk).

� Note that we can write:

f (X
(i)
k , zk j Zk�1) D f (X

(i)
k j zk,Zk�1) f (zk j Zk�1)

D f (X
(i)
k j Zk) f (zk j Zk�1).

� We can also write:

f (X
(i)
k , zk j Zk�1) D f (zk j Zk�1,X

(i)
k ) f (X

(i)
k j Zk�1)

D f (zk j x
(i)
k ) f (X

(i)
k j Zk�1)

D f (zk j x
(i)
k ) f (x

(i)
k ,X

(i)
k�1 j Zk�1)
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D f (zk j x
(i)
k ) f (x

(i)
k j Zk�1,X

(i)
k�1) f (X

(i)
k�1 j Zk�1)

D f (zk j x
(i)
k ) f (x

(i)
k j x

(i)
k�1) f (X

(i)
k�1 j Zk�1).

■ Equating these two forms gives

f (X
(i)
k j Zk) D

f (zk j x
(i)
k ) f (x

(i)
k j x

(i)
k�1)

f (zk j Zk�1)
f (X

(i)
k�1 j Zk�1)

/ f (zk j x
(i)
k ) f (x

(i)
k j x

(i)
k�1) f (X

(i)
k�1 j Zk�1)

q(X
(i)
k j Zk) D q(x

(i)
k j x

(i)
k�1, zk)q(X

(i)
k�1 j Zk�1)

w
(i)
k /

f (zk j x
(i)
k ) f (x

(i)
k j x

(i)
k�1) f (X

(i)
k�1 j Zk�1)

q(x
(i)
k j x

(i)
k�1, zk)q(X

(i)
k�1 j Zk�1)

D

f (zk j x
(i)
k ) f (x

(i)
k j x

(i)
k�1)

q(x
(i)
k j x

(i)
k�1, zk)

w
(i)
k�1.

■ So, we end up with a beautiful recursion for the weights.

� We get to choose q(x
(i)
k j x

(i)
k�1, zk).

� f (zk j x
(i)
k ) is obtained from measurement model zk D hk(xk, uk, vk).

� f (x
(i)
k j x

(i)
k�1) is from process model xk D fk�1(xk�1, uk�1, wk�1).

� w
(i)
k�1 is known from the previous time step for every particle i .

■ So, we now have a clever way to estimate the joint posterior

Of (X
(i)
k j Zk) D

Np∑

iD1

w
(i)
k δ(Xk � X

(i)
k ).

■ But, what we often care about is the marginal posterior f (x
(i)
k j Zk),

which we can get by integrating the joint.
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■ Not as scary as it might seem.

Of (xk j Zk) D

∫
Of (Xk j Zk) dXk�1 D

∫ Np∑

iD1

w
(i)
k δ(Xk � X

(i)
k ) dXk�1,

where

δ(Xk) D

n∏

iD0

δ(xi) D δ(x0)δ(x1) � � � δ(xn).

■ So,

Of (xk j Zk) D

Np∑

iD1

w
(i)
k

∫
δ(x0 � x

(i)
0 ) � � � δ(xk�1 � x

(i)
k�1)δ(xk � x

(i)
k ) dXk�1

D

Np∑

iD1

w
(i)
k δ(xk � x

(i)
k ).

■ The impulse notation makes the algorithm completely recursive, if

only the marginal is needed.

Sequential importance sampling (SIS) algorithm

■ So, the most basic general particle-filter algorithm, known as

sequential importance sampling, can be written as:

fx
(i)
k , w

(i)
k g

Np

iD1 D SIS
(
fx

(i)
k�1, w

(i)
k�1g

Np

iD1, zk

)

� For i D 1 : Np,

◆ Draw RV x
(i)
k � q(xk j x

(i)
k�1, zk) — randomly!

◆ Calculate unnormalized weights:

w̃
(i)
k D

f (zk j x
(i)
k ) f (x

(i)
k j x

(i)
k�1)

q(x
(i)
k j x

(i)
k�1, zk)

w
(i)
k�1.

◆ Normalize the weights: w
(i)
k D

w̃
(i)
k∑Np

iD1 w̃
(i)
k

.
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7.5 Example

■ Suppose we have a car driving around a

circular track with radius 200 m.

■ Velocity is nearly constant at 2Æ per sample,

but may be perturbed by additive Gaussian

noise modeling bumps, maneuvers, etc.

■ We have a sensor located 500
p

2 m from the

center of the track that measures angle to the

car, θk with noise �5Æ typical. x0xc

y0

yc

θk

φk

r

■ We wish to estimate φk (i.e., xk D φk).

■ Note that xc,k D r cos(φk)C x0 and yc,k D r sin(φk)C y0.

■ Model sensor noise vk � N (0, (5Æ)2) so (where zk D θk)

θk D tan�1

(
yc,k

xc,k

)
C vk.

■ For the process model, we write

φkC1 D φk C ω C wk,

where wk � N (0, σ 2
w) and ω D 2 degrees/sample.

■ Let y0 D x0 D 500 m, r D 200 m,

wk � N

(
0,

(
10π

180

)2
)

vk � N

(
0,

(
5π

180

)2
)

φ0 � N

((
50π

180

)
,

(
10π

180

)2
)

.
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■ We have several design choices before we can employ the filter.

� Importance density q(φk j φk�1, θk):

◆ Easiest choice is

q(φk j φk�1, θk) D f (φk j φk�1) � N (φk�1 C 2, σ 2
w).

� Number of particles:

◆ Performance versus computation tradeoff.

◆ Useful approach—as many as you have patience for.

◆ Here, we use Np D 500.

� Estimator of state:

◆ We’ll use the mean, as it is easiest.

■ Also, the likelihood f (θk j φk) � N

(
tan�1

(
r sin(φk)C y0

r cos(φk)C x0

)
, σ 2

v

)
.

% Define constants describing problem

% -----------------------------------

initialStateSigma = 10*pi/180;

measurementNoiseSigma = 5.0*pi/180;

processNoiseSigma = 10*pi/180;

stateInitial = 50*pi/180;

xo = 500; yo = 500; r = 200; omega = 2*pi/180; nSamples = 100;

% Create sequence of observations from model

% ------------------------------------------

x = zeros(nSamples+1,1); z = zeros(nSamples,1);

processNoise = randn(nSamples,1)*processNoiseSigma;

measurementNoise = randn(nSamples,1)*measurementNoiseSigma;

x(1) = stateInitial + randn(1)*initialStateSigma;

for k=1:nSamples

x(k+1) = x(k) + omega + processNoise(k);

z(k) = atan((r*sin(x(k))+yo)./(r*cos(x(k))+xo)) + ...

measurementNoise(k);

end

x = x(1:nSamples);
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% Create the Particles

% --------------------

nParticles = 500;

xp = zeros(nParticles,nSamples); wp = zeros(nParticles,nSamples);

xPHatMean = zeros(nSamples,1); % mean-particle estimate of state

for k=1:nSamples

processNoise = randn(nParticles,1)*processNoiseSigma;

for cp=1:nParticles

if k==1

xp(cp,k) = stateInitial + randn(1)*initialStateSigma;

wp(cp,k) = 1/nParticles;

else

xp(cp,k) = xp(cp,k-1) + omega + processNoise(cp);

zp = atan((r*sin(xp(cp,k))+yo)./(r*cos(xp(cp,k))+xo));

likelihood = normpdf(z(k),zp,measurementNoiseSigma);

wp(cp,k) = wp(cp,k-1)*likelihood;

end

end

wp(:,k) = wp(:,k)/sum(wp(:,k));

xPHatMean(k) = sum(wp(:,k).*xp(:,k));

end

■ In the time domain, the true state and measured output are
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■ The particles, with true state

trajectory overlaid, are shown.

■ Particles represent many possible

trajectories to choose from.
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■ Particle-filter estimate is

pretty poor, compared to

Bayes optimal.

■ Need to dig deeper to

figure out what’s going

wrong with our estimator.

Filtered posterior PDF
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7.6: How to display a marginal posterior

■ Would like to visualize particle

estimate of marginal posterior

Of (xk j Zk).

■ But, consists of weighted impulses,

as figure from prior example shows.

■ Difficult to grasp intuitively. −4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

Weighted studentt samples

 

 

Gaussian

Student t

f
(x

)

x

■ A popular method of estimating density is to add a series of “bumps”

together, where each bump is scaled by the impulse weight and

centered at the impulse location.

� This is merely popular; it is not necessarily “best.”

■ The bumps are called kernels and should have the following

properties

b(u) � 0,

∫
1

�1

b(u) du D 1.

■ The width of the kernel is specified by σ . Typically

bσ (u) D
1

σ
b
(u

σ

)
,

where it is easy to show that

∫
bσ (u) du D

∫
b(u) du D 1.

■ Then, a kernel density estimator is simply expressed as

Of (xk) D

Np∑

iD1

w
(i)
k bσ (xk � x

(i)
k ).

■ Kernels usually have even symmetry; Gaussian-shapes are popular.

■ For the prior example, we can estimate the posterior as
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-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2
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100 weighted student-t samples

Posterior

Importance

Est. Posterior

f
(x

)

x

■ Popular kernels include

Epanechnikov: b(u) D c(1� u2)5(u/2)

Bi-weight: b(u) D c(1� u2)25(u/2)

Tri-weight: b(u) D c(1� u2)35(u/2)

Triangular: b(u) D c(1� juj)5(u/2)

Gaussian: b(u) D ce�u2

where c is a constant chosen to make the kernel integrate to 1, and

5(u) is the unit-pulse function.

■ The bump’s width is the critical parameter. Much more important than

the choice of kernel.

� σ large: Smoother pdf estimate, more biased, less variable;

� σ small: Coarser pdf estimate, less biased, more variable.

■ Comparing estimated marginal posterior pdf using kernel functions to

the true posterior, we get a hint of the problem.

■ The posterior starts out okay, but quickly collapses to a single likely

trajectory.
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Estimated marginal posterior PDF
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■ This leads us to look at particle weights (on natural and log scales):
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■ The weights start at the same value, 1/Np, but very quickly one

particle “takes over.” The weights of the other particles decay to

around zero, and they have no influence on the results.

■ A lot of computation for no good reason.

■ We might also look at the

standard deviation of the

weights.

■ The increasing value shows that

weights are becoming very

unequal, and some particles are

being ignored.
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7.7: Reducing particle degeneracy

■ In the example, we found that

� The particle filter starts off tracking well,

� Performance rapidly deteriorates,

� Most of the weights become really small,

� Increasing the number of particles helps only a little.

■ If only a few of the weights are large, only a few trajectories contribute

to the state estimate

Oxk D

Np∑

iD1

w
(i)
k x

(i)
k .

■ So, most of the particles are wasted clock cycles. What happened?

� Keep in mind that the particles are entire state trajectories X
(i)
k .

� Drawing samples from a high-dimensional space.

� Difficult to draw probable state trajectories.

� Dimension grows linearly with time.

� Becomes exponentially difficult to sample efficiently.

� Known as the degeneracy problem.

■ Is manifest as w
(i)
k ! 0 as k increases.

■ To help visualize, we introduce the effective sample size, defined as

Npe,k D
1

∑Np

iD1(w
(i)
k )2

.

■ This is not a derivation, but a useful definition. Note that it makes

sense for the boundary cases:
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� If all weights are equal, w
(i)
k D 1/Np and

Npe,k D
1

∑Np

iD1(1/Np)2
D

1

Np(1/Np)2
D Np.

� If all weights but one are zero, we have

Npe,k D
1

1
D 1.

■ Thus, Npe,k is bounded and

1 � Npe,k � Np.

■ For our prior example, we see

that Npe,k quickly decreases.

■ We are essentially calculating

the state from a single trajectory

after 20 or so samples.
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Resampling

■ Idea is to eliminate samples with low importance weights and

replicate samples with high importance weights.

■ We resample from our set fx
(i)
k , w

(i)
k g, with replacement, whenever

Npe,k drops below some threshold (perhaps some percentage of Np).

■ Can resample as many times as we like, but typically we draw as

many samples as we started with.

■ The new particles are drawn with a probability given by the

importance weights, so we can assign uniform weights 1/Np to the

resulting IID samples.

■ A systematic resampling method is as follows:
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� Let c be the cumulative summation of weights

c
(i)
k D

i∑

jD1

w
( j )
k .

� Make a single draw u1 � U(0, N�1
p ) and set i D 1.

� For each j D 1 : Np,

◆ u j D u1 C ( j � 1)/Np.

◆ While u j > c
(i)
k , i D i C 1.

◆ Assign new x
( j )
k D old x

(i)
k , w

( j )
k D 1/Np.

■ In MATLAB code, this looks like:

nEffective = 1/sum(wp(:,k).^2);

if nEffective<nEffectiveThreshold

iPick = 1; xpNew = zeros(nParticles,1); c = cumsum(wp(:,k));

uj = rand(1)/nParticles;

for cp=1:nParticles

while uj>c(iPick) && iPick<nParticles,

iPick = iPick + 1;

end

xpNew(cp) = xp(iPick,k);

uj = uj + 1/nParticles;

end

xp(:,k) = xpNew;

wp(:,k) = ones(nParticles,1)/nParticles;

end

■ Repeating the previous example

(exactly same system data), with

resampling threshold constraint

Npe,k � 100, we get the following

results.

■ The particle trajectories have

improved immensely.
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■ The estimated marginal posterior is now a much closer match to the

true posterior.
Estimated marginal posterior PDF
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■ The particle weights themselves have improved in diversity.
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■ The weight standard deviation has improved, and the effective

number of particles has also improved.
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■ So, with resampling, particle filters become a much more effective

methodology.
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Where from here

■ This section on particle filters is only an introduction:

� There is a lot of literature on choosing importance densities, on

finding MAP estimators, etc.

� Prof. McNames’ course covers some of these more advanced

topics, if you are interested.

� The material we have covered here should prepare you for his

lectures and help you read and interpret the literature.

■ We now take a different direction and look at multi-target tracking

applications of Kalman filters.
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