
ECE5550: Applied Kalman Filtering 6–1

NONLINEAR KALMAN FILTERS

6.1: Extended Kalman filters

� We return to the basic problem of estimating the present hidden state
(vector) value of a dynamic system, using noisy measurements that
are somehow related to that state (vector).

� We now examine the nonlinear case, with system dynamics

xk = fk−1(xk−1, uk−1, wk−1)

zk = hk(xk, uk, vk),

where uk is a known (deterministic/measured) input signal, wk is a
process-noise random input, and vk is a sensor-noise random input.

� There are three basic nonlinear generalizations to KF

• Extended Kalman filter (EKF): Analytic linearization of the model at
each point in time. Problematic, but still popular.

• Sigma-point (Unscented) Kalman filter (SPKF/UKF): Statistical/
empirical linearization of the model at each point in time. Much
better than EKF, at same computational complexity.

• Particle filters: The most precise, but often thousands of times
more computations required than either EKF/SPKF. Directly
approximates the integrals required to compute f (xk | Zk) using
Monte-Carlo integration techniques.

� In this chapter, we present the EKF and SPKF.
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The Extended Kalman Filter (EKF)

� The EKF makes two simplifying assumptions when adapting the
general sequential inference equations to a nonlinear system:

• In computing state estimates, EKF assumes E[fn(x)] ≈ fn(E[x]);

• In computing covariance estimates, EKF uses Taylor series to
linearize the system equations around the present operating point.

� Here, we will show how to apply these approximations and
assumptions to derive the EKF equations from the general six steps.

EKF step 1a: State estimate time update.

� The state prediction step is approximated as

x̂−
k = E[ fk−1(xk−1, uk−1, wk−1) | Zk−1]

≈ fk−1(x̂+
k−1, uk−1, w̄k−1),

where w̄k−1 = E[wk−1]. (Often, w̄k−1 = 0.)

� That is, we approximate the expected value of the state by assuming
it is reasonable to propagate x̂+

k−1 and w̄k−1 through the state eqn.

EKF step 1b: Error covariance time update.

� The covariance prediction step is accomplished by first making an
approximation for x̃−

k .

x̃−
k = xk − x̂−

k

= fk−1(xk−1, uk−1, wk−1) − fk−1(x̂+
k−1, uk−1, w̄k−1).

� The first term is expanded as a Taylor series around the prior
operating “point” which is the set of values {x̂+

k−1, uk−1, w̄k−1}
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xk ≈ fk−1(x̂+
k−1, uk−1, w̄k−1)

+ d fk−1(xk−1, uk−1, wk−1)

dxk−1

∣∣∣∣
xk−1=x̂+

k−1︸ ︷︷ ︸
Defined as Âk−1

(xk−1 − x̂+
k−1)

+ d fk−1(xk−1, uk−1, wk−1)

dwk−1

∣∣∣∣
wk−1=w̄k−1︸ ︷︷ ︸

Defined as B̂k−1

(wk−1 − w̄k−1).

� This gives x̃−
k ≈

(
Âk−1x̃+

k−1 + B̂k−1w̃k−1

)
.

� Substituting this to find the predicted covariance:

�−
x̃,k = E[(x̃−

k )(x̃−
k )T ]

≈ Âk−1�
+
x̃,k−1 ÂT

k−1 + B̂k−1�w̃ B̂T
k−1.

� Note, by the chain rule of total differentials,

d fk−1(xk−1, uk−1, wk−1) = ∂ fk−1(xk−1, uk−1, wk−1)

∂xk−1
dxk−1 +

∂ fk−1(xk−1, uk−1, wk−1)

∂uk−1
duk−1 +

∂ fk−1(xk−1, uk−1, wk−1)

∂wk−1
dwk−1

d fk−1(xk−1, uk−1, wk−1)

dxk−1
= ∂ fk−1(xk−1, uk−1, wk−1)

∂xk−1
+

∂ fk−1(xk−1, uk−1, wk−1)

∂uk−1

duk−1

dxk−1︸ ︷︷ ︸
0

+

∂ fk−1(xk−1, uk−1, wk−1)

∂wk−1

dwk−1

dxk−1︸ ︷︷ ︸
0
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= ∂ fk−1(xk−1, uk−1, wk−1)

∂xk−1
.

� Similarly,
d fk−1(xk−1, uk−1, wk−1)

dwk−1
= ∂ fk−1(xk−1, uk−1, wk−1)

∂wk−1
.

� The distinction between the total differential and the partial differential
is not critical at this point, but will be when we look at parameter
estimation using extended Kalman filters.

EKF step 1c: Output estimate (where v̄k = E[vk]).

� The system output is estimated to be

ẑk = E[hk(xk, uk, vk) | Zk−1]

≈ hk(x̂−
k , uk, v̄k).

� That is, it is assumed that propagating x̂−
k and the mean sensor noise

is the best approximation to estimating the output.

EKF step 2a: Estimator gain matrix.

� The output prediction error may then be approximated

z̃k = zk − ẑk

= hk(xk, uk, vk) − hk(x̂−
k , uk, v̄k)

using again a Taylor-series expansion on the first term.

zk ≈ hk(x̂−
k , uk, v̄k)

+ dhk(xk, uk, vk)

dxk

∣∣∣∣
xk=x̂−

k︸ ︷︷ ︸
Defined as Ĉk

(xk − x̂−
k )
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+ dhk(xk, uk, vk)

dvk

∣∣∣∣
vk=v̄k︸ ︷︷ ︸

Defined as D̂k

(vk − v̄k).

� Note, much like we saw in Step 1b,
dhk(xk, uk, vk)

dxk
= ∂hk(xk, uk, vk)

∂xk

dhk(xk, uk, vk)

dvk
= ∂hk(xk, uk, vk)

∂vk
.

� From this, we can compute such necessary quantities as

�z̃,k ≈ Ĉk�
−
x̃,kĈ T

k + D̂k�ṽ D̂T
k ,

�−
x̃ z̃,k ≈ E[(x̃−

k )(Ĉk x̃−
k + D̂k ṽk)

T ] = �−
x̃,kĈ T

k .

� These terms may be combined to get the Kalman gain

Lk = �−
x̃,kĈ T

k

[
Ĉk�

−
x̃,kĈ T

k + D̂k�ṽ D̂T
k

]−1.

EKF step 2b: State estimate measurement update.

� The fifth step is to compute the a posteriori state estimate by
updating the a priori estimate

x̂+
k = x̂−

k + Lk(zk − ẑk).

EKF step 2c: Error covariance measurement update.

� Finally, the updated covariance is computed as

�+
x̃,k = �−

x̃,k − Lk�z̃,k LT
k = (I − LkĈk)�

−
x̃,k.
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Summary of the nonlinear extended Kalman filter

Nonlinear state-space model:
xk = f (xk−1, uk−1, wk−1)

zk = h(xk, uk, vk),

where wk and vk are independent, Gaussian noise processes of covariance ma-

trices �w̃ and �ṽ , respectively.

Definitions:
Âk = d fk(xk, uk, wk)

dxk

∣∣∣∣
xk=x̂+

k

B̂k = d fk(xk, uk, wk)

dwk

∣∣∣∣
wk=w̄k

Ĉk = dhk(xk, uk, vk)

dxk

∣∣∣∣
xk=x̂−

k

D̂k = dhk(xk, uk, vk)

dvk

∣∣∣∣
vk=v̄k

.

Initialization: For k = 0, set

x̂+
0 =E[x0]

�+
x̃,0 =E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

.

Computation: For k = 1, 2, . . . compute:

State estimate time update: x̂−
k = fk−1(x̂+

k−1, uk−1, w̄k−1).

Error covariance time update: �−
x̃,k = Âk−1�

+
x̃,k−1 ÂT

k−1 + B̂k−1�w̃ B̂T
k−1.

Output estimate: ẑk = hk(x̂−
k , uk, v̄k).

Estimator gain matrix: Lk =�−
x̃,kĈT

k [Ĉk�
−
x̃,kĈT

k + D̂k�ṽ D̂T
k ]−1.

State estimate measurement update: x̂+
k = x̂−

k + Lk
(
zk − ẑk

)
.

Error covariance measurement update: �+
x̃,k = (I − LkĈk)�

−
x̃,k .
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6.2: An EKF example, with code

� Consider an example of the EKF in action, with the following system
dynamics:

xk+1 = fk(xk, uk, wk) = √
5 + xk + wk

zk = hk(xk, uk, vk) = x3
k + vk

with �w̃ = 1 and �ṽ = 2.

� To implement EKF, we must determine Âk, B̂k, Ĉk, and D̂k.

Âk = ∂ fk(xk, uk, wk)

∂xk

∣∣∣∣
xk=x̂+

k

= ∂
(√

5 + xk + wk
)

∂xk

∣∣∣∣∣
xk=x̂+

k

= 1

2
√

5 + x̂+
k

B̂k = ∂ fk(xk, uk, wk)

∂wk

∣∣∣∣
wk=w̄k

= ∂
(√

5 + xk + wk
)

∂wk

∣∣∣∣∣
wk=w̄k

= 1

Ĉk = ∂hk(xk, uk, vk)

∂xk

∣∣∣∣
xk=x̂−

k

= ∂
(
x3

k + vk
)

∂xk

∣∣∣∣∣
xk=x̂−

k

= 3(x̂−
k )2

D̂k = ∂hk(xk, uk, vk)

∂vk

∣∣∣∣
vk=v̄k

= ∂
(
x3

k + vk
)

∂vk

∣∣∣∣∣
vk=v̄k

= 1.

� The following is some sample code to implement an EKF.

• Note that the steps for calculating the plant and the Â, B̂, Ĉ , and D̂
matrices will depend on the nonlinear system underlying the
estimation problem.

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

SigmaV = 2; % Sensor noise covariance

maxIter = 40;
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xtrue = 2 + randn(1); % Initialize true system initial state

xhat = 2; % Initialize Kalman filter initial estimate

SigmaX = 1; % Initialize Kalman filter covariance

u = 0; % Unknown initial driving input: assume zero

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

for k = 1:maxIter,

% EKF Step 0: Compute Ahat, Bhat

% Note: For this example, x(k+1) = sqrt(5+x(k)) + w(k)

Ahat = 0.5/sqrt(5+xhat); Bhat = 1;

% EKF Step 1a: State estimate time update

% Note: You need to insert your system's f(...) equation here

xhat = sqrt(5+xhat);

% EKF Step 1b: Error covariance time update

SigmaX = Ahat*SigmaX*Ahat' + Bhat*SigmaW*Bhat';

% [Implied operation of system in background, with

% input signal u, and output signal z]

w = chol(SigmaW)'*randn(1);

v = chol(SigmaV)'*randn(1);

ztrue = xtrue^3 + v; % z is based on present x and u

xtrue = sqrt(5+xtrue) + w; % future x is based on present u

% EKF Step 1c: Estimate system output

% Note: You need to insert your system's h(...) equation here

Chat = 3*xhat^2; Dhat = 1;

zhat = xhat^3;

% EKF Step 2a: Compute Kalman gain matrix

L = SigmaX*Chat'/(Chat*SigmaX*Chat' + Dhat*SigmaV*Dhat');

% EKF Step 2b: State estimate measurement update

xhat = xhat + L*(ztrue - zhat);

xhat = max(-5,xhat); % don't get square root of negative xhat!

% EKF Step 2c: Error covariance measurement update
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SigmaX = SigmaX - L*Chat*SigmaX;

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue; xhatstore(k,:) = xhat;

SigmaXstore(k,:) = SigmaX(:);

end;

figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter),'k-',0:maxIter-1,xhatstore,'b--', ...

0:maxIter-1,xhatstore+3*sqrt(SigmaXstore),'m-.',...

0:maxIter-1,xhatstore-3*sqrt(SigmaXstore),'m-.'); grid;

legend('true','estimate','bounds'); xlabel('Iteration'); ylabel('State');

title('Extended Kalman filter in action');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)-xhatstore,'b-',0:maxIter-1, ...

3*sqrt(SigmaXstore),'m--',0:maxIter-1,-3*sqrt(SigmaXstore),'m--');

grid; legend('Error','bounds',0);

title('EKF Error with bounds');

xlabel('Iteration'); ylabel('Estimation Error');
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6.3: Problems with EKF, improved with sigma-point methods

� The EKF is the best known and most used nonlinear Kalman filter.

� However, it has serious flaws that can be remedied fairly easily.

ISSUE: How input mean and covariance are propagated through static
nonlinear function to create output mean and covariance estimates.

� Recall that the EKF, when computing mean estimates in Steps 1a
and 1c, makes the simplification E[fn(x)] ≈ fn(E[x]).

• This is not true in general, and not necessarily even close to true
(depending on “how nonlinear” the function fn(·) is).

� Also, in EKF Steps 1b and 2a, a Taylor-series expansion is performed
as part of the calculation of output-variable covariance.

• Nonlinear terms are dropped, resulting in a loss of accuracy.

� A simple one-dimensional
example illustrates these two
effects. Consider the figure:

� The nonlinear function is drawn,
and the input random-variable
PDF is shown on the horizontal
axis, with mean 1.05. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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� The straight dotted line is the linearized approximation used by the
EKF to find the output mean and covariance.

� The EKF-approximated PDF is compared to a Gaussian PDF having
same mean and variance of the true data on the vertical axis.
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� We notice significant differences between the means and variances:
EKF approach is not producing an accurate estimate of either.

� For a two-dimensional example, consider the following figure.

3σ contour 

Input data scatter

Nonlinear
function

�

 True 3σ contour

EKF 3σ contour

Output data scatter

� Left frame shows a cloud of Gaussian-distributed random points used
as input to this function, and

� Right frame shows the transformed set of output points.

� The actual 95 % confidence interval (indicative of a contour of the
Gaussian PDF describing the output covariance and mean) is
compared to EKF-estimated confidence interval.

• Again, EKF is very far from the truth.

� We can improve on mean and covariance propagation through the
state and output equations using a “sigma-point” approach.
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6.4: Approximating statistics with sigma points

� We now look at a different approach to characterizing the mean and
covariance of the output of a nonlinear function.

� We avoid Taylor-series expansion; instead, a number of function
evaluations are performed whose results are used to compute
estimated mean and covariance matrices.

� This has several advantages:

1. Derivatives do not need to be computed (which is one of the most
error-prone steps when implementing EKF), also implying

2. The original functions do not need to be differentiable, and

3. Better covariance approximations are usually achieved, relative to
EKF, allowing for better state estimation,

4. All with comparable computational complexity to EKF.

� A set of sigma points X is chosen so that the (possibly weighted)
mean and covariance of the points exactly matches the mean x̄ and
covariance �x̃ of the a priori random variable being modeled.

� These points are then passed through the nonlinear function,
resulting in a transformed set of points Z.

� The a posteriori mean z̄ and covariance �z̃ are then approximated by
the mean and covariance of these transformed points Z.

� Note that the sigma points comprise a fixed small number of vectors
that are calculated deterministically—not like particle filter methods.

� Specifically, if input RV x has dimension L, mean x̄ , and covariance
�x̃ , then p + 1 = 2L + 1 sigma points are generated as the set
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X = {
x̄, x̄ + γ

√
�x̃, x̄ − γ

√
�x̃

}
,

with members of X indexed from 0 to p, and where the matrix square
root R = √

� computes a result such that � = R RT .

• Usually, the efficient Cholesky decomposition is used, resulting in
lower-triangular R. (Take care: MATLAB, by default, returns an
upper-triangular matrix that must be transposed.)

� The weighted mean and covariance of X are equal to the original
mean and covariance of x for some {γ, α(m), α(c)} if we compute

x̄ =
p∑

i=0

α(m)
i Xi and �x̃ =

p∑
i=0

α(c)
i (Xi − x̄)(Xi − x̄)T ,

where Xi is the i th member of X , and both α(m)
i and α(c)

i are real
scalars where α(m)

i and α(c)
i must both sum to one.

• The various sigma-point methods differ only in the choices taken
for these weighting constants.

• Values used by the Unscented Kalman Filter (UKF) and the
Central Difference Kalman Filter (CDKF):

Method γ α(m)
0 α(m)

k α(c)
0 α(c)

k

UKF
√

L + λ
λ

L + λ

1
2(L + λ)

λ

L + λ
+ (1 − α2 + β)

1
2(L + λ)

CDKF h
h2 − L

h2

1
2h2

h2 − L
h2

1
2h2

λ = α2(L + κ) − L is a scaling parameter, with (10−2 ≤ α ≤ 1). Note that this α is different from α(m) and α(c). κ is either 0 or 3 − L .
β incorporates prior information. For Gaussian RVs, β = 2. h may take any positive value. For Gaussian RVs, h = √

3.

• UKF and CDKF are derived quite differently, but the final methods
are essentially identical.
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• CDKF has only one “tuning parameter” h, so implementation is
simpler. It also has marginally higher theoretic accuracy than UKF.

� Output sigma points are computed: Zi = f (Xi). Then, the output
mean and covariance are computed as well:

z̄ =
p∑

i=0

α(m)
i Zi and �z̃ =

p∑
i=0

α(c)
i (Zi − z̄)(Zi − z̄)T .

� The diagram illustrates the overall process, with the sets X and Z
stored compactly with each set member a column in a matrix:

X

Z

z̄

x̄ x̄

�z̃

�x̃

make

sigma

points

x̄+γ
√

�x̃ x̄−γ
√

�x̃

nonlinear function Yi = f (Xi )

i th sigma point

compute

statistics

� Before introducing the SPKF
algorithm, we re-examine the
prior 1D/2D examples using
sigma-point methods.

� In the 1D example, three input
sigma points are needed and
map to the output three sigma
points shown.
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� The mean and variance of the sigma-point method is shown as a
dashed-line PDF and closely matches the true mean and variance.

� For the 2D example, five sigma points represent the input
random-variable PDF (on left).

3σ contour 

Input data scatter

Nonlinear
function

�

 SPKF 3σ contour

 True 3σ contour

EKF 3σ contour

Output data scatter

� These five points are transformed to five output points (right frame).

� We see that the mean and covariance of the output sigma points
(dashed ellipse) closely match the true mean and covariance.

� Will the sigma-point method always be so much better than EKF?

• The answer depends on the degree of nonlinearity of the state and
output equations—the more nonlinear the better SPKF should be
with respect to EKF.
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6.5: The SPKF Steps

� We now apply the sigma-point approach of propagating statistics
through a nonlinear function to the state-estimation problem.

� These sigma-points must jointly model all randomness: uncertainty of
the state, process noise, and sensor noise.

� So we first define an augmented random vector xa
k that combines

these random factors at time index k.

� This augmented vector is used in the estimation process as
described below.

SPKF step 1a: State estimate time update.

� First, form the augmented a posteriori state estimate vector for the
previous time interval: x̂ a,+

k−1 = [
(x̂+

k−1)
T , w̄, v̄

]T , and the augmented a
posteriori covariance estimate: �a,+

x̃,k−1 = diag
(
�+

x̃,k−1,�w̃,�ṽ

)
.

� These factors are used to generate the p + 1 augmented sigma points

X a,+
k−1 =

{
x̂ a,+

k−1, x̂ a,+
k−1 + γ

√
�a,+

x̃,k−1, x̂ a,+
k−1 − γ

√
�a,+

x̃,k−1

}
.

� Can be organized in convenient matrix form:

X a,+
k−1

x̂a,+
k−1x̂a,+

k−1 �a,+
x̃,k−1

�+
x̃,k−1

�w̃

�ṽ

x̂+
k−1

w̄

v̄

andmake
augmented

sigma
points

x̂a,+
k−1+γ

√
�a,+

x̃,k−1 x̂a,+
k−1−γ

√
�a,+

x̃,k−1
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� Split augmented sigma
points X a,+

k−1 into state
portion X x,+

k−1 , process-noise
portion Xw,+

k−1 , and
sensor-noise portion X v,+

k .

X a,+
k−1

X x,+
k−1

Xw,+
k−1

X v,+
k

� Evaluate state equation using all
pairs of X x,+

k−1,i and Xw,+
k−1,i (where

subscript i denotes that the i th
vector is being extracted from
the original set), yielding the a
priori sigma points X x,−

k,i .

� That is, compute
X x,−

k,i = f (X x,+
k−1,i , uk−1,Xw,+

k−1,i).

X x,+
k−1

Xw,+
k−1

uk−1

state eqn: X x,−
k,i = f (X x,+

k−1,i , uk−1,Xw,+
k−1,i )

i th sigma
point

X x,−
k

� Finally, the a priori state estimate is computed as

x̂−
k = E

[
f (xk−1, uk−1, wk−1) | Zk−1

] ≈
p∑

i=0

α(m)
i f (X x,+

k−1,i , uk−1,Xw,+
k−1,i)

=
p∑

i=0

α(m)
i X x,−

k,i .

� Can be computed
with a simple
matrix multiply
operation.

X x,−
k

x̂−
k

α
(m)
0

α
(m)
1
...

α(m)
p

SPKF step 1b: Error covariance time update.
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� Using the a priori sigma points from step 1a, the a priori covariance
estimate is computed as

�−
x̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(X x,−
k,i − x̂−

k

)T .

� To compute, recognize (noting that α(c)
0 may be negative)

�−
x̃,k = α(c)

0

(X x,−
k,0 − x̂−

k

)(X x,−
k,0 − x̂−

k

)T

+
p∑

i=1

[√
α(c)

i

(X x,−
k,i − x̂−

k

)]
︸ ︷︷ ︸

Xα,i

[√
α(c)

i

(X x,−
k,i − x̂−

k

)T
]

︸ ︷︷ ︸
X T

α,i

= α(c)
0

(X x,−
k,0 − x̂−

k

)(X x,−
k,0 − x̂−

k

)T + XαX T
α .

SPKF step 1c: Estimate system output zk.

� The output zk is estimated by
evaluating the model output
equation using the sigma points
describing the state and sensor
noise.

� First, we compute the points
Zk,i = h(X x,−

k,i , uk,X v,+
k−1,i).

X v,+
k−1

i th sigma
point

output eqn: Zk,i = h(X x,−
k,i , uk,X v,+

k−1,i )

uk

X x,−
k

Zk

� The output estimate is then

ẑk = E

[
h(xk, uk, vk) | Zk−1

] ≈
p∑

i=0

α(m)
i h(X x,−

k,i , uk,X v,+
k−1,i) =

p∑
i=0

α(m)
i Zk,i .

� This can be computed with a simple matrix multiplication, as we did
when calculating x̂−

k at the end of step 1a.
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SPKF step 2a: Estimator gain matrix Lk.

� To compute the estimator gain matrix, we must first compute the
required covariance matrices.

�z̃,k =
p∑

i=0

α(c)
i

(Zk,i − ẑk
)(Zk,i − ẑk

)T

�−
x̃ z̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(Zk,i − ẑk
)T .

� These depend on the sigma-point matrices X x,−
k and Zk, already

computed in steps 1b and 1c, as well as x̂−
k and ẑk, already computed

in steps 1a and 1c.

� The summations can be performed using matrix multiplies, as we did
in step 1b.

� Then, we simply compute Lk = �−
x̃ z̃,k�

−1
z̃,k .

SPKF step 2b: State estimate measurement update.

� The state estimate is computed as

x̂+
k = x̂−

k + Lk(zk − ẑk).

SPKF step 2c: Error covariance measurement update.

� The final step is calculated directly from the optimal formulation:
�+

x̃,k = �−
x̃,k − Lk�z̃,k LT

k .
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Summary of the nonlinear sigma-point Kalman filter

Nonlinear state-space model:
xk = fk−1(xk−1, uk−1, wk−1)

zk = hk(xk, uk, vk),

where wk and vk are independent, Gaussian noise processes with

means w̄ and v̄ and covariance matrices �w̃ and �ṽ , respectively.

Definitions: Let

xa
k = [

x T
k , wT

k , vT
k

]T , X a
k = [

(X x
k )T , (Xw

k )T , (X v
k )T ]T , p = 2 × dim(xa

k ).

Initialization: For k = 0, set

x̂+
0 =E

[
x0

]
�+

x̃,0 =E
[
(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

x̂ a,+
0 =E

[
xa

0

] = [
(x̂+

0 )T , w̄, v̄
]T

�a,+
x̃,0 =E

[
(xa

0 − x̂ a,+
0 )(xa

0 − x̂ a,+
0 )T ]

= diag
(
�+

x̃,0, �w̃, �ṽ

)
.

(continued...)
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Summary of the nonlinear sigma-point Kalman filter (cont.)

Computation: For k = 1, 2, . . . compute:

State estimate time update: X a,+
k−1 =

{
x̂ a,+

k−1, x̂ a,+
k−1 + γ

√
�a,+

x̃,k−1, x̂ a,+
k−1 − γ

√
�a,+

x̃,k−1

}
.

X x,−
k,i = fk−1(X x,+

k−1,i , uk−1,Xw,+
k−1,i).

x̂−
k =

p∑
i=0

α
(m)
i X x,−

k,i .

Error covariance time update: �−
x̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(X x,−
k,i − x̂−

k

)T .

Output estimate: Zk,i = hk(X x,−
k,i , uk,X v,+

k−1,i).

ẑk =
p∑

i=0

α(m)
i Zk,i .

Estimator gain matrix: �z̃,k =
p∑

i=0

α(c)
i

(Zk,i − ẑk
)(Zk,i − ẑk

)T .

�−
x̃ z̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(Zk,i − ẑk
)T .

Lk =�−
x̃ z̃,k�

−1
z̃,k .

State estimate meas. update: x̂+
k = x̂−

k + Lk
(
zk − ẑk

)
.

Error covariance meas. update: �+
x̃,k =�−

x̃,k − Lk�z̃,k LT
k .
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6.6: An SPKF example, with code

� Consider the same example used to illustrate EKF:

xk+1 = √
5 + xk + wk

zk = x3
k + vk

with �w̃ = 1 and �ṽ = 2.% Define size of variables in model

Nx = 1; % state = 1x1 scalar

Nxa = 3; % augmented state has also w(k) and v(k) contributions

Nz = 1; % output = 1x1 scalar

% Some constants for the SPKF algorithm. Use standard values for

% cases with Gaussian noises. (These are the weighting matrices

% comprising the values of alpha(c) and alpha(m) organized in a way to

% make later computation efficient).

h = sqrt(3);

Wmx(1) = (h*h-Nxa)/(h*h); Wmx(2) = 1/(2*h*h); Wcx=Wmx;

Wmxz = [Wmx(1) repmat(Wmx(2),[1 2*Nxa])]';

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

SigmaV = 2; % Sensor noise covariance

maxIter = 40;

xtrue = 2 + randn(1); % Initialize true system initial state

xhat = 2; % Initialize Kalman filter initial estimate

SigmaX = 1; % Initialize Kalman filter covariance

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

for k = 1:maxIter,

% SPKF Step 1a: State estimate time update

% 1a-i: Calculate augmented state estimate, including ...

xhata = [xhat; 0; 0]; % process and sensor noise mean

% 1a-ii: Get desired Cholesky factor

Pxa = blkdiag(SigmaX,SigmaW,SigmaV);

sPxa = chol(Pxa,'lower');

% 1a-iii: Calculate sigma points (strange indexing of xhat to avoid
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% "repmat" call, which is very inefficient in Matlab)

X = xhata(:,ones([1 2*Nxa+1])) + h*[zeros([Nxa 1]), sPxa, -sPxa];

% 1a-iv: Calculate state equation for every element

% Hard-code equation here for efficiency

Xx = sqrt(5+X(1,:)) + X(2,:);

xhat = Xx*Wmxz;

% SPKF Step 1b: Covariance of prediction

Xs = (Xx(:,2:end) - xhat(:,ones([1 2*Nxa])))*sqrt(Wcx(2));

Xs1 = Xx(:,1) - xhat;

SigmaX = Xs*Xs' + Wcx(1)*Xs1*Xs1';

% [Implied operation of system in background, with

% input signal u, and output signal z]

w = chol(SigmaW)'*randn(1);

v = chol(SigmaV)'*randn(1);

ztrue = xtrue^3 + v; % z is based on present x and u

xtrue = sqrt(5+xtrue) + w; % future x is based on present u

% SPKF Step 1c: Create output estimate

% Hard-code equation here for efficiency

Z = Xx.^3 + X(3,:);

zhat = Z*Wmxz;

% SPKF Step 2a: Estimator gain matrix

Zs = (Z(:,2:end) - zhat*ones([1 2*Nxa])) * sqrt(Wcx(2));

Zs1 = Z(:,1) - zhat;

SigmaXZ = Xs*Zs' + Wcx(1)*Xs1*Zs1';

SigmaZ = Zs*Zs' + Wcx(1)*Zs1*Zs1';

Lx= SigmaXZ/SigmaZ;

% SPKF Step 2b: Measurement state update

xhat = xhat + Lx*(ztrue-zhat); % update prediction to estimate

% SPKF Step 2c: Measurement covariance update

SigmaX = SigmaX - Lx*SigmaZ*Lx';

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue;

xhatstore(k,:) = xhat;

SigmaXstore(k,:) = SigmaX(:);

end
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figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter),'k-',0:maxIter-1,xhatstore,'b--', ...

0:maxIter-1,xhatstore+3*sqrt(SigmaXstore),'m-.',...

0:maxIter-1,xhatstore-3*sqrt(SigmaXstore),'m-.'); grid;

legend('true','estimate','bounds'); xlabel('Iteration'); ylabel('State');

title('Sigma-point Kalman filter in action');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)-xhatstore,'b-',0:maxIter-1, ...

3*sqrt(SigmaXstore),'m--',0:maxIter-1,-3*sqrt(SigmaXstore),'m--');

grid; legend('Error','bounds',0);

title('SPKF Error with bounds');

xlabel('Iteration'); ylabel('Estimation Error');
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� Note improved estimation accuracy, greatly improved error bounds.
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6.7: Efficient square-root sigma-point Kalman filters

� Sigma-point Kalman filters generally produce better state estimates
and much better covariance estimates than EKF.

� The computational complexity is O(L3), where L is the dimension of
the augmented state (equivalent to EKF).

� They may also be used for parameter estimation, as will be described
in a later chapter, but the computational complexity remains O(L3),
whereas the corresponding EKF method has complexity O(L2).

� The bottleneck in the SPKF algorithm is the computation of the matrix
square root SkST

k = �k each time step, which has computational
complexity O(L3/6) using a Cholesky factorization.

� A variant of the SPKF, the square-root SPKF (SR-SPKF), propagates
Sk directly without needing to re-factor each time step.

� This approach has several advantages: there are improved numeric
properties as the covariances are guaranteed to be positive
semi-definite, and although the state-estimation update is still O(L3),
the parameter update may now be done in O(L2). Therefore, for the
same computational complexity of EKF, better results are obtained.

� The SR-SPKF is described below. There are many similarities to the
SR-KF we saw in notes chapter 5.

SR-SPKF step 1a: State estimate time update.

� As with SPKF, each measurement interval, the state estimate time
update is computed by first forming the augmented a posteriori state
estimate vector for the previous time interval:

x̂ a,+
k−1 = [

(x̂+
k−1)

T , w̄, v̄
]T .
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� With SR-SPKF, the square-root augmented a posteriori covariance
estimate is computed:

Sa,+
x̃,k−1 = diag

(S+
x̃,k−1,Sw̃,Sṽ

)
.

� These factors are used to generate the p + 1 sigma points:

X a,+
k−1 =

{
x̂ a,+

k−1, x̂ a,+
k−1 + γSa,+

x̃,k−1, x̂ a,+
k−1 − γSa,+

x̃,k−1

}
.

� From the augmented sigma points, the p + 1 vectors comprising the
state portion X x,+

k−1 and the p + 1 vectors comprising the process-noise
portion Xw,+

k−1 are extracted.

� The state equation is evaluated using all pairs of X x,+
k−1,i and Xw,+

k−1,i ,
yielding the a priori sigma points X x,−

k,i for time step k.

� Finally, the a priori state estimate is computed as x̂−
k =

p∑
i=0

α(m)
i X x,−

k,i .

SR-SPKF step 1b: Error covariance time update.

� Note that we want to compute the square root of �−
x̃,k, where we recall

�−
x̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(X x,−
k,i − x̂ x

k,i

)T ,

which may also be written as �−
x̃,k = AAT where

A =
[√

α(c)
i

(X x,−
k,(0:p) − x̂−

k

)]
.

� Using the a priori sigma points from step 1a, the square-root a priori
covariance estimate is computed as

S−
x̃,k = qr

{[√
α(c)

i

(X x,−
k,(0:p) − x̂−

k

)T
]}T

.
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SR-SPKF step 1c: Estimate system output zk.

� The output zk is estimated by evaluating the model output equation
using the sigma points describing the state and sensor noise.

� First, we compute the points Zk,i = hk(X x,−
k,i , uk,X v,+

k−1,i).

� The output estimate is then ẑk =
p∑

i=0

α(m)
i Zk,i .

SR-SPKF step 2a: Estimator gain matrix Lk.

� To compute the estimator gain matrix, we must first compute the
required covariance and square-root covariance matrices.

Sz̃,k = qr
{[√

α(c)
i

(Zk,(0:p) − ẑk
)T

]}T

�−
x̃ z̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(Zk,i − ẑk
)

� Then, we simply compute Lk = �−
x̃ z̃,k�

−1
z̃,k , solved by backsubstitution.

SR-SPKF step 2b: State estimate measurement update.

� The state estimate is computed as

x̂+
k = x̂−

k + Lk(zk − ẑk).

SR-SPKF step 2c: Error covariance measurement update.

� The final step computes the square-root form of

�+
x̃,k = �−

x̃,k − Lk�z̃,k LT
k

as

S+
x̃,k = cholupdate

((
S−

x̃,k

)T
,
(
LkSz̃,k

)T
, '-'

)T

.
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Summary of the square-root sigma-point Kalman filter for state estimation.

Nonlinear state-space model:
xk = fk−1(xk−1, uk−1, wk−1)

zk = hk(xk, uk, vk),

where wk and vk are independent Gaussian noise processes with means w̄ and

v̄ and covariance matrices �w̃ and �ṽ , respectively.

Definitions: Let

xa
k = [

x T
k , wT

k , vT
k

]T , X a
k = [

(X x
k )T , (Xw

k )T , (X v
k )T ]T , p = 2 × dim(xa

k ).

Initialization: For k = 0, set

x̂+
0 =E

[
x0

]
x̂ a,+

0 =E
[
xa

0

] = [
(x̂+

0 )T , w̄, v̄
]T .

S+
x̃,0 = chol

{
E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T ]}

Sa,+
x̃,0 = chol

{
E

[
(xa

0 − x̂ a,+
0 )(xa

0 − x̂ a,+
0 )T ]}

= diag
(S+

x̃,0,Sw̃,Sṽ

)
.

(continued...)
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Summary of the square-root SPKF for state estimation (continued).

Computation: For k = 1, 2, . . . compute:

State estimate time update: X a,+
k−1 =

{
x̂ a,+

k−1, x̂ a,+
k−1 + γSa,+

x̃,k−1, x̂ a,+
k−1 − γSa,+

x̃,k−1

}
.

X x,−
k,i = fk−1(X x,+

k−1,i , uk−1,Xw,+
k−1,i).

x̂−
k =

p∑
i=0

α
(m)
i X x,−

k,i .

Error covariance time update: S−
x̃,k = qr

{[√
α

(c)
i

(X x,−
k,(0:p) − x̂−

k

)T
]}T

.

Output estimate: Zk,i = hk(X x,−
k,i , uk,X v,+

k−1,i).

ẑk =
p∑

i=0

α(m)
i Zk,i .

Estimator gain matrix: Sz̃,k = qr
{[√

α
(c)
i

(Zk,(0:p) − ẑk
)T

]}T

.

�−
x̃ z̃,k =

p∑
i=0

α(c)
i

(X x,−
k,i − x̂−

k

)(Zk,i − ẑk
)T .

Lk =�−
x̃ z̃,k

(ST
z̃,kSz̃,k

)−1 .

(Lk is computed via backsubstitution).

State estimate meas. update: x̂+
k = x̂−

k + Lk
(
zk − ẑk

)
.

Error covariance meas. update: S+
x̃,k =cholupdate

((
S−

x̃,k

)T
,
(
LkSz̃,k

)T
, '-'

)T

.
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