
ECE5550: Applied Kalman Filtering 5–1

KALMAN FILTER GENERALIZATIONS

5.1: Maintaining symmetry of covariance matrices

� The Kalman filter as described so far is theoretically correct, but has
known vulnerabilities and limitations in practical implementations.

� In this unit of notes, we consider the following issues:

1. Improving numeric robustness;

2. Sequential measurement processing and square-root filtering;

3. Dealing with auto- and cross-correlated sensor or process noise;

4. Extending the filter to prediction and smoothing;

5. Reduced-order filtering;

6. Using residue analysis to detect sensor faults.

Improving numeric robustness

� Within the filter, the covariance matrices �−
x̃,k and �+

x̃,k must remain

1. Symmetric, and

2. Positive definite (all eigenvalues strictly positive).

� It is possible for both conditions to be violated due to round-off errors
in a computer implementation.

� We wish to find ways to limit or eliminate these problems.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, KALMAN FILTER GENERALIZATIONS 5–2

Dealing with loss of symmetry

� The cause of covariance matrices becoming asymmetric or
non-positive definite must be due to either the time-update or
measurement-update equations of the filter.

� Consider first the time-update equation:

�−
x̃,k = A�+

x̃,k−1 AT + �w̃.

• Because we are adding two positive-definite quantities together,
the result must be positive definite.

• A “suitable implementation” of the products of the matrices will
avoid loss of symmetry in the final result.

� Consider next the measurement-update equation:

�+
x̃,k = �−

x̃,k − LkCk�
−
x̃,k.

� Theoretically, the result is positive definite, but due to the subtraction
operation it is possible for round-off errors in an implementation to
result in a non-positive-definite solution.

� The problem may be mitigated in part by computing instead

�+
x̃,k = �−

x̃,k − Lk�z̃,k LT
k .

• This may be proven correct via

�+
x̃,k = �−

x̃,k − Lk�z̃,k LT
k

= �−
x̃,k − Lk�z̃,k

(
�−

x̃,kC T
k �−1

z̃,k

)T

= �−
x̃,k − Lk�z̃,k�

−1
z̃,k Ck�

−
x̃,k

= �−
x̃,k − LkCk�

−
x̃,k.
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� With a “suitable implementation” of the products in the Lk�z̃,k LT
k term,

symmetry can be guaranteed. However, the subtraction may still give
a non-positive definite result if there is round-off error.

� A better solution is the Joseph form covariance update.

�+
x̃,k = [I − LkCk] �−

x̃,k [I − LkCk]T + Lk�ṽ LT
k .

• This may be proven correct via

�+
x̃,k = [I − LkCk] �−

x̃,k [I − LkCk]T + Lk�ṽ LT
k

= �−
x̃,k − LkCk�

−
x̃,k − �−

x̃,kC T
k LT

k + LkCk�
−
x̃,kC T

k LT
k + Lk�ṽ LT

k

= �−
x̃,k − LkCk�

−
x̃,k − �−

x̃,kC T
k LT

k + Lk

(
Ck�

−
x̃,kC T

k + �ṽ

)
LT

k

= �−
x̃,k − LkCk�

−
x̃,k − �−

x̃,kC T
k LT

k + Lk�z̃,k LT

= �−
x̃,k − LkCk�

−
x̃,k − �−

x̃,kC T
k LT

k +
(
�−

x̃,kC T
k �−1

z̃,k

)
�z̃,k LT

= �−
x̃,k − LkCk�

−
x̃,k.

� Because the subtraction occurs in the “squared” term, this form
“guarantees” a positive definite result.

� If we end up with a negative definite matrix (numerics), we can
replace it by the nearest symmetric positive semidefinite matrix.1

� Omitting the details, the procedure is:

• Calculate singular-value decomposition: � = U SV T .

• Compute H = V SV T .

• Replace � with (� + �T + H + H T )/4.

1 Nicholas J. Higham, “Computing a Nearest Symmetric Positive Semidefinite Matrix,”
Linear Algebra and its Applications, vol. 103, pp. 103–118, 1988.
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5.2: Sequential processing of measurements

� There are still improvements that may be made. We can:

• Reduce the computational requirements of the Joseph form,

• Increase the precision of the numeric accuracy.

� One of the computationally intensive operations in the Kalman filter is
the matrix inverse operation in Lk = �−

x̃,kC T
k �−1

z̃,k .

� Using matrix inversion via Gaussian elimination (the most
straightforward approach), is an O(m3) operation, where m is the
dimension of the measurement vector.

� If there is a single sensor, this matrix inverse becomes a scalar
division, which is an O(1) operation.

� Therefore, if we can break the m measurements into m single-sensor
measurements and update the Kalman filter that way, there is
opportunity for significant computational savings.

Sequentially processing independent measurements

� We start by assuming that the sensor measurements are
independent. That is, that

�ṽ = diag
[

σ 2
ṽ1
, · · · σ 2

ṽm

]
.

� We will use colon “:” notation to refer to the measurement number.
For example, zk:1 is the measurement from sensor 1 at time k.

� Then, the measurement is

zk =
 zk:1

...

zk:m

 = Ckxk + vk =
 C T

k:1xk + vk:1
...

C T
k:mxk + vk:m

 ,
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where C T
k:1 is the first row of Ck (for example), and vk:1 is the sensor

noise of the first sensor at time k, for example.

� We will consider this a sequence of scalar measurements zk:1 . . . zk:m,
and update the state estimate and covariance estimates in m steps.

� We initialize the measurement update process with x̂+
k:0 = x̂−

k and
�+

x̃,k:0 = �−
x̃,k.

� Consider the measurement update for the i th measurement, zk:i

x̂+
k:i = E[xk | Zk−1, zk:1 . . . zk:i]

= E[xk | Zk−1, zk:1 . . . zk:i−1] + Lk:i(zk:i − E[zk | Zk−1, zk:1 . . . zk:i−1])

= x̂+
k:i−1 + Lk:i(zk:i − C T

k:i x̂
+
k:i−1).

� Generalizing from before

Lk:i = E[x̃+
k:i−1z̃T

k:i]�
−1
z̃k:i

.

� Next, we recognize that the variance of the innovation corresponding
to measurement zk:i is

�z̃k:i = σ 2
z̃k:i

= C T
k:i�

+
x̃,k:i−1Ck:i + σ 2

ṽi
.

� The corresponding gain is Lk:i = �+
x̃,k:i−1Ck:i

σ 2
z̃k:i

and the updated state is

x̂+
k:i = x̂+

k:i−1 + Lk:i
[
zk:i − C T

k:i x̂
+
k:i−1

]
with covariance

�+
x̃,k:i = �+

x̃,k:i−1 − Lk:iC T
k:i�

+
x̃,k:i−1.

� The covariance update can be implemented as

�+
x̃,k:i = �+

x̃,k:i−1 − �+
x̃,k:i−1Ck:iC T

k:i�
+
x̃,k:i−1

C T
k:i�

+
x̃,k:i−1Ck:i + σ 2

ṽi

.
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� An alternative update is the Joseph form,

�+
x̃,k:i = [

I − Lk:iC T
k:i

]
�+

x̃,k:i

[
I − Lk:iC T

k:i

]T + Lk:iσ
2
ṽi

LT
k:i .

� The final measurement update gives x̂+
k = x̂+

k:m and �+
x̃,k = �+

x̃,k:m.

Sequentially processing correlated measurements

� The above process must be modified to accommodate the situation
where sensor noise is correlated among the measurements.

� Assume that we can factor the matrix �ṽ = SvST
v , where Sv is a

lower-triangular matrix (for symmetric positive-definite �ṽ , we can).

• The factor Sv is a kind of a matrix square root, and will be
important in a number of places in this course.

• It is known as the “Cholesky” factor of the original matrix.

• In MATLAB, Sv = chol(SigmaV,'lower');

• Be careful: MATLAB’s default answer (without specifying “lower”)
is an upper-triangular matrix, which is not what we’re after.

� The Cholesky factor has strictly positive elements on its diagonal
(positive eigenvalues), so is guaranteed to be invertible.

� Consider a modification to the output equation of a system having
correlated measurements

zk = Cxk + vk

z̄k = S−1
v zk = S−1

v Cxk + S−1
v vk

z̄k = C̄ xk + v̄k.

• Note that we will use the “bar” decoration (·̄) frequently in this
chapter of notes.
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• It rarely (if ever) indicates the mean of that quantity.

• Rather, it refers to a definition having similar meaning to the
original symbol.

• For example, z̄k is a (computed) output value, similar in
interpretation to the measured output value zk.

� Consider now the covariance of the modified noise input v̄k = S−1
v vk

� ˜̄vk
= E[v̄k v̄

T
k ]

= E[S−1
v vkv

T
k S−T

v ]

= S−1
v �ṽS−T

v = I .

� Therefore, we have identified a transformation that de-correlates (and
normalizes) measurement noise.

� Using this revised output equation, we use the prior method.

� We start the measurement update process with x̂+
k:0 = x̂−

k and
�+

x̃,k:0 = �−
x̃,k.

� The Kalman gain is L̄k:i = �+
x̃,k:i−1C̄k:i

C̄ T
k:i�

+
x̃,k:i−1C̄k:i + 1

and the updated state is

x̂+
k:i = x̂+

k:i−1 + L̄k:i
[
z̄k:i − C̄ T

k:i x̂
+
k:i−1

]
= x̂+

k:i−1 + L̄k:i
[
(S−1

v zk)i − C̄ T
k:i x̂

+
k:i−1

]
.

with covariance

�+
x̃,k:i = �+

x̃,k:i−1 − L̄k:i C̄ T
k:i�

+
x̃,k:i−1

(which may also be computed with a Joseph form update, for
example).

� The final measurement update gives x̂+
k = x̂+

k:m and �+
x̃ :k = �+

x̃,k:m.
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LDL updates for correlated measurements

� An alternative to the Cholesky decomposition for factoring the
covariance matrix is the LDL decomposition

�ṽ = LvDvLT
v ,

where Lv is lower-triangular and Dv is diagonal (with positive entries).

� In MATLAB, [L,D] = ldl(SigmaV);

� The Cholesky decomposition is related to the LDL decomposition via

Sv = LvD1/2
v .

� Both texts show how to use the LDL decomposition to perform a
sequential measurement update.

� A computational advantage of LDL over Cholesky is that no
square-root operations need be taken. (We can avoid finding D1/2

v .)

� A pedagogical advantage of introducing the Colesky decomposition is
that we use it later on.
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5.3: Square-root filtering

� The modifications to the basic Kalman filter that we have described
so far are able to

• Ensure symmetric, positive-definite covariance matrices;

• Speed up the operation of a multiple-measurement Kalman filter.

� The filter is still sensitive to finite word length: no longer in the sense
of causing divergence, but in the sense of not converging to as good
a solution as possible.

� Consider the set of numbers: 1,000,000; 100; 1. There are six orders
of magnitude in the spread between the largest and smallest.

� Now consider a second set of numbers: 1,000; 10; 1. There are only
three orders of magnitude in spread.

� But, the second set is the square root of the first set: We can reduce
dynamic range (number of bits required to implement a given
precision of solution) by using square roots of numbers.

� For example, we can get away with single-precision math instead of
double-precision math.

� The place this really shows up is in the eigenvalue spread of
covariance matrices. If we can use square-root matrices instead, that
would be better.

� Consider the Cholesky factorization from before. Define

�+
x̃,k = S+

x̃,k

(
S+

x̃,k

)T
and �−

x̃,k = S−
x̃,k

(
S−

x̃,k

)T
.
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� We would like to be able to compute the covariance time updates and
measurement updates in terms of S±

x̃,k instead of �±
x̃,k. Let’s take the

steps in order.

SR-KF step 1a: State estimate time update.

� We compute
x̂−

k = Ak−1x̂+
k−1 + Bk−1uk−1.

� No change in this step from standard KF.

SR-KF step 1b: Error covariance time update.

� We start with standard step

�−
x̃,k = Ak−1�

+
x̃,k−1 AT

k−1 + �w̃.

� We would like to write this in terms of Cholesky factors

S−
x̃,k

(
S−

x̃,k

)T = Ak−1S+
x̃,k−1

(
S+

x̃,k−1

)T
AT

k−1 + Sw̃ST
w̃ .

� One option is to compute the right side, then take the Cholesky
decomposition to compute the factors on the left side. This is
computationally too intensive.

� Instead, start by noticing that we can write the equation as

S−
x̃,k

(
S−

x̃,k

)T =
[

Ak−1S+
x̃,k−1, Sw̃

] [
Ak−1S+

x̃,k−1, Sw̃

]T

= M MT .

� This might at first appear to be exactly what we desire, but the
problem is that S−

x̃,k is and n ×n matrix, whereas M is an n ×2n matrix.

� But, it is at least a step in the right direction. Enter the QR
decomposition.
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QR decomposition: The QR decomposition algorithm computes two
factors Q ∈ R

n×n and R ∈ R
n×m for a matrix Z ∈ R

n×m such that
Z = Q R, Q is orthogonal, R is upper-triangular, and m ≥ n.

� The property of the QR factorization that is important here is that R is
related to the Cholesky factor we wish to find.

� Specifically, if R̃ ∈ R
n×n is the upper-triangular portion of R, then R̃T is

the Cholesky factor of � = MT M.

� That is, if R̃ = qr(MT )T , where qr(·) performs the QR decomposition
and returns the upper-triangular portion of R only, then R̃ is the
lower-triangular Cholesky factor of M MT .

� Continuing with our derivation, notice that if we form M as above,
then compute R̃, we have our desired result.

S−
x̃,k = qr

([
Ak−1S+

x̃,k−1, Sw̃

]T
)T

.

� The computational complexity of the QR decomposition is O(mn2),
whereas the complexity of the Cholesky factor is O(n3/6) plus O(mn2)

to first compute M MT .

� In MATLAB:

Sminus = qr([A*Splus,Sw]')';

Sminus = tril(Sminus(1:nx,1:nx));

SR-KF step 1c: Estimate system output.

� As before, we estimate the system output as

ẑk = Ckx̂−
k + Dkuk.

SR-KF step 2a: Estimator (Kalman) gain matrix.
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� In this step, we must compute Lk = �−
x̃ z̃,k(�z̃,k)

−1.

� Recall that �−
x̃ z̃,k = �−

x̃,kC T
k and �z̃,k = Ck�

−
x̃,kC T

k + �ṽ .

� We may find Sz̃,k using the QR decomposition, as before. And, we
already know S−

x̃,k.

� So, we can now write Lk(Sz̃,kST
z̃,k) = �−

x̃ z̃,k.

� If zk is not a scalar, this equation may often be computed most
efficiently via back-substitution in two steps.

• First, (M)ST
z̃,k = �−

x̃ z̃,k is found, and

• Then LkSz̃,k = M is solved.

• Back-substitution has complexity O(n2/2).

• Since Sz̃,k is already triangular, no matrix inversion need be done.

� Note that multiplying out �−
x̃,k = S−

x̃,k

(
S−

x̃,k

)T
in the computation of

�−
x̃ z̃,k may drop some precision in Lk.

� However, this is not the critical issue.

� The critical issue is keeping S±
x̃,k accurate for whatever Lk is used,

which is something that we do manage to accomplish.

� In MATLAB:

Sz = qr([C*Sminus,Sv]')';

Sz = tril(Sz(1:nz,1:nz));

L = (Sminus*Sminus')*C'/Sz'/Sz;

SR-KF step 2b: State estimate measurement update.

� This is done just as in the standard Kalman filter,

x̂+
k = x̂−

k + Lk(zk − ẑk).
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SR-KF step 2c: Error covariance measurement update.

� Finally, we update the error covariance matrix.

�+
x̃,k = �−

x̃,k − Lk�z̃,k LT
k ,

which can be written as,

S+
x̃,k

(
S+

x̃,k

)T = S−
x̃,k

(
S−

x̃,k

)T − LkSz̃ST
z̃ LT

k .

� Note that the “−” sign prohibits us using the QR decomposition to
solve this problem as we did before.

� Instead, we rely on the “Cholesky downdating” procedure.

� In MATLAB,

% deal with MATLAB wanting upper-triangular Cholesky factor

Sx_ = Sminus';

% Want SigmaPlus = SigmaMinus - L*Sigmaz*L';

cov_update_vectors = L*Sz;

for j=1:length(zhat),

Sx_ = cholupdate(Sx_,cov_update_vectors(:,j),'-');

end

% Re-transpose to undo MATLAB's strange Cholesky factor

Splus = Sx_';

� If you need to implement this kind of filter in a language other than
MATLAB, a really excellent discussion of finding Cholesky factors, QR
factorizations, and both Cholesky updating and downdating may be
found in: G.W. Stewart, Matrix Algorithms, Volume I: Basic
Decompositions, Siam, 1998. Pseudo-code is included.
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Summary of the square-root linear Kalman filter

Linear state-space model:
xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

zk = Ck xk + Dkuk + vk,

where wk and vk are independent, zero-mean, Gaussian noise processes of

covariance matrices �w̃ and �ṽ , respectively.

Initialization: For k = 0, set

x̂+
0 =E[x0] Sw̃ = chol(�w̃, 'lower').

�+
x̃,0 =E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]. Sṽ = chol(�ṽ, 'lower').

S+
x̃,0 =chol(�+

x̃,0, 'lower').

Computation: For k = 1, 2, . . . compute:

State estimate time update: x̂−
k = Ak−1x̂+

k−1 + Bk−1uk−1.

Error covariance time update: S−
x̃,k =cholupdate

((
Ak−1S+

x̃,k−1

)T
,ST

w̃

)T

.

Output estimate: ẑk = Ckx̂−
k + Dkuk.

Estimator gain matrix:∗ Sz̃,k =cholupdate

((
CkS−

x̃,k

)T
,ST

ṽ

)T

.

MST
z̃,k =S−

x̃,k

(
S−

x̃,k

)T
CT

k , (solved by backsubstitution)

LkSz̃,k = M , (solved by backsubstitution)

State estimate meas. update: x̂+
k = x̂−

k + Lk(zk − ẑk).

Error covariance meas. update: S+
x̃,k =cholupdate

((
S−

x̃,k

)T
,
(
LkSz̃,k

)T
, '-'

)T

.

∗If a measurement is missed for some reason, then simply skip the measurement update for that iteration.
That is, Lk = 0 and x̂+

k = x̂−
k and S+

x̃,k = S−
x̃,k.
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5.4: MATLAB code for the square-root Kalman filter steps

� Coding a square-root Kalman filter in MATLAB is straightforward.

% Initialize simulation variables

SRSigmaW = chol(1,'lower'); % Square-root process noise covar

SRSigmaV = chol(1,'lower'); % Square-root sensor noise covar

A = 1; B = 1; C = 1; D = 0; % Plant definition matrices

maxIter = 40;

xtrue = 0; xhat = 0 % Initialize true and estimated system initial state

SigmaX = 0.1; % Initialize Kalman filter covariance

SRSigmaX = chol(SigmaX,'lower');

u = 0; % Unknown initial driving input: assume zero

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)); % store diagonal only

for k = 1:maxIter,

% SR-KF Step 1a: State estimate time update

xhat = A*xhat + B*u; % use prior value of "u"

% SR-KF Step 1b: Error covariance time update

SRSigmaX = qr([A*SRSigmaX, SRSigmaW]')';

SRSigmaX = tril(SRSigmaX(1:length(xhat),1:length(xhat)));

% [Implied operation of system in background, with

% input signal u, and output signal z]

u = 0.5*randn(1) + cos(k/pi); % for example... (measured)

w = SRSigmaW*randn(length(xtrue));

v = SRSigmaV*randn(length(C*xtrue));

ztrue = C*xtrue + D*u + v; % y is based on present x and u

xtrue = A*xtrue + B*u + w; % future x is based on present u

% SR-KF Step 1c: Estimate system output

zhat = C*xhat + D*u;

% SR-KF Step 2a: Compute Kalman gain matrix

% Note: "help mrdivide" to see how "division" is implemented

SRSigmaZ = qr([C*SRSigmaX,SRSigmaV]')';

SRSigmaZ = tril(SRSigmaZ(1:length(zhat),1:length(zhat)));
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L = (SRSigmaX*SRSigmaX')*C'/SRSigmaZ'/SRSigmaZ;

% SR-KF Step 2b: State estimate measurement update

xhat = xhat + L*(ztrue - zhat);

% SR-KF Step 2c: Error covariance measurement update

Sx_ = SRSigmaX';

cov_update_vectors = L*SRSigmaZ;

for j=1:length(zhat),

Sx_ = cholupdate(Sx_,cov_update_vectors(:,j),'-');

end

SRSigmaX = Sx_';

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue; xhatstore(k,:) = xhat;

SigmaXstore(k,:) = diag(SRSigmaX*SRSigmaX');

end;

figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter),'k-',0:maxIter-1,xhatstore,'b--', ...

0:maxIter-1,xhatstore+3*sqrt(SigmaXstore),'m-.',...

0:maxIter-1,xhatstore-3*sqrt(SigmaXstore),'m-.'); grid;

title('Kalman filter in action'); xlabel('Iteration');

ylabel('State'); legend('true','estimate','bounds');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)-xhatstore,'b-', ...

0:maxIter-1,3*sqrt(SigmaXstore),'m--',...

0:maxIter-1,-3*sqrt(SigmaXstore),'m--');

grid; legend('Error','bounds',0); title('Error with bounds');

xlabel('Iteration'); ylabel('Estimation Error');
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5.5: Cross-correlated process and measurement noises: Coincident

� The standard KF assumes that E[wkv
T
j ] = 0. But, sometimes we may

encounter systems where this is not the case.

� This might happen if both the physical process and the measurement
system are affected by the same source of disturbance. Examples
are changes of temperature, or inductive electrical interference.

� In this section, we assume that E[wkw
T
j ] = �w̃δk j , E[vkv

T
j ] = �ṽδk j ,

and E[wkv
T
j ] = �w̃ṽδk j .

� Note that the correlation between noises is memoryless: the only
correlation is at identical time instants.

� We can handle this case if we re-write the plant equation so that it has
a new process noise that is uncorrelated with the measurement noise.

� Using an arbitrary matrix T (to be determined), we can write

xk+1 = Akxk + Bkuk + wk + T (zk − Ckxk − Dkuk − vk)

= (Ak − T Ck)xk + (Bk − T Dk)uk + wk − T vk + T zk.

� Denote the new transition matrix Āk = Ak − T Ck, new input matrix as
B̄k = Bk − T Dk, and the new process noise as w̄k = wk − T vk.

� Further, denote the known (measured/computed) sequence as a new
input ūk = T zk.

� Then, we can write a modified state space system

xk+1 = Ākxk + B̄kuk + ūk + w̄k.

� We can create a Kalman filter for this system, provided that the
cross-correlation between the new process noise w̄k and the sensor
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noise vk is zero. We enforce this:

E[w̄kv
T
k ] = E

[
[wk − T vk]vT

k

] = �w̃ṽ − T �ṽ = 0.

� This gives us that the previously unspecified matrix T = �w̃ṽ�
−1
ṽ .

� Using the above, the covariance of the new process noise may be
found to be

�˜̄w = E[w̄kw̄
T
k ]

= E

[[
wk − �w̃ṽ�

−1
ṽ vk

] [
wk − �w̃ṽ�

−1
ṽ vk

]T
]

= �w̃ − �w̃ṽ�
−1
ṽ �T

w̃ṽ .

� A new Kalman filter may be generated using these definitions:

Āk = Ak − �w̃ṽ�
−1
ṽ Ck

�˜̄w = �w̃ − �w̃ṽ�
−1
ṽ �T

w̃ṽ ,

and

xk+1 = (Ak − �w̃ṽ�
−1
ṽ Ck)xk + (Bk − �w̃ṽ�

−1
ṽ Dk)uk + �w̃ṽ�

−1
ṽ zk + w̄k

zk = Ckxk + Dkuk + vk.

Cross-correlated process and measurement noises: Shifted

� A close relation to the above is when the process noise and sensor
noise have correlation one timestep apart.

� That is, we assume that E[wkw
T
j ] = �w̃δk j , E[vkv

T
j ] = �ṽδk j , and

E[wkv
T
j ] = �w̃ṽδk, j−1. The cross-correlation is nonzero only between

wk−1 and vk.

� We can re-derive the KF equations using this assumption. We will
find that the differences show up in the state-error covariance terms.
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� The state prediction error is

x̃−
k = xk − x̂−

k = Akx̃+
k−1 + wk−1.

� With the assumptions of this section, the covariance between the
state prediction error and the measurement noise is

E[x̃−
k vT

k ] = E

[
[Akx̃+

k−1 + wk−1]vT
k

] = �w̃ṽ .

� The covariance between the state and the measurement becomes

E

[
x̃−

k z̃T
k | Zk−1

] = E

[
x̃−

k

(
Ckx̃−

k + vk
)T | Zk−1

]
= �−

x̃,kC T
k + �w̃ṽ.

� The measurement prediction covariance becomes

�z̃,k = E

[
z̃k z̃T

k

]
= E

[
[Ckx̃−

k + vk][Ckx̃−
k + vk]T ]

= Ck�
−
x̃,kC T

k + �ṽ + Ck�w̃ṽ + �T
w̃ṽC T

k .

� The modified KF gain then becomes,

Lk =
[
�−

x̃,kC T
k + �w̃ṽ

] (
Ck�

−
x̃,kC T

k + �ṽ + Ck�w̃ṽ + �T
w̃ṽC T

k

)−1
.

� Except for the modified filter gain, all of the KF equations are the
same as in the standard case.

� Note that since wk−1 is the process noise corresponding to the interval
[tk−1, tk] and v j is the measurement noise at t j , it can be seen that the
first case considered process noise correlated with measurement
noise at the beginning of the above interval, and the second case
considered process noise correlated with the end of the interval.
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Auto-correlated process noise

� Another common situation that contradicts the KF assumptions is that
the process noise is correlated in time.

� That is, with the standard assumption that xk+1 = Akxk + Bkuk + wk,
we do not have zero-mean white-noise wk.

� Instead, we have wk = Awwk−1 + w̄k−1, where w̄k−1 is a zero-mean
white-noise process.

� We handle this situation by estimating both the true system state xk

and also the noise state wk. We have[
xk

wk

]
=

[
Ak−1 I

0 Aw

] [
xk−1

wk−1

]
+

[
Bk−1

0

]
uk−1 +

[
0

w̄k−1

]
x∗

k = A∗
k−1x∗

k−1 + B∗
k−1uk−1 + w∗

k−1,

where the overall process noise covariance is

�w̃∗ = E[w∗
k−1(w

∗
k−1)

T ] =
[

0 0
0 E[w̄k−1 (w̄k−1)

T ]

]
and the output equation is

zk =
[

Ck 0
] [

xk

wk

]
+ Dkuk + vk

= C∗
k x∗

k + Dkuk + vk.

� A standard Kalman filter may now be designed using the definitions of
x∗

k , A∗
k, B∗

k , C∗
k , Dk, �w̃∗, and �ṽ.

Auto-correlated sensor noise

� Similarly, we might encounter situations with auto-correlated sensor
noise: vk = Avvk−1 + v̄k−1, where v̄k is white.
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� We take a similar approach. The augmented system is[
xk

vk

]
=

[
Ak−1 0

0 Av

] [
xk−1

vk−1

]
+

[
Bk−1

0

]
uk−1 +

[
wk−1

v̄k−1

]
x∗

k = A∗
k−1x∗

k−1 + B∗
k−1uk−1 + w∗

k−1

with output equation

zk =
[

Ck I
] [

xk

vk

]
+ Dkuk + 0

= C∗
k x∗

k + Dkuk + 0

� The covariance of the combined process noise is

�w̃∗ = E

[(
wk

v̄k

)(
wk v̄k

)]
=

[
�w̃ 0
0 � ˜̄v

]
.

� A Kalman filter may be designed using these new definitions of of x∗
k ,

A∗
k, B∗

k , C∗
k , Dk, �w̃∗, with �ṽ = 0 (the placeholder for measurement

noise is zero in the above formulations).

Measurement differencing

� Zero-covariance measurement noise can cause numerical issues.

� A sneaky way to fix this is to introduce an artificial measurement that
is computed as a scaled difference between two actual
measurements: z̄k = zk+1 − Avzk.

� KF equations can then be developed using this new “measurement.”

� The details are really messy and not conducive to a lecture
presentation. I refer you to Bar-Shalom!

� Care must be taken to deal with the “future” measurement zk+1 in the
update equations, but it works out to a causal solution in the end.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, KALMAN FILTER GENERALIZATIONS 5–22

5.6: Kalman-filter prediction and smoothing

� Prediction is the estimation of the system state at a time m beyond
the data interval. That is,

x̂−
m|k = E[xm | Zk],

where m > k.

� There are three different prediction scenarios:

• Fixed-point prediction: Find x̂−
m|k where m is fixed, but k is changing

as more data becomes available;

• Fixed-lead prediction: Find x̂−
k+L|k where L is a fixed lead time;

• Fixed-interval prediction: Find x̂−
m|k where k is fixed, but m can take

on multiple future values.

� The desired predictions can be extrapolated from the standard
Kalman filter state and estimates.

� The basic approach is to use the relationship (cf. Homework 1)

xm =
m−k−1∏

j=0

Am−1− j

 xk +
m−1∑
i=k

m−i−2∏
j=0

Am−1− j

 Biui

+
m−1∑
i=k

m−i−2∏
j=0

Am−1− j

wi ,

in the relationship
x̂−

m|k = E[xm | Zk],

with the additional knowledge that x̂+
k = E[xk | Zk] from a standard

Kalman filter.
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� That is,

x̂−
m|k = E[xm | Zk]

= E

m−k−1∏
j=0

Am−1−i

 xk | Zk

 + E

m−1∑
i=k

m−i−2∏
j=0

Am−1−i

 Biui | Zk


+E

m−1∑
i=k

m−i−2∏
j=0

Am−1− j

 wi | Zk


=

m−k−1∏
j=0

Am−1−i

 x̂+
k +

m−1∑
i=k

m−i−2∏
j=0

Am−1−i

 BiE[ui | Zk].

� Note that we often assume that E[uk] = 0.

� If, furthermore, the system is time invariant,

x̂−
m|k = Am−k x̂+

k .

� The covariance of the prediction is

�−
x̃,m|k = E[(xm − x̂−

m|k)(xm − x̂−
m|k)

T | Zk]

=
m−k−1∏

j=0

Am−1−i

 �+
x̃,k

m−k−1∏
j=0

Am−1−i

T

+
m−1∑
i=k

m−i−2∏
j=0

Am−1− j

�w̃

m−i−2∏
j=0

AT
m−1− j

 .

� If the system is time invariant, this reduces to

�−
x̃,m|k = Am−k�+

x̃,k

(
Am−k)T +

m−k∑
j=1

A j�w̃

(
A j)T .
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Smoothing

� Smoothing is the estimation of the system state at a time m amid the
data interval. That is,

x̂+
m|N = E[xm | ZN ],

where m < N .

� There are three different smoothing scenarios:

• Fixed-point smoothing: Find x̂+
m|k where m is fixed, but k is

changing as more data becomes available;

• Fixed-lag smoothing: Find x̂−
k−L|k where L is a fixed lag time;

• Fixed-interval smoothing: Find x̂+
m|N where k is fixed, but m can

take on multiple past values.

� Of these, fixed-interval smoothing is the most relevant, and both texts
have detailed derivations.

� The others use a variation of this idea.

Fixed interval smoothing

� The algorithm consists of a forward recursive pass followed by a
backward pass.

� The forward pass uses a Kalman filter, and saves the intermediate
results x̂−

k , x̂+
k , �−

x̃,k, and �+
x̃,k.

� The backward pass starts at time N of the last measurement, and
computes the smoothed state estimate using the results obtained
from the forward pass.
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� Recursive equations (backward sweep)

x̂+
m|N = x̂+

m + λm

(
x̂+

m+1|N − x̂−
m+1

)
λm = �+

x̃,m AT
m

(
�−

x̃,m+1

)−1

where m = N − 1, N − 2, . . . , 0. Note, x̂+
N |N = x̂+

N to start backward
pass.

� The error covariance matrix for the smoothed estimate is

�+
x̃,m|N = �+

x̃,m + λm

[
�+

x̃,m+1|N − �−
x̃,m+1

]
λT

m,

but it is not needed to be able to perform the backward pass.

� Note, the term in the square brackets is negative semi-definite, so the
covariance of the smoothed estimate is “smaller” than for the filtered
estimate only.

Fixed point smoothing

� Here, m is fixed, and the final point k keeps increasing.

x̂+
m|k = x̂+

m|k−1 + µk
(
x̂+

k − x̂−
k

)
µk =

k−1∏
i=m

λi ,

where the product multiplies on the left as i increases.

� For k = m + 1,

x̂+
m|m+1 = x̂+

m + µm+1
(
x̂+

m+1 − x̂−
m+1

)
µm+1 = λm = �+

x̃,m AT
m

(
�−

x̃,m+1

)−1
.
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� For k = m + 2,

x̂+
m|m+2 = x̂+

m|m+1 + µm+2
(
x̂+

m+2 − x̂−
m+2

)
µm+2 = �+

x̃,m+1 AT
m+1

(
�−

x̃,m+2

)−1
µk+1,

and so forth.

Fixed lag smoothing

� Here, we seek to estimate the state vector at a fixed time interval
lagging the time of the current measurement.

� This type of smoothing trades off estimation latency for more
accuracy.

� The fixed interval smoothing algorithm could be used to perform
fixed-lag smoothing when the number of backward steps equals the
time lag

� This is fine as long as the number of backward steps is small.

� Fixed-lag smoothing algorithm has a startup problem: Cannot run
until enough data is available.
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5.7: Reduced-order Kalman filter

� Why estimate the entire state vector when you are measuring one or
more state elements directly?

� Consider partitioning system state into (may require transformation)

xk:a : measured state

xk:b : to be estimated.

� So,

zk = Cxk + Duk + vk = xk:a + Duk + vk

x̂k:a = zk − Duk = xk:a + vk.

� We assume that the measurement is noise-free (otherwise, we would
need to estimate xk:a also). So, x̂k:a = zk − Duk = xk:a.

� In order to design an estimator for xk:b, we need to create a suitable
state-space model of the dynamics of xk:b.

� We begin by writing the equations for the partitioned system

[
xk+1:a

xk+1:b

]
=

[
Aaa Aab

Aba Abb

] [
xk:a

xk:b

]
+

[
Ba

Bb

]
uk +

[
wk:a

wk:b

]

zk =
[

I 0
] [

xk:a

xk:b

]
+ Duk.

� We wish to write the xk:b dynamics in the form:

xk+1:b = Axbxk:b + Bxbmk,1 + w̄k
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mk,2 = Cxbxk:b + Dxbmk,1 + v̄k,

where mk,1 and mk,2 are some measurable inputs, and will be
combinations of zk and uk.

• Once we have this state-space form, we can create a Kalman-filter
state estimator for xk:b.

� We start the derivation by finding an output equation for xk:b. Consider
the dynamics of the measured state:

xk+1:a = Aaaxk:a + Aabxk:b + Bauk + wk:a

zk+1 = Aaazk + Aabxk:b + Bauk + wk:a.

� Let
mk,2 = zk+1 − Aaazk − Bauk.

� Then
mk,2 = Aabxk:b + wk:a,

where mk,2 is known/measurable and thus “Cxb” is equal to Aab.

• This is our reduced-order estimator output relation.

� We now look for a state equation for xk:b. Consider the dynamics of
the estimated state:

xk+1:b = Abaxk:a + Abbxk:b + Bbuk + wk:b

Abbxk:b + Abazk + Bbuk + wk:b.

� Let
Bxbmk,1 = Abazk + Bbuk

so that the reduced-order recurrence relation is

xk+1:b = Abbxk:b + Bxbmk,1 + wk:b.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, KALMAN FILTER GENERALIZATIONS 5–29

� This might be accomplished via

Bxbmk,1 =
[

Aba Bb

] [
zk

uk

]
although the details of how this is done do not matter in the end.

� So, for the purpose of designing our estimator, the state-space
equations are:

xk+1:b = Abbxk:b + Bxbmk,1 + w̄k

mk,2 = Aabxk:b + v̄k,

where w̄k = wk:b and v̄k = wk:a.

� Note that the measurement is non-causal, so the filter output will lag
the true output by one sample.

� Another (causal) approach that does not assume noise-free
measurements is presented in: D. Simon, “Reduced Order Kalman
Filtering without Model Reduction,” Control and Intelligent Systems,
vol. 35, no. 2, pp. 169–174, April 2007.

� This algorithm can end up more complicated than full Kalman filter
unless many states are being removed from estimation requirements.
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5.8: Measurement validation gating

� Sometimes the systems for which we would like a state estimate have
sensors with intermittent faults.

� We would like to detect faulty measurements and discard them (the
time update steps of the KF are still implemented, but the
measurement update steps are skipped).

� The Kalman filter provides an elegant theoretical means to
accomplish this goal. Note:

• The measurement covariance matrix is �z̃,k = Ck�
−
x̃,kC T

k + �ṽ ;

• The measurement prediction itself is ẑk = Ckx̂−
k + Dkuk;

• The innovation is z̃k = zk − ẑk.

� A measurement validation gate can be set up around the
measurement using normalized estimation error squared (NEES)

e2
k = z̃T

k �−1
z̃,k z̃k.

� NEES e2
k varies as a Chi-squared distribution with m degrees of

freedom, where m is the dimension of zk.

� If e2
k is outside the bounding values from the Chi-squared distribution

for a desired confidence level, the measurement is discarded.

� Note: If a number of measurements are discarded in a short time
interval, it may be that the sensor has truly failed, or that the state
estimate and its covariance has gotten “lost.”

� It is sometimes helpful to “bump up” the covariance �±
x̃,k, which

simulates additional process noise, to help the Kalman filter to
reacquire.
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Chi-squared test

� A chi-square random variable is defined as a sum of squares of
independent unit variance zero mean normal random variables.

Y =
n∑

i=1

(
Xi − E[Xi]

σ

)2

.

� Y is chi-square with n degrees of freedom.

� Since it is a sum of squares, it is never negative and is not
symmetrical about its mean value.

� The pdf of Y with n degrees of freedom is

fY (y) = 1
2n/2�(n/2)

y(n/2−1)e−n/2.

� For confidence interval estimation we need to find two critical values.

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

χ
�

�
χ
�

�

12.401 39.364

Total Area = 0.95

Tail = 0.05/2 = 0.025

χ
��

�

���� ���

Critical values for 95% confidence and χ2 with 24 degrees of freedom

� If we want 1 − α confidence that the measurement is valid, we want to
make sure that Y is between χ2

L and χ2
U where χ2

L is calculated using
α/2 and χ2

U is calculated using 1 − α/2.
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� The χ2 pdf, cdf, and inverse cdf are available in most analysis
software packages (e.g., MATLAB, Mathematica, and even the
spreadsheet program Excel).

� For hand calculations a χ2-table is available on page ??.

TRICKS WITH MATLAB: MATLAB may also be used to find the χ2 values if
a table is not convenient. This requires the MATLAB statistics toolbox:

>> help chi2inv

CHI2INV Inverse of the chi-square cumulative distribution function (cdf).

X = CHI2INV(P,V) returns the inverse of the chi-square cdf with V

degrees of freedom at the values in P. The chi-square cdf with V

degrees of freedom, is the gamma cdf with parameters V/2 and 2.

The size of X is the common size of P and V. A scalar input

functions as a constant matrix of the same size as the other input.

>> % want to compute values for alpha = 0.05

>> chi2inv(1-.025,24) % Tail probability of alpha/2=0.025, n = 24. Upper

critical value

ans = 39.3641

>> chi2inv(.025,24) % Lower critical value

ans = 12.4012
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Appendix: Critical Values of χ2

� For some deg. of freedom, each entry
represents the critical value of χ2 for a
specified upper tail area α.
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