
ECE5550: Applied Kalman Filtering 4–1

THE LINEAR KALMAN FILTER

4.1: Introduction

■ The principal goal of this course is to learn how to estimate the

present hidden state (vector) value of a dynamic system, using noisy

measurements that are somehow related to that state (vector).

■ We assume a general, possibly nonlinear, model

xk = fk−1(xk−1, uk−1, wk−1)

zk = hk(xk, uk, vk),

where uk is a known (deterministic/measured) input signal, wk is a

process-noise random input, and vk is a sensor-noise random input.

SEQUENTIAL PROBABILISTIC INFERENCE: Estimate the present state xk

of a dynamic system using all measurements Zk = {z0, z1, · · · , zk} .

xk−2 xk−1 xk

zk−2 zk−1 zk

f (zk | xk)

f (xk | xk−1)

Observed

Unobserved

■ This notes chapter provides a unified theoretic framework to develop

a family of estimators for this task: particle filters, Kalman filters,

extended Kalman filters, sigma-point (unscented) Kalman filters. . .
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A smattering of estimation theory

■ There are various approaches to “optimal estimation” of some

unknown quantity x .

■ One says that we would like to minimize the expected magnitude

(length) of the error vector between x and the estimate x̂ .

x̂MME = arg min
x̂

(
E

[ ∥∥x − x̂
∥∥ | Z

])
.

■ This turns out to be the median of the a posteriori pdf f (x | Z).

■ A similar result, but easier to derive analytically minimizes the

expected length squared of that error vector.

■ This is the minimum mean square error (MMSE) estimator

x̂MMSE(Z) = arg min
x̂

(
E

[ ∥∥x − x̂
∥∥2

2
| Z
])

= arg min
x̂

(
E

[
(x − x̂)T (x − x̂) | Z

])

= arg min
x̂

(
E

[
x T x − 2x T x̂ + x̂ T x̂ | Z

])
.

■ We solve for x̂ by differentiating the cost function and setting the

result to zero

0 = d

dx̂
E

[
x T x − 2x T x̂ + x̂ T x̂ | Z

]

= E

[
− 2(x − x̂) | Z

]
(trust me)

= 2x̂ − 2E
[
x | Z

]

x̂ = E

[
x | Z

]
.

■ Another approach to estimation is to optimize a likelihood function

x̂ML(Z) = arg max
x

f (Z | x).
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■ Yet a fourth is the maximum a posteriori estimate

x̂MAP(Z) = arg max
x

f (x | Z) = arg max
x

f (Z | x) f (x).

■ In general, x̂MME 6= x̂MMSE 6= x̂ML 6= x̂MAP, so which is “best”?

■ Answer: It probably depends on the application.

■ The text gives some metrics for comparison: bias, MSE, etc.

■ Here, we use x̂MMSE = E[x | Z] because it “makes sense” and works

well in a lot of applications and is mathematically tractable.

■ Also, for the assumptions that we will make, x̂MME = x̂MMSE = x̂MAP but

x̂MMSE 6= x̂ML. x̂MMSE is unbiased and has smaller MSE than x̂ML.

Some examples

■ In example 1, mean, median, and mode are identical. Any of these

statistics would make a good estimator of x .

■ In example 2, mean, median, and mode are all different. Which to

choose is not necessarily obvious.

■ In example 3, the distribution is multi-modal. None of the estimates is

likely to be satisfactory!
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4.2: Developing the framework

■ The Kalman filter applies the MMSE estimation criteria to a dynamic

system. That is, our state estimate is the conditional mean

E

[
xk | Zk

]
=
∫

Rxk

xk f (xk | Zk) dxk,

where Rxk
is the set comprising the range of possible xk.

■ To make progress toward implementing this estimator, we must break

f (xk | Zk) into simpler pieces.

■ We first use Bayes’ rule to write:

f (xk | Zk) = f (Zk | xk) f (xk)

f (Zk)
.

■ We then break up Zk into smaller constituent parts within the joint

probabilities as Zk−1 and zk

f (Zk | xk) f (xk)

f (Zk)
= f (zk,Zk−1 | xk) f (xk)

f (zk,Zk−1)
.

■ Thirdly, we use the joint probability rule f (a, b) = f (a | b) f (b) on the

numerator and denominator terms
f (zk,Zk−1 | xk) f (xk)

f (zk,Zk−1)
= f (zk | Zk−1, xk) f (Zk−1 | xk) f (xk)

f (zk | Zk−1) f (Zk−1)
.

■ Next, we apply Bayes’ rule once again in the terms within the [ ]

f (zk | Zk−1, xk)
[

f (Zk−1 | xk)
]

f (xk)

f (zk | Zk−1) f (Zk−1)

=
f (zk | Zk−1, xk)

[
f (xk | Zk−1) f (Zk−1)

]
f (xk)

f (zk | Zk−1) f (Zk−1)
[

f (xk)
] .

■ We now cancel some terms from numerator and denominator
f (zk | Zk−1, xk) f (xk | Zk−1) f (Zk−1) f (xk)

f (zk | Zk−1) f (Zk−1) f (xk)
= f (zk | Zk−1, xk) f (xk | Zk−1)

f (zk | Zk−1)
.
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■ Finally, recognize that zk is conditionally independent of Zk−1 given xk

f (zk | Zk−1, xk) f (xk | Zk−1)

f (zk | Zk−1)
= f (zk | xk) f (xk | Zk−1)

f (zk | Zk−1)
.

■ So, overall, we have shown that

f (xk | Zk) = f (zk | xk) f (xk | Zk−1)

f (zk | Zk−1)
.

KEY POINT #1: This shows that we can compute the desired density

recursively with two steps per iteration:

■ The first step computes probability densities for predicting xk given

all past observations

f (xk | Zk−1) =
∫

Rxk−1

f (xk | xk−1) f (xk−1 | Zk−1) dxk−1.

■ The second step updates the prediction via

f (xk | Zk) = f (zk | xk) f (xk | Zk−1)

f (zk | Zk−1)
.

■ Therefore, the general sequential inference solution breaks

naturally into a prediction/update scenario.

■ To proceed further using this approach, the relevant probability

densities may be computed as

f (zk | Zk−1) =
∫

Rxk

f (zk | xk) f (xk | Zk−1) dxk

f (xk | xk−1) =
∫

Rwk

δ(xk − f (xk−1, uk−1, wk−1)) f (wk−1) dwk−1

=
∑

{wk−1 : xk = f (xk−1, uk−1, wk−1)}

f (wk−1)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, THE LINEAR KALMAN FILTER 4–6

f (zk | xk) =
∫

Rvk

δ(zk − h(xk, uk, vk)) f (vk) dvk

=
∑

{vk : zk = h(xk , uk , vk )}

f (vk).

KEY POINT #2: Closed-form solutions to solving the multi-dimensional

integrals is intractable for most real-world systems.

■ For applications that justify the computational expense, the integrals

may be approximated using Monte Carlo methods (particle filters).

■ But, besides applications using particle filters, this approach appears

to be a dead end.

KEY POINT #3: A simplified solution may be obtained if we are willing to

make the assumption that all probability densities are Gaussian.

■ This is the basis of the original Kalman filter, the extended Kalman

filter, and the sigma-point (unscented) Kalman filters to be discussed.
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4.3: Setting up The Gaussian assumption

■ In the next two sections, our goal is to compute the MMSE estimator

x̂+
k = E

[
xk | Zk

]
under the assumption that all densities are Gaussian.

• We will find that the result is the same natural predict/update

mechanism of sequential inference.

• Note that although the math on the following pages gets a little

rough in places, the end result is “quite simple.”

■ So, with malice aforethought, we define prediction error x̃−
k = xk − x̂−

k

where x̂−
k = E

[
xk | Zk−1

]
.

• Error is always computed as “truth” minus “prediction,” or as “truth”

minus “estimate.”

• We can never compute the error in practice, since the truth value is

not known.

• However, we can still prove statistical results using this definition

that give an algorithm for estimating the truth using known or

measurable values.

■ Also, define the measurement innovation (what is new or unexpected

in the measurement) z̃k = zk − ẑk where ẑk = E

[
zk | Zk−1

]
.

■ Both x̃−
k and z̃k can be shown to be zero mean using the method of

iterated expectation: E
[
E

[
X | Z

]]
= E

[
X
]
.

E

[
x̃−

k

]
= E

[
xk

]
− E

[
E

[
xk | Zk−1

]]
= E

[
xk

]
− E

[
xk

]
= 0

E

[
z̃k

]
= E

[
zk

]
− E

[
E

[
zk | Zk−1

]]
= E

[
zk

]
− E

[
zk

]
= 0.

■ Note also that x̃−
k is uncorrelated with past measurements as they

have already been incorporated into x̂−
k
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E

[
x̃−

k | Zk−1

]
= E

[
xk − E

[
xk | Zk−1

]
| Zk−1

]
= 0 = E

[
x̃−

k

]
.

■ Therefore, on one hand we can write the relationship

E

[
x̃−

k | Zk

]
= E

[
xk | Zk

]
︸ ︷︷ ︸

x̂+
k

−E

[
x̂−

k | Zk

]
︸ ︷︷ ︸

x̂−
k

.

■ On the other hand, we can write

E

[
x̃−

k | Zk

]
= E

[
x̃−

k | Zk−1, zk

]
= E

[
x̃−

k | zk

]
.

■ So,

x̂+
k = x̂−

k + E

[
x̃−

k | zk

]
,

which is a predict/correct sequence of steps, as promised.

■ But, what is E

[
x̃−

k | zk

]
?

Conditional expectation of jointly-distributed Gaussian random variables

■ To evaluate this expression, we consider very generically the problem

of finding f (x | z) if x and z are jointly Gaussian vectors.

■ We combine x and z into an augmented vector X where

X =
[

x

z

]
and E

[
X
]

=
[

x̄

z̄

]
.

and x and z have joint covariance matrix

6X̃ =
[

6x̃ 6x̃ z̃

6z̃ x̃ 6z̃

]
.

■ We will then apply this generic result for f (x | z) to our specific

problem of determining f (x̃−
k | zk) for the dynamic system we are

considering.
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■ We can then use this conditional pdf to find E

[
x̃−

k | zk

]
.

■ To proceed, we first write

f (x | z) = f (x, z)

f (z)
.

■ Note that this is proportional to

f (x, z)

f (z)
∝

exp


−1

2

([
x

z

]
−
[

x̄

z̄

])T

6−1

X̃

([
x

z

]
−
[

x̄

z̄

])


exp
(
−1

2
(z − z̄)T 6−1

z̃
(z − z̄)

) ,

where the constant of proportionality is not important to subsequent

operations.

■ Combining the exponential terms, the term in the exponent becomes

−1

2

([
x

z

]
−
[

x̄

z̄

])T

6−1

X̃

([
x

z

]
−
[

x̄

z̄

])
+ 1

2
(z − z̄)T 6−1

z̃ (z − z̄) .

■ To condense notation somewhat, we define x̃ = x − x̄ and z̃ = z − z̄.

Then, the terms in the exponent become,

−1

2

[
x̃

z̃

]T

6−1

X̃

[
x̃

z̃

]
+ 1

2
z̃T 6−1

z̃
z̃.

■ To proceed further, we need to be able to invert 6X̃ . To do so, we

substitute the following transformation (which you can verify)[
6x̃ 6x̃ z̃

6z̃ x̃ 6z̃

]
=
[

I 6x̃ z̃6
−1
z̃

0 I

][
6x̃ − 6x̃ z̃6

−1
z̃

6z̃ x̃ 0

0 6z̃

][
I 0

6−1
z̃

6z̃ x̃ I

]
.

■ Then,
[

6x̃ 6x̃ z̃

6z̃ x̃ 6z̃

]−1

=
[

I 0

6−1
z̃

6z̃ x̃ I

]−1 [
6x̃ − 6x̃ z̃6

−1
z̃

6z̃ x̃ 0

0 6z̃

]−1 [
I 6x̃ z̃6

−1
z̃

0 I

]−1

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, THE LINEAR KALMAN FILTER 4–10

=
[

I 0

−6−1
z̃

6z̃ x̃ I

][
(6x̃ − 6x̃ z̃6

−1
z̃

6z̃ x̃)
−1 0

0 6−1
z̃

][
I −6x̃ z̃6

−1
z̃

0 I

]
.

■ Multiplying out all terms, we get (if we let M = 6x̃ − 6x̃ z̃6
−1
z̃

6z̃ x̃),

exponent = −1

2

(
x̃ T M−1x̃ − x̃ T M−16x̃ z̃6

−1
z̃

z̃ − z̃T 6−1
z̃

6z̃ x̃ M−1x̃

+z̃T 6−1
z̃

6z̃ x̃ M−16x̃ z̃6
−1
z̃

z̃ + z̃T 6−1
z̃

z̃ − z̃T 6−1
z̃

z̃
)
.

EDUCATIONAL NOTE: M is called the Schur complement of 6.

■ Notice that the last two terms cancel out, and that the remaining

terms can be grouped as

exponent = −1

2

(
x̃ − 6x̃ z̃6

−1
z̃

z̃
)T

M−1
(
x̃ − 6x̃ z̃6

−1
z̃

z̃
)
,

or, in terms of only the original variables, the exponent is

−1

2

(
x−
(
x̄+6x̃ z̃6

−1
z̃

(z−z̄)
))T(

6x̃−6x̃ z̃6
−1
z̃

6z̃ x̃

)−1(
x−
(
x̄+6x̃ z̃6

−1
z̃

(z−z̄)
))

.

■ We infer from this that the mean of f (x | z) must be x̄ + 6x̃ z̃6
−1
z̃

(z − z̄),

and that the covariance of f (x | z) must be 6x̃ − 6x̃ z̃6
−1
z̃

6z̃ x̃ .

■ So, we conclude that

f (x | z) ∼ N (x̄ + 6x̃ z̃6
−1
z̃

(z − z̄),6x̃ − 6x̃ z̃6
−1
z̃

6z̃ x̃).

■ Then, generically, when x and z are jointly Gaussian distributed,

E

[
x | z

]
= E

[
x
]
+ 6x̃ z̃6

−1
z̃

(
z − E

[
z
])

.
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4.4: Generic Gaussian probabilistic inference solution

■ Now, we specifically want to find E

[
x̃−

k | zk

]
. Note that zk = z̃k + ẑk.

■ Then,

E

[
x̃−

k | zk

]
= E

[
x̃−

k | z̃k + ẑk

]

= E

[
x̃−

k

]
+ 6−

x̃ z̃,k6
−1
z̃,k

(
z̃k + ẑk − E

[
z̃k + ẑk

])

= 0 + 6−
x̃ z̃,k6

−1
z̃,k

(
z̃k + ẑk − (0 + ẑk)

)

= 6−
x̃ z̃,k6

−1
z̃,k︸ ︷︷ ︸

Lk

z̃k.

■ Putting all of the pieces together, we get the general update equation:

x̂+
k = x̂−

k + Lk z̃k.

Covariance calculations

■ Note that the covariance of x̃+
k is a function of Lk, and may be

computed as

6+
x̃,k = E

[
(xk − x̂+

k )(xk − x̂+
k )T

]

= E

[{
(xk − x̂−

k ) − Lk z̃k

}{
(xk − x̂−

k ) − Lk z̃k

}T ]

= E

[{
x̃−

k − Lk z̃k

}{
x̃−

k − Lk z̃k

}T ]

= 6−
x̃,k − Lk E

[
z̃k(x̃−

k )T
]

︸ ︷︷ ︸
6z̃,k LT

k

−E

[
x̃−

k z̃T
k

]
︸ ︷︷ ︸

Lk6z̃,k

LT
k + Lk6z̃,k LT

k

= 6−
x̃,k − Lk6z̃,k LT

k .

Forest and trees

■ To be perfectly clear, the output of this process has two parts:
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1. The state estimate. At the end of every iteration, we have

computed our best guess of the present state value, which is x̂+
k .

2. The covariance estimate. Our state estimate is not perfect. The

covariance matrix 6+
x̃,k gives the uncertainty of x̂+

k . In particular, it

might be used to compute error bounds on the estimate.

■ Summarizing, the generic Gaussian sequential probabilistic inference recursion becomes:

x̂+
k = x̂−

k + Lk

(
zk − ẑk

)
= x̂−

k + Lk z̃k

6+
x̃,k

= 6−
x̃,k

− Lk6z̃,k LT
k ,

where

x̂−
k = E

[
xk | Zk−1

]
6−

x̃,k
=E

[
(xk − x̂−

k )(xk − x̂−
k )T

]
= E

[
(x̃−

k )(x̃−
k )T

]

x̂+
k = E

[
xk | Zk

]
6+

x̃,k
=E

[
(xk − x̂+

k )(xk − x̂+
k )T

]
= E

[
(x̃+

k )(x̃+
k )T

]

ẑk = E
[
zk | Zk−1

]
6z̃,k =E

[
(zk − ẑk)(zk − ẑk)

T
]

= E
[
(z̃k)(z̃k)

T
]

Lk = E
[
(xk − x̂−

k )(zk − ẑk)
T
]
6−1

z̃,k
=6−

x̃ z̃,k
6−1

z̃,k
.

■ Note that this is a linear recursion, even if the system is nonlinear(!)

The generic Gaussian sequential-probabilistic-inference solution

■ We can now summarize the six basic steps of any Kalman-style filter.

General step 1a: State estimate time update.

■ Each time step, compute an updated prediction of the present value

of xk, based on a priori information and the system model

x̂−
k = E

[
xk | Zk−1

]
= E

[
fk−1(xk−1, uk−1, wk−1) | Zk−1

]
.

General step 1b: Error covariance time update.

■ Determine the predicted state-estimate error covariance matrix 6−
x̃,k

based on a priori information and the system model.
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■ We compute 6−
x̃,k = E

[
(x̃−

k )(x̃−
k )T

]
, knowing that x̃−

k = xk − x̂−
k .

General step 1c: Estimate system output zk.

■ Estimate the system’s output using a priori information

ẑk = E

[
zk | Zk−1

]
= E

[
hk(xk, uk, vk) | Zk−1

]
.

General step 2a: Estimator gain matrix Lk.

■ Compute the estimator gain matrix Lk by evaluating Lk = 6−
x̃ z̃,k6

−1
z̃,k .

General step 2b: State estimate measurement update.

■ Compute the a posteriori state estimate by updating the a priori

estimate using the Lk and the output prediction error zk − ẑk

x̂+
k = x̂−

k + Lk(zk − ẑk).

General step 2c: Error covariance measurement update.

■ Compute the a posteriori error covariance matrix

6+
x̃,k = E

[
(x̃+

k )(x̃+
k )T

]

= 6−
x̃,k − Lk6z̃,k LT

k ,

which is the result we found previously.

■ The estimator output comprises the state estimate x̂+
k and error

covariance estimate 6+
x̃,k.

■ The estimator then waits until the next sample interval, updates k,

and proceeds to step 1.

PERSPECTIVE: The rest of this course is all about learning how to

implement these steps for different scenarios and doing so efficiently

and robustly.
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General Gaussian sequential probabilistic inference solution

General state-space model:
xk = fk−1(xk−1, uk−1, wk−1)

zk = hk(xk, uk, vk),

where wk and vk are independent, Gaussian noise processes of covariance

matrices 6w̃ and 6ṽ , respectively.

Definitions: Let

x̃−
k = xk − x̂−

k , z̃k = zk − ẑk.

Initialization: For k = 0, set

x̂+
0 =E

[
x0

]

6+
x̃,0 =E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T

]
.

Computation: For k = 1, 2, . . . compute:

State estimate time update: x̂−
k =E

[
fk−1(xk−1, uk−1, wk−1) | Zk−1

]
.

Error covariance time update: 6−
x̃,k =E

[
(x̃−

k )(x̃−
k )T

]
.

Output prediction: ẑk =E
[
hk(xk, uk, vk) | Zk−1

]
.

Estimator gain matrix: Lk =E
[
(x̃−

k )(z̃k)
T
](
E
[
(z̃k)(z̃k)

T
])−1

.

State estimate measurement update: x̂+
k = x̂−

k + Lk

(
zk − ẑk

)
.

Error covariance measurement update: 6+
x̃,k = 6−

x̃,k − Lk6z̃,k LT
k .
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4.5: Optimal application to linear systems: The Kalman filter

■ In this section, we take the general probabilistic inference solution and

apply it to the specific case where the system dynamics are linear.

■ Linear systems have the desirable property that all pdfs do in fact

remain Gaussian if the stochastic inputs are Gaussian, so the

assumptions made in deriving the filter steps hold exactly.

■ We will not prove it, but if the system dynamics are linear, then the

Kalman filter is the optimal minimum-mean-squared-error and

maximum-likelihood estimator.

■ The linear Kalman filter assumes that the system being modeled can

be represented in the “state-space” form

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

zk = Ckxk + Dkuk + vk.

■ We assume that wk and vk are mutually uncorrelated white Gaussian

random processes, with zero mean and covariance matrices with

known value:

E[wnw
T
k ] =





6w̃, n = k;
0, n 6= k.

E[vnv
T
k ] =





6ṽ, n = k;
0, n 6= k,

and E[wkx T
0 ] = 0 for all k.

■ The assumptions on the noise processes wk and vk and on the

linearity of system dynamics are rarely (never) met in practice, but the

consensus of the literature and practice is that the method still works

very well.
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KF step 1a: State estimate time update.

■ Here, we compute

x̂−
k = E

[
fk−1(xk−1, uk−1, wk−1) | Zk−1

]

= E

[
Ak−1xk−1 + Bk−1uk−1 + wk−1 | Zk−1

]

= E

[
Ak−1xk−1 | Zk−1

]
+ E

[
Bk−1uk−1 | Zk−1

]
+ E

[
wk−1 | Zk−1

]

= Ak−1x̂+
k−1 + Bk−1uk−1,

by the linearity of expectation, noting that wk−1 is zero-mean.

INTUITION: In this step, we are predicting the present state given only

past measurements.

• The best we can do is to use the most recent state estimate and

the system model, propagating the mean forward in time.

• This is exactly the same thing we did in the last chapter when we

discussed propagating the mean state value forward in time

without making measurements in that time interval.

KF step 1b: Error covariance time update.

■ First, we note that the estimation error x̃−
k = xk − x̂−

k .

■ We compute the error itself as

x̃−
k = xk − x̂−

k

= Ak−1xk−1 + Bk−1uk−1 + wk−1 − Ak−1x̂+
k−1 − Bk−1uk−1

= Ak−1x̃+
k−1 + wk−1.

■ Therefore, the covariance of the prediction error is
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6−
x̃k

= E

[
(x̃−

k )(x̃−
k )T

]

= E

[
(Ak−1x̃+

k−1 + wk−1)(Ak−1x̃+
k−1 + wk−1)

T
]

= E

[
Ak−1x̃+

k−1(x̃+
k−1)

T AT
k−1 + wk−1(x̃+

k−1)
T AT

k−1

+Ak−1x̃+
k−1w

T
k−1 + wk−1w

T
k−1

]

= Ak−16
+
x̃,k−1

AT
k−1 + 6w̃.

■ The cross terms drop out of the final result since the white process

noise wk−1 is not correlated with the state at time k − 1.

INTUITION: When estimating error covariance of the state prediction,

• The best we can do is to use the most recent covariance estimate

and propagate it forward in time.

• This is exactly what we did in the last chapter when we discussed

propagating the covariance of the state forward in time, without

making measurements during that time interval.

• For stable systems, Ak−16
+
x̃,k−1

AT
k−1 is contractive, meaning that

the covariance gets “smaller.” The state of stable systems always

decays toward zero in the absence of input, or toward a known

trajectory if uk 6= 0. As time goes on, this term tells us that we tend

to get more and more certain of the state estimate.

• On the other hand, 6w̃ adds to the covariance. Unmeasured inputs

add uncertainty to our estimate because they perturb the trajectory

away from the known trajectory based only on uk.

KF step 1c: Predict system output.

■ We estimate the system output as
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ẑk = E

[
hk(xk, uk, vk) | Zk−1

]

= E

[
Ckxk + Dkuk + vk | Zk−1

]

= E

[
Ckxk | Zk−1

]
+ E

[
Dkuk | Zk−1

]
+ E

[
vk | Zk−1]

= Ck x̂−
k + Dkuk,

since vk is zero-mean.

INTUITION: ẑk is our best guess of the system output, given only past

measurements.

• The best we can do is to estimate the output given the output

equation of the system model, and our best guess of the system

state at the present time.

KF step 2a: Estimator (Kalman) gain matrix.

■ To compute the Kalman gain matrix, we first need to compute several

covariance matrices: Lk = 6−
x̃ z̃,k6

−1
z̃,k .

■ We first find 6z̃,k.

z̃k = zk − ẑk

= Ckxk + Dkuk + vk − Ck x̂−
k − Dkuk

= Ck x̃−
k + vk

6z̃,k = E

[
(Ck x̃−

k + vk)(Ck x̃−
k + vk)

T
]

= E

[
Ck x̃−

k (x̃−
k )T C T

k + vk(x̃−
k )T C T

k + Ck x̃−
k vT

k + vkv
T
k

]

= Ck6
−
x̃,kC T

k + 6ṽ .

■ Again, the cross terms are zero since vk is uncorrelated with x̃−
k .
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■ Similarly,

E[x̃−
k z̃T

k ] = E

[
x̃−

k (Ck x̃−
k + vk)

T
]

= E

[
x̃−

k (x̃−
k )T C T

k + x̃−
k vT

k

]

= 6−
x̃,kC T

k .

■ Combining,

Lk = 6−
x̃,kC T

k [Ck6
−
x̃,kC T

k + 6ṽ]−1.

INTUITION: Note that the computation of Lk is the most critical aspect

of Kalman filtering that distinguishes it from a number of other

estimation methods.

• The whole reason for calculating covariance matrices is to be able

to update Lk.

• Lk is time-varying. It adapts to give the best update to the state

estimate based on present conditions.

• Recall that we use Lk in the equation x̂+
k = x̂−

k + Lk(zk − ẑk).

• The first component to Lk, 6−
x̃ z̃,k, indicates relative need for

correction to x̂k and how well individual states within x̂k are coupled

to the measurements.

• We see this clearly in 6−
x̃ z̃,k = 6−

x̃,kC T
k .

• 6−
x̃,k tells us about state uncertainty at the present time, which we

hope to reduce as much as possible.

◆ A large entry in 6−
x̃,k means that the corresponding state is very

uncertain and therefore would benefit from a large update.

◆ A small entry in 6−
x̃,k means that the corresponding state is very

well known already and does not need as large an update.
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• The C T
k term gives the coupling between state and output.

◆ Entries that are zero indicate that a particular state has no direct

influence on a particular output and therefore an output

prediction error should not directly update that state.

◆ Entries that are large indicate that a particular state is highly

coupled to an output so has a large contribution to any

measured output prediction error; therefore, that state would

benefit from a large update.

• 6z̃ tells us how certain we are that the measurement is reliable.

◆ If 6z̃ is “large,” we want small, slow updates.

◆ If 6z̃ is “small,” we want big updates.

◆ This explains why we divide the Kalman gain matrix by 6z̃.

• The form of 6z̃ can also be explained.

◆ The Ck6
−
x̃

C T
k part indicates how error in the state contributes to

error in the output estimate.

◆ The 6ṽ term indicates the uncertainty in the sensor reading due

to sensor noise.

◆ Since sensor noise is assumed independent of the state, the

uncertainty in z̃k = zk − ẑk adds the uncertainty in zk to the

uncertainty in ẑk.

KF step 2b: State estimate measurement update.

■ The fifth step is to compute the a posteriori state estimate by

updating the a priori estimate using the estimator gain and the output

prediction error zk − ẑk

x̂+
k = x̂−

k + Lk(zk − ẑk).
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INTUITION: The variable ẑk is what we expect the measurement to be,

based on our state estimate at the moment.

• So, zk − ẑk is what is unexpected or new in the measurement.

• We call this term the innovation. The innovation can be due to a

bad system model, state error, or sensor noise.

• So, we want to use this new information to update the state, but

must be careful to weight it according to the value of the

information it contains.

• Lk is the optimal blending factor, as we have already discussed.

KF step 2c: Error covariance measurement update.

■ Finally, we update the error covariance matrix.

6+
x̃,k = 6−

x̃,k − Lk6z̃,k LT
k

= 6−
x̃,k − Lk6z̃,k6

−T
z̃,k

(
6−

x̃ z̃,k

)T

= 6−
x̃,k − LkCk6

−
x̃,k

= (I − LkCk)6
−
x̃,k.

INTUITION: The measurement update has decreased our uncertainty

in the state estimate.

• A covariance matrix is positive semi-definite, and Lk6z̃,k LT
k is also

a positive-semi-definite form, and we are subtracting this from the

predicted-state covariance matrix; therefore, the resulting

covariance is “lower” than the pre-measurement covariance.

COMMENT: If a measurement is missed for some reason, then simply

skip steps 4–6 for that iteration. That is, Lk = 0 and x̂+
k = x̂−

k and

6+
x̃,k = 6−

x̃,k.
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Summary of the linear Kalman filter

Linear state-space model:
xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

zk = Ck xk + Dkuk + vk,

where wk and vk are independent, zero-mean, Gaussian noise processes of

covariance matrices 6w̃ and 6ṽ , respectively.

Initialization: For k = 0, set

x̂+
0 =E[x0]

6+
x̃,0 =E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T

]
.

Computation: For k = 1, 2, . . . compute:

State estimate time update: x̂−
k = Ak−1x̂+

k−1 + Bk−1uk−1.

Error covariance time update: 6−
x̃,k = Ak−16

+
x̃,k−1

AT
k−1 + 6w̃.

Output prediction: ẑk = Ck x̂−
k + Dkuk.

Estimator gain matrix:∗ Lk = 6−
x̃,kCT

k [Ck6
−
x̃,kCT

k + 6ṽ]−1.

State estimate measurement update: x̂+
k = x̂−

k + Lk

(
zk − ẑk

)
.

Error covariance measurement update: 6+
x̃,k = (I − LkCk)6

−
x̃,k.

∗If a measurement is missed for some reason, then simply skip the measurement update for that iteration.

That is, Lk = 0 and x̂+
k = x̂−

k and 6+
x̃,k

= 6−
x̃,k

.
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4.6: Visualizing the Kalman filter

■ The Kalman filter equations naturally form the following recursion

1a

Initialization

1b

1c

Prediction

2c

2b

2a

Correction

Meas. Meas.

x̂+
0 , 6+

x̃,0

x̂−
k = Ak−1x̂+

k−1 + Bk−1uk−1

6−
x̃,k = Ak−16

+
x̃,k−1

AT
k−1+6w̃

ẑk = Ck x̂−
k + Dkuk Lk=6−

x̃,kC T
k [Ck6

−
x̃,kC T

k +6ṽ]−1

x̂+
k = x̂−

k + Lk(zk − ẑk)

6+
x̃,k = (I − LkCk)6

−
x̃,k

zk
uk

next time sample: increment k

Working an example by hand to gain intuition

■ We’ll explore state estimation for a battery cell, whose model is

nonlinear. We cannot apply the (linear) Kalman filter directly.

■ To demonstrate the KF

steps, we’ll develop and use

a linearized cell model

qk+1 = 1 · qk − 1

3600 · Q
ik

voltk = 3.5 + 0.7 × qk − R0ik. 0 20 40 60 80 100

2.5

3

3.5

4

State of charge (%)

O
p
e
n
c

ir
c
u
it
 v

o
lt
a
g
e
 (

V
)

OCV versus SOC for four cells at 25°C
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■ We have linearized the OCV function, and omitted some dynamic

effects.

■ This model still isn’t linear because of the “3.5” in the output equation,

so we debias the measurement via zk = voltk − 3.5 and use the model

qk+1 = 1 · q − 1

3600 · Q
ik

zk = 0.7 × qk − R0ik.

■ Define state xk ≡ qk and input uk ≡ ik.

■ For the sake of example, we will use Q = 10000/3600 and R0 = 0.01.

■ This yields a state-space description with A = 1, B = −1 × 10−4,

C = 0.7, and D = −0.01. We also model 6w̃ = 10−5, and 6ṽ = 0.1.

■ We assume no initial uncertainty so x̂+
0 = 0.5 and 6+

x̃,0 = 0.

Iteration 1: (let i0 = 1, i1 = 0.5 and v1 = 3.85)

x̂−
k = Ak−1x̂+

k−1 + Bk−1uk−1 x̂−
1 = 1 × 0.5 − 10−4 × 1 = 0.4999

6−
x̃,k

= Ak−16
+
x̃,k−1

AT
k−1 + 6w̃ 6−

x̃,1 = 1 × 0 × 1 + 10−5 = 10−5

ẑk = Ck x̂−
k + Dkuk ẑ1 = 0.7 × 0.4999 − 0.01 × 0.5 = 0.34493

Lk = 6−
x̃,kCT

k [Ck6
−
x̃,kCT

k +6ṽ]−1 L1 = 10−5 × 0.7[0.72 × 10−5 + 0.1]−1

= 6.99966×10−5

x̂+
k = x̂−

k + Lk(zk − ẑk)

(where zk = 3.85 − 3.5)

x̂+
1 = 0.4999 + 6.99966×10−5(0.35 − 0.34493)

= 0.4999004

6+
x̃,k = (I − LkCk)6

−
x̃,k 6+

x̃,1 = (1 − 6.99966×10−5 × 0.7) × 10−5

= 9.9995×10−6

■ Output: q̂ = 0.4999 ± 3
√

9.9995 × 10−6 = 0.4999 ± 0.0094866.
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Iteration 2: (let i1 = 0.5, i2 = 0.25, and v2 = 3.84)

x̂−
k = Ak−1x̂+

k−1 + Bk−1uk−1 x̂−
1 = 0.4999004 − 10−4 × 0.5 = 0.49985

6−
x̃,k = Ak−16

+
x̃,k−1

AT
k−1 + 6w̃ 6−

x̃,2 = 9.9995×10−6 + 10−5 = 1.99995×10−5

ẑk = Ck x̂−
k + Dkuk ẑ2 = 0.7×0.49985 − 0.01 × 0.25 = 0.347395

Lk = 6−
x̃,kCT

k [Ck6
−
x̃,kCT

k +6ṽ]−1 L2 = 1.99995×10−5 × 0.7[1.99995×10−5 × 0.72 + 0.1]−1

= 0.00013998

x̂+
k = x̂−

k + Lk(zk − ẑk)

(where zk = 3.84 − 3.5)

x̂+
2 = 0.49985 + 0.00013998(0.34 − 0.347395)

= 0.499849

6+
x̃,k = (I − LkCk)6

−
x̃,k 6+

x̃,2 = (1 − 0.00013998 × 0.7) × 1.99995×10−5

= 1.99976×10−5

■ Output: q̂ = 0.4998 ± 3
√

1.99976 × 10−5 = 0.4998 ± 0.013416.

■ Note that covariance (uncertainty) converges, but it can take time

6−
x̃,1 = 1×10−5 6−

x̃,2 = 1.99995×10−5 6−
x̃,3 = 2.99976×10−5

6+
x̃,0 = 0 6+

x̃,1 = 9.99951×10−6 6+
x̃,2

= 1.99976×10−5 6+
x̃,3 = 2.99931×10−5

■ Covariance increases during propagation and is then reduced by

each measurement.

■ Covariance still oscillates at steady state between 6−
x̃,ss

and 6+
x̃,ss

.

■ Estimation error bounds are ±3

√
6+

x̃,k for 99+ % assurance of

accuracy of estimate.

■ The plots below show a sample of the Kalman filter operating. We

shall look at how to write code to evaluate this example shortly.
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■ Note that Kalman filter does not perform especially well since 6ṽ is

quite large.

Steady state

■ Note in the prior example that the estimate closely follows the true

state, the estimation error never converges to zero (because of the

driving process noise) but stays within steady-state bounds.

■ Note the two different steady-state values for state covariance: one

pre-measurement and one post-measurement.

■ Often find that the gains of our filter Lk have an initial transient, and

then settle to constant values very quickly, when A, B, C constant.

■ Of course, there are two steady-state solutions: 6−
x̃,ss

and 6+
x̃,ss

, and

furthermore Lss = 6+
x̃,ss

C T 6−1
ṽ .

■ Consider filter loop as k → ∞

6−
x̃,ss

= A6+
x̃,ss

AT + 6w̃

6+
x̃,ss

= 6−
x̃,ss

− 6−
x̃,ss

C T
[
C6−

x̃,ss
C T + 6ṽ

]−1

C6−
x̃,ss

.
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■ Combine these two to get

6−
x̃,ss

= 6w̃ + A6−
x̃,ss

AT −

A6−
x̃,ss

C T
[
C6−

x̃,ss
C T + 6ṽ

]−1

C6−
x̃,ss

AT .

■ One matrix equation, one

matrix unknown ➠ dlqe.m

■ We will look at this more

deeply later in this chapter. k k + 1 k + 2 k + 3

6x̃

EXAMPLE: xk+1 = xk + wk. zk = xk + vk. Steady-state covariance?

■ Let E[wk] = E[vk] = 0, 6w̃ = 1, 6ṽ = 2.

■ E[x0] = x̂0 and E[(x0 − x̂0)(x0 − x̂0)] = 6x̃,0.

■ Notice A = 1, C = 1, so

6−
x̃,ss

= 6w̃ + A6−
x̃,ss

A −

(
A6−

x̃,ss
C
) (

C6−
x̃,ss

A
)

C6−
x̃,ss

C + 6ṽ

= 1 + 6−
x̃,ss

−

(
6−

x̃,ss

)2

6−
x̃,ss

+ 2

6−
x̃,ss

+ 2 =
(
6−

x̃,ss

)2

,

which leads to the solutions 6−
x̃,ss

= −1 or 6−
x̃,ss

= 2.

■ We must chose the positive-definite soln., so 6−
x̃,ss

= 2 and 6+
x̃,ss

= 1.

6−
x̃,0 = ∞ 6−

x̃,1 = 3 6−
x̃,2 = 11/5 6−

x̃,3 = 43/21

↓ ր ↓ ր ↓ ր ↓ ր
6+

x̃,0 = 2 6+
x̃,1 = 6/5 6+

x̃,2 = 22/21 6+
x̃,3 = 86/85
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4.7: MATLAB code for the Kalman filter steps

■ It is straightforward to convert the Kalman filter steps to MATLAB.

• Great care must be taken to ensure that all “k” and “k + 1” indices

(etc) are kept synchronized.

■ Coding a KF in another language (e.g., “C”) is no harder, except that

you will need to write (or find) code to do the matrix manipulations.

% Initialize simulation variables

SigmaW = 1; SigmaV = 1; % Process and sensor noise covariance

A = 1; B = 1; C = 1; D = 0; % Plant definition matrices

maxIter = 40;

xtrue = 0; xhat = 0; % Initialize true system and KF initial state

SigmaX = 0; % Initialize Kalman filter covariance

u = 0; % Unknown initial driving input: assume zero

% Reserve storage for variables we want to plot/evaluate

xstore = zeros(length(xtrue),maxIter+1); xstore(:,1) = xtrue;

xhatstore = zeros(length(xhat),maxIter);

SigmaXstore = zeros(length(xhat)^2,maxIter);

for k = 1:maxIter,

% KF Step 1a: State estimate time update

xhat = A*xhat + B*u; % use prior value of "u"

% KF Step 1b: Error covariance time update

SigmaX = A*SigmaX*A' + SigmaW;

% [Implied operation of system in background, with

% input signal u, and output signal z]

u = 0.5*randn(1) + cos(k/pi); % for example...

w = chol(SigmaW)'*randn(length(xtrue));

v = chol(SigmaV)'*randn(length(C*xtrue));

ztrue = C*xtrue + D*u + v; % z is based on present x and u

xtrue = A*xtrue + B*u + w; % future x is based on present u

% KF Step 1c: Estimate system output

zhat = C*xhat + D*u;
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% KF Step 2a: Compute Kalman gain matrix

L = SigmaX*C'/(C*SigmaX*C' + SigmaV);

% KF Step 2b: State estimate measurement update

xhat = xhat + L*(ztrue - zhat);

% KF Step 2c: Error covariance measurement update

SigmaX = SigmaX - L*C*SigmaX;

% [Store information for evaluation/plotting purposes]

xstore(:,k+1) = xtrue; xhatstore(:,k) = xhat;

SigmaXstore(:,k) = SigmaX(:);

end

figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter)','k-',0:maxIter-1,xhatstore','b--', ...

0:maxIter-1,xhatstore'+3*sqrt(SigmaXstore'),'m-.',...

0:maxIter-1,xhatstore'-3*sqrt(SigmaXstore'),'m-.'); grid;

legend('true','estimate','bounds');

title('Kalman filter in action'); xlabel('Iteration'); ylabel('State');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)'-xhatstore','b-',...

0:maxIter-1,3*sqrt(SigmaXstore'),'m--',...

0:maxIter-1,-3*sqrt(SigmaXstore'),'m--'); grid;

legend('Error','bounds',0);

title('Error w/ bounds'); xlabel('Iteration'); ylabel('Estimation Error');
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4.8: Steady state: Deriving the Hamiltonian

■ As we saw in some earlier examples, it is possible for the Kalman-

filter recursion to converge to a unique steady-state solution.

■ The technical requirements for this to be true are:

1. The linear system has A, B, C , D, 6w̃, and 6ṽ matrices that are

not time-varying

2. The pair {A, C} is completely observable

3. The pair {A,
√

6w̃}, where
√

6w̃ is the Cholesky factor of 6w̃ such

that 6w̃ =
√

6w̃

√
6w̃

T
, is controllable.

■ The first criterion is needed for there to be a possibility of a non

time-varying steady state solution

■ The second criterion is needed to guarantee a “steady flow” of

information about each state component, preventing the uncertainty

from becoming unbounded

■ The third criterion is needed to ensure that the process noise affects

each state, preventing the convergence of the covariance of any state

to zero. It forces the covariance to be positive definite.

■ When these criteria are satisfied, there is a unique steady-state

solution: 6+
x̃,k → 6+

x̃,ss
, 6−

x̃,k → 6−
x̃,ss

, and Lk → L.

■ The importance of this result is that we can give up a small degree of

optimality by using the time-constant L instead of the time-varying Lk,

but have a vastly simpler implementation.

■ The reason is that if we can pre-compute L, then we no longer need

to recursively compute 6±
x̃,k. The filter equations become:
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x̂−
k = Ax̂+

k−1 + Buk−1

x̂+
k = x̂−

k + L(zk − Cx̂−
k − Duk).

■ This could, of course, be combined to form a single equation defining

a recursion for x̂k.

■ One approach is to directly optimize the coefficients of the vector L

for a specific model.

• This results in the popular α-β and α-β-γ filters.

• The α-β assumes an NCV model. α and β are unitless parameters,

and the steady-state gain has the form: L =
[

α, β/T

]T

.

• The α-β-γ filter assumes an NCA model. γ is similarly unitless,

and the steady-state gain has the form: L =
[

α, β/T, γ /T 2
]T

.

■ We will investigate a more general approach here, using a derivation

based on a “Hamiltonian” approach.

■ The details of the derivation are involved, but the final result is a

method for determining L that is “quite simple.”

■ The generality of the method is important to ensure that we don’t

have to re-derive an approach to obtaining a steady-state solution for

every situation that we encounter.

Deriving the Hamiltonian matrix

■ In the optimal control problem, a matrix known as the “Hamiltonian

matrix” comes about very naturally in one step of the solution.

■ This matrix has certain desirable properties that aid finding solutions

to the problem.
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■ Since control and estimation are “dual” problems, researchers have

looked for–and found–certain ways of arranging estimation problems

in a Hamiltonian format.

■ Formulating an estimation problem in a Hamiltonian format is a little

contrived, but the payoff is that it lends itself to a “simple” solution

once you have reached that point.

■ So, here goes. . . We start with the covariance update equations:

6−
x̃,k = A6+

x̃,k−1 AT + 6w̃

6+
x̃,k = 6−

x̃,k − LC6−
x̃,k

= 6−
x̃,k − 6−

x̃,kC T
(

C6−
x̃,kC T + 6ṽ

)−1

C6−
x̃,k.

■ We insert the second equation into the first, to get:

6−
x̃,k+1

= A6−
x̃,k AT − A6−

x̃,kC T
(

C6−
x̃,kC T + 6ṽ

)−1

C6−
x̃,k AT + 6w̃.

■ For the next pages, we will be interested in manipulating this equation

solely for the purpose of solving for 6−
x̃,ss

. For ease of notation, we

drop the superscript “−” and the subscript x̃ . Rewriting,

6k+1 = A6k AT − A6kC T
(
C6kC T + 6ṽ

)−1
C6k AT + 6w̃.

■ We can use the “matrix inversion lemma” (see appendix) to write

(C6kC T + 6ṽ)
−1 = 6−1

ṽ − 6−1
ṽ C(C T 6−1

ṽ C + 6−1
k )−1C T 6−1

ṽ .

■ Substituting this expression in the former equation, we get,

6k+1 = A6k AT − A6kC T 6−1
ṽ C6k AT +

A6kC T 6−1
ṽ C(C T6−1

ṽ C + 6−1
k )−1C T 6−1

ṽ C6k AT + 6w̃.
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■ Factoring out A and AT from the beginning and end of the first three

terms on the right hand side gives

6k+1 = A
(
6k − 6kC T 6−1

ṽ C6k +

6kC T 6−1
ṽ C(C T6−1

ṽ C + 6−1
k )−1C T 6−1

ṽ C6k

)
AT + 6w̃.

■ Factoring out 6kC T 6−1
ṽ C from the early terms then gives

6k+1 = A
(
6k − 6kC T 6−1

ṽ C
[
6k − (C T 6−1

ṽ C + 6−1
k )−1C T 6−1

ṽ C6k

] )
AT

+6w̃.

■ Additionally, factoring out (C T 6−1
ṽ C + 6−1

k )−1 gives

6k+1 = A
(
6k − 6kC T 6−1

ṽ C(C T 6−1
ṽ C + 6−1

k )−1 ×
[
(C T 6−1

ṽ C + 6−1
k )6k − C T 6−1

ṽ C6k

] )
AT + 6w̃.

■ Collapsing the content of the square brackets down to I :

6k+1 = A
(
6k − 6kC T 6−1

ṽ C(C T 6−1
ṽ C + 6−1

k )−1
)

AT + 6w̃.

■ Factoring out an 6k on the left,

6k+1 = A6k

(
I − C T 6−1

ṽ C(C T 6−1
ṽ C + 6−1

k )−1
)

AT + 6w̃.

■ Factoring out (C T 6−1
ṽ C + 6−1

k )−1 on the right,

6k+1 = A6k

[
(C T 6−1

ṽ C + 6−1
k ) − C T 6−1

ṽ C
]
(C T 6−1

ṽ C + 6−1
k )−1 AT + 6w̃

■ Condensing the contents within the square brackets to 6−1
k and

combining with 6k,

6k+1 = A(C T6−1
ṽ C + 6−1

k )−1 AT + 6w̃.

■ Factoring out a 6k and multiplying 6w̃ by I ,

6k+1 = A6k(C
T 6−1

ṽ C6k + I )−1 AT + 6w̃ A−T AT .
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■ Writing as a product of two terms

6k+1 =
[
A6k + 6w̃ A−T (C T 6−1

ṽ C6k + I )
]
(C T 6−1

ṽ C6k + I )−1 AT .

■ Rewriting slightly,

6k+1 =
[
(A + 6w̃ A−T C T 6−1

ṽ C)6k + 6w̃ A−T
]
(C T 6−1

ṽ C6k + I )−1 AT .

■ Now, suppose that 6k can be factored as

6k = Sk Z−1
k

where Sk and Zk both have the same dimensions as 6k.

■ Making this substitution gives

6k+1 =
[
(A + 6w̃ A−T C T 6−1

ṽ C)Sk + 6w̃ A−T Zk

]
Z−1

k ×

(C T 6−1
ṽ C Sk Z−1

k + I )−1 AT

=
[
(A + 6w̃ A−T C T 6−1

ṽ C)Sk + 6w̃ A−T Zk

]
(C T 6−1

ṽ C Sk + Zk)
−1 AT

=
[
(A + 6w̃ A−T C T 6−1

ṽ C)Sk + 6w̃ A−T Zk

]
×

(A−T C T 6−1
ṽ C Sk + A−T Zk)

−1

= Sk+1Z−1
k+1.

■ This shows that

Sk+1 = (A + 6w̃ A−T C T 6−1
ṽ C)Sk + 6w̃ A−T Zk

Zk+1 = A−T C T 6−1
ṽ C Sk + A−T Zk.

■ These equations for Sk+1 and Zk+1 can be written as the following

single equation[
Zk+1

Sk+1

]
=
[

A−T A−T C T 6−1
ṽ C

6w̃ A−T A + 6w̃ A−T C T 6−1
ṽ C

][
Zk

Sk

]
= H

[
Zk

Sk

]
.
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■ If the covariance matrix 6k is an n × n matrix, then H will be 2n × 2n.

■ The matrix H is called the Hamiltonian matrix, and is a symplectic

matrix; that is, it satisfies the equation

J −1HT J = H−1 where J =
[

0 I

−I 0

]
.

■ Symplectic matrices have the following properties:

• None of the eigenvalues of a symplectic matrix are equal to zero.

• If λ is an eigenvalue of a symplectic matrix, then so too is 1/λ.

• The determinant of a symplectic matrix is equal to ±1.
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4.9: Steady state: Solving for 6±
x̃,ss

using the Hamiltonian matrix

■ Given the known system description via the matrices A, C , 6w̃, 6ṽ , it

is a straightforward matter to compute the Hamiltonian matrix H. But,

what to do with it?

■ We’ll see that the coupled recursion on Sk and Zk can be solved for

steady state values of Sss and Zss, allowing us to compute 6±
x̃,ss

.

■ Assuming that H has no eigenvalues with magnitude exactly equal to

one, then half of its eigenvalues will be inside the unit circle (stable)

and half will be outside the unit circle (unstable).

■ We define 3 as the diagonal matrix containing all unstable

eigenvalues of H. Then, H can be written as

H = 9

[
3−1 0

0 3

]
9−1 = 9 D9−1.

■ We partition the eigenvector matrix 9 into four n × n blocks

9 =
[

911 912

921 922

]
.

• The left 2n × n submatrix of 9 contains the eigenvectors of H that

correspond to the stable eigenvalues.

• The right 2n × n submatrix of 9 contains the eigenvectors of H that

correspond to the unstable eigenvalues.

■ We can now write [
Zk+1

Sk+1

]
= 9 D9−1︸ ︷︷ ︸

H

[
Zk

Sk

]

9−1

[
Zk+1

Sk+1

]
= D9−1

[
Zk

Sk

]
.
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■ Now, define the n × n matrices Y1,k and Y2,k and the 2n × n matrix Yk:

Yk =
[

Y1,k

Y2,k

]
= 9−1

[
Zk

Sk

]
.

■ We now have a simple recursion

Yk+1 = DYk[
Y1,k+1

Y2,k+1

]
=
[

3−1 0

0 3

][
Y1,k

Y2,k

]
.

■ From these equations, we see

Y1,k+1 = 3−1Y1,k and Y2,k+1 = 3Y2,k

■ So, taking k steps after time zero,

Y1,k = 3−kY1,0 and Y2,k = 3kY2,0.

■ Using this solution for Y1,k and Y2,k we can go back and solve:[
Y1,k

Y2,k

]
= 9−1

[
Zk

Sk

]

[
Zk

Sk

]
=
[

911 912

921 922

][
Y1,k

Y2,k

]

=
[

911 912

921 922

][
3−kY1,0

3kY2,0

]
.

■ As k increases, the 3−k matrix approaches zero (because it is a

diagonal matrix whose elements are all less than one in magnitude).

■ Therefore, for large k we obtain[
Zk

Sk

]
=
[

911 912

921 922

][
0

3kY2,0

]
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Zk = 912Y2,k

Sk = 922Y2,k.

■ Solving for Sk in these last two equations gives Sk = 9229
−1
12 Zk, but we

know that Sk = 6−
x̃,k Zk, so

lim
k→∞

6−
x̃,k = 9229

−1
12 .

Summarizing the Hamiltonian method:

■ Form the 2n × 2n Hamiltonian matrix

H =
[

A−T A−T CT 6−1
ṽ

C

6w̃ A−T A + 6w̃ A−T CT 6−1
ṽ

C

]
.

■ Compute the eigensystem of H.

■ Put the n eigenvectors corresponding to the n unstable eigenvalues in a matrix partitioned as
[

912

922

]
.

■ Compute the steady-state solution to the prediction covariance as

6−
x̃

= 9229
−1
12 .

■ Compute the steady-state Kalman gain vector as

L = 6−
x̃

CT
(
C6−

x̃
CT + 6ṽ

)−1
.

■ Compute the steady-state solution to the estimation covariance as

6+
x̃

= 6−
x̃

− LC6−
x̃

.

Solving for steady-state solution in MATLAB

■ If you really want to cheat, dkalman, dlqe, or dare.
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Example from before leading to steady-state solution

■ Recall the system description from before, with xk+1 = xk + wk.

zk = xk + vk, E[wk] = E[vk] = 0, 6w̃ = 1, and 6ṽ = 2.

■ Therefore, A = 1 and C = 1.

■ We first form the 2n × 2n Hamiltonian matrix

H =
[

A−T A−T C T 6−1
ṽ C

6w̃ A−T A + 6w̃ A−T C T 6−1
ṽ C

]
=
[

1 0.5

1 1.5

]
.

■ Compute the eigensystem of H:

9 =
[

−1/
√

2 −1/
√

5

1/
√

2 −2/
√

5

]
and 3 =

[
0.5 0

0 2

]
.

■ Put the n eigenvectors corresponding to the n unstable eigenvalues in

a matrix partitioned as
[

912

922

]
=
[

−1/
√

5

−2/
√

5

]
.

■ Compute the steady-state solution to the prediction covariance as

6−
x̃

= 9229
−1
12 = −2/

√
5 ×

√
5/−1 = 2.

■ Compute the steady-state Kalman gain vector as

L = 6−
x̃

C T
(
C6−

x̃
C T + 6ṽ

)−1 = 2/4 = 1/2.

■ Compute the steady-state solution to the estimation covariance as

6+
x̃

= 6−
x̃

− LC6−
x̃

= 2 − 2/2 = 1.

■ These results agree with our example from before.
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4.10*: Initializing the filter

■ There are several practical steps that we have thus far glossed over,

but need to be addressed in an implementation.

■ The first is, “how do we initialize the filter before entering the

processing loop?”1

• That is, what values to use for x̂+
0 , 6+

x̃,0?

• The “correct” answer is,

x̂+
0 = E[x0] and 6+

x̃,0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

but, often we don’t know what these expectations are in practice.

• So, we’ll settle for “good values.”

■ Assume that we have available a set of measured system outputs

{zq, . . . , z p} where q ≤ p and q ≤ 0 and that we similarly have a set of

measured inputs uk, k ∈ {q, . . . , 0}.
■ We can write, for general k,

xk = 8kx0 + 8u,k + 8w,k,

• 8k is the “state transition matrix” from time 0 to time k,

• 8u,k is the accumulated effect of the input signal on the state

between time 0 and k, and

• 8w,k is the accumulated effect of the process noise signal on the

state between time 0 and k (more on how to compute these later).

1
This discussion is simplified from: X. Rong Li and Chen He, Optimal Initialization of Linear Recursive Filters, Proceedings
of the 37th IEEE Conference on Decision and Control, Tampa, FL, Dec. 1998, pp. 2335–2340. For additional generality and

rigor, see the original paper.
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■ We substitute this expression into the system output equation and get

zk = Ck8kx0 + Ck8u,k + Ck8w,k + Dkuk + vk

= Ck8kx0 + Ck8u,k + Ck8w̄,k + Ck8w̃,k + Dkuk + v̄k + ṽk,

where we have broken the process noise and sensor noise

contributions into a deterministic part (based on the noise mean) and

a random part (based on the variation).

■ We can augment all measured data (stacking equations into matrices

and vectors)



z p

...

zq


 =




C p8p

...

Cq8q


 x0 +




C p(8u,p + 8w̄,p) + Dpu p + v̄ p

...

Cq(8u,q + 8w̄,q) + Dquq + v̄q




+




C p8w̃,p + ṽ p

...

Cq8w̃,q + ṽq


 .

■ Re-arranging,



z p

...

zq


−




C p(8u,p + 8w̄,p) + Dpu p + v̄ p

...

Cq(8u,q + 8w̄,q) + Dquq + v̄q




︸ ︷︷ ︸
known

=




C p8p

...

Cq8q




︸ ︷︷ ︸
known

x0

+




C p8w̃,p + ṽ p

...

Cq8w̃,q + ṽq




︸ ︷︷ ︸
zero-mean, random

Z̃ = C̃ x0 + Ṽ .
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■ We would like to use the measured information and the statistics of

the noise processes to come up with a good estimate of x0.

■ Intuitively, we would like to place more emphasis on measurements

having the least noise, and less emphasis on measurements having

greater noise.

■ A logical way to do this is to weigh the value of measurements

according to the inverse of the covariance matrix of Ṽ .

• A “weighted least squares” optimization approach to do so is,

x̂0 = arg min
x0

J (x0)

= arg min
x0

(
Z̃ − C̃x0

)T
6−1

Ṽ

(
Z̃ − C̃x0

)

= arg min
x0

Z̃ T 6−1

Ṽ
Z̃ − x T

0 C̃ T 6−1

Ṽ
Z̃ − Z̃ T 6−1

Ṽ
C̃ x0 + x T

0 C̃ T 6−1

Ṽ
C̃ x0.

■ We find x0 by taking the vector derivative of the cost function J (x0)

with respect to x0, and setting the result to zero.

NOTE: The following are identities from vector calculus,

d

dX
Y T X = Y,

d

dX
X T Y = Y, and

d

dX
X T AX = (A + AT )X .

■ Therefore,

dJ (x0)

dx0

= −C̃ T 6−1

Ṽ
Z̃ − C̃ T 6−1

Ṽ
Z̃ + 2C̃ T 6−1

Ṽ
C̃ x0 = 0

x̂0 =
(

C̃ T 6−1

Ṽ
C̃
)−1 (

C̃ T 6−1

Ṽ

)
Z̃ .

■ So, assuming that we can compute C̃ , Z̃ , and 6−1

Ṽ
, we have solved for

the initial state. We still need the initial covariance.
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■ Start with the definition for the estimate error: x̃0 = x0 − x̂0,

x̃0 = x0 − x̂0

= x0 −
(

C̃ T 6−1

Ṽ
C̃
)−1 (

C̃ T 6−1

Ṽ

) (
C̃ x0 + Ṽ

)

= x0 −
(

C̃ T 6−1

Ṽ
C̃
)−1 (

C̃ T 6−1

Ṽ
C̃
)

︸ ︷︷ ︸
I

x0 −
(

C̃ T 6−1

Ṽ
C̃
)−1 (

C̃ T 6−1

Ṽ

)
Ṽ

= −
(

C̃ T 6−1

Ṽ
C̃
)−1 (

C̃ T 6−1

Ṽ

)
Ṽ .

■ Next,

6x̃,0 = E

[
x̃0x̃ T

0

]

=
(

C̃ T 6−1

Ṽ
C̃
)−1 (

C̃ T 6−1

Ṽ

)
E

[
Ṽ Ṽ T

]
︸ ︷︷ ︸

6Ṽ

6−1

Ṽ
C̃
(

C̃ T 6−1

Ṽ
C̃
)−1

.

=
(

C̃ T 6−1

Ṽ
C̃
)−1

.

Summary to date: Using data measured from the system being observed, and statistics known

about the noises, we can form C̃,Z̃ , and 6−1

Ṽ
, and then initialize the Kalman filter with

6x̃,0 =
(

C̃T 6−1

Ṽ
C̃
)−1

x̂0 = 6x̃,0C̃T 6−1

Ṽ
Z̃ .

Computing C̃ and Z̃

■ The model matrices C p . . . Cq are assumed known, so all we need to

compute are 8k, 8w̄,k, and 8u,k.

■ Starting with xk+1 = Akxk + Bkuk + wk it can be shown that, for m ≥ k,2

2
Note: The way we are using products and summations here is somewhat non-standard. If the upper limit of a product is less

than the lower limit, the product is the identity matrix; if the upper limit of a sum is less than the lower limit, the sum is zero.
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xm =




m−k−1∏

j=0

Am−1− j


 xk +

m−1∑

i=k




m−i−2∏

j=0

Am−1− j


 (Biui + wi) .

■ So, for m = 0 and k ≤ 0,

x0 =




−k−1∏

j=0

A−1− j


 xk +

−1∑

i=k




−i−2∏

j=0

A−1− j


 (Biui + wi) .

■ Assuming that A−1
k exists for all k ≤ 0, we get

xk =




−k−1∏

j=0

A−1− j




−1

︸ ︷︷ ︸
8k

x0 +


−

−1∑

i=k




−k−1∏

j=0

A−1− j




−1


−i−2∏

j=0

A−1− j


 Biui




︸ ︷︷ ︸
8u,k

+


−

−1∑

i=k




−k−1∏

j=0

A−1− j




−1


−i−2∏

j=0

A−1− j


 w̄i




︸ ︷︷ ︸
8w̄,k

+


−

−1∑

i=k




−k−1∏

j=0

A−1− j




−1


−i−2∏

j=0

A−1− j


 w̃i




︸ ︷︷ ︸
8w̃,k

■ So, having 8k, 8u,k, and 8w̄,k, we can now compute C̃ and Z̃ .

Computing 6Ṽ

■ Note that, by construction Ṽ has zero mean, so

6Ṽ = E[Ṽ Ṽ T ]
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= E










C p8w̃,p

...

Cq8w̃,q


+




ṽ p

...

ṽq













C p8w̃,p

...

Cq8w̃,q


+




ṽ p

...

ṽq







T



=




C pE[8w̃,p8
T
w̃,p]C T

p · · · C pE[8w̃,p8
T
w̃,q]C T

q
...

...

CqE[8w̃,q8
T
w̃,p]C T

p · · · CqE[8w̃,q8
T
w̃,q]C T

q


+




6ṽ ,p 0
. . .

0 6ṽ ,q


 .

Some simplifications when Ak = A, Bk = B, etc

■ When the system model is time invariant, many simplifications may

be made.

■ The state transition matrix becomes,

8k =




−k−1∏

j=0

A




−1

=





(A−k)−1, k < 0

I, else.

■ Within the calculations for 8u,k and 8w,k we must compute

Bk,i = −




−k−1∏

j=0

A




−1


−i−2∏

j=0

A


 = −

−k−1∏

j=−i−1

A−1 =





−(Ai−k+1)−1, k ≤ i

I, else.

■ Therefore,

8u,k =
−1∑

i=k

Bk,i Bui, 8w̄,k =
−1∑

i=k

Bk,iw̄i , 8w̃,k =
−1∑

i=k

Bk,iw̃i .

■ From this we can find,
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C̃ =




C8p

...

C8q


 =




C(A−p)−1

...

C(A−q)−1




Z̃ =




z p − C
(
8u,p + 8w̄,p

)
...

zq − C
(
8u,q + 8w̄,q

)


 =




z p + C

−1∑

i=p

(
Ai−p+1

)−1
(Bui + w̄)

...

zq + C

−1∑

i=q

(
Ai−q+1

)−1
(Bui + w̄)




.

Example for NCV model

■ Let’s try to make some sense out of all this abstract math by coming

up with a concrete initialization method for a simple NCV model:

xk+1 =
[

1 T

0 1

]
xk +

[
T 2/2

T

]
uk + wk

zk =
[

1 0

]
xk + vk.

■ For simplicity, we assume that uk = 0 and that both wk and vk are zero

mean. 6ṽ = r and

6w̃ = q

[
T 4/4, T 3/2

T 3/2, T 2

]
.

NOTE: We arrived at 6w̃ by assuming that scalar white noise having

covariance q is passed through an input matrix Bw = B. Then,

6w̃ = Bq BT .

■ We make two measurements, z−1 and z0, and wish to use these to

initialize x̂0 and 6x̃,0.
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■ To compute C̃ , we must first determine 80 and 8−1:

80 =
[

1 0

0 1

]
, 8−1 = A−1 =

[
1 −T

0 1

]
,

C̃ =
[

C80

C8−1

]
=
[

1 0

1 −T

]
.

■ To compute Z̃ , we must also determine 8u,0, 8u,−1, 8w̄,0, and 8w̄,−1.

■ Since the input is assumed to be zero, and the process noise is

assumed to have zero mean, these four quantities are all zero.

■ Therefore,

Z̃ =
[

z0

z−1

]
.

■ To compute 6Ṽ , we must first compute 8w̃,0, and 8w̃,−1.

8w̃,0 =
−1∑

i=0

B0,iw̃0 =
[

0

0

]

8w̃,−1 =
−1∑

i=−1

B−1,iw̃−1 = −A−1w̃−1.

■ Continuing with the evaluation of 6Ṽ ,

6Ṽ =
[

CE

[
8w̃,08

T
w̃,0

]
C T , CE

[
8w̃,08

T
w̃,−1

]
C T

CE

[
8w̃,−18

T
w̃,0

]
C T , CE

[
8w̃,−18

T
w̃,−1

]
C T

]
+
[

r 0

0 r

]

=
[

0 0

0 s

]
+
[

r 0

0 r

]

=
[

r 0

0 r + s

]
,
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where

s = C A−16w̃ A−T C T

= q
[

1 0

] [ 1 −T

0 1

][
T 4/4, T 3/2

T 3/2, T 2

][
1 0

−T 1

][
1

0

]

= qT 4/4.

■ Therefore,

6Ṽ =
[

r 0

0 r + qT 4/4

]
.

■ Now that we have computed all the basic quantities, we can proceed

to evaluate 6+
x̃,0 and x̂0.

6+
x̃,0 =

(
C̃ T 6−1

Ṽ
C̃
)−1

= C̃−16Ṽ C̃−T

=
[

1 0

1/T, −1/T

][
r 0

0 r + qT 4/4

][
1 1/T

0 −1/T

]

=




r
r

T
r

T

2r + qT 4/4

T 2




x̂0 = 6+
x̃,0C̃ T 6−1

Ṽ
Z̃

=




r
r

T
r

T

2r + qT 4/4

T 2



[

1 1

0 −T

]


1

r
0

0
1

r + qT 4/4



[

z0

z−1

]

=




r 0

r

T

−(r + qT 4/4)

T







1

r
0

0
1

r + qT 4/4



[

z0

z−1

]
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=




1 0
1

T

−1

T



[

z0

z−1

]
=




z0

z0 − z−1

T


 .

■ Notice that the position state is initialized to the last measured

position, and the velocity state is initialized to a discrete

approximation of the velocity. Makes sense.

■ Notice also that the position covariance is simply the sensor-noise

covariance; the velocity covariance has contribution due to sensor

noise plus process noise (to take into account possible accelerations).

■ The algebra required to arrive at these initializations was involved, but

notice that 6+
x̃,0 may be initialized with known constant values without

needing measurements, and x̂0 is trivial to compute based on the two

position measurements that are made.
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Appendix: Matrix inversion lemma

■ Given that Ā, C̄ , and ( Ā + B̄C̄ D̄) are invertible, then
(
Ā + B̄C̄ D̄

)−1 = Ā−1 − Ā−1 B̄
(
D̄ Ā−1 B̄ + C̄−1

)−1
D̄ Ā−1.

■ Proof: Taking the product of the matrix and its (supposed) inverse, we

have,
(
Ā + B̄C̄ D̄

)−1
{

Ā−1 − Ā−1 B̄
(
D̄ Ā−1 B̄ + C̄−1

)−1
D̄ Ā−1

}

= I + B̄C̄ D̄ Ā−1 − B̄
(
D̄ Ā−1 B̄ + C̄−1

)−1
D̄ Ā−1

−B̄C̄ D̄ Ā−1 B̄
(
D̄ Ā−1 B̄ + C̄−1

)−1
D̄ Ā−1

= I + B̄C̄ D̄ Ā−1

−B̄
(
I + C̄ D̄ Ā−1 B̄

) (
D̄ Ā−1 B̄ + C̄−1

)−1
D̄ Ā−1

= I + B̄C̄ D̄ Ā−1

−B̄C̄
(
C̄−1 + D̄ Ā−1 B̄

) (
D̄ Ā−1 B̄ + C̄−1

)−1
D̄ Ā−1

= I .

Appendix: Plett notation versus textbook notation

■ For predicted and estimated state, I use x̂−
k and x̂+

k , whereas

Bar-Shalom uses x̂(k | k − 1) and x̂(k | k).

■ For predicted and estimated state covariance, I use 6−
x̃,k and 6+

x̃,k,

whereas Simon uses P−
k and P+

k and Bar-Shalom uses P(k | k − 1)

and P(k | k).

■ For measurement prediction covariance, I use 6z̃,k, whereas Simon

uses Sk and Bar-Shalom uses S(k).
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