
ECE5550: Applied Kalman Filtering 3–1

DYNAMIC SYSTEMS WITH NOISY INPUTS

3.1: Scalar random variables

� The purpose of Kalman filters is to estimate the hidden internal state
of some system where that state is affected by noise and where our
measurements of system output are also corrupted by noise.

System

x(t)
Disturbance

w(t) z(t)

Sensor noise
v(t)

� By definition, noise is not deterministic—it is random in some sense.

� So, to discuss the impact of noise on the system dynamics, we must
review the concept of a “random variable,” (RV) X .

• Cannot predict exactly what we will get each time we measure or
sample the random variable, but

• We can characterize the probability of each sample value by the
“probability density function” (pdf).

Probability density functions (pdf)

� We denote probability density function (pdf) of RV X as fX(x).

fX(x)

x
x0

dx � fX(x0) dx is the probability that
random variable X is between
[x0, x0 + dx].
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ECE5550, DYNAMIC SYSTEMS WITH NOISY INPUTS 3–2

� Properties that are true of all pdfs:

1. fX(x) ≥ 0 ∀ x .

2.
∫ ∞

−∞
fX(x) dx = 1.

3. Pr(X ≤ x0) =
∫ x0

−∞
fX(x) dx

�= FX(x0), which is the RV’s cumulative

distribution function (cdf).1

� Problem: Apart from simple examples it is often difficult to determine
fX(x) accurately. � Use approximations to capture the key behavior.

� Need to define key characteristics of fX(x).

EXPECTATION: Describes the expected outcome of a random trial.

x̄ = E[X ] =
∫ ∞

−∞
x fX(x) dx .

� Expectation is a linear operator (very important for working with it).

� So, for example, the first moment about the mean: E[X − x̄] = 0.

STATISTICAL AVERAGE: Different from expectation.

� Consider a (discrete) RV X that can assume n values x1, x2, . . . xn.

� Define the average by making many measurements N → ∞. Then,
mi is the number of times the value of the measurement is i .

x̄ = 1
N

(m1x1 + m2x2 + · · · + mnxn) = m1

N
x1 + m2

N
x2 + · · · + mn

N
xn.

� In the limit, m1/N → Pr(X = x1) and so forth (assuming ergodicity),

x̄ =
N∑

i=1

xiPr(X = xi).

1 Some call this a probability distribution function, with acronym PDF (uppercase), as
different from a probability density function, which has acronym pdf (lowercase).
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� So, statistical means can converge to expectation in the limit. (Can
show similar property for continuous RVs. . . but harder to do.)

VARIANCE: Second moment about the mean.

var(X) = E[(X − x̄)2] =
∫ ∞

−∞
(x − x̄)2 fX(x) dx

= E[X2] − (E[X ])2,

or is equal to the mean-square minus the square-mean.

STANDARD DEVIATION: Measure of dispersion about the mean of the
samples of X : σX = √

var(X).

� The expectation and variance capture key features of the actual pdf.
Higher-order moments are available, but we won’t need them!

KEY POINT FOR UNDERSTANDING VARIANCE: Chebychev’s inequality

� Chebychev’s inequality states (for positive ε)

Pr(|X − x̄| ≥ ε) ≤ σ 2
X

ε2 ,

which implies that probability is concentrated around the mean.

� It may be proven as follows:

Pr(|X − x̄| ≥ ε) =
∫ x̄−ε

−∞
fX(x) dx +

∫ ∞

x̄+ε

fX(x) dx .

� For the two regions of integration |x − x̄|/ε ≥ 1 or (x − x̄)2/ε2 ≥ 1. So,

Pr(|X − x̄| ≥ ε) ≤
∫ x̄−ε

−∞
(x − x̄)2

ε2 fX(x) dx +
∫ ∞

x̄+ε

(x − x̄)2

ε2 fX(x) dx .

� Since fX(x) is positive, then we also have

Pr(|X − x̄ | ≥ ε) ≤
∫ ∞

−∞
(x − x̄)2

ε2 fX(x) dx = σ 2
X

ε2 .
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� This inequality shows that probability is clustered around the mean,
and that the variance is an indication of the dispersion of the pdf.

� That is, variance (later on, covariance too) informs us of how
uncertain we are about the value of a random variable.

• Low variance means that we are very certain of its value;

• High variance means that we are very uncertain of its value.

� The mean and variance give us an estimate of the value of a random
variable, and how certain we are of that estimate.

The most important distribution for this course

� The Gaussian (normal) distribution is of key importance to Kalman
filters. (We will explain why this is true later—see “main point #7” on
pg. 3–14.)

� Its pdf is defined as:

fX(x) = 1√
2πσX

exp
(

−(x − x̄)2

2σ 2
X

)
.

� Symmetric about x̄ .

� Peak proportional to
1
σX

at x̄ .
−15 −10 −5 0 5 10 15

� Notation: X ∼ N (x̄, σ 2
X).

� Probability that X within ±σX of x̄ is 68%; probability that X within
±2σX of x̄ is 96%; probability that X within ±3σX of x̄ is 99.7%.

• A ±3σX range almost certainly covers observed samples.

� “Narrow” distribution � Sharp peak. High confidence in predicting X .

� “Wide” distribution � Poor knowledge in what to expect for X .
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3.2: Vector random variables

� With very little change in the preceding, we can also handle vectors of
random variables.

X =


X1

X2
...

Xn

 ; let x0 =


x1

x2
...

xn

 .

� X described by (scalar function) joint pdf fX(x) of vector X .

� fX(x0) means fX(X1 = x1, X2 = x2 · · · Xn = xn).

� That is, fX(x0) dx1 dx2 · · · dxn is the probability that X is between x0

and x0 + dx .

� Properties of joint pdf fX(x):

1. fX(x) ≥ 0 ∀ x . Same as before.

2.
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x) dx1 dx2 · · · dxn = 1. Basically the same.

3. x̄ = E[X ] =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
x fX(x) dx1 dx2 · · · dxn. Basically same.

4. Correlation matrix: Different.

�X = E[X X T ] (outer product)

=
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
xx T fX(x) dx1 dx2 · · · dxn.

5. Covariance matrix: Different. Define X̃ = X − x̄ . Then,

�X̃ = E[(X − x̄)(X − x̄)T ]

=
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
(x − x̄)(x − x̄)T fX(x) dx1 dx2 · · · dxn.
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�X̃ is symmetric and positive-semi-definite (psd). This means

yT�X̃ y ≥ 0 ∀ y.

PROOF: For all y 	= 0,

0 ≤ E[(yT (X − x̄))2]

= yT
E[(X − x̄)(X − x̄)T ]y

= yT �X̃ y.

� Notice that correlation and covariance are the same for zero-mean
random vectors.

� The covariance entries have specific meaning:

(�X̃)i i = σ 2
Xi

(�X̃)i j = ρi jσXiσX j = (�X̃) j i .

• The diagonal entries are the variances of each vector component;

• The correlation coefficient ρi j is a measure of linear dependence
between Xi and X j . |ρi j | ≤ 1.

The most important multivariable distribution for this course

� The multivariable Gaussian is of key importance for Kalman filtering.

x̄1 x̄2
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fX(x) = 1

(2π)n/2
∣∣�X̃

∣∣1/2 exp
(

−1
2
(x − x̄)T �−1

X̃
(x − x̄)

)
.

|�X̃ | = det(�X̃), �−1
X̃

requires positive-definite �X̃ .

� Notation: X ∼ N (x̄,�X̃).

� Contours of constant fX(x) are hyper-ellipsoids, centered at x̄ ,
directions governed by �X̃ . Principle axes decouple �X̃

(eigenvectors).

� Two-dimensional zero-mean case: (Let σ1 = σX1 and σ2 = σX2)

�X̃ =
[

σ 2
1 ρ12σ1σ2

ρ12σ1σ2 σ 2
2

]
|�X̃ | = σ 2

1 σ 2
2 (1 − ρ2

12).

fX1,X2(x1, x2) = 1

2πσ1σ2

√
1 − ρ2

12

exp

−
x2

1
σ 2

1
− 2ρ12

x1
σ1

x2
σ2

+ x2
2

σ 2
2

2(1 − ρ2
12)

 .
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3.3: Uncorrelated versus independent

INDEPENDENCE: Iff jointly-distributed RVs are independent, then

fX(x1, x2, . . . , xn) = fX1(x1) fX2(x2) · · · fXn(xn).

� Joint distribution can be split up into the product of individual
distributions for each RV

� Equivalent condition: For all functions f (·) and g(·),
E[ f (X1)g(X2)] = E[ f (X1)]E[g(X2)].

� “The particular value of the random variable X1 has no impact on
what value we would obtain for the random variable X2.”

UNCORRELATED: Two jointly-distributed RVs X1 and X2 are uncorrelated
if their second moments are finite and

cov(X1, X2) = E[(X1 − x̄1)(X2 − x̄2)] = 0

which implies ρ12 = 0.

� Uncorrelated means that there is no linear relationship between X1

and X2.

MAIN POINT #1: If jointly-distributed RV X1 and X2 are independent then
they are uncorrelated. Independence implies uncorrelation.

� To see this, notice that independence means E[X1X2] = E[X1]E[X2].
Therefore,

cov(X1, X2) = E[X1X2] − E[X1]E[X2] = 0,

therefore uncorrelated.
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� Does uncorrelation imply independence? Consider the example

Y1 = sin(2π X) and Y2 = cos(2π X)

with X uniformly distributed on [0, 1].

� We can show that E[Y1] = E[Y2] = E[Y1Y2] = 0.

� So, cov(Y1, Y2) = 0 and Y1 and Y2 are uncorrelated.

� But, Y 2
1 + Y 2

2 = 1 and therefore Y1 and Y2 are clearly not independent.

� Note: cov(X1, X2) = 0 (uncorrelated) implies that

E[X1X2] = E[X1]E[X2]

but independence requires

E[ f (X1)g(X2)] = E[ f (X1)]E[g(X2)]

for all f (·) and g(·).
� Therefore, independence is much stronger than uncorrelated.

COROLLARY: Consider a RV X with uncorrelated components. The
covariance matrix �X̃ = E[(X − x̄)(X − x̄)T ] is diagonal.

PROOF: Notice that:

• The diagonal elements are (�X̃)i i = E[(Xi − x̄i)
2] = σ 2

i .

• The off-diagonal elements are

(�X̃)i j = E[(Xi − x̄i)(X j − x̄ j)]

= E[Xi X j − Xi x̄ j − x̄i X j + x̄i x̄ j]

= E[Xi]E[X j] − 2E[Xi]E[X j] + E[Xi]E[X j] = 0.

MAIN POINT #2: If jointly normally distributed RVs are uncorrelated, then
they are independent. (This is a special case.)
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3.4: Functions of random variables

MAIN POINT #3: Suppose we are given two random variables Y and X
with Y = g(X). Also assume that g−1 exists, g and g−1 are
continuously differentiable, then

fY (y) = fX(g−1(y))

∥∥∥∥∣∣∣∣∂g−1(y)

∂y

∣∣∣∣∥∥∥∥ ,

where ‖|·|‖ means to take the absolute value of the determinant.

� So what? Say we know the pdf of X1 and X2 and

Y1 = X1 + X2

Y2 = X2

}
Y = AX

we can now form the pdf of Y � handy!

EXAMPLE: Y = k X and X ∼ N (0, σ 2
X).

• X = 1
k

Y and so g−1(y) = 1
k

y. Then,
∂g−1(y)

∂y
= 1

k
.

fY (y) = fX

(y
k

) ∣∣∣∣1k
∣∣∣∣ = 1

|k|
1√

2πσX
exp

(−(y/k)2

2σ 2
X

)
= 1√

2π(σXk)2
exp

( −y2

2(σXk)2

)
.

• Therefore, multiplication by gain k results in a normally-distributed
RV with scale change in standard deviation. Y ∼ N (0, k2σ 2

X).

EXAMPLE: Y = AX + B where A is a constant (non-singular) matrix,
B is a constant vector, and X ∼ N (x̄,�X̃).

• X = A−1Y − A−1B so g−1(y) = A−1y − A−1B. Then,
∂g−1(y)

∂y
= A−1.
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• fX(x) = 1
(2π)n/2|�X̃ |1/2 exp

[
−1

2
(x − x̄)T �−1

X̃
(x − x̄)

]
.

• Therefore,

fY (y) = |A−1|
(2π)n/2|�X̃ |1/2 exp

[
−1

2
(A−1(y − B) − x̄)T �−1

X̃
(A−1(y − B) − x̄)

]
= 1

(2π)n/2(|A||�X̃ ||AT |)1/2
exp

[
−1

2
(y − ȳ)T (A−1)T �−1

X̃
A−1(y − ȳ)

]
= 1

(2π)n/2|�Ỹ |1/2
exp

[
−1

2
(y − ȳ)�−1

Ỹ
(y − ȳ)

]
,

if �Ỹ = A�X̃ AT and ȳ = Ax̄ + B. That is, Y ∼ N (Ax̄ + B, A�X̃ AT ).

CONCLUSION: Sum of Gaussians is Gaussian—very special case.

RANDOM NOTE: How to use randn.m to simulate non-zero mean
Gaussian noise with covariance �Ỹ ?

� Y ∼ N (ȳ,�Ỹ ) but randn.m returns X ∼ N (0, I ).

� Try y = ȳ + AT x where A is square with the same dimension as �Ỹ ;
AT A = �Ỹ . (A is the Cholesky decomposition of positive-definite
symmetric matrix �Ỹ ).
ybar = [1; 2];

covar = [1, 0.5; 0.5, 1];

A = chol(covar);

x = randn([2, 1]);

y = ybar + A'*x;

� When �Ỹ is non-positive definite
(but also non-negative definite)

[L,D] = ldl(covar);

x = randn([2,5000]);

y = ybar(:,ones([1 5000]))

+(L*sqrt(D))*x;

−4 −2 0 2 4 6
−1

0

1

2

3

4

5

x coordinate

y 
co

or
di

na
te

5000 samples with mean [1;2] and
covar [1,0.5; 0.5,1]
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MAIN POINT #4: Normality is preserved in a linear transformation
(extension of above example).

� Let X and W be independent vector random variables, a is a constant
(vector): X ∼ N (x̄,�X̃), W ∼ N (w̄,�W̃ ).

� Let

Z = AX + BW + a

E[Z ] = z̄ = Ax̄ + Bw̄ + a

�Z̃ = A�X̃ AT + B�W̃ BT .

� Z is also a normal RV and Z ∼ N (z̄,�Z̃).
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3.5: Conditioning

MAIN POINT #5: Conditional probabilities.

� Given jointly-distributed RVs, it is often of extreme interest to find the
pdf of some of the RVs given known values for the rest.

� For example, given the joint pdf fX,Y (x, y) for RVs X and Y , we want
the conditional pdf of fX |Y (x | y) which is the pdf of X for a known
value Y = y.

� Can also think of it as fX |Y (X = x | Y = y).

DEFINE: Conditional pdf

fX |Y (x | y) = fX,Y (x, y)

fY (y)

is the probability that X = x given that Y = y has happened.

NOTE I: The marginal probability fY (y) may be calculated as

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx .

For each y, integrate out the effect of X .

NOTE II: If X, Y independent, fX,Y (x, y) = fX(x) fY (y). Therefore

fX |Y (x | y) = fX,Y (x, y)

fY (y)
= fX(x) fY (y)

fY (y)
= fX(x).

Knowing that Y = y has occurred provides no information about X .
(Is this what you would expect?)

DIRECT EXTENSION:

fX,Y (x, y) = fX |Y (x | y) fY(y)

= fY |X(y | x) f X(x),

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, DYNAMIC SYSTEMS WITH NOISY INPUTS 3–14

Therefore,
fX |Y (x | y) = fY |X(y | x) fX(x)

fY (y)
.

� This is known as Bayes’ rule. It relates the a posteriori probability to
the a priori probability.

� It forms a key step in the Kalman filter derivation.

MAIN POINT #6: Conditional expectation.

� Now that we have a way of expressing a conditional probability, we
can also express a conditional mean.

� What do we expect the value of X to be given that Y = y has
happened?

E[X = x | Y = y] = E[X | Y ] =
∫ ∞

−∞
x fX |Y (x | Y ) dx .

� Conditional expectation is not a constant (as expectation is) but a
random variable. It is a function of the conditioning random variable
(i.e., Y ).

� Note: Conditional expectation is critical. The Kalman filter is an
algorithm to compute E[xk | Zk], where we define Zk later.

MAIN POINT #7: Central limit theorem.

� If Y =
∑

i

Xi and the Xi are independent and identically distributed

IID), and the Xi have finite mean and variance, then Y will be
approximately normally distributed.

� The approximation improves as the number of summed RVs gets
large.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, DYNAMIC SYSTEMS WITH NOISY INPUTS 3–15

� Since the state of our dynamic system adds up the effects of lots of
independent random inputs, it is reasonable to assume that the
distribution of the state tends to the normal distribution.

� This leads to the key assumptions for the derivation of the Kalman
filter, as we will see:

• We will assume that state xk is a normally-distributed RV;

• We will assume that process noise wk is a normally-distributed RV;

• We will assume that sensor noise vk is a normally-distributed RV;

• We will assume that wk and vk are uncorrelated with each other.

� Even when these assumptions are broken in practice, the Kalman
filter often works quite well.

� Exceptions to this rule tend to be with very highly nonlinear systems,
for which particle filters must sometimes be employed to get good
estimates.
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3.6: Vector random (stochastic) processes

� A stochastic random process is a family of random vectors indexed by
a parameter set (“time” in our case).

• For example, the random process X (t).

• The value of the random process at any time t0 is RV X (t0).

� Usually assume stationarity.

• The pdf of the random variables are time-shift invariant.

• Therefore, E[X (t)] = x̄ for all t and E[X (t1)X T (t2)] = RX(t1 − t2).

Properties

1. Autocorrelation: RX(t1, t2) = E[X (t1)X T (t2)]. If stationary,

RX(τ ) = E[X (t)X T (t + τ)].

� Provides a measure of correlation between elements of the
process having time displacement τ .

� RX(0) = σ 2
X for zero-mean X .

� RX(0) is always the maximum value of RX(τ ).

2. Autocovariance: CX(t1, t2) = E[(X (t1) − E[X (t1)])(X (t2) − E[X (t2)])T ].
If stationary,

CX(τ ) = E[(X (t) − x̄)(X (t + τ) − x̄)T ].

“White” noise

� Correlation from one time instant to the next is a key property of a
random process. � RX(τ ) and CX(τ ) very important.
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� Some processes have a unique autocorrelation:

1. Zero mean,

2. RX(τ ) = E[X (t)X (t + τ)T ] = SXδ(τ) where δ(τ) is the Dirac delta.

� Therefore, the process is uncorrelated in time.

� Clearly an abstraction, but proves to be a very useful one.
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Power spectral density (PSD)

� Consider stationary random processes with autocorrelation defined
as RX(τ ) = E[X (t)X (t + τ)T ].

� If a process varies slowly, time-adjacent samples are very correlated,
and RX(τ ) will drop off slowly � Mostly low-frequency content.

� If a process varies quickly, time-adjacent samples aren’t very
correlated, and RX(τ ) drops off quickly � More high-freq. content.

� Therefore, the autocorrelation function tells us about the frequency
content of the random signal.

� Consider scalar case. We define the power spectral density (PSD) as
the Fourier transform of the autocorrelation function:
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SX(ω) =
∫ ∞

−∞
RX(τ )e− jωτ dτ

RX(τ ) = 1
2π

∫ ∞

−∞
SX(ω)e jωτ dω.

� SX(ω) gives a frequency-domain interpretation of the “power” (energy)
in the random process X (t), and is real, symmetric and positive
definite for real random processes.

EXAMPLE: RX(τ ) = σ 2e−α|τ | for α > 0. Then,

SX(ω) =
∫ ∞

−∞
σ 2e−α|τ |e− jωτ dτ = 2σ 2α

ω2 + α2 .

RX (τ )

Peak of σ 2

τAutocorrelation

SX(ω)

Peak of
2σ 2

α

ωPSD
� α is a bandwidth measure.

INTERPRETATION: 1. Area under PSD SX(ω) for ω1 ≤ ω ≤ ω2 provides a
measure of energy in the signal in that frequency range.

2. White noise can be thought of as a limiting process as α → ∞.
From our prior example, let α → ∞.

� As α → ∞, RX(τ ) → δ(τ); therefore white.

� Bandwidth of spectral content is approximately α, so goes to infinity.

� Abstraction since implies that signal has infinite energy!
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3.7: Discrete-time dynamic systems with random inputs

� What are the statistics of the state of a system driven by a random
process?

� That is, how do the system dynamics influence the time-propagation
of x(t)? � Do not know x(t) exactly, but can develop a pdf for x(t).

� Primary example: A linear system driven by white noise w(t),
possibly in addition to deterministic input u(t).

x(t)

u(t)

w(t)

A, B, C, D

x(t)

z(t)

� Contrast to deterministic simulation, which can be easily simulated

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, x(0), u(t) known.

� System response is completely specified. Therefore, no uncertainty.

� The stochastic propagation is different since there are inputs that are
not known exactly. � Best we can do is to say how uncertainty in the
state changes with time.

x(to)

x(t f )

x1 x1

x2

x2

Pr(x)

x(to)

x(t f )

Deterministic Stochastic

� Deterministic: x(t0) and inputs known � State trajectory deterministic.
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� Stochastic: pdf for x(t0) and inputs known � Can find only pdf for x(t).

� We will work with Gaussian noises to a large extent, which are
uniquely defined by the first- and second central moments of the
statistics � Gaussian assumption not essential.

� We will only ever track the first two moments.

NOTATION: Until now, we have always used capital letters for random
variables. The state of a system driven by a random process is a
random vector, so we could now call it X (t) or Xk. However, it is more
common to retain the standard notation x(t) or xk and understand
from the context that we are now discussing an RV

Discrete-time systems

� We will start with a discrete system and then look at how to get an
equivalent answer for continuous systems.

� Model:
xk = Ad,k−1xk−1 + Bd,k−1uk−1 + wk−1,

where

xk : State vector, a random process.

uk : Deterministic control inputs.

wk : Noise that drives the process (process noise), a random process.

� Ad and Bd assumed known. Can be time-varying. For now, assume
fixed. Generalize later if necessary.

� Key assumptions about driving noise:
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1. Zero mean: E[wk] = 0 ∀ k.

2. White: E[wk1w
T
k2

] = �w̃�(k1 − k2).

� �w̃ is called the spectral density of the noise signal wk.

� Uncertainty at startup: Statistics of initial condition.

E[x0] = x̄0;
E[(x0 − x̄0)w

T
k ] = 0 ∀ k

�x̃,0 = E[(x0 − x̄0)(x0 − x̄0)
T ].

� Key question: How do we propagate the statistics of this system?

Mean value:

� The mean value is

E[xk] = x̄k = E[Adxk−1 + Bduk−1 + wk−1]

= Ad x̄k−1 + Bduk−1.

Therefore, the mean propagation is

x̄0 : Given

x̄k = Ad x̄k−1 + Bduk−1.

Deterministic simulation and mean values treated the same way.

Variations about mean

� To study the random variations about the mean, we need to form the
second central moment of the statistics.

�x̃,k = E[(xk − x̄k)(xk − x̄k)
T ].
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� Easiest to study if we note that

xk − x̄k = Adxk−1 + Bduk−1 + wk−1

−Ad x̄k−1 − Bduk−1

= Ad(xk−1 − x̄k−1) + wk−1.

� Thus,

�x̃,k = E[(Ad(xk−1 − x̄k−1) + wk−1)(Ad(xk−1 − x̄k−1) + wk−1)
T ].

� Three terms:

1. E[Ad(xk−1 − x̄k−1)(xk−1 − x̄k−1)
T AT

d ] = Ad�x̃,k−1 AT
d .

2. E[wk−1w
T
k−1] = �w̃.

3. E[Ad(xk−1 − x̄k−1)w
T
k−1] =?

� The third term is a cross-correlation term.

• But, xk−1 depends only on x0 and inputs wm for m = 0 . . . k − 2.

• wk−1 is white noise uncorrelated with x0.

• Therefore, third term is zero.

Therefore, the covariance propagation is

�x̃,0 : Given

�x̃,k = Ad�x̃,k−1 AT
d + �w̃.

In this equation, Ad�x̃,k−1 AT
d is the homogeneous part; �w̃ is the driving term.

� Note: If Ad and �w̃ are constant and Ad stable, there is a steady-state
solution.

• As k → ∞, �x̃,k = �x̃,k+1 = �x̃ .
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• Then, �x̃ = Ad�x̃ AT
d + �w̃.

� This form is called a discrete Lyapunov equation. In MATLAB,
dlyap.m

EXAMPLE: Can solve by hand in the scalar case.

� Consider: xk = αxk−1 + wk−1. E[wk−1] = 0; �w̃ = 1; x̄0 = 0.

� Then,

�x̃ = α�x̃α
T + 1

�x̃(1 − α2) = 1

�x̃ = 1
1 − α2 .

Valid for |α| < 1; otherwise unstable.

� In the example below, we plot 100 random trajectories for α = 0.75
and �x̃,0 = 50.

� Compare propagation of �x̃,k with steady-state dlyap.m solution.

0 5 10 15 20
0

10

20

30

40

50

Time

�x̃ = 2.29

�
x̃,

k

0 5 10 15 20
−30

−20

−10

0

10

20

30
Propagation of state, with error bounds

Time (100 simulations plotted)

V
al

ue

� The error bounds plotted are 3σ bounds (i.e., ±3
√

�x̃,k).
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3.8: Continuous-time dynamic systems with random inputs

� For continuous-time systems we have

ẋ(t) = A(t)x(t) + Bu(t)u(t) + Bw(t)w(t),

where

x(t) : State vector, a random process.

u(t) : Deterministic control inputs.

w(t) : Noise driving the process (process noise), a random process.

Further:

E[w(t)] = 0; E[w(t)w(τ)T ] = Swδ(t − τ)

E[x(0)] = x̄(0); E[(x(0) − x̄(0))(x(0) − x̄(0))T ] = �x̃(0).

� A, Bu and Bw assumed known. Can be time-varying. For now,
assume fixed. Generalize later if necessary.

� Sw is the spectral density of w(t).

� Easiest analysis is to discretize model; use results obtained earlier;
let �t → 0.

• Drop deterministic inputs u(t) for simplicity. (They affect only the
mean, and in known ways.)

Continuous-time propagation of statistics

Mean value

� Starting with the discrete case, we have

x̄k = Ad x̄k−1 + Bduk−1

Ad = eA�t ≈ I + A�t + O(�t2).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, DYNAMIC SYSTEMS WITH NOISY INPUTS 3–25

� Let �t → 0 and consider case when uk = 0 for all k.

x̄k = (A�t + I )x̄k−1

x̄k − x̄k−1

�t
= Ax̄k−1.

� As �t → 0
˙̄x(t) = Ax̄(t)

as expected.

Therefore, the mean propagation is

x̄(0) : Given

˙̄x(t) = Ax̄(t) + Bu(t).

Deterministic simulation and mean values treated the same way.

Variations about mean

� The result for discrete-time systems was: �x̃,k = Ad�x̃,k−1 AT
d + �w̃.

� But, we need a way to relate discrete �w̃ to a continuous spectral
density Sw before we can proceed.

� Recall the discrete system response in terms of continuous system
matrices:

xk = eA�t xk−1 +
∫ k�t

(k−1)�t
eA(k�t−τ)Bww(τ) dτ

= eA�t xk−1 + wk−1.

� Integral explicitly accounts for variations in the noise during �t .

RECALL: Discrete white noise of the form

E[wkw
T
l ] =

�w̃, k = l;
0, k 	= l.
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� But noise input term to our converted state dynamics is defined as an
integral

wk−1 =
∫ k�t

(k−1)�t
eA(k�t−τ)Bww(τ) dτ .

� Form outer product to get equivalent �w̃

�w̃ = E

[(∫ k�t

(k−1)�t
eA(k�t−τ)Bww(τ) dτ

)(∫ k�t

(k−1)�t
eA(k�t−γ )Bww(γ ) dγ

)T]

= E

[∫ k�t

(k−1)�t

∫ k�t

(k−1)�t
eA(k�t−τ)Bww(τ)w(γ )T BT

weAT (k�t−γ ) dτ dγ

]
.

� Big ugly mess but has two saving graces

1. Expectation can go inside integrals.

2. E[w(τ)w(γ )T ] = Swδ(τ − γ ) � One of the integrals drops out!

� So, we have

�w̃ =
∫ k�t

(k−1)�t
eA(k�t−τ)BwSw BT

weAT (k�t−τ) dτ .

KEY POINT: While Sw may have simple form, �w̃ will be full matrix in
general.

� To solve integral, we can approximate: As �t → 0, then k�t − τ → 0
and eA(k�t−τ) ≈ I + A(k�t − τ) + · · ·

� That is, eA(k�t−τ) ≈ I . Then,

�w̃ ≈ (
BwSw BT

w

)
�t .

� We will see a better method to evaluate �w̃ when �t 	= 0, but for now
we continue with this result to determine the continuous-time system
covariance propagation.
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� Start with �x̃,k = Ad�x̃,k−1 AT
d + �w̃, and substitute �w̃ ≈ BwSw BT

w�t .
Also, use Ad ≈ (I + A�t)

�x̃,k ≈ (I + A�t)�x̃,k−1(I + A�t)T + BwSw BT
w�t

= �x̃,k−1 + �t (A�x̃,k−1 + �x̃,k−1 AT + BwSw BT
w) + O(�t2)

�x̃,k − �x̃,k−1

�t
= A�x̃,k−1 + �x̃,k−1 AT + BwSw BT

w + O(�t).

� As �t → 0
�̇x̃(t) = A�x̃(t) + �x̃(t)AT + BwSw BT

w ,

initialized with �x̃(0).

� This is a matrix differential equation.

� Symmetric, so don’t need to solve for every element.

� Two effects

• A�x̃(t) + �x̃(t)AT : Homogeneous part. Contractive for stable A.
Reduces covariance.

• BwSw BT
w : Impact of process noise. Tends to increase covariance.

� Steady-state solution: Effects balance for systems with constant
dynamics (A, Bw, Sw) and stable A.

A�x̃,ss + �x̃,ss AT + BwSw BT
w = 0.

� This is a continuous-time Lyapunov equation. In MATLAB, lyap.m

The covariance propagation is

�x̃(0) : Given

�̇x̃(t) = A�x̃(t) + �x̃(t)AT + BwSw BT
w .

In this equation, A�x̃(t) + �x̃(t)AT is the homogeneous part; BwSw BT
w is the driving term.
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EXAMPLE: ẋ(t) = Ax(t) + Bww(t), where A and Bw are scalars.

� Then, �̇x̃ = 2A�x̃ + B2
wSw. This can be solved in closed form to find

�x̃(t) = B2
wSw

2A
(e2At − 1) + �x̃(0)e2At.

� If A < 0 (stable) then the initial condition contribution goes to zero.

�x̃,ss = −B2
wSw

2A
independent of �x̃(0).

� Example: Let A = −1,
�x̃(0) = 5. Find �x̃(t). Solution:

� Increased �x̃,ss as more noise
added: B2

wSw term.

� Decreased �x̃,ss as A becomes
“more stable”. 0 1 2 3 4 5

0

1

2

3

4

5

Time

�x̃,ss = 1

�
x̃(

t)
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3.9: Relating �w̃ to Sw precisely: A little trick

� Want to find �w̃ precisely, regardless of �t . Assume we know Sw and
plant dynamics.

�w̃ =
∫ �t

0
eA(�t−τ)BwSw BT

weAT (�t−τ) dτ .

� Define

Z =
−A BwSw BT

w

0 AT

 , C = eZ�t =
c11 c12

0 c22


� We can compute C = L−1 [(s I − Z)−1]

∣∣
t=�t and find that

c11 = L−1 [(s I − z11)
−1]

∣∣
t=�t = L−1 [(s I + A)−1]

∣∣
t=�t = e−A�t

c12 = L−1 [(s I − z11)
−1z12(s I − z22)

−1]
∣∣
t=�t

= L−1 [(s I + A)−1BwSw BT
w(s I − AT )−1]

∣∣
t=�t

c22 = L−1 [(s I − z22)
−1]

∣∣
t=�t = L−1 [(s I − AT )−1]

∣∣
t=�t = eAT �t = AT

d

� So, cT
22 = Ad. Also cT

22c12 = �w̃. With one expm.m command, can
quickly switch from continuous-time to discrete-time.

� To show the second identity, recognize that c12 is a convolution of two
impulse responses: one due to the system (s I + A)−1Bw and the
other due to the system Sw BT

w(s I − AT )−1.

� The first of these has impulse response I e−At Bw and the second has
impulse response Sw BT

weAT t . Convolving them we get∫ �t

0
I A−τ BwSw BT

weAT (�t−τ) dτ .
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� Finally, consider

cT
22c12 =

∫ �t

0
eA(�t−τ)BwSw BT

weAT (�t−τ) dτ = �w̃.

EXAMPLE: Let

ẋ(t) =
[

0 1
−1 −1

]
x(t) +

[
0
1

]
w(t)

with Sw = 0.06 and �t = 2π/16.

Z =


0 −1 0 0

1 1 0 0.06

0 0 0 −1

0 0 1 −1

 ; C =


0.91 −0.47 −0.006 −0.0046

0.47 1.38 0.0046 0.023

0 0 0.93 −0.32

0 0 0.32 0.62

 .

� So,

Ad =
[

0.93 0.32
−0.32 0.62

]
; �w̃ =

[
0.0009 0.0030
0.0030 0.0156

]
; BwSw BT

w =
[

0 0
0 0.06

]
.

� Exact �w̃ and approximate �w̃ very different due to large �t .

� Compare predictions of steady-state performance.

• Continuous:

A�x̃,ss + �x̃,ss AT + BwSw BT
w = 0; �x̃,ss =

[
0.03 0

0 0.03

]
.

• Discrete: �x̃,ss = Ad�x̃,ss AT
d + �w̃; �x̃,ss =

[
0.03 0

0 0.03

]
.

� Because we used discrete white noise scaled to be equivalent to the
continuous noise, the steady-state predictions are the same.

� Conversion now complete:
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DISCRETE: Ad , �w̃, Bd

Given �x̃,0 : �x̃,k = Ad�x̃,k−1 AT
d + �w̃

Given x̄0 : x̄k = Ad x̄k−1 + Bduk−1.

CONTINUOUS: A, Sw, Bu, Bw

Given �x̃(0) : �̇x̃(t) = A�x̃(t) + �x̃(t)AT + BwSw BT
w

Given x̄(0) : ˙̄x(t) = Ax̄(t) + Buu(t).

� All matrices may be time varying.

� Equivalent �w̃ for given Sw available.
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3.10: Shaping filters

� We have assumed that the inputs to the linear dynamic systems are
white (Gaussian) noises.

� Therefore, the PSD is flat � The input has content at all frequencies.

� Pretty limiting assumption, but one that can be easily fixed � Can use
second linear system to “shape” the noise and modify the PSD as
desired.

White
noise w(t)

Shaped
noise w1(t)

White
noise w2(t)

z(t)

z(t) z(t)G(s)G(s)

G(s)H (s)
w1(t)

Shaped

Previous Picture New Picture

� Therefore, we can drive our linear system with noise that has a
desired PSD by introducing a shaping filter H(s) that itself is driven by
white noise.

� The combined system G H(s) looks exactly the same as before, but
the system G(s) is not driven by pure white noise any more.

� Analysis quite simple: Augment original model with filter states.

� Original system has

ẋ(t) = Ax(t) + Bww1(t)

z(t) = Cx(t)

� New shaping filter with white input and desired PSD output has

ẋs(t) = Asxs(t) + Bsw2(t)
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w1(t) = Csxs(t).

� Combine into one system ẋ(t)

ẋs(t)

 =
 A BwCs

0 As

 x(t)

xs(t)

 +
 0

Bs

w2(t)

z(t) =
[

C 0
] x(t)

xs(t)


� Augmented system just a larger-order linear system driven by white

noise.

KEY QUESTION: Given a PSD for w1, how do we find H(s) (or, As, Bs, Cs).

� Fact: If w2 is unit-variance white noise, then PSD for w1 is

Sw1(ω) = H(− jω)H T ( jω).

� Find H( jω) by spectral factorization of Sw1(ω). Take the
minimum-phase part (keep the poles and zeros that have negative
real part).

EXAMPLE: Let

Sw1(ω) = 2σ 2α2

ω2 + α2

=
√

2σα

α + jω
·

√
2σα

α − jω
.

Then

H(s) =
√

2σα

s + α
,

ẋs(t) = −αxs(t) + √
2ασw2(t)

w1(t) = xs(t).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, DYNAMIC SYSTEMS WITH NOISY INPUTS 3–34

EXAMPLE: Wind model.

� Wind gusts have some high-frequency content, but typically are
dominated by low-frequency disturbances � White noise a good
model?

� We would typically think of a PSD for the wind that puts more
emphasis on the low-frequency component of the signal.

� Think of this as the output of a shaping filter H(s) = 1
τws + 1

.

NOTE: If the bandwidth of the wind filter (1/τw) >bandwidth of plant
dynamics, then white noise is a good approximation to system input.

� Otherwise, must use shaping filters in plant model and drive with
white noise.

� The size of the A matrix becomes a limitation. Use the simplest noise
model possible.
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Appendix: Plett notation versus textbook notation

� I use E[·] to denote statistical expectation; the textbooks use E[·] or
E(·).

� I use �(·) to denote the correlation among the variables (·).
• For example, �XY = E[XY T ], and �X = E[X X T ].

• The same notation naturally applies to computing covariance,

�X̃ Ỹ = E[X̃ Ỹ T ] = E[(X − x̄)(Y − ȳ)T ]

and
�X̃ = E[(X − x̄)(X − x̄)T ].

• If the variables are zero mean, then �X̃ Ỹ = �XY , and �X̃ = �X .

� The textbooks tend to use different symbols for different covariances.
For example,

• cov(state error) = E[x̃ x̃ T ] = P ,

• cov(process noise) = Q, and

• cov(sensor noise) = R.
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