ECE5550: Applied Kalman Filtering 2—1

STATE-SPACE DYNAMIC SYSTEMS

2.1: Introduction to state-space systems

m Representation of the dynamics of an nth-order system as a
first-order differential equation in an n-vector called the state.

w p first-order equations.

m Classic example: Second-order equation of motion.

k
j&i m = u(t) mz(t) = u(t) — bi(t) — kZ(t)
) L ult) — bi() — k()
=200 » Z(1) = p” :

m Define a (non-unique) state vector (note that x(¢) = dx(¢)/dt, etc.)

[ o To] «r)
x(1) = L(t) } 80, X(1) = ['z’(t) } N { —%z(t) — %Z(t) + nliu(t)} |

m We can write this as x(t) = Ax(¢t) + Bu(t), where A and B are
constant matrices.

.|z | z(1)
x(t)_{z(t)}_{ :|[Z(t)}+{ :|u(t).
J ) -

A B

= Complete the model by computing z(t) = Cx(t) + Du(t), where C and
D are constant matrices.

=[] -]
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ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2-2
m Fundamental form for deterministic, time-invariant, continuous-time
linear state-space model:

x(t) = Ax(t) + Bu(t)
z(t) = Cx(1) + Du(t),
where u(¢) is input, x(¢) is the state, A, B, C, D are constant matrices.

o Systems with noise inputs are considered in notes chapter 3.
o Time-varying systems have A, B, C, D that change with time.
DEFINITION: The stafe of a system at time ¢, is a minimum amount of

information at 7, that, together with the input u(¢), t > 1y, uniquely
determines the behavior of the system for all r > 1.

m State variables provide access to what is going on inside the system.
= Convenient way to express equations of motion.
= Matrix format great for computers.

= Allows new analysis and synthesis tools.

SIMULATING IN SIMULINK: To investigate state-space systems, we can
simulate them in Simulink. The block diagram below gives explicit
access to the state and other internal signals. It is a direct
implementation of the transfer function above, and the initial state
may be set by setting the initial integrator values.

JD*u
|

..uzt) .>b ., xdotmI 1§ = b e I..Zzt)

‘ Integrator
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Example: The nearly constant position (NCP) model

= Consider a relatively immobile object that we would like to track using
a Kalman filter.

m |t gets bumped around by unknown forces.

m We let our model state be

E(1)
n(r)

where £(t) is the x-coordinate and 7(¢) is the y-coordinate of position.

x(t) =

= Qur model’s state equation is then
x(1) = 0x (1) + w(t),
where w(t) is a random process-noise input (unlike known u(t)).

= One possible output equation is

z(t) =x() +o(1),
where v (¢) is a random sensor-noise input.

m A possible Simulink implementation and output trajectory:

Trajectory of NCP model simulation
0.02 T T T T T

0.01f

3 1 [O]
Processs S I
noise w1(t) Integrator XY Graph 001}

Processs Sensor
noise w2(t) oise v1(t)

A

Sensor
noise v2(t)

o
2

o
Q
L)

o
Q
=)

y-coordinate, #(t)

o
o
=

o
o
5]

o
o
>

~0.07 L L L L L n L
-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015

x-coordinate, &(r)
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Example: The nearly constant velocity (NCV) model

= Another model we might consider is that of an object with momentum.
» The velocity is nearly constant, but gets perturbed by external forces.

m We let our model state be

KGN
(1) = 40
n(r)
i) |
= Our model’s state equation is then
(0100 (00 |
: 0000 10
) = t 1).
x(1) 0001 x(1) + 00 w(?)
0000 01
= One possible output equation is
1000
) = t 1).
z(1) 0010 x(1) +o(2)

m A possible Simulink implementation and output trajectory:

Trajectory of NCV model simulation
all Tl (o]
s s
Processs
noise w1(t) Integrator Integrator1 XY Graph

Processs Sensor

noise w2(t) ise vi(t)

ﬂj’

Sensor
noise v2(t)

0.05

>
=}

y-coordinate, #(t)

03 . . . . . . . . .
-0.045 -0.04 -0.085 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005
x-coordinate, &(r)
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Example: The coordinated turn model

= A third model considers an object moving in a 2D plane with constant
speed and angular rate Q where Q > 0 is counter-clockwise motion
and Q < 0 is clockwise motion.

E(t)y=—-Qpt) and  ij(r) = QE(1),

= We again let our model state be

() ]
<(1)
x(t) =
n(r)
i)
= Qur model’s state equation is then
010 O 00
: 0 00 —Q 10
x(t) = 000 1 x(t) + 0 0 w(t).
0QO0 O 01

= One possible output equation is

z(t) = |:(1) 8 (1) 8:|x(t)-|—v(t).

m A possible Simulink implementation and output trajectory:

Trajectory of CT model simulation
5

©

y-coordinate, #(t)

o

-4 -3 -2 -1 0
x-coordinate, &(r)
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2—6

2.2: Time (dynamic) response

m Develop more insight into the system response by looking at
time-domain solution for x(z).

Homogeneous part

m Start with x (1) = Ax(¢) and some initial state x(0).
= Take Laplace transform: X (s) = (sI — A)~'x(0).

= So, we have: x(t) = L7 '[(s] — A)"']x(0). But,

AZ

I A
GI—A)'=-F+S5+—=5+--
A A

)
SO,
A%2 A3
2! + 3!

LTI —A) =1+ Ar+

A . .
= e matrix exponential

x(t) = eAx(0).

m 47 “Transition matrix” or “state-transition matrix.”

= |[n MATLAB,
x = expm(Axt) *x0;
m ATB — pA1GBT iff  AB = BA. (i.e., not in general).

= Will say more about ¢’ when we discuss the structure of A.

= Computation of eA" = £7![(sI — A)~'] straightforward for 2 x 2.

. 0 1
EXAMPLE: Find ¢*’ when A = [ 5 s } .
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2—7

= Solve
- ~1
—1 31 1
(sI —A) ! = ’ = $
2 543 —2 s |G+2)s+1)
2 1 1 I ]
s+l s4+2  s+1 s+2
a —2 n 2 —1 n 2
| s+1  s+2 s+1 s+2 |
a B Do~ — o2 el o2
¢ = —t —2t —t —2t l(t)
—2e " + 2e —e "+ 2e

= This is the best way to find e’ if A 2 x 2.

Forced solution

x(t) = Ax(t) + Bu(t), x(0)

t
x(t) = e*x(0) —I—/ eI Bu(r)dr .
0

- -

-~

convolution

m Where did this come from?

1. x(t) — Ax(t) = Bu(t) .
2. ¢ MK (1) — Ax(1)] = %[e_mx(t)] = e A Bu(r).
t d —At __—At . _ t —At
3. /0 a[e x(t)]dr = e 'x(t) — x(0) = /0 e “"Bu(r)dr.
m Clearly, if z(r) = Cx(t) + Du(t),

t
z(1) =CeA’x(O)—|—/ Ce "D Bu(r)dr + Du(r) .

initial resp. 0 ~ - feedthrough

convolution
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More on the matrix exponential

= Have seen the key role of ¢ in the solution for x (7). Impacts the
system response, but need more insight.

» Consider what happens if the matrix A is diagonalizable, that is, there
exists a matrix T such that T-'AT = A =diagonal. Then,

2.2 3.3
eAtzl—i—At—l—At +At
2! 3!
. TAT'TAT '¥* TAT'TAT'TAT™'F
=1 +TAT 't + + +
2! 3!
A2 AP
:T|:I—|—At+ + +---]T1:TeAfT1,
2! 3!
and
e’ = diag ( Ml Pt et ) .

= Much simpler form for the exponential, but how to find T, A?

s Write T7'AT = Aas 7T 'A = AT~ with

T
W

~1 sz : —1
T ' = . , i.e., rowsof T7.
T
wn

w! A = J,w/, so w; is a left eigenvector of A and note that w; v; = 6; ;.

= How does this help?

et 0 w{
Aot T
e w
A Atpr—1 2
e = TeMT :[01 02---Dn:| .
0 el”t w,,r

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett



ECES5550, STATE-SPACE DYNAMIC SYSTEMS 2-9

n
= E e"'vw! .
i=I

= Very simple form, which can be used to develop intuition about
Ait
e .

dynamic response ~

x() = eMx(0) = TeMT1x(0) = Zei"’vi(wfx(O)).
i=1

= Trajectory can be expressed as a linear combination of modes: v;e*".
= Left eigenvectors decompose x(0) into modal coordinates w, x(0).
¢’i' propagates mode forward in time. Stability?
m p; corresponds to “relative phasing” of state’s part of the response.
EXAMPLE: Let’s consider a specific system
x(t) = Ax(¢)
z(t) = Cx (1),

with x(r) € R z(r) € R (16-state, single output).

Impulse response

2

= A lightly damped system.

» Typical output to initial
conditions are shown:

Amplitude

= Waveform is very complicated. -1

Looks almost random. B , , , , ,
0 50 100 150 200 250 300
Time (s)
= However, the solution can be decomposed into much simpler modal
components.
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1

or a
1 1 1 1 1
0 50 100 150 200 250
T T T T
0.5 n
0
-0.5 4
1 1 1 1
0 50 100 150 200 250

0 50 100 150 200 250
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2.3: Discrete-time state-space systems

= Computer monitoring of real-time systems requires analog-to-digital
(A2D) and digital-to-analog (D2A) conversion.

_________________________________

| A2D D2A !
r(r)”?-e&“J@ A e [ on | 0
.1 O— (1)

+

m Discrete-time systems can also be represented in state-space form
Xkt1 = Agxg + Bguy
2k = Cyxx + Dguy.

m The subscript “d” is used here to emphasize that, in general, the “A”,
“B”, “C” and “D” matrices are different for discrete-time and
continuous-time systems, even if the underlying plant is the same.

= | will usually drop the “d” and expect you to interpret the system from
its context.

Time (dynamic) response

m The full solution, found by induction from x;, 1 = Ax; + Buy, IS

k—1
Xp = Akxo + z Ak_l_jBuj .

J=0 )

convafution
m Clearly, if zx = Cxy + Duy,
k—1
2= CA*g + > CA*'""/Bu;+ Duy

initial resp. J =0 ~ feedthrough

convc;iution
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Converting plant dynamics to discrete time.

= Combine the dynamics of the zero-order hold and the plant.

u(t)

uy, —»| ZOH A,B,C,D —» z(1t)

= The continuous-time dynamics of the plant are:
x(t) = Ax(t) + Bu(t)
7(t) = Cx(t) + Du(t).

m Evaluate x(¢) at discrete times. Recall

t
x(t)=/ eI Bu(r) dr
0

(k+1)T
X1 =x((k+ 1D)T) = / eAEFDT=0) By (1) dr.
0

= With malice aforethought, break up the integral into two pieces. The
first piece will become A, times x(kT). The second part will become
B, times u(kT).

kT (k+1)T
= / eAEHDT= By (7) dr —i—/ eAEFDT=0) By (1) dr
0 kT

kT (k+1)T
— / e AT = By (1) dr —I—/ eAEDT=0) By () dr
0 kT

(k+1)T
= e Tx(kT) —I—/ eAEDT=0) By (1) dr.
kT

= [n the remaining integral, note that u(z) is constant from kT to
(k+ 1)T, and equal to u(kT).

mSo,weletc =k+ DT -7, 7=(k+1)T —0; dr = —do.
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x((k+ DT) = e x(kT) + |:/T e’ B da:| u(kT)
0

T
or, Xy4+1 = €ATXk + |:/ EAJB dO'] Uy.
0

= S0, we have a discrete-time state-space representation from the
continuous-time representation

Xkt1 = Agxk + Bauy
T
where A; = 47, B, = / ¢’ Bdo.
0

= Similarly,
2t = Cx; + Duy.

e Thatis, C,=C;D;=D.

Calculating A,;, B;, C; and D,

m C, and D, require no calculation since C, = C and D, = D.

= A, is calculated via the matrix exponential A; = ¢#”. This is different
from taking the exponential of each element in AT.

= [f MATLAB is handy, you can type in

Ad=expm (A*T)

= [f MATLAB is not handy, then you need to work a little harder. Recall
from earlier that e = £7![(sT — A)™']. So,

A =L — A,

which is probably the “easiest” way to work it out by hand.
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= Now we focus on computing B,. Recall that

T
Bd = / €AGB do
0

T 52
=/ (I—I—A0+A27+...)Bda
0

T*> LT3
=(1T—|—AE—|—A §+...)B

= AT — DB

= A (4, — IB.
m |f A is invertible, this method works nicely; otherwise, we will need to
perform the integral.

= Also, in MATLAB,

[Ad,Bd]=c2d(A,B,T)
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2.4: Examples of discrete-time state-space models

The discrete-time NCP model

= We might consider a discrete-time version of the continuous-time
nearly-constant-position model.

m Recall, in continuous time,
x(t) = 0x(t) + w(z)

z(t) = x(t) + o ().

T
Xpp] = T x, + (/ P da) Wi
0

Tk = Xk + Uk,

m [n discrete time,

where ¢'T =T and /Tlda =TI.
0
= Therefore,
Xk+1 = Xk + Twy
k = Xk + Ug.

= Note, wy is often scaled vis-a-vis w(r) so that a commonly seen form
of the discrete-time model is

Xk4+1 = Xk + Wi
Ik = X + U-

m \We can use Simulink to simulate this discrete-time NCP model, much
like the continuous-time NCP model.
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= Or, we can also simulate it easily with a MATLAB script.

% max. sim. time

Discrete-

time NCP simulation

maxT=200; 15
x=zeros (2,maxT); % storage
X(:,1)=[0;01; % 1nitial posn. & i
)
for k=2:maxT, % simulate model g
x(:,k)=x(:,k-1)+0.1xrandn(2,1); 5 0.51
end o
S of
plot (x(1,:),x(2,:)); =
title('Discrete-time NCP sim.'); _Q%

xlabel ('x'"); ylabel('y');

Example: The discrete-time NCV model

-1.5

-1 -0.5 0

= Similarly, we might consider a discrete-time version of the
continuous-time nearly-constant-velocity model.

m Recall, B _
0100

0000

x (1
D=1 0001

0000

-

-

Ac

m The discrete-time A matrixis A

A= £ o1 - a0,

5

x(t) +

0.5
x-coordinate, &
_00_
10
wl(t).
00 (1)
01
| i
B.
__1‘
s —1 0 O
0O s 0 O
0O 0 s —1
0O 0 O s
— - J 1t=T
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[ 15 152 0 0 |
_ a0 s 00 ||
0 0 1/s 1/s?
Lo o o s )|,
(1100 | (1700 |
~lot1o0o0 lotoo
ool ¢ o001 T
0001 _ |[0001

m This can be verified in MATLAB using the symbolic toolbox,

syms T
Ac = [01 0 0; O0O0OOO; OOO0OT1;, 00O0O07;
expm (AcxT)

= The discrete-time B matrix may be found as before,

722 0

d T 0

B =/ e’ B.do = 5
0 0 T7T7/2

0 T

= This can also be verified in MATLAB using the symbolic toolbox,

syms sigma T

Ac = [001 0 0; 00O0OO; 0OOO0OT1; 00O0O0T]1;
Bec = [0 O; 1 O0; O O; 0O 171;
z = expm(Acxsigma) ;

int (z,0,T) xBc;

» Alternately, we can let MATLAB do even more of the heavy lifting

syms T

Ac = [0100; 0OO0O0O0, 0001, 00O0O0]1;

Bc = [0 O0; 1 0; O 0O0; O 17;

[A,B] = c2d(Ac,Bc,T); % continuous to discrete

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2—-18
m Note that we often state the discrete-time NCV model in terms of a

4-vector w; with rescaled components.

m S0, the overall discrete-time NCV model is

(1T 00 |
0100 .\
X = X w
k+1 O O 1 7, k k

0001

(1000
0010

<k X + Ug.

= Note, this is saying
& = &1+ Té_ 1 + noise
Nk = Nk—1 + T 71 + Noise
which is an NCV equation.

= WWe can simulate it easily with a MATLAB script.

maxT=200; % max sim time
x = zeros (4,maxT); % storage
% initial position, velocity Discrete-time NCV simulation
x(:,1) = [0;0.1;0;0.11; 6 ' ' ' '
T = 0.1¢ % sample period « 5}
A=[1TO0O0; 010 0; <
001T; 000 1]; %4'
B = [T*2/2 0; T 0; 0 T~2/2; 0 T]; £ 4
©
S
(@) of
for k=2:maxT, % simulate model 8
x(:,k)=Axx(:,k-1)+Bxrandn(2,1); = 1k
end
E% -4 -2 0 2 4

plot(x(1,:),x(3,:));
title('Discrete—-time NCV sim."');
xlabel ('x"'"); ylabel('y');

x-coordinate, &
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Example: The discrete-time coordinated-turn model

= Similarly, it can be shown that the discrete-time coordinated turn

model is
(1 sin(QT)/Q 0 (cos(QT) — 1)/Q |
0 cos(QT) 0 — sin(QT)
X = ) Xk—1
0 (1 —cos(QT))/Q 1 sin(Q7)/Q
i 0 sin(Q7') 0 cos(QT) .

sin(Q7)/Q

= MATLAB code to implement this:

(1 — cos(QT))/ Q%  (in(QT) — QT)/ Q%

(QT — sin(QT))/ Q°
(1 —cos(QT))/Q

(cos(QT) —1)/Q
(1 — cos(QT))/ Q>
sin(Q7)/Q

Wik —1-

max simulation time

initial posn, velocity

cos (WT) O —sin(WT);

0O sin(WT) O cos (WT)];

maxT = 200; 2
X = zeros (4,maxT); % reserve storage
x(:,1) = [0;0.1;0;0.11; %
T =0.1; W= 0.5, WT = W«T; % Use W as Omega
A = [l sin(WT)/W 0 (l-cos(WT))/W; O
0 (l-cos(WT))/W 1 sin(WT) /W;
B = [(l-cos(WT))/W"2, (sin(WT)-WT)/W"2; sin (WT) /W

(WT—sin (WT)) /W™2,

for k=2:maxT, simulate model
yk) = Axx(:,k-1) + ...
Bx0.0lxrandn(2,1);

5

x(:
end
plot(x(1,:),x(3,:));

title ('Discrete-time CT sim.');
xlabel('x"); ylabel('y");

(l-cos (WT) ) /W 2;

(cos (WT)-1) /W;
(1-cos (WT) ) /W sin (WT) /W];

Discrete-time CT simulation

0.6

o o
N D

y-coordinate, #;
o

-0.2 0 0.2

I
1 O
QI\J
[e)]

-0.4

x-coordinate, &
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Comparing continuous-time and discrete-time models

m Consider again the first example of this section of notes

oo 0
x(t) = k/m —b/m :| x(t) + |: Lm :| u(t)

2(t) = :1 O]x(t).

= WWe expect agreement between continuous-time and discrete-time
models at the sampling instants.

m For simplicity, letk =b=m =T = 1. We can find,

0.6597 0.5335 0.3403
Ay = and B, = .
—0.5335 0.1262 0.5335

= Simulate both systems with the same input («(¢) constant over T)

AMhi— %K*u b ) 1 W
Chirp Signal Zero-Order B (¢}
Hold
<y ]
A ]
States
Outputs
1
ﬁm ) L W
Bd Unit Delay Cd

Comparing CT states and DT states < ’ Comparing CT output and DT output

Value
Value

] ] ] | | I | ]
0 2 4 6 8 10 12 14 16 18 20

Time (s)
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2.5: Continuous-time observability and controllability

m |f a system is observable, we can determine the initial condition of the
state vector x(0) via processing the input to the system u(¢) and the
output of the system z(¢).

= Since we can simulate the system if we know x(0) and u(z) this also
implies that we can determine x(¢) for ¢t > 0.

t
x(t) = e*x(0) +/ eI By(r)dr.
0

m Therefore, it should not be surprising that a system must be
observable for the Kalman filter to work.

= Consider the LCCODE
z2(t) + a12(t) + arz(t) + azz(t) = bou(t) + byii(t) + bout(t) + bau(t).
m |f we have a realization of this system in state-space form
x(t) = Ax(t) + Bu(t)
z(t) = Cx(t) + Du(t),
and we have initial conditions z(0), z(0), Z(0), how do we find x(0)?
2(0) = Cx(0) + Du(0)

2(0) = C(Ax(0) 1L Bu(0)) + Du(0)
(0)
= CAx(0) + CBu(0) + Du(0)

7(0) = CA*x(0) + CABu(0) + C Bii(0) + Dii(0).
= In general,

z®(0) = CA*x(0) + CA*'Bu(0) + - - - + CBu*=Y(0) + Du®(0),
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[ 2(0) | C D 0 0 ][ u@©)"
2000 |=| cA |xO)+| ¢cB D 0 i (0) |,
7(0) CA® CAB CB D ii (0)

i J L _ L 5 dL i

O(C,A) T

where T is a (block) “Toeplitz matrix”.

m Thus, if O(C, A) is invertible, then

[ 2(0) | " 1(0) ]
x(0)=0""11 z0) | =T | @0
| 2(0) | | u(0)

= We say that {C, A} is an observable pair if O is nonsingular.

= One possible approach to determining the system state, directly from
the equations:

u(t) > » 7(1)

i

» The Kalman filter is a more practical observer that doesn’t use
differentiators.

= Regardless of the approach, it turns out that the system must be
observable to be able to determine the initial state.
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CONCLUSION: If O is nonsingular, then we can determine/estimate the
initial state of the system x(0) using only u(¢) and z(¢) (and therefore,
we can estimate x(¢) for all r > 0).

ADVANCED TOPIC: If some states are unobservable but are stable, then
an observer will still converge to the true state, even though the initial
state x(0) may not be uniquely determined.

EXAMPLE: Two unobservable networks

10 10 + 1H X1 1H X1
+ X + +
+ -
u () < u 2Q Xy == 2 20 X2 = 2
B 0 10 1Q¢ 1F | _ ° 1Q¢ 1F | _
. - (Redrawn)

m In the first, if u(r) = 0then z(r) =0 V¢. Cannot determine x(0).

= In the second, if u(r) = 0, x;(0) # 0 and x,(0) = 0, then z(r) = 0 and
we cannot determine x;(0) (circuit redrawn for u(r) = 0).

Continuous-time controllability: Can | get there from here?

= “Controllability” is a dual idea to observability. We won'’t go into as
much depth here since it is not as important for our topic of study.

= Controllability asks the question, “can | move from any initial state to
any desired state via suitable selection of the control input u(¢)?”

m The answer boils down to a condition on a matrix called the
controllability matrix

C=[B AB --- A"'B].

TEST: If C is nonsingular, then the system is controllable.
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EXAMPLE: Two uncontrollable networks.

Q¢ 10" L
+ + _ _
u@ s —$ u@

1Q 1Q 1Q 1Q

= [n the first one, if x(0) = 0then x(¢) =0 V. Cannot influence state!

m In the second one, if x1(0) = x,(0) then x;(r) = x,(t) V¢t. Cannot
independently alter state.

= Controllability is studied in more depth in ECE5520: Multivariable
Control Systems I.
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2.6: More insight; discrete-time controllability and observability

Diagonal systems, controllability and observability

= We can gain insight by considering a system in diagonal form

Al 0 V1

: Ao Y2

x(t) = . x(t)+ | "7 | u)
0 An Vi

Z(t)=[51 Sy e 6, x(t)—l—[O]u(t).

x1(1) >

—»?14(?—»] 01
214

u(t) —e—» : —»é—» z(1)

—»1 Vn APTV f Xn (1) »] 0,
A, |

» When controllable? When observable?

e R T
CA MO Jady o Ay
O — . _ 1¢1 202 |
CA" AT AT e TS,
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1 1 1 01 0
A A An )
ettt ! 0 S,
) Vandermo;lzie matrix V
= Singular?
det{O} = (0 -+ &) det{V} = (61 -~ 6,) | [ (A5 — 4.

i<j

CONCLUSION: Observable <= 4; # 4;,i #jandd; #0i=1,--- ,n.

q 1 Xl([) > 1 _X;(I)
s+ 1 s+ 2
u(t) —+ z(1) u(t) —¢ —> 7(1)
> L > 5
st ] x0) SEL 1 x()

m If 1, = A, then not observable. Can only “observe” the sum x; + x,.
m |[f 5, = 0 then cannot observe mode «.

= What about controllability? Analysis is basically the same: just switch
the roles of ds and y s.

CONCLUSION: Controllable <= 1, # 1;,i # jandy; #0i=1,--- ,n.

q 1 x1(%) > 1 x1 (1)
s+ 1 s+ 2
u(t) —+ z(t) u(t) — z(1)
1 1
. P
s+1 1 x@) st1 | x()

m |f 1, = A4, then not controllable. Can only “control” the sum x; + x».

= |f y, = 0 then cannot control mode k.
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Discrete-time controllability

= Similar concept for discrete-time. Form the discrete-time
controllability matrix (where we use the discrete-time A and B
maitrices)
C=[B AB --- A"'B].

= The matrix C is invertible iff the system is controllable.

Discrete-time observability

= Can we reconstruct the state x, from the output z; and input u;?
2k = Cx; + Duy
z20 = Cxo + Duy
71 = C[Axg+ Bug] + Du,

2=0C [Azxo + ABugy + Bul] + Du,

-1 =0C [A"_lxo + A" *Bug+ - - - + Bun—1] + Duy,—_;.

m [n vector form, we can write

Ll [ ¢ ] D 0 -0 | w |
Z1 CA CB D --- 0 "
: : CAB CB --- 0
Zn1 cAr! : . D U, 1
o T

= S0,
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20 Uuo
Xg = 0_1 : — T

in—1 Un—1

m If O is invertible, x, may be reconstructed with any z;, u;. We say that
{C, A} form an “observable pair.”

= Do more measurements of z,,, z,+1, ... help in reconstructing x,? No!
(Caley—Hamilton theorem). So, if the original state is not “observable”
with » measurements, then it will not be observable with more than »
measurements either.

m Since we know u; and the dynamics of the system, if the system is
observable we can determine the entire state sequence x;, k > 0
once we determine x

n—1
x, = Axy + Z A" By,
i=0

<0 Uo Un—1
= A"O7! : —T| +C

Zin—1 Uy, Uup

m A perfectly good observer (no differentiators...), but still not nearly as
good as the Kalman filters we will develop.
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Appendix: Plett notation versus textbook notation

= For a continuous-time state-space model, | use:

x(t)=A@®)x(t)+ B()u(t) + B,(t)w(?)
z(t) = C(t)x(t) + D()u(t) + D,(t)v(2).
m For a continuous-time state-space model, Simon uses:
x()=A@)x(t)+ B(t)u(t) + w(t)

y() = C(t)x(t) 4+ v(t).

» For a continuous-time state-space model, Bar-Shalom uses:

x(t) = At)x(t) + B(t)u(t) + D(t)o(z)
z(t) = C(t)x(t) + w(t).

m For a discrete-time state-space model, | use:

Xk41 = ArXip + Brug + wy
Zk = Cxp + Dyuy + vy
m For a discrete-time state-space model, Simon uses:
X1 = Frxp + Grug + Ajgwy

Yk = Crxp + 0.

= For a discrete-time state-space model, Bar-Shalom uses:

x(k+1) = Fk)x(k)+ G(k)u(k) 4+ I'(k)o(k)
z(k) = H(k)x (k) + w(k).
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