STATE-SPACE DYNAMIC SYSTEMS

2.1: Introduction to state-space systems

- Representation of the dynamics of an *n*th-order system as a first-order differential equation in an *n*-vector called the state.
 - $\rightarrow n$ first-order equations.
- Classic example: Second-order equation of motion.

$$m\ddot{z}(t) = u(t) - b\dot{z}(t) - kz(t)$$

$$\ddot{z}(t) = \frac{u(t) - b\dot{z}(t) - kz(t)}{m}.$$

■ Define a (non-unique) state vector (note that $\dot{x}(t) = dx(t)/dt$, etc.)

$$x(t) = \begin{bmatrix} z(t) \\ \dot{z}(t) \end{bmatrix}, \quad \text{so, } \dot{x}(t) = \begin{bmatrix} \dot{z}(t) \\ \ddot{z}(t) \end{bmatrix} = \begin{bmatrix} \dot{z}(t) \\ -\frac{k}{m}z(t) - \frac{b}{m}\dot{z}(t) + \frac{1}{m}u(t) \end{bmatrix}.$$

■ We can write this as $\dot{x}(t) = Ax(t) + Bu(t)$, where A and B are constant matrices.

$$\dot{x}(t) = \begin{bmatrix} \dot{z}(t) \\ \ddot{z}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} z(t) \\ \dot{z}(t) \end{bmatrix}} + \underbrace{\begin{bmatrix} z(t) \\ \dot{z}(t) \end{bmatrix}} + \underbrace{\begin{bmatrix} z(t) \\ \dot{z}(t) \end{bmatrix}}_{R} u(t).$$

■ Complete the model by computing z(t) = Cx(t) + Du(t), where C and D are constant matrices.

$$C = \begin{bmatrix} \\ \end{bmatrix}, \qquad D = \begin{bmatrix} \\ \end{bmatrix}.$$

■ Fundamental form for deterministic, time-invariant, continuous-time linear state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$z(t) = Cx(t) + Du(t),$$

where u(t) is input, x(t) is the state, A, B, C, D are constant matrices.

- Systems with noise inputs are considered in notes chapter 3.
- Time-varying systems have A, B, C, D that change with time.

DEFINITION: The *state* of a system at time t_0 is a minimum amount of information at t_0 that, together with the input u(t), $t \ge t_0$, uniquely determines the behavior of the system for all $t \ge t_0$.

- State variables provide access to what is going on inside the system.
- Convenient way to express equations of motion.
- Matrix format great for computers.
- Allows new analysis and synthesis tools.

simulate them in Simulink. The block diagram below gives explicit access to the state and other internal signals. It is a direct implementation of the transfer function above, and the initial state may be set by setting the initial integrator values.

Example: The nearly constant position (NCP) model

- Consider a relatively immobile object that we would like to track using a Kalman filter.
- It gets bumped around by unknown forces.
- We let our model state be

$$x(t) = \begin{bmatrix} \xi(t) \\ \eta(t) \end{bmatrix},$$

where $\xi(t)$ is the *x*-coordinate and $\eta(t)$ is the *y*-coordinate of position.

Our model's state equation is then

$$\dot{x}(t) = 0x(t) + w(t),$$

where w(t) is a random process-noise input (unlike known u(t)).

One possible output equation is

$$z(t) = x(t) + v(t),$$

where v(t) is a random sensor-noise input.

■ A possible Simulink implementation and output trajectory:

Example: The nearly constant velocity (NCV) model

- Another model we might consider is that of an object with momentum.
- The velocity is nearly constant, but gets perturbed by external forces.
- We let our model state be

$$x(t) = \begin{bmatrix} \dot{\xi}(t) \\ \dot{\xi}(t) \\ \eta(t) \\ \dot{\eta}(t) \end{bmatrix}.$$

Our model's state equation is then

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} w(t).$$

One possible output equation is

$$z(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x(t) + v(t).$$

■ A possible Simulink implementation and output trajectory:

Example: The coordinated turn model

■ A third model considers an object moving in a 2D plane with constant speed and angular rate Ω where $\Omega > 0$ is counter-clockwise motion and $\Omega < 0$ is clockwise motion.

$$\ddot{\xi}(t) = -\Omega \dot{\eta}(t)$$
 and $\ddot{\eta}(t) = \Omega \dot{\xi}(t)$,

■ We again let our model state be

$$x(t) = \begin{bmatrix} \xi(t) \\ \dot{\xi}(t) \\ \eta(t) \\ \dot{\eta}(t) \end{bmatrix}.$$

Our model's state equation is then

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\Omega \\ 0 & 0 & 0 & 1 \\ 0 & \Omega & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} w(t).$$

One possible output equation is

$$z(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x(t) + v(t).$$

A possible Simulink implementation and output trajectory:

2.2: Time (dynamic) response

■ Develop more insight into the system response by looking at time-domain solution for x(t).

Homogeneous part

- Start with $\dot{x}(t) = Ax(t)$ and some initial state x(0).
- Take Laplace transform: $X(s) = (sI A)^{-1}x(0)$.
- So, we have: $x(t) = \mathcal{L}^{-1}[(sI A)^{-1}]x(0)$. But,

$$(sI - A)^{-1} = \frac{I}{s} + \frac{A}{s^2} + \frac{A^2}{s^3} + \cdots$$

SO,

$$\mathcal{L}^{-1}[(sI - A)^{-1}] = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$$

$$\stackrel{\triangle}{=} e^{At} \quad \text{matrix exponential}$$

$$x(t) = e^{At}x(0).$$

- e^{At} : "Transition matrix" or "state-transition matrix."
- In MATLAB,

$$x = expm(A*t)*x0;$$

- \bullet $e^{(A+B)t} = e^{At}e^{Bt}$ iff AB = BA. (i.e., not in general).
- Will say more about e^{At} when we discuss the structure of A.
- Computation of $e^{At} = \mathcal{L}^{-1}[(sI A)^{-1}]$ straightforward for 2×2 .

EXAMPLE: Find
$$e^{At}$$
 when $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.

Solve

$$(sI - A)^{-1} = \begin{bmatrix} s & -1 \\ 2 & s+3 \end{bmatrix}^{-1} = \begin{bmatrix} s+3 & 1 \\ -2 & s \end{bmatrix} \frac{1}{(s+2)(s+1)}$$

$$= \begin{bmatrix} \frac{2}{s+1} - \frac{1}{s+2} & \frac{1}{s+1} - \frac{1}{s+2} \\ \frac{-2}{s+1} + \frac{2}{s+2} & \frac{-1}{s+1} + \frac{2}{s+2} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} 1(t)$$

■ This is the best way to find e^{At} if $A \ 2 \times 2$.

Forced solution

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0)$$

$$x(t) = e^{At}x(0) + \underbrace{\int_0^t e^{A(t-\tau)}Bu(\tau)\,\mathrm{d}\tau}_{\text{convolution}}.$$

Where did this come from?

1.
$$\dot{x}(t) - Ax(t) = Bu(t)$$
.
2. $e^{-At}[\dot{x}(t) - Ax(t)] = \frac{d}{dt}[e^{-At}x(t)] = e^{-At}Bu(t)$.

3.
$$\int_0^t \frac{\mathrm{d}}{\mathrm{d}\tau} [e^{-A\tau} x(\tau)] \, \mathrm{d}\tau = e^{-At} x(t) - x(0) = \int_0^t e^{-A\tau} Bu(\tau) \, \mathrm{d}\tau.$$

■ Clearly, if z(t) = Cx(t) + Du(t),

$$z(t) = \underbrace{Ce^{At}x(0)}_{\text{initial resp.}} + \underbrace{\int_{0}^{t} Ce^{A(t-\tau)}Bu(\tau) d\tau}_{\text{convolution}} + \underbrace{Du(t)}_{\text{feedthrough}}.$$

More on the matrix exponential

- Have seen the key role of e^{At} in the solution for x(t). Impacts the system response, but need more insight.
- Consider what happens if the matrix A is diagonalizable, that is, there exists a matrix T such that $T^{-1}AT = \Lambda$ =diagonal. Then,

$$e^{At} = I + At + \frac{A^{2}t^{2}}{2!} + \frac{A^{3}t^{3}}{3!} + \cdots$$

$$= I + T\Lambda T^{-1}t + \frac{T\Lambda T^{-1}T\Lambda T^{-1}t^{2}}{2!} + \frac{T\Lambda T^{-1}T\Lambda T^{-1}T\Lambda T^{-1}t^{3}}{3!} + \cdots$$

$$= T\left[I + \Lambda t + \frac{\Lambda^{2}t^{2}}{2!} + \frac{\Lambda^{3}t^{3}}{3!} + \cdots\right]T^{-1} = Te^{\Lambda t}T^{-1},$$

and

$$e^{\Lambda t} = \operatorname{diag}\left(e^{\lambda_1 t}, e^{\lambda_2 t}, \ldots e^{\lambda_n t}\right).$$

- Much simpler form for the exponential, but how to find T, Λ ?
- Write $T^{-1}AT = \Lambda$ as $T^{-1}A = \Lambda T^{-1}$ with

$$T^{-1} = \begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_n^T \end{bmatrix}$$
, i.e., rows of T^{-1} .

 $w_i^T A = \lambda_i w_i^T$, so w_i is a *left eigenvector* of A and note that $w_i^T v_j = \delta_{i,j}$.

■ How does this help?

$$e^{At} = Te^{\Lambda t}T^{-1} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & & 0 \\ & e^{\lambda_2 t} & & \\ & & \ddots & \\ 0 & & & e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_{n^T} \end{bmatrix}$$

$$=\sum_{i=1}^n e^{\lambda_i t} v_i w_i^T.$$

■ Very simple form, which can be used to develop intuition about dynamic response $\approx e^{\lambda_i t}$.

$$x(t) = e^{At}x(0) = Te^{\Lambda t}T^{-1}x(0) = \sum_{i=1}^{n} e^{\lambda_i t}v_i(w_i^Tx(0)).$$

- Trajectory can be expressed as a linear combination of modes: $v_i e^{\lambda_i t}$.
- Left eigenvectors decompose x(0) into modal coordinates $w_i^T x(0)$.
- $e^{\lambda_i t}$ propagates mode forward in time. Stability?
- v_i corresponds to "relative phasing" of state's part of the response.

EXAMPLE: Let's consider a specific system

$$\dot{x}(t) = Ax(t)$$

$$z(t) = Cx(t),$$

with $x(t) \in \mathbb{R}^{16 \times 1}$, $z(t) \in \mathbb{R}$ (16-state, single output).

- A lightly damped system.
- Typical output to initial conditions are shown:
- Waveform is very complicated.
 Looks almost random.

However, the solution can be decomposed into much simpler modal components.

2.3: Discrete-time state-space systems

 Computer monitoring of real-time systems requires analog-to-digital (A2D) and digital-to-analog (D2A) conversion.

Discrete-time systems can also be represented in state-space form

$$x_{k+1} = A_d x_k + B_d u_k$$
$$z_k = C_d x_k + D_d u_k.$$

- The subscript "d" is used here to emphasize that, in general, the "A", "B", "C" and "D" matrices are <u>different</u> for discrete-time and continuous-time systems, even if the underlying plant is the same.
- I will usually drop the "d" and expect you to interpret the system from its context.

Time (dynamic) response

■ The full solution, found by induction from $x_{k+1} = Ax_k + Bu_k$, is

$$x_k = A^k x_0 + \underbrace{\sum_{j=0}^{k-1} A^{k-1-j} B u_j}_{\text{convolution}}.$$

■ Clearly, if $z_k = Cx_k + Du_k$,

$$z_k = \underbrace{CA^k x_0}_{\text{initial resp.}} + \underbrace{\sum_{j=0}^{k-1} CA^{k-1-j} Bu_j}_{\text{convolution}} + \underbrace{Du_k}_{\text{feedthrough}}$$

Converting plant dynamics to discrete time.

■ Combine the dynamics of the zero-order hold and the plant.

■ The continuous-time dynamics of the plant are:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$z(t) = Cx(t) + Du(t).$$

Evaluate x(t) at discrete times. Recall

$$x(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$
$$x_{k+1} = x((k+1)T) = \int_0^{(k+1)T} e^{A((k+1)T-\tau)} Bu(\tau) d\tau.$$

■ With malice aforethought, break up the integral into two pieces. The first piece will become A_d times x(kT). The second part will become B_d times u(kT).

$$= \int_0^{kT} e^{A((k+1)T-\tau)} Bu(\tau) d\tau + \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)} Bu(\tau) d\tau$$

$$= \int_0^{kT} e^{AT} e^{A(kT-\tau)} Bu(\tau) d\tau + \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)} Bu(\tau) d\tau$$

$$= e^{AT} x(kT) + \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)} Bu(\tau) d\tau.$$

- In the remaining integral, note that $u(\tau)$ is constant from kT to (k+1)T, and equal to u(kT).
- So, we let $\sigma = (k+1)T \tau$; $\tau = (k+1)T \sigma$; $d\tau = -d\sigma$.

$$x((k+1)T) = e^{AT}x(kT) + \left[\int_0^T e^{A\sigma}B \,d\sigma\right]u(kT)$$
or, $x_{k+1} = e^{AT}x_k + \left[\int_0^T e^{A\sigma}B \,d\sigma\right]u_k$.

 So, we have a discrete-time state-space representation from the continuous-time representation

$$x_{k+1} = A_d x_k + B_d u_k$$
 where $A_d = e^{AT}, \ B_d = \int_0^T e^{A\sigma} B \ \mathrm{d}\sigma$.

Similarly,

$$z_k = Cx_k + Du_k.$$

• That is, $C_d = C$; $D_d = D$.

Calculating A_d , B_d , C_d and D_d

- C_d and D_d require no calculation since $C_d = C$ and $D_d = D$.
- A_d is calculated via the <u>matrix</u> exponential $A_d = e^{AT}$. This is different from taking the exponential of each element in AT.
- If MATLAB is handy, you can type in

Ad=expm(A*T)

■ If MATLAB is not handy, then you need to work a little harder. Recall from earlier that $e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]$. So,

$$e^{AT} = \mathcal{L}^{-1}[(sI - A)^{-1}]|_{t=T}$$
,

which is probably the "easiest" way to work it out by hand.

■ Now we focus on computing B_d . Recall that

$$B_d = \int_0^T e^{A\sigma} B \, d\sigma$$

$$= \int_0^T \left(I + A\sigma + A^2 \frac{\sigma^2}{2} + \dots \right) B \, d\sigma$$

$$= \left(IT + A \frac{T^2}{2!} + A^2 \frac{T^3}{3!} + \dots \right) B$$

$$= A^{-1} (e^{AT} - I) B$$

$$= A^{-1} (A_d - I) B.$$

- If *A* is invertible, this method works nicely; otherwise, we will need to perform the integral.
- Also, in MATLAB,

[Ad, Bd] = c2d(A, B, T)

2.4: Examples of discrete-time state-space models

The discrete-time NCP model

- We might consider a discrete-time version of the continuous-time nearly-constant-position model.
- Recall, in continuous time,

$$\dot{x}(t) = 0x(t) + w(t)$$

$$z(t) = x(t) + v(t).$$

■ In discrete time,

$$x_{k+1} = e^{0T} x_k + \left(\int_0^T e^{0\sigma} d\sigma \right) w_k$$
$$z_k = x_k + v_k,$$

where
$$e^{0T}=I$$
 and $\int_0^T I \, \mathrm{d}\sigma = TI$.

■ Therefore,

$$x_{k+1} = x_k + Tw_k$$
$$z_k = x_k + v_k.$$

■ Note, w_k is often scaled vis-à-vis w(t) so that a commonly seen form of the discrete-time model is

$$x_{k+1} = x_k + w_k$$
$$z_k = x_k + v_k.$$

We can use Simulink to simulate this discrete-time NCP model, much like the continuous-time NCP model. Or, we can also simulate it easily with a MATLAB script.

Example: The discrete-time NCV model

- Similarly, we might consider a discrete-time version of the continuous-time nearly-constant-velocity model.
- Recall,

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{A_c} x(t) + \underbrace{\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}}_{B_c} w(t).$$

■ The discrete-time A matrix is $A = e^{A_c T}$

$$A = \mathcal{L}^{-1} \left\{ (sI - A_c)^{-1} \right\} \Big|_{t=T} = \mathcal{L}^{-1} \left\{ \begin{bmatrix} s & -1 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & -1 \\ 0 & 0 & 0 & s \end{bmatrix}^{-1} \right\} \Big|_{t=T}$$

$$= \mathcal{L}^{-1} \left\{ \begin{bmatrix} 1/s & 1/s^2 & 0 & 0 \\ 0 & 1/s & 0 & 0 \\ 0 & 0 & 1/s & 1/s^2 \\ 0 & 0 & 0 & 1/s \end{bmatrix} \right\}_{t=T}^{t}$$

$$= \begin{bmatrix} 1 & t & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{bmatrix}_{t=T}^{t} = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

■ This can be verified in MATLAB using the symbolic toolbox,

```
syms T
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
expm(Ac*T)
```

■ The discrete-time *B* matrix may be found as before,

$$B = \int_0^T e^{A_c \sigma} B_c \, \mathrm{d}\sigma = \left| egin{array}{cc} T^2/2 & 0 \ T & 0 \ 0 & T^2/2 \ 0 & T \end{array}
ight|.$$

■ This can also be verified in MATLAB using the symbolic toolbox,

```
syms sigma T
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
Bc = [0 0; 1 0; 0 0; 0 1];
z = expm(Ac*sigma);
B = int(z,0,T)*Bc;
```

Alternately, we can let MATLAB do even more of the heavy lifting

```
syms T
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
Bc = [0 0; 1 0; 0 0; 0 1];
[A,B] = c2d(Ac,Bc,T); % continuous to discrete
```

- Note that we often state the discrete-time NCV model in terms of a 4-vector w_k with rescaled components.
- So, the overall discrete-time NCV model is

$$x_{k+1} = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix} x_k + w_k$$
$$z_k = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x_k + v_k.$$

Note, this is saying

$$\xi_k = \xi_{k-1} + T\dot{\xi}_{k-1} + ext{noise}$$
 $\eta_k = \eta_{k-1} + T\dot{\eta}_{k-1} + ext{noise}$

which is an NCV equation.

We can simulate it easily with a MATLAB script.

Example: The discrete-time coordinated-turn model

 Similarly, it can be shown that the discrete-time coordinated turn model is

$$x_{k} = \begin{bmatrix} 1 & \sin(\Omega T)/\Omega & 0 & (\cos(\Omega T) - 1)/\Omega \\ 0 & \cos(\Omega T) & 0 & -\sin(\Omega T) \\ 0 & (1 - \cos(\Omega T))/\Omega & 1 & \sin(\Omega T)/\Omega \\ 0 & \sin(\Omega T) & 0 & \cos(\Omega T) \end{bmatrix} x_{k-1}$$

$$+ \begin{bmatrix} (1 - \cos(\Omega T))/\Omega^{2} & (\sin(\Omega T) - \Omega T)/\Omega^{2} \\ \sin(\Omega T)/\Omega & (\cos(\Omega T) - 1)/\Omega \\ (\Omega T - \sin(\Omega T))/\Omega^{2} & (1 - \cos(\Omega T))/\Omega^{2} \\ (1 - \cos(\Omega T))/\Omega & \sin(\Omega T)/\Omega \end{bmatrix} w_{k-1}.$$

MATLAB code to implement this:

```
x(:,1) = [0;0.1;0;0.1]; % initial posn, velocity
T = 0.1; W = 0.5; WT = W \star T; % Use W as Omega
A = [1 \sin(WT)/W \ 0 \ (1-\cos(WT))/W; \ 0 \cos(WT) \ 0 -\sin(WT); \dots
   0 (1-\cos(WT))/W 1 \sin(WT)/W; 0 \sin(WT) 0 \cos(WT)];
B = [(1-\cos(WT))/W^2, (\sin(WT)-WT)/W^2; \sin(WT)/W (\cos(WT)-1)/W; \dots]
     (WT-\sin(WT))/W^2, (1-\cos(WT))/W^2; (1-\cos(WT))/W \sin(WT)/W];
                                              Discrete-time CT simulation
for k=2:maxT, % simulate model
  x(:,k) = A*x(:,k-1) + ...
          B*0.01*randn(2,1);
end
plot (x(1,:),x(3,:));
title('Discrete-time CT sim.');
xlabel('x'); ylabel('y');
                                                       -0.2
                                               -0.4
                                                                         0.2
```

x-coordinate, ξ_k

Comparing continuous-time and discrete-time models

Consider again the first example of this section of notes

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} u(t)$$
$$z(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t).$$

- We expect agreement between continuous-time and discrete-time models at the sampling instants.
- For simplicity, let k = b = m = T = 1. We can find,

$$A_d = \begin{bmatrix} 0.6597 & 0.5335 \\ -0.5335 & 0.1262 \end{bmatrix}$$
 and $B_d = \begin{bmatrix} 0.3403 \\ 0.5335 \end{bmatrix}$.

■ Simulate *both* systems with the same input (u(t) constant over T)

2.5: Continuous-time observability and controllability

- If a system is <u>observable</u>, we can determine the initial condition of the state vector x(0) via processing the input to the system u(t) and the output of the system z(t).
- Since we can simulate the system if we know x(0) and u(t) this also implies that we can determine x(t) for $t \ge 0$.

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau.$$

- Therefore, it should not be surprising that a system must be observable for the Kalman filter to work.
- Consider the LCCODE

$$\ddot{z}(t) + a_1 \ddot{z}(t) + a_2 \dot{z}(t) + a_3 z(t) = b_0 \ddot{u}(t) + b_1 \ddot{u}(t) + b_2 \dot{u}(t) + b_3 u(t).$$

If we have a realization of this system in state-space form

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$z(t) = Cx(t) + Du(t),$$

and we have initial conditions z(0), $\dot{z}(0)$, $\ddot{z}(0)$, how do we find x(0)?

$$z(0) = Cx(0) + Du(0)$$

$$\dot{z}(0) = C(\underbrace{Ax(0) + Bu(0)}_{\dot{x}(0)}) + D\dot{u}(0)$$

$$= CAx(0) + CBu(0) + D\dot{u}(0)$$

$$\ddot{z}(0) = CA^{2}x(0) + CABu(0) + CB\dot{u}(0) + D\ddot{u}(0).$$

In general,

$$z^{(k)}(0) = CA^k x(0) + CA^{k-1}Bu(0) + \dots + CBu^{(k-1)}(0) + Du^{(k)}(0),$$

$$\begin{bmatrix} z(0) \\ \dot{z}(0) \\ \ddot{z}(0) \end{bmatrix} = \underbrace{\begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}}_{\mathcal{O}(C,A)} x(0) + \underbrace{\begin{bmatrix} D & 0 & 0 \\ CB & D & 0 \\ CAB & CB & D \end{bmatrix}}_{\mathcal{T}} \begin{bmatrix} u(0) \\ \dot{u}(0) \\ \ddot{u}(0) \end{bmatrix},$$

where \mathcal{T} is a (block) "Toeplitz matrix".

■ Thus, if $\mathcal{O}(C, A)$ is invertible, then

$$x(0) = \mathcal{O}^{-1} \left\{ \left| \begin{array}{c} z(0) \\ \dot{z}(0) \\ \ddot{z}(0) \end{array} \right| - \mathcal{T} \left| \begin{array}{c} u(0) \\ \dot{u}(0) \\ \ddot{u}(0) \end{array} \right| \right\}.$$

- We say that $\{C, A\}$ is an observable pair if \mathcal{O} is nonsingular.
- One possible approach to determining the system state, directly from the equations:

- The Kalman filter is a more practical observer that doesn't use differentiators.
- Regardless of the approach, it turns out that the system must be observable to be able to determine the initial state.

CONCLUSION: If \mathcal{O} is nonsingular, then we can determine/estimate the initial state of the system x(0) using only u(t) and z(t) (and therefore, we can estimate x(t) for all $t \geq 0$).

ADVANCED TOPIC: If some states are unobservable but are stable, then an observer will still converge to the true state, even though the initial state x(0) may not be uniquely determined.

EXAMPLE: Two unobservable networks

- In the first, if u(t) = 0 then z(t) = 0 $\forall t$. Cannot determine x(0).
- In the second, if u(t) = 0, $x_1(0) \neq 0$ and $x_2(0) = 0$, then z(t) = 0 and we cannot determine $x_1(0)$ (circuit redrawn for u(t) = 0).

Continuous-time controllability: Can I get there from here?

- "Controllability" is a *dual* idea to observability. We won't go into as much depth here since it is not as important for our topic of study.
- Controllability asks the question, "can I move from any initial state to any desired state via suitable selection of the control input u(t)?"
- The answer boils down to a condition on a matrix called the controllability matrix

$$C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}.$$

TEST: If C is nonsingular, then the system is controllable.

EXAMPLE: Two uncontrollable networks.

- In the first one, if x(0) = 0 then x(t) = 0 $\forall t$. Cannot influence state!
- In the second one, if $x_1(0) = x_2(0)$ then $x_1(t) = x_2(t) \quad \forall t$. Cannot independently alter state.
- Controllability is studied in more depth in *ECE5520: Multivariable Control Systems I*.

2.6: More insight; discrete-time controllability and observability

Diagonal systems, controllability and observability

■ We can gain insight by considering a system in diagonal form

$$\dot{x}(t) = \begin{bmatrix} \lambda_1 & 0 \\ \lambda_2 & \\ & \ddots & \\ 0 & \lambda_n \end{bmatrix} x(t) + \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{bmatrix} u(t)$$

$$z(t) = \begin{bmatrix} \delta_1 & \delta_2 & \cdots & \delta_n \end{bmatrix} x(t) + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} u(t).$$

$$u(t) = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1 & & \lambda_1 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} x(t)$$

■ When controllable? When observable?

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} \delta_1 & \delta_2 & \cdots & \delta_n \\ \lambda_1 \delta_1 & \lambda_2 \delta_2 & \cdots & \lambda_n \delta_n \\ & \ddots & & \\ \lambda_1^{n-1} \delta_1 & \lambda_2^{n-1} \delta_2 & \cdots & \lambda_n^{n-1} \delta_n \end{bmatrix}$$

$$= \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ & & \ddots & \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{array}\right] \left[\begin{array}{cccc} \delta_1 & & 0 \\ & \delta_2 & \\ & & \ddots & \\ 0 & & \delta_n \end{array}\right].$$
Vandermonde matrix \mathcal{V}

Singular?

$$\det\{\mathcal{O}\} = (\delta_1 \cdots \delta_n) \det\{\mathcal{V}\} = (\delta_1 \cdots \delta_n) \prod_{i < j} (\lambda_j - \lambda_i).$$

CONCLUSION: Observable $\iff \lambda_i \neq \lambda_j, i \neq j \text{ and } \delta_i \neq 0 \ i = 1, \dots, n.$

- If $\lambda_1 = \lambda_2$ then not observable. Can only "observe" the sum $x_1 + x_2$.
- If $\delta_k = 0$ then cannot observe mode k.
- What about controllability? Analysis is basically the same: just switch the roles of δ s and γ s.

CONCLUSION: Controllable $\iff \lambda_i \neq \lambda_j, i \neq j \text{ and } \gamma_i \neq 0 \ i = 1, \dots, n.$

- If $\lambda_1 = \lambda_2$ then not controllable. Can only "control" the sum $x_1 + x_2$.
- If $\gamma_k = 0$ then cannot control mode k.

Discrete-time controllability

 Similar concept for discrete-time. Form the discrete-time controllability matrix (where we use the discrete-time A and B matrices)

$$C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}.$$

■ The matrix C is invertible iff the system is controllable.

Discrete-time observability

■ Can we reconstruct the state x_0 from the output z_k and input u_k ?

$$z_{k} = Cx_{k} + Du_{k}$$

$$z_{0} = Cx_{0} + Du_{0}$$

$$z_{1} = C [Ax_{0} + Bu_{0}] + Du_{1}$$

$$z_{2} = C [A^{2}x_{0} + ABu_{0} + Bu_{1}] + Du_{2}$$

$$\vdots$$

$$z_{n-1} = C [A^{n-1}x_{0} + A^{n-2}Bu_{0} + \dots + Bu_{n-1}] + Du_{n-1}.$$

In vector form, we can write

$$\begin{bmatrix} z_0 \\ z_1 \\ \vdots \\ z_{n-1} \end{bmatrix} = \underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}}_{\mathcal{O}} x_0 + \underbrace{\begin{bmatrix} D & 0 & \cdots & 0 \\ CB & D & \cdots & 0 \\ CAB & CB & \cdots & 0 \\ \vdots & \vdots & \ddots & D \end{bmatrix}}_{\mathcal{T}} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{n-1} \end{bmatrix}.$$

■ So,

$$x_0 = \mathcal{O}^{-1} \left[\left[\begin{array}{c} z_0 \\ \vdots \\ z_{n-1} \end{array} \right] - \mathcal{T} \left[\begin{array}{c} u_0 \\ \vdots \\ u_{n-1} \end{array} \right] \right].$$

- If \mathcal{O} is invertible, x_0 may be reconstructed with any z_k , u_k . We say that $\{C, A\}$ form an "observable pair."
- Do more measurements of z_n , z_{n+1} , ... help in reconstructing x_0 ? No! (Caley–Hamilton theorem). So, if the original state is not "observable" with n measurements, then it will not be observable with more than n measurements either.
- Since we know u_k and the dynamics of the system, if the system is observable we can determine the entire state sequence x_k , $k \ge 0$ once we determine x_0

$$x_n = A^n x_0 + \sum_{i=0}^{n-1} A^{n-1-i} B u_k$$

$$= A^n \mathcal{O}^{-1} \begin{bmatrix} z_0 \\ \vdots \\ z_{n-1} \end{bmatrix} - \mathcal{T} \begin{bmatrix} u_0 \\ \vdots \\ u_{n-1} \end{bmatrix} + \mathcal{C} \begin{bmatrix} u_{n-1} \\ \vdots \\ u_0 \end{bmatrix}.$$

■ A perfectly good observer (no differentiators...), but still not nearly as good as the Kalman filters we will develop.

Appendix: Plett notation versus textbook notation

■ For a continuous-time state-space model, I use:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) + B_w(t)w(t)$$

$$z(t) = C(t)x(t) + D(t)u(t) + D_v(t)v(t).$$

■ For a continuous-time state-space model, Simon uses:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) + w(t)$$
$$y(t) = C(t)x(t) + v(t).$$

■ For a continuous-time state-space model, Bar-Shalom uses:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) + D(t)\tilde{v}(t)$$
$$z(t) = C(t)x(t) + \tilde{w}(t).$$

■ For a discrete-time state-space model, I use:

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$
$$z_k = C_k x_k + D_k u_k + v_k.$$

■ For a discrete-time state-space model, Simon uses:

$$x_{k+1} = F_k x_k + G_k u_k + \Lambda_k w_k$$
$$y_k = C_k x_k + v_k.$$

■ For a discrete-time state-space model, Bar-Shalom uses:

$$x(k+1) = F(k)x(k) + G(k)u(k) + \Gamma(k)v(k)$$
$$z(k) = H(k)x(k) + w(k).$$