
ECE5550: Applied Kalman Filtering 2–1

STATE-SPACE DYNAMIC SYSTEMS

2.1: Introduction to state-space systems

■ Representation of the dynamics of an nth-order system as a

first-order differential equation in an n-vector called the state.

➠ n first-order equations.

■ Classic example: Second-order equation of motion.

m u(t)

z(t)

k

b

mz̈(t) = u(t) − bż(t) − kz(t)

➠ z̈(t) =
u(t) − bż(t) − kz(t)

m
.

■ Define a (non-unique) state vector (note that ẋ(t) = dx(t)/dt , etc.)

x(t) =

[

z(t)

ż(t)

]

, so, ẋ(t) =

[

ż(t)

z̈(t)

]

=

⎡

⎣

ż(t)

−
k

m
z(t) −

b

m
ż(t) +

1

m
u(t)

⎤

⎦ .

■ We can write this as ẋ(t) = Ax(t) + Bu(t), where A and B are

constant matrices.

ẋ(t) =

[

ż(t)

z̈(t)

]

=

⎡

⎣

⎤

⎦

︸ ︷︷ ︸

A

[

z(t)

ż(t)

]

+

⎡

⎣

⎤

⎦

︸ ︷︷ ︸

B

u(t).

■ Complete the model by computing z(t) = Cx(t) + Du(t), where C and

D are constant matrices.

C =
[]

, D =
[]

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–2

■ Fundamental form for deterministic, time-invariant, continuous-time

linear state-space model:

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) + Du(t),

where u(t) is input, x(t) is the state, A, B, C , D are constant matrices.

• Systems with noise inputs are considered in notes chapter 3.

• Time-varying systems have A, B, C , D that change with time.

DEFINITION: The state of a system at time t0 is a minimum amount of

information at t0 that, together with the input u(t), t ≥ t0, uniquely

determines the behavior of the system for all t ≥ t0.

■ State variables provide access to what is going on inside the system.

■ Convenient way to express equations of motion.

■ Matrix format great for computers.

■ Allows new analysis and synthesis tools.

SIMULATING IN SIMULINK: To investigate state-space systems, we can

simulate them in Simulink. The block diagram below gives explicit

access to the state and other internal signals. It is a direct

implementation of the transfer function above, and the initial state

may be set by setting the initial integrator values.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–3

Example: The nearly constant position (NCP) model

■ Consider a relatively immobile object that we would like to track using

a Kalman filter.

■ It gets bumped around by unknown forces.

■ We let our model state be

x(t) =

[

ξ(t)

η(t)

]

,

where ξ(t) is the x-coordinate and η(t) is the y-coordinate of position.

■ Our model’s state equation is then

ẋ(t) = 0x(t) + w(t),

where w(t) is a random process-noise input (unlike known u(t)).

■ One possible output equation is

z(t) = x(t) + v(t),

where v(t) is a random sensor-noise input.

■ A possible Simulink implementation and output trajectory:

XY Graph

Sensor
noise v2(t)

Sensor
noise v1(t)

Processs
noise w2(t)

Processs
noise w1(t) Integrator

1
s

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

x-coordinate, ξ(t)

y
-c

o
o

rd
in

a
te

,
η
(t

)

Trajectory of NCP model simulation

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–4

Example: The nearly constant velocity (NCV) model

■ Another model we might consider is that of an object with momentum.

■ The velocity is nearly constant, but gets perturbed by external forces.

■ We let our model state be

x(t) =

⎡

⎢
⎢
⎢
⎢
⎣

ξ(t)

ξ̇(t)

η(t)

η̇(t)

⎤

⎥
⎥
⎥
⎥
⎦

.

■ Our model’s state equation is then

ẋ(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

x(t) +

⎡

⎢
⎢
⎢
⎢
⎣

0 0

1 0

0 0

0 1

⎤

⎥
⎥
⎥
⎥
⎦

w(t).

■ One possible output equation is

z(t) =

[

1 0 0 0

0 0 1 0

]

x(t) + v(t).

■ A possible Simulink implementation and output trajectory:

XY Graph

Sensor
noise v2(t)

Sensor
noise v1(t)

Processs
noise w2(t)

Processs
noise w1(t) Integrator1

1
s

Integrator

1
s

−0.045 −0.04 −0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x-coordinate, ξ(t)

y
-c

o
o

rd
in

a
te

,
η
(t

)

Trajectory of NCV model simulation

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–5

Example: The coordinated turn model

■ A third model considers an object moving in a 2D plane with constant

speed and angular rate # where # > 0 is counter-clockwise motion

and # < 0 is clockwise motion.

ξ̈(t) = −#η̇(t) and η̈(t) = #ξ̇(t),

■ We again let our model state be

x(t) =

⎡

⎢
⎢
⎢
⎢
⎣

ξ(t)

ξ̇(t)

η(t)

η̇(t)

⎤

⎥
⎥
⎥
⎥
⎦

.

■ Our model’s state equation is then

ẋ(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0 0 −#

0 0 0 1

0 # 0 0

⎤

⎥
⎥
⎥
⎥
⎦

x(t) +

⎡

⎢
⎢
⎢
⎢
⎣

0 0

1 0

0 0

0 1

⎤

⎥
⎥
⎥
⎥
⎦

w(t).

■ One possible output equation is

z(t) =

[

1 0 0 0

0 0 1 0

]

x(t) + v(t).

■ A possible Simulink implementation and output trajectory:

XY Graph

Sensor
noise v2(t)

Sensor
noise v1(t)

Processs
noise w2(t)

Processs
noise w1(t) Integrator

1
s

C

K*u

Bw

K*u

A

K*u

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

x-coordinate, ξ(t)

y
-c

o
o

rd
in

a
te

,
η
(t

)

Trajectory of CT model simulation

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–6

2.2: Time (dynamic) response

■ Develop more insight into the system response by looking at

time-domain solution for x(t).

Homogeneous part

■ Start with ẋ(t) = Ax(t) and some initial state x(0).

■ Take Laplace transform: X (s) = (s I − A)−1x(0).

■ So, we have: x(t) = L−1[(s I − A)−1]x(0). But,

(s I − A)−1 =
I

s
+

A

s2
+

A2

s3
+ · · ·

so,

L−1[(s I − A)−1] = I + At +
A2t2

2!
+

A3t3

3!
+ · · ·

△
= eAt matrix exponential

x(t) = eAt x(0).

■ eAt : “Transition matrix” or “state-transition matrix.”

■ In MATLAB,

x = expm(A*t)*x0;

■ e(A+B)t = eAteBt iff AB = B A. (i.e., not in general).

■ Will say more about eAt when we discuss the structure of A.

■ Computation of eAt = L−1[(s I − A)−1] straightforward for 2 × 2.

EXAMPLE: Find eAt when A =

[

0 1

−2 −3

]

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–7

■ Solve

(s I − A)−1 =

[

s −1

2 s + 3

]−1

=

[

s + 3 1

−2 s

]

1

(s + 2)(s + 1)

=

⎡

⎢
⎢

⎣

2

s + 1
−

1

s + 2

1

s + 1
−

1

s + 2
−2

s + 1
+

2

s + 2

−1

s + 1
+

2

s + 2

⎤

⎥
⎥

⎦

eAt =

[

2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]

1(t)

■ This is the best way to find eAt if A 2 × 2.

Forced solution

ẋ(t) = Ax(t) + Bu(t), x(0)

x(t) = eAt x(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ
︸ ︷︷ ︸

convolution

.

■ Where did this come from?

1. ẋ(t) − Ax(t) = Bu(t) .

2. e−At[ẋ(t) − Ax(t)] =
d

dt
[e−At x(t)] = e−At Bu(t).

3.

∫ t

0

d

dτ
[e−Aτ x(τ)] dτ = e−At x(t) − x(0) =

∫ t

0

e−Aτ Bu(τ) dτ.

■ Clearly, if z(t) = Cx(t) + Du(t),

z(t) = CeAt x(0)
︸ ︷︷ ︸

initial resp.

+

∫ t

0

CeA(t−τ)Bu(τ) dτ
︸ ︷︷ ︸

convolution

+ Du(t)
︸ ︷︷ ︸

feedthrough

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–8

More on the matrix exponential

■ Have seen the key role of eAt in the solution for x(t). Impacts the

system response, but need more insight.

■ Consider what happens if the matrix A is diagonalizable, that is, there

exists a matrix T such that T −1 AT = % =diagonal. Then,

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · ·

= I + T %T −1t +
T %T −1T %T −1t2

2!
+

T %T −1T %T −1T %T −1t3

3!
+ · · ·

= T

[

I + %t +
%2t2

2!
+

%3t3

3!
+ · · ·

]

T −1 = T e%t T −1,

and

e%t = diag
(

eλ1t, eλ2t, . . . eλnt
)

.

■ Much simpler form for the exponential, but how to find T, %?

■ Write T −1 AT = % as T −1 A = %T −1 with

T −1 =

⎡

⎢
⎢
⎢
⎢

⎣

wT
1

wT
2
...

wT
n

⎤

⎥
⎥
⎥
⎥

⎦

, i.e., rows of T −1.

wT
i A = λiw

T
i , so wi is a left eigenvector of A and note that wT

i v j = δi, j .

■ How does this help?

eAt = T e%t T −1 =
[

v1 v2 . . . vn

]

⎡

⎢
⎢
⎢
⎢

⎣

eλ1t 0

eλ2t

. . .

0 eλnt

⎤

⎥
⎥
⎥
⎥

⎦

⎡

⎢
⎢
⎢
⎢

⎣

wT
1

wT
2
...

wnT

⎤

⎥
⎥
⎥
⎥

⎦

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–9

=

n
∑

i=1

eλi tviw
T
i .

■ Very simple form, which can be used to develop intuition about

dynamic response ≈ eλi t .

x(t) = eAt x(0) = T e%t T −1x(0) =

n
∑

i=1

eλi tvi(w
T
i x(0)).

■ Trajectory can be expressed as a linear combination of modes: vi e
λi t .

■ Left eigenvectors decompose x(0) into modal coordinates wT
i x(0).

■ eλi t propagates mode forward in time. Stability?

■ vi corresponds to “relative phasing” of state’s part of the response.

EXAMPLE: Let’s consider a specific system

ẋ(t) = Ax(t)

z(t) = Cx(t),

with x(t) ∈ R
16×1, z(t) ∈ R (16-state, single output).

■ A lightly damped system.

■ Typical output to initial

conditions are shown:

■ Waveform is very complicated.

Looks almost random.
0 50 100 150 200 250 300−2

−1

0

1

2
Impulse response

Time (s)

Am
pl

itu
de

■ However, the solution can be decomposed into much simpler modal

components.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–10

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250

−0.5

0

0.5

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250

−0.5

0

0.5

0 50 100 150 200 250

−0.5

0

0.5

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250

−0.5

0

0.5

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–11

2.3: Discrete-time state-space systems

■ Computer monitoring of real-time systems requires analog-to-digital

(A2D) and digital-to-analog (D2A) conversion.

zoh
D2AA2D

D(z) G(s)Q

w(t)

v(t)

z(t)r (t)
u(t)u[k]e(t) e[k]

■ Discrete-time systems can also be represented in state-space form

xk+1 = Adxk + Bduk

zk = Cdxk + Dduk.

■ The subscript “d” is used here to emphasize that, in general, the “A”,

“B”, “C” and “D” matrices are different for discrete-time and

continuous-time systems, even if the underlying plant is the same.

■ I will usually drop the “d” and expect you to interpret the system from

its context.

Time (dynamic) response

■ The full solution, found by induction from xk+1 = Axk + Buk, is

xk = Akx0 +

k−1
∑

j=0

Ak−1− j Bu j

︸ ︷︷ ︸

convolution

.

■ Clearly, if zk = Cxk + Duk,

zk = C Akx0
︸ ︷︷ ︸

initial resp.

+

k−1
∑

j=0

C Ak−1− j Bu j

︸ ︷︷ ︸

convolution

+ Duk
︸︷︷︸

feedthrough

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–12

Converting plant dynamics to discrete time.

■ Combine the dynamics of the zero-order hold and the plant.

uk z(t)
u(t)

A, B, C, DZOH

■ The continuous-time dynamics of the plant are:

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) + Du(t).

■ Evaluate x(t) at discrete times. Recall

x(t) =

∫ t

0

eA(t−τ)Bu(τ) dτ

xk+1 = x((k + 1)T) =

∫ (k+1)T

0

eA((k+1)T −τ)Bu(τ) dτ .

■ With malice aforethought, break up the integral into two pieces. The

first piece will become Ad times x(kT). The second part will become

Bd times u(kT).

=

∫ kT

0

eA((k+1)T −τ)Bu(τ) dτ +

∫ (k+1)T

kT

eA((k+1)T −τ)Bu(τ) dτ

=

∫ kT

0

eAT eA(kT −τ)Bu(τ) dτ +

∫ (k+1)T

kT

eA((k+1)T −τ)Bu(τ) dτ

= eAT x(kT) +

∫ (k+1)T

kT

eA((k+1)T −τ)Bu(τ) dτ .

■ In the remaining integral, note that u(τ) is constant from kT to

(k + 1)T, and equal to u(kT).

■ So, we let σ = (k + 1)T − τ ; τ = (k + 1)T − σ ; dτ = −dσ .

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–13

x((k + 1)T) = eAT x(kT) +

[∫ T

0

eAσ B dσ

]

u(kT)

or, xk+1 = eAT xk +

[∫ T

0

eAσ B dσ

]

uk.

■ So, we have a discrete-time state-space representation from the

continuous-time representation

xk+1 = Adxk + Bduk

where Ad = eAT , Bd =

∫ T

0

eAσ B dσ .

■ Similarly,

zk = Cxk + Duk.

• That is, Cd = C ; Dd = D.

Calculating Ad , Bd, Cd and Dd

■ Cd and Dd require no calculation since Cd = C and Dd = D.

■ Ad is calculated via the matrix exponential Ad = eAT . This is different

from taking the exponential of each element in AT .

■ If MATLAB is handy, you can type in

Ad=expm(A*T)

■ If MATLAB is not handy, then you need to work a little harder. Recall

from earlier that eAt = L−1[(s I − A)−1]. So,

eAT = L−1[(s I − A)−1]
∣
∣
t=T

,

which is probably the “easiest” way to work it out by hand.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–14

■ Now we focus on computing Bd. Recall that

Bd =

∫ T

0

eAσ B dσ

=

∫ T

0

(

I + Aσ + A2σ
2

2
+ . . .

)

B dσ

=

(

I T + A
T 2

2!
+ A2 T 3

3!
+ . . .

)

B

= A−1(eAT − I)B

= A−1(Ad − I)B.

■ If A is invertible, this method works nicely; otherwise, we will need to

perform the integral.

■ Also, in MATLAB,
[Ad,Bd]=c2d(A,B,T)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–15

2.4: Examples of discrete-time state-space models

The discrete-time NCP model

■ We might consider a discrete-time version of the continuous-time

nearly-constant-position model.

■ Recall, in continuous time,

ẋ(t) = 0x(t) + w(t)

z(t) = x(t) + v(t).

■ In discrete time,

xk+1 = e0T xk +

(∫ T

0

e0σ dσ

)

wk

zk = xk + vk,

where e0T = I and

∫ T

0

I dσ = T I .

■ Therefore,

xk+1 = xk + T wk

zk = xk + vk.

■ Note, wk is often scaled vis-à-vis w(t) so that a commonly seen form

of the discrete-time model is

xk+1 = xk + wk

zk = xk + vk.

■ We can use Simulink to simulate this discrete-time NCP model, much

like the continuous-time NCP model.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–16

■ Or, we can also simulate it easily with a MATLAB script.

maxT=200; % max. sim. time

x=zeros(2,maxT); % storage

x(:,1)=[0;0]; % initial posn.

for k=2:maxT, % simulate model

x(:,k)=x(:,k-1)+0.1*randn(2,1);

end

plot(x(1,:),x(2,:));

title('Discrete-time NCP sim.');

xlabel('x'); ylabel('y'); −2 −1.5 −1 −0.5 0 0.5−0.5

0

0.5

1

1.5
Discrete-time NCP simulation

x-coordinate, ξk

y
-c

o
o
rd

in
a
te

,
η

k

Example: The discrete-time NCV model

■ Similarly, we might consider a discrete-time version of the

continuous-time nearly-constant-velocity model.

■ Recall,

ẋ(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Ac

x(t) +

⎡

⎢
⎢
⎢
⎢
⎣

0 0

1 0

0 0

0 1

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Bc

w(t).

■ The discrete-time A matrix is A = eAcT

A = L−1
{

(s I − Ac)
−1

}∣
∣
t=T

= L−1

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

⎡

⎢
⎢
⎢
⎢
⎣

s −1 0 0

0 s 0 0

0 0 s −1

0 0 0 s

⎤

⎥
⎥
⎥
⎥
⎦

−1
⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=T

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–17

= L−1

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

⎡

⎢
⎢
⎢
⎢

⎣

1/s 1/s2 0 0

0 1/s 0 0

0 0 1/s 1/s2

0 0 0 1/s

⎤

⎥
⎥
⎥
⎥

⎦

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=T

=

⎡

⎢
⎢
⎢
⎢
⎣

1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=T

=

⎡

⎢
⎢
⎢
⎢
⎣

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

■ This can be verified in MATLAB using the symbolic toolbox,
syms T

Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];

expm(Ac*T)

■ The discrete-time B matrix may be found as before,

B =

∫ T

0

eAcσ Bc dσ =

⎡

⎢
⎢
⎢
⎢

⎣

T 2/2 0

T 0

0 T 2/2

0 T

⎤

⎥
⎥
⎥
⎥

⎦

.

■ This can also be verified in MATLAB using the symbolic toolbox,
syms sigma T

Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];

Bc = [0 0; 1 0; 0 0; 0 1];

z = expm(Ac*sigma);

B = int(z,0,T)*Bc;

■ Alternately, we can let MATLAB do even more of the heavy lifting
syms T

Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];

Bc = [0 0; 1 0; 0 0; 0 1];

[A,B] = c2d(Ac,Bc,T); % continuous to discrete

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–18

■ Note that we often state the discrete-time NCV model in terms of a

4-vector wk with rescaled components.

■ So, the overall discrete-time NCV model is

xk+1 =

⎡

⎢
⎢
⎢
⎢

⎣

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎤

⎥
⎥
⎥
⎥

⎦

xk + wk

zk =

[

1 0 0 0

0 0 1 0

]

xk + vk.

■ Note, this is saying

ξk = ξk−1 + T ξ̇k−1 + noise

ηk = ηk−1 + T η̇k−1 + noise

which is an NCV equation.

■ We can simulate it easily with a MATLAB script.

maxT=200; % max sim time

x = zeros(4,maxT); % storage

% initial position, velocity

x(:,1) = [0;0.1;0;0.1];

T = 0.1; % sample period

A = [1 T 0 0; 0 1 0 0;

0 0 1 T; 0 0 0 1];

B = [T^2/2 0; T 0; 0 T^2/2; 0 T];

for k=2:maxT, % simulate model

x(:,k)=A*x(:,k-1)+B*randn(2,1);

end

plot(x(1,:),x(3,:));

title('Discrete-time NCV sim.');

xlabel('x'); ylabel('y');

−6 −4 −2 0 2 40

1

2

3

4

5

6
Discrete-time NCV simulation

x-coordinate, ξk

y
-c

o
o
rd

in
a
te

,
η

k

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–19

Example: The discrete-time coordinated-turn model

■ Similarly, it can be shown that the discrete-time coordinated turn

model is

xk =

⎡

⎢
⎢
⎢
⎢

⎣

1 sin(#T)/# 0 (cos(#T) − 1)/#

0 cos(#T) 0 − sin(#T)

0 (1 − cos(#T))/# 1 sin(#T)/#

0 sin(#T) 0 cos(#T)

⎤

⎥
⎥
⎥
⎥

⎦

xk−1

+

⎡

⎢
⎢
⎢
⎢
⎣

(1 − cos(#T))/#2 (sin(#T) − #T)/#2

sin(#T)/# (cos(#T) − 1)/#

(#T − sin(#T))/#2 (1 − cos(#T))/#2

(1 − cos(#T))/# sin(#T)/#

⎤

⎥
⎥
⎥
⎥
⎦

wk−1.

■ MATLAB code to implement this:

maxT = 200; % max simulation time

x = zeros(4,maxT); % reserve storage

x(:,1) = [0;0.1;0;0.1]; % initial posn, velocity

T = 0.1; W = 0.5; WT = W*T; % Use W as Omega

A = [1 sin(WT)/W 0 (1-cos(WT))/W; 0 cos(WT) 0 -sin(WT); ...

0 (1-cos(WT))/W 1 sin(WT)/W; 0 sin(WT) 0 cos(WT)];

B = [(1-cos(WT))/W^2, (sin(WT)-WT)/W^2; sin(WT)/W (cos(WT)-1)/W; ...

(WT-sin(WT))/W^2, (1-cos(WT))/W^2; (1-cos(WT))/W sin(WT)/W];

_

for k=2:maxT, % simulate model

x(:,k) = A*x(:,k-1) + ...

B*0.01*randn(2,1);

end

plot(x(1,:),x(3,:));

title('Discrete-time CT sim.');

xlabel('x'); ylabel('y');

−0.6 −0.4 −0.2 0 0.2−0.2

0

0.2

0.4

0.6
Discrete-time CT simulation

x-coordinate, ξk

y
-c

o
o
rd

in
a
te

,
η

k

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–20

Comparing continuous-time and discrete-time models

■ Consider again the first example of this section of notes

ẋ(t) =

[

0 1

−k/m −b/m

]

x(t) +

[

0

1/m

]

u(t)

z(t) =
[

1 0
]

x(t).

■ We expect agreement between continuous-time and discrete-time

models at the sampling instants.

■ For simplicity, let k = b = m = T = 1. We can find,

Ad =

[

0.6597 0.5335

−0.5335 0.1262

]

and Bd =

[

0.3403

0.5335

]

.

■ Simulate both systems with the same input (u(t) constant over T)

Zero−Order
Hold

Unit Delay
z
1

States
Outputs

1
s

Chirp Signal

Cd

K*u

C

K*u

Bd

K*u

B

K*u

Ad

K*u

A

K*u

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

4

5

Time (s)

V
a
lu

e

Comparing CT states and DT states

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

Time (s)

V
a
lu

e

Comparing CT output and DT output

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–21

2.5: Continuous-time observability and controllability

■ If a system is observable, we can determine the initial condition of the

state vector x(0) via processing the input to the system u(t) and the

output of the system z(t).

■ Since we can simulate the system if we know x(0) and u(t) this also

implies that we can determine x(t) for t ≥ 0.

x(t) = eAt x(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ .

■ Therefore, it should not be surprising that a system must be

observable for the Kalman filter to work.

■ Consider the LCCODE
...
z(t) + a1z̈(t) + a2ż(t) + a3z(t) = b0

...
u(t) + b1ü(t) + b2u̇(t) + b3u(t).

■ If we have a realization of this system in state-space form

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) + Du(t),

and we have initial conditions z(0), ż(0), z̈(0), how do we find x(0)?

z(0) = Cx(0) + Du(0)

ż(0) = C(Ax(0) + Bu(0)
︸ ︷︷ ︸

ẋ(0)

) + Du̇(0)

= C Ax(0) + C Bu(0) + Du̇(0)

z̈(0) = C A2x(0) + C ABu(0) + C Bu̇(0) + Dü(0).

■ In general,

z(k)(0) = C Akx(0) + C Ak−1Bu(0) + · · · + C Bu(k−1)(0) + Du(k)(0),

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–22

⎡

⎢

⎣

z(0)

ż(0)

z̈(0)

⎤

⎥

⎦ =

⎡

⎢

⎣

C

C A

C A2

⎤

⎥

⎦

︸ ︷︷ ︸

O(C,A)

x(0) +

⎡

⎢

⎣

D 0 0

C B D 0

C AB C B D

⎤

⎥

⎦

︸ ︷︷ ︸

T

⎡

⎢

⎣

u(0)

u̇(0)

ü(0)

⎤

⎥

⎦ ,

where T is a (block) “Toeplitz matrix”.

■ Thus, if O(C, A) is invertible, then

x(0) = O−1

⎧

⎪
⎨

⎪
⎩

⎡

⎢

⎣

z(0)

ż(0)

z̈(0)

⎤

⎥

⎦ − T

⎡

⎢

⎣

u(0)

u̇(0)

ü(0)

⎤

⎥

⎦

⎫

⎪
⎬

⎪
⎭

.

■ We say that {C, A} is an observable pair if O is nonsingular.

■ One possible approach to determining the system state, directly from

the equations:

u(t) z(t)
A, B, C, D

u

u̇

ü

z

ż

z̈

11

ss

s2s2

−T

O−1

x

x̂

■ The Kalman filter is a more practical observer that doesn’t use

differentiators.

■ Regardless of the approach, it turns out that the system must be

observable to be able to determine the initial state.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–23

CONCLUSION: If O is nonsingular, then we can determine/estimate the

initial state of the system x(0) using only u(t) and z(t) (and therefore,

we can estimate x(t) for all t ≥ 0).

ADVANCED TOPIC: If some states are unobservable but are stable, then

an observer will still converge to the true state, even though the initial

state x(0) may not be uniquely determined.

EXAMPLE: Two unobservable networks

(Redrawn)

1#

1#
1#1#

1#

1#
1F1F

1H1H

2#2#

x

x1x1

x2x2
z zzuu

■ In the first, if u(t) = 0 then z(t) = 0 ∀ t . Cannot determine x(0).

■ In the second, if u(t) = 0, x1(0) ̸= 0 and x2(0) = 0, then z(t) = 0 and

we cannot determine x1(0) (circuit redrawn for u(t) = 0).

Continuous-time controllability: Can I get there from here?

■ “Controllability” is a dual idea to observability. We won’t go into as

much depth here since it is not as important for our topic of study.

■ Controllability asks the question, “can I move from any initial state to

any desired state via suitable selection of the control input u(t)?”

■ The answer boils down to a condition on a matrix called the

controllability matrix

C =
[

B AB · · · An−1B
]

.

TEST: If C is nonsingular, then the system is controllable.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–24

EXAMPLE: Two uncontrollable networks.

1# 1#

1#

1#

1#

1#

1F 1F
x

x1 x2z

u u

■ In the first one, if x(0) = 0 then x(t) = 0 ∀ t . Cannot influence state!

■ In the second one, if x1(0) = x2(0) then x1(t) = x2(t) ∀ t . Cannot

independently alter state.

■ Controllability is studied in more depth in ECE5520: Multivariable

Control Systems I.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–25

2.6: More insight; discrete-time controllability and observability

Diagonal systems, controllability and observability

■ We can gain insight by considering a system in diagonal form

ẋ(t) =

⎡

⎢
⎢
⎢
⎢
⎣

λ1 0

λ2

. . .

0 λn

⎤

⎥
⎥
⎥
⎥
⎦

x(t) +

⎡

⎢
⎢
⎢
⎢
⎣

γ1

γ2

...

γn

⎤

⎥
⎥
⎥
⎥
⎦

u(t)

z(t) =
[

δ1 δ2 · · · δn

]

x(t) +
[

0
]

u(t).

u(t) z(t)

x1(t)

xn(t)

γ1

γn

δ1

δn

λ1

λn

∫

∫

...

■ When controllable? When observable?

O =

⎡

⎢
⎢
⎢
⎢

⎣

C

C A
...

C An−1

⎤

⎥
⎥
⎥
⎥

⎦

=

⎡

⎢
⎢
⎢
⎢

⎣

δ1 δ2 · · · δn

λ1δ1 λ2δ2 · · · λnδn

. . .

λn−1
1 δ1 λn−1

2 δ2 · · · λn−1
n δn

⎤

⎥
⎥
⎥
⎥

⎦

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–26

=

⎡

⎢
⎢
⎢
⎢

⎣

1 1 · · · 1

λ1 λ2 · · · λn

. . .

λn−1
1 λn−1

2 · · · λn−1
n

⎤

⎥
⎥
⎥
⎥

⎦

︸ ︷︷ ︸

Vandermonde matrixV

⎡

⎢
⎢
⎢
⎢

⎣

δ1 0

δ2

. . .

0 δn

⎤

⎥
⎥
⎥
⎥

⎦

.

■ Singular?

det{O} = (δ1 · · · δn) det{V} = (δ1 · · · δn)
∏

i< j

(λ j − λi).

CONCLUSION: Observable ⇐⇒ λi ̸= λ j , i ̸= j and δi ̸= 0 i = 1, · · · , n.

u(t)u(t) z(t)z(t)

x1(t) x1(t)

x2(t) x2(t)

1

s + 1

1

s + 1

1

s + 1

1

s + 2

■ If λ1 = λ2 then not observable. Can only “observe” the sum x1 + x2.

■ If δk = 0 then cannot observe mode k.

■ What about controllability? Analysis is basically the same: just switch

the roles of δs and γ s.

CONCLUSION: Controllable ⇐⇒ λi ̸= λ j , i ̸= j and γi ̸= 0 i = 1, · · · , n.

u(t)u(t) z(t) z(t)

x1(t)x1(t)

x2(t) x2(t)

1

s + 1

1

s + 1

1

s + 1

1

s + 2

■ If λ1 = λ2 then not controllable. Can only “control” the sum x1 + x2.

■ If γk = 0 then cannot control mode k.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–27

Discrete-time controllability

■ Similar concept for discrete-time. Form the discrete-time

controllability matrix (where we use the discrete-time A and B

matrices)

C =
[

B AB · · · An−1B
]

.

■ The matrix C is invertible iff the system is controllable.

Discrete-time observability

■ Can we reconstruct the state x0 from the output zk and input uk?

zk = Cxk + Duk

z0 = Cx0 + Du0

z1 = C [Ax0 + Bu0] + Du1

z2 = C
[

A2x0 + ABu0 + Bu1

]

+ Du2

...

zn−1 = C
[

An−1x0 + An−2Bu0 + · · · + Bun−1

]

+ Dun−1.

■ In vector form, we can write
⎡

⎢
⎢
⎢
⎢
⎣

z0

z1

...

zn−1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

C

C A
...

C An−1

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

O

x0 +

⎡

⎢
⎢
⎢
⎢
⎣

D 0 · · · 0

C B D · · · 0

C AB C B · · · 0
... D

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

T

⎡

⎢
⎢
⎢
⎢
⎣

u0

u1

...

un−1

⎤

⎥
⎥
⎥
⎥
⎦

.

■ So,

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–28

x0 = O−1

⎡

⎢

⎣

⎡

⎢

⎣

z0

...

zn−1

⎤

⎥

⎦ − T

⎡

⎢

⎣

u0

...

un−1

⎤

⎥

⎦

⎤

⎥

⎦ .

■ If O is invertible, x0 may be reconstructed with any zk, uk. We say that

{C, A} form an “observable pair.”

■ Do more measurements of zn, zn+1, . . . help in reconstructing x0? No!

(Caley–Hamilton theorem). So, if the original state is not “observable”

with n measurements, then it will not be observable with more than n

measurements either.

■ Since we know uk and the dynamics of the system, if the system is

observable we can determine the entire state sequence xk, k ≥ 0

once we determine x0

xn = Anx0 +

n−1
∑

i=0

An−1−i Buk

= AnO−1

⎡

⎢
⎣

⎡

⎢
⎣

z0

...

zn−1

⎤

⎥
⎦ − T

⎡

⎢
⎣

u0

...

un−1

⎤

⎥
⎦

⎤

⎥
⎦ + C

⎡

⎢
⎣

un−1

...

u0

⎤

⎥
⎦ .

■ A perfectly good observer (no differentiators...), but still not nearly as

good as the Kalman filters we will develop.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–29

Appendix: Plett notation versus textbook notation

■ For a continuous-time state-space model, I use:

ẋ(t) = A(t)x(t) + B(t)u(t) + Bw(t)w(t)

z(t) = C(t)x(t) + D(t)u(t) + Dv(t)v(t).

■ For a continuous-time state-space model, Simon uses:

ẋ(t) = A(t)x(t) + B(t)u(t) + w(t)

y(t) = C(t)x(t) + v(t).

■ For a continuous-time state-space model, Bar-Shalom uses:

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)ṽ(t)

z(t) = C(t)x(t) + w̃(t).

■ For a discrete-time state-space model, I use:

xk+1 = Akxk + Bkuk + wk

zk = Ckxk + Dkuk + vk.

■ For a discrete-time state-space model, Simon uses:

xk+1 = Fkxk + Gkuk + %kwk

yk = Ckxk + vk.

■ For a discrete-time state-space model, Bar-Shalom uses:

x(k + 1) = F(k)x(k) + G(k)u(k) + *(k)v(k)

z(k) = H(k)x(k) + w(k).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, Gregory L. Plett

