STATE-SPACE DYNAMIC SYSTEMS

2.1: Introduction to state-space systems

- Representation of the dynamics of an n th-order system as a first-order differential equation in an n-vector called the state.
n $1+n$ first-order equations.
- Classic example: Second-order equation of motion.

$$
\begin{aligned}
m \ddot{z}(t) & =u(t)-b \dot{z}(t)-k z(t) \\
m & \ddot{z}(t)
\end{aligned}=\frac{u(t)-b \dot{z}(t)-k z(t)}{m} .
$$

- Define a (non-unique) state vector (note that $\dot{x}(t)=\mathrm{d} x(t) / \mathrm{d} t$, etc.)

$$
x(t)=\left[\begin{array}{c}
z(t) \\
\dot{z}(t)
\end{array}\right], \quad \text { so, } \dot{x}(t)=\left[\begin{array}{c}
\dot{z}(t) \\
\ddot{z}(t)
\end{array}\right]=\left[\begin{array}{c}
\dot{z}(t) \\
-\frac{k}{m} z(t)-\frac{b}{m} \dot{z}(t)+\frac{1}{m} u(t)
\end{array}\right] .
$$

- We can write this as $\dot{x}(t)=A x(t)+B u(t)$, where A and B are constant matrices.

$$
\dot{x}(t)=\left[\begin{array}{c}
\dot{z}(t) \\
\ddot{z}(t)
\end{array}\right]=\underbrace{[}_{A}\left[\begin{array}{c}
z(t) \\
\dot{z}(t)
\end{array}\right]+\underbrace{[}_{B}](t) .
$$

- Complete the model by computing $z(t)=C x(t)+D u(t)$, where C and D are constant matrices.

$$
C=[\quad], \quad D=[\quad] .
$$

- Fundamental form for deterministic, time-invariant, continuous-time linear state-space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
z(t) & =C x(t)+D u(t)
\end{aligned}
$$

where $u(t)$ is input, $x(t)$ is the state, A, B, C, D are constant matrices.

- Systems with noise inputs are considered in notes chapter 3.
- Time-varying systems have A, B, C, D that change with time.

DEFINITION: The state of a system at time t_{0} is a minimum amount of information at t_{0} that, together with the input $u(t), t \geq t_{0}$, uniquely determines the behavior of the system for all $t \geq t_{0}$.

- State variables provide access to what is going on inside the system.
- Convenient way to express equations of motion.
- Matrix format great for computers.
- Allows new analysis and synthesis tools.

SIMULATING IN SIMULINK: To investigate state-space systems, we can simulate them in Simulink. The block diagram below gives explicit access to the state and other internal signals. It is a direct implementation of the transfer function above, and the initial state may be set by setting the initial integrator values.

Example: The nearly constant position (NCP) model

- Consider a relatively immobile object that we would like to track using a Kalman filter.
- It gets bumped around by unknown forces.
- We let our model state be

$$
x(t)=\left[\begin{array}{l}
\xi(t) \\
\eta(t)
\end{array}\right],
$$

where $\xi(t)$ is the x-coordinate and $\eta(t)$ is the y-coordinate of position.

- Our model's state equation is then

$$
\dot{x}(t)=0 x(t)+w(t)
$$

where $w(t)$ is a random process-noise input (unlike known $u(t)$).

- One possible output equation is

$$
z(t)=x(t)+v(t)
$$

where $v(t)$ is a random sensor-noise input.

- A possible Simulink implementation and output trajectory:

Example: The nearly constant velocity (NCV) model

- Another model we might consider is that of an object with momentum.
- The velocity is nearly constant, but gets perturbed by external forces.
- We let our model state be

$$
x(t)=\left[\begin{array}{c}
\xi(t) \\
\dot{\xi}(t) \\
\eta(t) \\
\dot{\eta}(t)
\end{array}\right]
$$

- Our model's state equation is then

$$
\dot{x}(t)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] x(t)+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] w(t)
$$

- One possible output equation is

$$
z(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x(t)+v(t)
$$

- A possible Simulink implementation and output trajectory:

Example: The coordinated turn model

- A third model considers an object moving in a 2D plane with constant speed and angular rate Ω where $\Omega>0$ is counter-clockwise motion and $\Omega<0$ is clockwise motion.

$$
\ddot{\xi}(t)=-\Omega \dot{\eta}(t) \quad \text { and } \quad \ddot{\eta}(t)=\Omega \dot{\xi}(t)
$$

- We again let our model state be

$$
x(t)=\left[\begin{array}{c}
\xi(t) \\
\dot{\xi}(t) \\
\eta(t) \\
\dot{\eta}(t)
\end{array}\right]
$$

- Our model's state equation is then

$$
\dot{x}(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -\Omega \\
0 & 0 & 0 & 1 \\
0 & \Omega & 0 & 0
\end{array}\right] x(t)+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] w(t) .
$$

- One possible output equation is

$$
z(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x(t)+v(t)
$$

- A possible Simulink implementation and output trajectory:

2.2: Time (dynamic) response

- Develop more insight into the system response by looking at time-domain solution for $x(t)$.

Homogeneous part

- Start with $\dot{x}(t)=A x(t)$ and some initial state $x(0)$.
- Take Laplace transform: $X(s)=(s I-A)^{-1} x(0)$.
- So, we have: $x(t)=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right] x(0)$. But,

$$
(s I-A)^{-1}=\frac{I}{s}+\frac{A}{s^{2}}+\frac{A^{2}}{s^{3}}+\cdots
$$

so,

$$
\begin{aligned}
\mathcal{L}^{-1}\left[(s I-A)^{-1}\right] & =I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots \\
& \triangleq e^{A t} \quad \text { matrix exponential } \\
x(t) & =e^{A t} x(0)
\end{aligned}
$$

- $e^{A t}$: "Transition matrix" or "state-transition matrix."
- In MATLAB,

```
x = expm(A*t) *x0;
```

- $e^{(A+B) t}=e^{A t} e^{B t} \quad$ iff $\quad A B=B A$. (i.e., not in general).
- Will say more about $e^{A t}$ when we discuss the structure of A.
- Computation of $e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]$ straightforward for 2×2.

EXAMPLE: Find $e^{A t}$ when $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$.

- Solve

$$
\begin{aligned}
(s I-A)^{-1} & =\left[\begin{array}{cc}
s & -1 \\
2 & s+3
\end{array}\right]^{-1}=\left[\begin{array}{cc}
s+3 & 1 \\
-2 & s
\end{array}\right] \frac{1}{(s+2)(s+1)} \\
& =\left[\begin{array}{cc}
\frac{2}{s+1}-\frac{1}{s+2} & \frac{1}{s+1}-\frac{1}{s+2} \\
\frac{-2}{s+1}+\frac{2}{s+2} & \frac{-1}{s+1}+\frac{2}{s+2}
\end{array}\right] \\
e^{A t} & =\left[\begin{array}{cc}
2 e^{-t}-e^{-2 t} & e^{-t}-e^{-2 t} \\
-2 e^{-t}+2 e^{-2 t} & -e^{-t}+2 e^{-2 t}
\end{array}\right] 1(t)
\end{aligned}
$$

- This is the best way to find $e^{A t}$ if $A 2 \times 2$.

Forced solution

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \quad x(0) \\
& x(t)=e^{A t} x(0)+\underbrace{\int_{0}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}_{\text {convolution }}
\end{aligned}
$$

- Where did this come from?

1. $\dot{x}(t)-A x(t)=B u(t)$.
2. $e^{-A t}[\dot{x}(t)-A x(t)]=\frac{\mathrm{d}}{\mathrm{d} t}\left[e^{-A t} x(t)\right]=e^{-A t} B u(t)$.
3. $\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau}\left[e^{-A \tau} x(\tau)\right] \mathrm{d} \tau=e^{-A t} x(t)-x(0)=\int_{0}^{t} e^{-A \tau} B u(\tau) \mathrm{d} \tau$.

- Clearly, if $z(t)=C x(t)+D u(t)$,

$$
z(t)=\underbrace{C e^{A t} x(0)}_{\text {initial resp. }}+\underbrace{\int_{0}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau}_{\text {convolution }}+\underbrace{D u(t)}_{\text {feedthrough }}
$$

More on the matrix exponential

- Have seen the key role of $e^{A t}$ in the solution for $x(t)$. Impacts the system response, but need more insight.
- Consider what happens if the matrix A is diagonalizable, that is, there exists a matrix T such that $T^{-1} A T=\Lambda=$ diagonal. Then,

$$
\begin{aligned}
e^{A t} & =I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots \\
& =I+T \Lambda T^{-1} t+\frac{T \Lambda T^{-1} T \Lambda T^{-1} t^{2}}{2!}+\frac{T \Lambda T^{-1} T \Lambda T^{-1} T \Lambda T^{-1} t^{3}}{3!}+\cdots \\
& =T\left[I+\Lambda t+\frac{\Lambda^{2} t^{2}}{2!}+\frac{\Lambda^{3} t^{3}}{3!}+\cdots\right] T^{-1}=T e^{\Lambda t} T^{-1}
\end{aligned}
$$

and

$$
e^{\Lambda t}=\operatorname{diag}\left(e^{\lambda_{1} t}, e^{\lambda_{2} t}, \ldots e^{\lambda_{n} t}\right) .
$$

- Much simpler form for the exponential, but how to find T, Λ ?
- Write $T^{-1} A T=\Lambda$ as $T^{-1} A=\Lambda T^{-1}$ with

$$
T^{-1}=\left[\begin{array}{c}
w_{1}^{T} \\
w_{2}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right], \quad \text { i.e., rows of } T^{-1} \text {. }
$$

$w_{i}^{T} A=\lambda_{i} w_{i}^{T}$, so w_{i} is a left eigenvector of A and note that $w_{i}^{T} v_{j}=\delta_{i, j}$.

- How does this help?

$$
e^{A t}=T e^{\Lambda t} T^{-1}=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
e^{\lambda_{1} t} & & & 0 \\
& e^{\lambda_{2} t} & & \\
& & \ddots & \\
0 & & & e^{\lambda_{n} t}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{T} \\
w_{2}^{T} \\
\vdots \\
w_{n} T
\end{array}\right]
$$

$$
=\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i} w_{i}^{T}
$$

- Very simple form, which can be used to develop intuition about dynamic response $\approx e^{\lambda_{i} t}$.

$$
x(t)=e^{A t} x(0)=T e^{\Lambda t} T^{-1} x(0)=\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i}\left(w_{i}^{T} x(0)\right)
$$

- Trajectory can be expressed as a linear combination of modes: $v_{i} e^{\lambda_{i} t}$.
- Left eigenvectors decompose $x(0)$ into modal coordinates $w_{i}^{T} x(0)$.
- $e^{\lambda_{i} t}$ propagates mode forward in time. Stability?
- v_{i} corresponds to "relative phasing" of state's part of the response.

EXAMPLE: Let's consider a specific system

$$
\begin{aligned}
\dot{x}(t) & =A x(t) \\
z(t) & =C x(t)
\end{aligned}
$$

with $x(t) \in \mathbb{R}^{16 \times 1}, z(t) \in \mathbb{R}$ (16-state, single output).

- A lightly damped system.
- Typical output to initial conditions are shown:
- Waveform is very complicated. Looks almost random.

- However, the solution can be decomposed into much simpler modal components.

2.3: Discrete-time state-space systems

- Computer monitoring of real-time systems requires analog-to-digital (A2D) and digital-to-analog (D2A) conversion.

- Discrete-time systems can also be represented in state-space form

$$
\begin{aligned}
x_{k+1} & =A_{d} x_{k}+B_{d} u_{k} \\
z_{k} & =C_{d} x_{k}+D_{d} u_{k}
\end{aligned}
$$

- The subscript " d " is used here to emphasize that, in general, the " A ", " B ", " C " and " D " matrices are different for discrete-time and continuous-time systems, even if the underlying plant is the same.
- I will usually drop the " d " and expect you to interpret the system from its context.

Time (dynamic) response

- The full solution, found by induction from $x_{k+1}=A x_{k}+B u_{k}$, is

$$
x_{k}=A^{k} x_{0}+\underbrace{\sum_{j=0}^{k-1} A^{k-1-j} B u_{j}}_{\text {convolution }}
$$

- Clearly, if $z_{k}=C x_{k}+D u_{k}$,

$$
z_{k}=\underbrace{C A^{k} x_{0}}_{\text {initial resp. }}+\underbrace{\sum_{j=0}^{k-1} C A^{k-1-j} B u_{j}}_{\text {convolution }}+\underbrace{D u_{k}}_{\text {feedthrough }}
$$

Converting plant dynamics to discrete time.

- Combine the dynamics of the zero-order hold and the plant.

- The continuous-time dynamics of the plant are:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
z(t) & =C x(t)+D u(t)
\end{aligned}
$$

- Evaluate $x(t)$ at discrete times. Recall

$$
\begin{gathered}
x(t)=\int_{0}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau \\
x_{k+1}=x((k+1) T)=\int_{0}^{(k+1) T} e^{A((k+1) T-\tau)} B u(\tau) \mathrm{d} \tau .
\end{gathered}
$$

- With malice aforethought, break up the integral into two pieces. The first piece will become A_{d} times $x(k T)$. The second part will become B_{d} times $u(k T)$.

$$
\begin{aligned}
& =\int_{0}^{k T} e^{A((k+1) T-\tau)} B u(\tau) \mathrm{d} \tau+\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} B u(\tau) \mathrm{d} \tau \\
& =\int_{0}^{k T} e^{A T} e^{A(k T-\tau)} B u(\tau) \mathrm{d} \tau+\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} B u(\tau) \mathrm{d} \tau \\
& =e^{A T} x(k T)+\int_{k T}^{(k+1) T} e^{A((k+1) T-\tau)} B u(\tau) \mathrm{d} \tau .
\end{aligned}
$$

- In the remaining integral, note that $u(\tau)$ is constant from $k T$ to $(k+1) T$, and equal to $u(k T)$.
-So, we let $\sigma=(k+1) T-\tau ; \tau=(k+1) T-\sigma ; \mathrm{d} \tau=-\mathrm{d} \sigma$.

$$
\begin{aligned}
x((k+1) T) & =e^{A T} x(k T)+\left[\int_{0}^{T} e^{A \sigma} B \mathrm{~d} \sigma\right] u(k T) \\
\text { or, } x_{k+1} & =e^{A T} x_{k}+\left[\int_{0}^{T} e^{A \sigma} B \mathrm{~d} \sigma\right] u_{k}
\end{aligned}
$$

- So, we have a discrete-time state-space representation from the continuous-time representation

$$
x_{k+1}=A_{d} x_{k}+B_{d} u_{k}
$$

where $A_{d}=e^{A T}, B_{d}=\int_{0}^{T} e^{A \sigma} B \mathrm{~d} \sigma$.

- Similarly,

$$
z_{k}=C x_{k}+D u_{k} .
$$

- That is, $C_{d}=C ; D_{d}=D$.

Calculating A_{d}, B_{d}, C_{d} and D_{d}

- C_{d} and D_{d} require no calculation since $C_{d}=C$ and $D_{d}=D$.
- A_{d} is calculated via the matrix exponential $A_{d}=e^{A T}$. This is different from taking the exponential of each element in $A T$.
- If MATLAB is handy, you can type in

$$
A d=\operatorname{expm}(A * T)
$$

- If MATLAB is not handy, then you need to work a little harder. Recall from earlier that $e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]$. So,

$$
e^{A T}=\left.\mathcal{L}^{-1}\left[(s I-A)^{-1}\right]\right|_{t=T},
$$

which is probably the "easiest" way to work it out by hand.

- Now we focus on computing B_{d}. Recall that

$$
\begin{aligned}
B_{d} & =\int_{0}^{T} e^{A \sigma} B \mathrm{~d} \sigma \\
& =\int_{0}^{T}\left(I+A \sigma+A^{2} \frac{\sigma^{2}}{2}+\ldots\right) B \mathrm{~d} \sigma \\
& =\left(I T+A \frac{T^{2}}{2!}+A^{2} \frac{T^{3}}{3!}+\ldots\right) B \\
& =A^{-1}\left(e^{A T}-I\right) B \\
& =A^{-1}\left(A_{d}-I\right) B .
\end{aligned}
$$

- If A is invertible, this method works nicely; otherwise, we will need to perform the integral.
- Also, in MATLAB,

$$
[\mathrm{Ad}, \mathrm{Bd}]=\mathrm{c} 2 \mathrm{~d}(\mathrm{~A}, \mathrm{~B}, \mathrm{~T})
$$

2.4: Examples of discrete-time state-space models

The discrete-time NCP model

- We might consider a discrete-time version of the continuous-time nearly-constant-position model.
- Recall, in continuous time,

$$
\begin{aligned}
\dot{x}(t) & =0 x(t)+w(t) \\
z(t) & =x(t)+v(t)
\end{aligned}
$$

- In discrete time,

$$
\begin{aligned}
x_{k+1} & =e^{0 T} x_{k}+\left(\int_{0}^{T} e^{0 \sigma} \mathrm{~d} \sigma\right) w_{k} \\
z_{k} & =x_{k}+v_{k}
\end{aligned}
$$

where $e^{0 T}=I$ and $\int_{0}^{T} I \mathrm{~d} \sigma=T I$.

- Therefore,

$$
\begin{aligned}
x_{k+1} & =x_{k}+T w_{k} \\
z_{k} & =x_{k}+v_{k}
\end{aligned}
$$

- Note, w_{k} is often scaled vis-à-vis $w(t)$ so that a commonly seen form of the discrete-time model is

$$
\begin{aligned}
x_{k+1} & =x_{k}+w_{k} \\
z_{k} & =x_{k}+v_{k} .
\end{aligned}
$$

- We can use Simulink to simulate this discrete-time NCP model, much like the continuous-time NCP model.
- Or, we can also simulate it easily with a MATLAB script.
maxT=200;
$\mathrm{x}=\mathrm{zeros}(2, \operatorname{maxT})$;
$x(:, 1)=[0 ; 0] ;$ 응 inial posn.
for $k=2: m a x T$, $x(:, k)=x(:, k-1)+0.1 *$ randn $(2,1)$;
plot(x(1,:),x(2,:));
title('Discrete-time NCP sim.'); xlabel('x'); ylabel('y');
\% max. sim. time

ㅇ simulate model
end end
\% storage

Example: The discrete-time NCV model

- Similarly, we might consider a discrete-time version of the continuous-time nearly-constant-velocity model.
- Recall,

$$
\dot{x}(t)=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]}_{A_{c}} x(t)+\underbrace{\left[\begin{array}{lll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]}_{B_{c}} w(t) .
$$

- The discrete-time A matrix is $A=e^{A_{c} T}$

$$
A=\left.\mathcal{L}^{-1}\left\{\left(s I-A_{c}\right)^{-1}\right\}\right|_{t=T}=\left.\mathcal{L}^{-1}\left\{\left[\begin{array}{cccc}
s & -1 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & s & -1 \\
0 & 0 & 0 & s
\end{array}\right]\right\}\right|_{t=T}
$$

$$
\begin{aligned}
& =\left.\mathcal{L}^{-1}\left\{\left[\begin{array}{cccc}
1 / s & 1 / s^{2} & 0 & 0 \\
0 & 1 / s & 0 & 0 \\
0 & 0 & 1 / s & 1 / s^{2} \\
0 & 0 & 0 & 1 / s
\end{array}\right]\right\}\right|_{t=T} \\
& =\left.\left[\begin{array}{llll}
1 & t & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right]\right|_{t=T}=\left[\begin{array}{cccc}
1 & T & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & T \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

- This can be verified in MATLAB using the symbolic toolbox,

```
syms T
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
```

expm (Ac*T)

- The discrete-time B matrix may be found as before,

$$
B=\int_{0}^{T} e^{A_{c} \sigma} B_{c} \mathrm{~d} \sigma=\left[\begin{array}{cc}
T^{2} / 2 & 0 \\
T & 0 \\
0 & T^{2} / 2 \\
0 & T
\end{array}\right]
$$

- This can also be verified in MATLAB using the symbolic toolbox,

```
syms sigma T
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
BC = [0 0; 1 0; 0 0; 0 1];
z = expm(Ac*sigma);
B = int(z,0,T)*Bc;
```

- Alternately, we can let MATLAB do even more of the heavy lifting

```
syms T
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
Bc = [0 0; 1 0; 0 0; 0 1];
[A,B] = c2d(Ac,Bc,T); % continuous to discrete
```

- Note that we often state the discrete-time NCV model in terms of a 4 -vector w_{k} with rescaled components.
- So, the overall discrete-time NCV model is

$$
\begin{aligned}
x_{k+1} & =\left[\begin{array}{cccc}
1 & T & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & T \\
0 & 0 & 0 & 1
\end{array}\right] x_{k}+w_{k} \\
z_{k} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x_{k}+v_{k} .
\end{aligned}
$$

- Note, this is saying

$$
\begin{aligned}
& \xi_{k}=\xi_{k-1}+T \dot{\xi}_{k-1}+\text { noise } \\
& \eta_{k}=\eta_{k-1}+T \dot{\eta}_{k-1}+\text { noise }
\end{aligned}
$$

which is an NCV equation.

- We can simulate it easily with a MATLAB script.

```
maxT=200; % max sim time
x = zeros(4,maxT); % storage
% initial position, velocity
x(:,1) = [0;0.1;0;0.1];
T = 0.1; % sample period
A = [1 T T 0 0; 0 1 0 0;
    0 0 1 T; 0 0 0 1];
B = [T^2/2 0; T 0; 0 T^2/2; 0 T];
for k=2:maxT, % simulate model
    x(:,k)=A*x(:,k-1)+B*randn (2,1);
end
plot(x(1,:),x(3,:));
title('Discrete-time NCV sim.');
xlabel('x'); ylabel('y');
```


Example: The discrete-time coordinated-turn model

- Similarly, it can be shown that the discrete-time coordinated turn model is

$$
\begin{aligned}
& x_{k}=\left[\begin{array}{cccc}
1 & \sin (\Omega T) / \Omega & 0 & (\cos (\Omega T)-1) / \Omega \\
0 & \cos (\Omega T) & 0 & -\sin (\Omega T) \\
0 & (1-\cos (\Omega T)) / \Omega & 1 & \sin (\Omega T) / \Omega \\
0 & \sin (\Omega T) & 0 & \cos (\Omega T)
\end{array}\right] x_{k-1} \\
& \quad+\left[\begin{array}{cc}
(1-\cos (\Omega T)) / \Omega^{2} & (\sin (\Omega T)-\Omega T) / \Omega^{2} \\
\sin (\Omega T) / \Omega & (\cos (\Omega T)-1) / \Omega \\
(\Omega T-\sin (\Omega T)) / \Omega^{2} & (1-\cos (\Omega T)) / \Omega^{2} \\
(1-\cos (\Omega T)) / \Omega & \sin (\Omega T) / \Omega
\end{array}\right] w_{k-1} \cdot
\end{aligned}
$$

- MATLAB code to implement this:

```
maxT = 200;
% max simulation time
x = zeros(4,maxT); % reserve storage
x(:,1) = [0;0.1;0;0.1]; % initial posn, velocity
T = 0.1; W = 0.5; WT = W*T; % Use W as Omega
A = [1 sin(WT)/W 0 (1-cos(WT))/W; 0 cos(WT) 0 -sin(WT); ...
    0 (1-cos(WT))/W 1 sin(WT)/W; 0 sin(WT) 0 cos(WT)];
B = [(1-\operatorname{cos}(WT))/W^2, (sin(WT)-WT)/W^2; sin(WT)/W (cos(WT)-1)/W; ...
    (WT-sin(WT))/W^2, (1-cos(WT))/W^2; (1-cos(WT))/W sin(WT)/W];
for k=2:maxT, % simulate model
    x(:,k) = A*x(:,k-1) + ...
        B*0.01*randn (2,1);
end
plot(x(1,:),x(3,:));
title('Discrete-time CT sim.');
xlabel('x'); ylabel('y');
```


Comparing continuous-time and discrete-time models

- Consider again the first example of this section of notes

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{cc}
0 & 1 \\
-k / m & -b / m
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
1 / m
\end{array}\right] u(t) \\
z(t) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t) .
\end{aligned}
$$

- We expect agreement between continuous-time and discrete-time models at the sampling instants.
- For simplicity, let $k=b=m=T=1$. We can find,

$$
A_{d}=\left[\begin{array}{cc}
0.6597 & 0.5335 \\
-0.5335 & 0.1262
\end{array}\right] \quad \text { and } \quad B_{d}=\left[\begin{array}{l}
0.3403 \\
0.5335
\end{array}\right] .
$$

- Simulate both systems with the same input $(u(t)$ constant over $T)$

2.5: Continuous-time observability and controllability

- If a system is observable, we can determine the initial condition of the state vector $x(0)$ via processing the input to the system $u(t)$ and the output of the system $z(t)$.
- Since we can simulate the system if we know $x(0)$ and $u(t)$ this also implies that we can determine $x(t)$ for $t \geq 0$.

$$
x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau
$$

- Therefore, it should not be surprising that a system must be observable for the Kalman filter to work.
- If we have a system modeled in state-space form

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
z(t) & =C x(t)+D u(t)
\end{aligned}
$$

and we have initial conditions $z(0), \dot{z}(0), \ddot{z}(0)$, how do we find $x(0)$?

$$
\begin{aligned}
z(0) & =C x(0)+D u(0) \\
\dot{z}(0) & =C(\underbrace{A x(0)+B u(0)}_{\dot{x}(0)})+D \dot{u}(0) \\
& =C A x(0)+C B u(0)+D \dot{u}(0) \\
\ddot{z}(0) & =C A^{2} x(0)+C A B u(0)+C B \dot{u}(0)+D \ddot{u}(0) .
\end{aligned}
$$

- In general,

$$
z^{(k)}(0)=C A^{k} x(0)+C A^{k-1} B u(0)+\cdots+C B u^{(k-1)}(0)+D u^{(k)}(0),
$$

$$
\left[\begin{array}{c}
z(0) \\
\dot{z}(0) \\
\ddot{z}(0)
\end{array}\right]=\underbrace{\left[\begin{array}{c}
C \\
C A \\
C A^{2}
\end{array}\right]}_{\mathcal{O}(C, A)} x(0)+\underbrace{\left[\begin{array}{ccc}
D & 0 & 0 \\
C B & D & 0 \\
C A B & C B & D
\end{array}\right]}_{\mathcal{T}}\left[\begin{array}{c}
u(0) \\
\dot{u}(0) \\
\ddot{u}(0)
\end{array}\right]
$$

where \mathcal{T} is a (block) "Toeplitz matrix".

- Thus, if $\mathcal{O}(C, A)$ is invertible, then

$$
x(0)=\mathcal{O}^{-1}\left\{\left[\begin{array}{c}
z(0) \\
\dot{z}(0) \\
\ddot{z}(0)
\end{array}\right]-\mathcal{T}\left[\begin{array}{c}
u(0) \\
\dot{u}(0) \\
\ddot{u}(0)
\end{array}\right]\right\} .
$$

- We say that $\{C, A\}$ is an observable pair if \mathcal{O} is nonsingular.
- One possible approach to determining the system state, directly from the equations:

- The Kalman filter is a more practical observer that doesn't use differentiators.
- Regardless of the approach, it turns out that the system must be observable to be able to determine the initial state.

CONCLUSION: If \mathcal{O} is nonsingular, then we can determine/estimate the initial state of the system $x(0)$ using only $u(t)$ and $z(t)$ (and therefore, we can estimate $x(t)$ for all $t \geq 0$).

ADVANCED TOPIC: If some states are unobservable but are stable, then an observer will still converge to the true state, even though the initial state $x(0)$ may not be uniquely determined.

EXAMPLE: Two unobservable networks

(Redrawn)

- In the first, $z(t)=u(t) \quad \forall t$.
- The state-space model output equation has C matrix equal to zero.
- Therefore, $\mathcal{O}=0$. Not observable.
- For whatever it is worth, the overall state-space model for this circuit is

$$
\begin{aligned}
\dot{x}(t) & =-\frac{1}{C} x(t)+\frac{1}{C} u(t) \\
z(t) & =u(t)
\end{aligned}
$$

- In the second, if $u(t)=0, x_{1}(0) \neq 0$ and $x_{2}(0)=0$, then $z(t)=0$ and we cannot determine $x_{1}(0)$ (circuit redrawn for $u(t)=0$).

Continuous-time controllability: Can I get there from here?

- "Controllability" is a dual idea to observability. We won't go into as much depth here since it is not as important for our topic of study.
- Controllability asks the question, "can I move from any initial state to any desired state via suitable selection of the control input $u(t)$?"
- The answer boils down to a condition on a matrix called the controllability matrix

$$
\mathcal{C}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right] .
$$

TEST: If \mathcal{C} is nonsingular, then the system is controllable.
EXAMPLE: Two uncontrollable networks.

- In the first one, if $x(0)=0$ then $x(t)=0 \quad \forall t$. Cannot influence state!
- In the second one, if $x_{1}(0)=x_{2}(0)$ then $x_{1}(t)=x_{2}(t) \quad \forall t$. Cannot independently alter state.
- Controllability is studied in more depth in ECE5520: Multivariable Control Systems I.

2.6: More insight; discrete-time controllability and observability

Diagonal systems, controllability and observability

- We can gain insight by considering a system in diagonal form

$$
\dot{x}(t)=\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right] x(t)+\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right] u(t)
$$

$$
z(t)=\left[\begin{array}{llll}
\delta_{1} & \delta_{2} & \cdots & \delta_{n}
\end{array}\right] x(t)+[0] u(t) .
$$

- When controllable? When observable?

$$
\mathcal{O}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]=\left[\begin{array}{cccc}
\delta_{1} & \delta_{2} & \cdots & \delta_{n} \\
\lambda_{1} \delta_{1} & \lambda_{2} \delta_{2} & \cdots & \lambda_{n} \delta_{n} \\
& & \ddots & \\
\lambda_{1}^{n-1} \delta_{1} & \lambda_{2}^{n-1} \delta_{2} & \cdots & \lambda_{n}^{n-1} \delta_{n}
\end{array}\right]
$$

$$
=\underbrace{\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
& & \ddots & \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]}_{\text {Vandermonde matrix } \mathcal{V}}\left[\begin{array}{cccc}
\delta_{1} & & & 0 \\
& \delta_{2} & & \\
& & \ddots & \\
0 & & & \delta_{n}
\end{array}\right] .
$$

- Singular?

$$
\operatorname{det}\{\mathcal{O}\}=\left(\delta_{1} \cdots \delta_{n}\right) \operatorname{det}\{\mathcal{V}\}=\left(\delta_{1} \cdots \delta_{n}\right) \prod_{i<j}\left(\lambda_{j}-\lambda_{i}\right)
$$

CONCLUSION: Observable $\Longleftrightarrow \lambda_{i} \neq \lambda_{j}, i \neq j$ and $\delta_{i} \neq 0 i=1, \cdots, n$.

- If $\lambda_{1}=\lambda_{2}$ then not observable. Can only "observe" the sum $x_{1}+x_{2}$.
- If $\delta_{k}=0$ then cannot observe mode k.
- What about controllability? Analysis is basically the same: just switch the roles of $\delta \mathbf{s}$ and $\gamma \mathrm{s}$.

CONCLUSION: Controllable $\Longleftrightarrow \lambda_{i} \neq \lambda_{j}, i \neq j$ and $\gamma_{i} \neq 0 i=1, \cdots, n$.

- If $\lambda_{1}=\lambda_{2}$ then not controllable. Can only "control" the sum $x_{1}+x_{2}$.
- If $\gamma_{k}=0$ then cannot control mode k.

Discrete-time controllability

- Similar concept for discrete-time. Form the discrete-time controllability matrix (where we use the discrete-time A and B matrices)

$$
\mathcal{C}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right] .
$$

- The matrix \mathcal{C} is invertible iff the system is controllable.

Discrete-time observability

- Can we reconstruct the state x_{0} from the output z_{k} and input u_{k} ?

$$
\begin{aligned}
z_{k} & =C x_{k}+D u_{k} \\
z_{0} & =C x_{0}+D u_{0} \\
z_{1} & =C\left[A x_{0}+B u_{0}\right]+D u_{1} \\
z_{2} & =C\left[A^{2} x_{0}+A B u_{0}+B u_{1}\right]+D u_{2} \\
& \vdots \\
z_{n-1} & =C\left[A^{n-1} x_{0}+A^{n-2} B u_{0}+\cdots+B u_{n-1}\right]+D u_{n-1} .
\end{aligned}
$$

- In vector form, we can write

$$
\left[\begin{array}{c}
z_{0} \\
z_{1} \\
\vdots \\
z_{n-1}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]}_{\mathcal{O}} x_{0}+\underbrace{\left[\begin{array}{cccc}
D & 0 & \cdots & 0 \\
C B & D & \cdots & 0 \\
C A B & C B & \cdots & 0 \\
\vdots & \vdots & \ddots & D
\end{array}\right]}_{\mathcal{T}}\left[\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n-1}
\end{array}\right] .
$$

- So,

$$
x_{0}=\mathcal{O}^{-1}\left[\left[\begin{array}{c}
z_{0} \\
\vdots \\
z_{n-1}
\end{array}\right]-\mathcal{T}\left[\begin{array}{c}
u_{0} \\
\vdots \\
u_{n-1}
\end{array}\right]\right]
$$

- If \mathcal{O} is invertible, x_{0} may be reconstructed with any z_{k}, u_{k}. We say that $\{C, A\}$ form an "observable pair."
- Do more measurements of z_{n}, z_{n+1}, \ldots help in reconstructing x_{0} ? No! (Caley-Hamilton theorem). So, if the original state is not "observable" with n measurements, then it will not be observable with more than n measurements either.
- Since we know u_{k} and the dynamics of the system, if the system is observable we can determine the entire state sequence $x_{k}, k \geq 0$ once we determine x_{0}

$$
\begin{aligned}
x_{n} & =A^{n} x_{0}+\sum_{i=0}^{n-1} A^{n-1-i} B u_{k} \\
& =A^{n} \mathcal{O}^{-1}\left[\left[\begin{array}{c}
z_{0} \\
\vdots \\
z_{n-1}
\end{array}\right]-\mathcal{T}\left[\begin{array}{c}
u_{0} \\
\vdots \\
u_{n-1}
\end{array}\right]\right]+\mathcal{C}\left[\begin{array}{c}
u_{n-1} \\
\vdots \\
u_{0}
\end{array}\right] .
\end{aligned}
$$

- A perfectly good observer (no differentiators...), but still not nearly as good as the Kalman filters we will develop.

Appendix: Plett notation versus textbook notation

- For a continuous-time state-space model, I use:

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t)+B_{w}(t) w(t) \\
z(t) & =C(t) x(t)+D(t) u(t)+D_{v}(t) v(t)
\end{aligned}
$$

- For a continuous-time state-space model, Simon uses:

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t)+w(t) \\
y(t) & =C(t) x(t)+v(t)
\end{aligned}
$$

- For a continuous-time state-space model, Bar-Shalom uses:

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t)+D(t) \tilde{v}(t) \\
z(t) & =C(t) x(t)+\tilde{w}(t)
\end{aligned}
$$

- For a discrete-time state-space model, I use:

$$
\begin{aligned}
x_{k+1} & =A_{k} x_{k}+B_{k} u_{k}+w_{k} \\
z_{k} & =C_{k} x_{k}+D_{k} u_{k}+v_{k}
\end{aligned}
$$

- For a discrete-time state-space model, Simon uses:

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+G_{k} u_{k}+\Lambda_{k} w_{k} \\
y_{k} & =C_{k} x_{k}+v_{k}
\end{aligned}
$$

- For a discrete-time state-space model, Bar-Shalom uses:

$$
\begin{aligned}
x(k+1) & =F(k) x(k)+G(k) u(k)+\Gamma(k) v(k) \\
z(k) & =H(k) x(k)+w(k) .
\end{aligned}
$$

