
ECE5550: Applied Kalman Filtering 2–1

STATE-SPACE DYNAMIC SYSTEMS

2.1: Introduction to state-space systems

■ Representation of the dynamics of an nth-order system as a

first-order differential equation in an n-vector called the state.

➠ n first-order equations.

■ Classic example: Second-order equation of motion.

m u(t)

z(t)

k

b

mz̈(t) = u(t) − bż(t) − kz(t)

➠ z̈(t) =
u(t) − bż(t) − kz(t)

m
.

■ Define a (non-unique) state vector (note that ẋ(t) = dx(t)/dt , etc.)

x(t) =

[

z(t)

ż(t)

]

, so, ẋ(t) =

[

ż(t)

z̈(t)

]

=





ż(t)

−
k

m
z(t) −

b

m
ż(t) +

1

m
u(t)



 .

■ We can write this as ẋ(t) = Ax(t) + Bu(t), where A and B are

constant matrices.

ẋ(t) =

[

ż(t)

z̈(t)

]

=









︸ ︷︷ ︸

A

[

z(t)

ż(t)

]

+









︸ ︷︷ ︸

B

u(t).

■ Complete the model by computing z(t) = Cx(t) + Du(t), where C and

D are constant matrices.

C =
[ ]

, D =
[ ]

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–2

■ Fundamental form for deterministic, time-invariant, continuous-time

linear state-space model:

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) + Du(t),

where u(t) is input, x(t) is the state, A, B, C , D are constant matrices.

• Systems with noise inputs are considered in notes chapter 3.

• Time-varying systems have A, B, C , D that change with time.

DEFINITION: The state of a system at time t0 is a minimum amount of

information at t0 that, together with the input u(t), t ≥ t0, uniquely

determines the behavior of the system for all t ≥ t0.

■ State variables provide access to what is going on inside the system.

■ Convenient way to express equations of motion.

■ Matrix format great for computers.

■ Allows new analysis and synthesis tools.

SIMULATING IN SIMULINK: To investigate state-space systems, we can

simulate them in Simulink. The block diagram below gives explicit

access to the state and other internal signals. It is a direct

implementation of the transfer function above, and the initial state

may be set by setting the initial integrator values.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–3

Example: The nearly constant position (NCP) model

■ Consider a relatively immobile object that we would like to track using

a Kalman filter.

■ It gets bumped around by unknown forces.

■ We let our model state be

x(t) =

[

ξ(t)

η(t)

]

,

where ξ(t) is the x-coordinate and η(t) is the y-coordinate of position.

■ Our model’s state equation is then

ẋ(t) = 0x(t) + w(t),

where w(t) is a random process-noise input (unlike known u(t)).

■ One possible output equation is

z(t) = x(t) + v(t),

where v(t) is a random sensor-noise input.

■ A possible Simulink implementation and output trajectory:

XY Graph

Sensor 
noise v2(t)

Sensor 
noise v1(t)

Processs
noise w2(t)

Processs
noise w1(t) Integrator

1
s

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

x-coordinate, ξ(t)

y
-c

o
o

rd
in

a
te

,
η
(t

)

Trajectory of NCP model simulation

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–4

Example: The nearly constant velocity (NCV) model

■ Another model we might consider is that of an object with momentum.

■ The velocity is nearly constant, but gets perturbed by external forces.

■ We let our model state be

x(t) =









ξ(t)

ξ̇ (t)

η(t)

η̇(t)









.

■ Our model’s state equation is then

ẋ(t) =









0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0









x(t) +









0 0

1 0

0 0

0 1









w(t).

■ One possible output equation is

z(t) =

[

1 0 0 0

0 0 1 0

]

x(t) + v(t).

■ A possible Simulink implementation and output trajectory:

XY Graph

Sensor 
noise v2(t)

Sensor 
noise v1(t)

Processs
noise w2(t)

Processs
noise w1(t) Integrator1

1
s

Integrator

1
s

−0.045 −0.04 −0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x-coordinate, ξ(t)

y
-c

o
o

rd
in

a
te

,
η
(t

)

Trajectory of NCV model simulation

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–5

Example: The coordinated turn model

■ A third model considers an object moving in a 2D plane with constant

speed and angular rate � where � > 0 is counter-clockwise motion

and � < 0 is clockwise motion.

ξ̈ (t) = −�η̇(t) and η̈(t) = �ξ̇(t),

■ We again let our model state be

x(t) =









ξ(t)

ξ̇ (t)

η(t)

η̇(t)









.

■ Our model’s state equation is then

ẋ(t) =









0 1 0 0

0 0 0 −�

0 0 0 1

0 � 0 0









x(t) +









0 0

1 0

0 0

0 1









w(t).

■ One possible output equation is

z(t) =

[

1 0 0 0

0 0 1 0

]

x(t) + v(t).

■ A possible Simulink implementation and output trajectory:

XY Graph

Sensor 
noise v2(t)

Sensor 
noise v1(t)

Processs
noise w2(t)

Processs
noise w1(t) Integrator

1
s

C

K*u

Bw

K*u

A

K*u

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

x-coordinate, ξ(t)

y
-c

o
o

rd
in

a
te

,
η
(t

)

Trajectory of CT model simulation

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–6

2.2: Time (dynamic) response

■ Develop more insight into the system response by looking at

time-domain solution for x(t).

Homogeneous part

■ Start with ẋ(t) = Ax(t) and some initial state x(0).

■ Take Laplace transform: X (s) = (s I − A)−1x(0).

■ So, we have: x(t) = L
−1[(s I − A)−1]x(0). But,

(s I − A)−1 =
I

s
+

A

s2
+

A2

s3
+ · · ·

so,

L
−1[(s I − A)−1] = I + At +

A2t2

2!
+

A3t3

3!
+ · · ·

△
= eAt matrix exponential

x(t) = eAt x(0).

■ eAt : “Transition matrix” or “state-transition matrix.”

■ In MATLAB,

x = expm(A*t)*x0;

■ e(A+B)t = eAteBt iff AB = B A. (i.e., not in general).

■ Will say more about eAt when we discuss the structure of A.

■ Computation of eAt = L
−1[(s I − A)−1] straightforward for 2 × 2.

EXAMPLE: Find eAt when A =

[

0 1

−2 −3

]

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–7

■ Solve

(s I − A)−1 =

[

s −1

2 s + 3

]−1

=

[

s + 3 1

−2 s

]

1

(s + 2)(s + 1)

=







2

s + 1
−

1

s + 2

1

s + 1
−

1

s + 2

−2

s + 1
+

2

s + 2

−1

s + 1
+

2

s + 2







eAt =

[

2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]

1(t)

■ This is the best way to find eAt if A 2 × 2.

Forced solution

ẋ(t) = Ax(t) + Bu(t), x(0)

x(t) = eAt x(0) +

∫ t

0

eA(t−τ)Bu(τ ) dτ

︸ ︷︷ ︸

convolution

.

■ Where did this come from?

1. ẋ(t) − Ax(t) = Bu(t) .

2. e−At[ẋ(t) − Ax(t)] =
d

dt
[e−At x(t)] = e−At Bu(t).

3.

∫ t

0

d

dτ
[e−Aτ x(τ )] dτ = e−At x(t) − x(0) =

∫ t

0

e−Aτ Bu(τ ) dτ.

■ Clearly, if z(t) = Cx(t) + Du(t),

z(t) = CeAt x(0)
︸ ︷︷ ︸

initial resp.

+

∫ t

0

CeA(t−τ)Bu(τ ) dτ

︸ ︷︷ ︸

convolution

+ Du(t)
︸ ︷︷ ︸

feedthrough

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–8

More on the matrix exponential

■ Have seen the key role of eAt in the solution for x(t). Impacts the

system response, but need more insight.

■ Consider what happens if the matrix A is diagonalizable, that is, there

exists a matrix T such that T −1 AT = 3 =diagonal. Then,

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · ·

= I + T 3T −1t +
T 3T −1T 3T −1t2

2!
+

T 3T −1T 3T −1T 3T −1t3

3!
+ · · ·

= T

[

I + 3t +
32t2

2!
+

33t3

3!
+ · · ·

]

T −1 = T e3t T −1,

and

e3t = diag
(

eλ1t, eλ2t, . . . eλnt
)

.

■ Much simpler form for the exponential, but how to find T, 3?

■ Write T −1 AT = 3 as T −1 A = 3T −1 with

T −1 =









wT
1

wT
2
...

wT
n









, i.e., rows of T −1.

wT
i A = λiw

T
i , so wi is a left eigenvector of A and note that wT

i v j = δi, j .

■ How does this help?

eAt = T e3t T −1 =
[

v1 v2 . . . vn

]









eλ1t 0

eλ2t

. . .

0 eλnt

















wT
1

wT
2
...

wnT









Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–9

=

n
∑

i=1

eλi tviw
T
i .

■ Very simple form, which can be used to develop intuition about

dynamic response ≈ eλi t .

x(t) = eAt x(0) = T e3t T −1x(0) =

n
∑

i=1

eλi tvi(w
T
i x(0)).

■ Trajectory can be expressed as a linear combination of modes: vie
λi t .

■ Left eigenvectors decompose x(0) into modal coordinates wT
i x(0).

■ eλi t propagates mode forward in time. Stability?

■ vi corresponds to “relative phasing” of state’s part of the response.

EXAMPLE: Let’s consider a specific system

ẋ(t) = Ax(t)

z(t) = Cx(t),

with x(t) ∈ R
16×1, z(t) ∈ R (16-state, single output).

■ A lightly damped system.

■ Typical output to initial

conditions are shown:

■ Waveform is very complicated.

Looks almost random.
0 50 100 150 200 250 300

−2

−1

0

1

2
Impulse response

Time (s)

A
m

p
lit

u
d
e

■ However, the solution can be decomposed into much simpler modal

components.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–10

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250

−0.5

0

0.5

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250

−0.5

0

0.5

0 50 100 150 200 250

−0.5

0

0.5

0 50 100 150 200 250

−1

0

1

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250

−0.5

0

0.5

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–11

2.3: Discrete-time state-space systems

■ Computer monitoring of real-time systems requires analog-to-digital

(A2D) and digital-to-analog (D2A) conversion.

A2D

zoh

D2A

D(z) G(s)Q

w(t)
v(t)

z(t)r (t)
u(t)u[k]e(t) e[k]

■ Discrete-time systems can also be represented in state-space form

xk+1 = Adxk + Bduk

zk = Cdxk + Dduk.

■ The subscript “d” is used here to emphasize that, in general, the “A”,

“B”, “C” and “D” matrices are different for discrete-time and

continuous-time systems, even if the underlying plant is the same.

■ I will usually drop the “d” and expect you to interpret the system from

its context.

Time (dynamic) response

■ The full solution, found by induction from xk+1 = Axk + Buk, is

xk = Akx0 +

k−1
∑

j=0

Ak−1− j Bu j

︸ ︷︷ ︸

convolution

.

■ Clearly, if zk = Cxk + Duk,

zk = C Akx0︸ ︷︷ ︸

initial resp.

+

k−1
∑

j=0

C Ak−1− j Bu j

︸ ︷︷ ︸

convolution

+ Duk︸︷︷︸

feedthrough

.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–12

Converting plant dynamics to discrete time.

■ Combine the dynamics of the zero-order hold and the plant.

uk z(t)
u(t)

A, B, C, DZOH

■ The continuous-time dynamics of the plant are:

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) + Du(t).

■ Evaluate x(t) at discrete times. Recall

x(t) =

∫ t

0

eA(t−τ)Bu(τ ) dτ

xk+1 = x((k + 1)T ) =

∫ (k+1)T

0

eA((k+1)T −τ)Bu(τ ) dτ .

■ With malice aforethought, break up the integral into two pieces. The

first piece will become Ad times x(kT ). The second part will become

Bd times u(kT ).

=

∫ kT

0

eA((k+1)T −τ)Bu(τ ) dτ +

∫ (k+1)T

kT

eA((k+1)T −τ)Bu(τ ) dτ

=

∫ kT

0

eAT eA(kT −τ)Bu(τ ) dτ +

∫ (k+1)T

kT

eA((k+1)T −τ)Bu(τ ) dτ

= eAT x(kT ) +

∫ (k+1)T

kT

eA((k+1)T −τ)Bu(τ ) dτ .

■ In the remaining integral, note that u(τ ) is constant from kT to

(k + 1)T, and equal to u(kT ).

■ So, we let σ = (k + 1)T − τ ; τ = (k + 1)T − σ ; dτ = −dσ .

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–13

x((k + 1)T ) = eAT x(kT ) +

[∫ T

0

eAσ B dσ

]

u(kT )

or, xk+1 = eAT xk +

[∫ T

0

eAσ B dσ

]

uk.

■ So, we have a discrete-time state-space representation from the

continuous-time representation

xk+1 = Adxk + Bduk

where Ad = eAT , Bd =

∫ T

0

eAσ B dσ .

■ Similarly,

zk = Cxk + Duk.

• That is, Cd = C ; Dd = D.

Calculating Ad , Bd, Cd and Dd

■ Cd and Dd require no calculation since Cd = C and Dd = D.

■ Ad is calculated via the matrix exponential Ad = eAT . This is different

from taking the exponential of each element in AT .

■ If MATLAB is handy, you can type in

Ad=expm(A*T)

■ If MATLAB is not handy, then you need to work a little harder. Recall

from earlier that eAt = L
−1[(s I − A)−1]. So,

eAT = L
−1[(s I − A)−1]

∣
∣
t=T

,

which is probably the “easiest” way to work it out by hand.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–14

■ Now we focus on computing Bd. Recall that

Bd =

∫ T

0

eAσ B dσ

=

∫ T

0

(

I + Aσ + A2σ
2

2
+ . . .

)

B dσ

=

(

I T + A
T 2

2!
+ A2 T 3

3!
+ . . .

)

B

= A−1(eAT − I )B

= A−1(Ad − I )B.

■ If A is invertible, this method works nicely; otherwise, we will need to

perform the integral.

■ Also, in MATLAB,

[Ad,Bd]=c2d(A,B,T)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–15

2.4: Examples of discrete-time state-space models

The discrete-time NCP model

■ We might consider a discrete-time version of the continuous-time

nearly-constant-position model.

■ Recall, in continuous time,

ẋ(t) = 0x(t) + w(t)

z(t) = x(t) + v(t).

■ In discrete time,

xk+1 = e0T xk +

(∫ T

0

e0σ dσ

)

wk

zk = xk + vk,

where e0T = I and

∫ T

0

I dσ = T I .

■ Therefore,

xk+1 = xk + T wk

zk = xk + vk.

■ Note, wk is often scaled vis-à-vis w(t) so that a commonly seen form

of the discrete-time model is

xk+1 = xk + wk

zk = xk + vk.

■ We can use Simulink to simulate this discrete-time NCP model, much

like the continuous-time NCP model.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–16

■ Or, we can also simulate it easily with a MATLAB script.

maxT=200; % max. sim. time

x=zeros(2,maxT); % storage

x(:,1)=[0;0]; % initial posn.

for k=2:maxT, % simulate model

x(:,k)=x(:,k-1)+0.1*randn(2,1);

end

plot(x(1,:),x(2,:));

title('Discrete-time NCP sim.');

xlabel('x'); ylabel('y');
−2 −1.5 −1 −0.5 0 0.5

−0.5

0

0.5

1

1.5
Discrete­time NCP simulation

x-coordinate, ξk

y
-c

o
o
rd

in
a
te

,
η

k

Example: The discrete-time NCV model

■ Similarly, we might consider a discrete-time version of the

continuous-time nearly-constant-velocity model.

■ Recall,

ẋ(t) =









0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0









︸ ︷︷ ︸

Ac

x(t) +









0 0

1 0

0 0

0 1









︸ ︷︷ ︸

Bc

w(t).

■ The discrete-time A matrix is A = eAcT

A = L
−1

{

(s I − Ac)
−1

}∣
∣
t=T

= L
−1

























s −1 0 0

0 s 0 0

0 0 s −1

0 0 0 s









−1
















∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=T

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–17

= L
−1























1/s 1/s2 0 0

0 1/s 0 0

0 0 1/s 1/s2

0 0 0 1/s























∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=T

=









1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
t=T

=









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









.

■ This can be verified in MATLAB using the symbolic toolbox,

syms T

Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];

expm(Ac*T)

■ The discrete-time B matrix may be found as before,

B =

∫ T

0

eAcσ Bc dσ =









T 2/2 0

T 0

0 T 2/2

0 T









.

■ This can also be verified in MATLAB using the symbolic toolbox,

syms sigma T

Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];

Bc = [0 0; 1 0; 0 0; 0 1];

z = expm(Ac*sigma);

B = int(z,0,T)*Bc;

■ Alternately, we can let MATLAB do even more of the heavy lifting

syms T

Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];

Bc = [0 0; 1 0; 0 0; 0 1];

[A,B] = c2d(Ac,Bc,T); % continuous to discrete

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–18

■ Note that we often state the discrete-time NCV model in terms of a

4-vector wk with rescaled components.

■ So, the overall discrete-time NCV model is

xk+1 =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









xk + wk

zk =

[

1 0 0 0

0 0 1 0

]

xk + vk.

■ Note, this is saying

ξk = ξk−1 + T ξ̇k−1 + noise

ηk = ηk−1 + T η̇k−1 + noise

which is an NCV equation.

■ We can simulate it easily with a MATLAB script.

maxT=200; % max sim time

x = zeros(4,maxT); % storage

% initial position, velocity

x(:,1) = [0;0.1;0;0.1];

T = 0.1; % sample period

A = [1 T 0 0; 0 1 0 0;

0 0 1 T; 0 0 0 1];

B = [T^2/2 0; T 0; 0 T^2/2; 0 T];

for k=2:maxT, % simulate model

x(:,k)=A*x(:,k-1)+B*randn(2,1);

end

plot(x(1,:),x(3,:));

title('Discrete-time NCV sim.');

xlabel('x'); ylabel('y');

−6 −4 −2 0 2 4
0

1

2

3

4

5

6
Discrete­time NCV simulation

x-coordinate, ξk

y
-c

o
o
rd

in
a
te

,
η

k

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–19

Example: The discrete-time coordinated-turn model

■ Similarly, it can be shown that the discrete-time coordinated turn

model is

xk =









1 sin(�T )/� 0 (cos(�T ) − 1)/�

0 cos(�T ) 0 − sin(�T )

0 (1 − cos(�T ))/� 1 sin(�T )/�

0 sin(�T ) 0 cos(�T )









xk−1

+









(1 − cos(�T ))/�2 (sin(�T ) − �T )/�2

sin(�T )/� (cos(�T ) − 1)/�

(�T − sin(�T ))/�2 (1 − cos(�T ))/�2

(1 − cos(�T ))/� sin(�T )/�









wk−1.

■ MATLAB code to implement this:

maxT = 200; % max simulation time

x = zeros(4,maxT); % reserve storage

x(:,1) = [0;0.1;0;0.1]; % initial posn, velocity

T = 0.1; W = 0.5; WT = W*T; % Use W as Omega

A = [1 sin(WT)/W 0 (1-cos(WT))/W; 0 cos(WT) 0 -sin(WT); ...

0 (1-cos(WT))/W 1 sin(WT)/W; 0 sin(WT) 0 cos(WT)];

B = [(1-cos(WT))/W^2, (sin(WT)-WT)/W^2; sin(WT)/W (cos(WT)-1)/W; ...

(WT-sin(WT))/W^2, (1-cos(WT))/W^2; (1-cos(WT))/W sin(WT)/W];

_

for k=2:maxT, % simulate model

x(:,k) = A*x(:,k-1) + ...

B*0.01*randn(2,1);

end

plot(x(1,:),x(3,:));

title('Discrete-time CT sim.');

xlabel('x'); ylabel('y');

−0.6 −0.4 −0.2 0 0.2
−0.2

0

0.2

0.4

0.6
Discrete­time CT simulation

x-coordinate, ξk

y
-c

o
o
rd

in
a
te

,
η

k

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–20

Comparing continuous-time and discrete-time models

■ Consider again the first example of this section of notes

ẋ(t) =

[

0 1

−k/m −b/m

]

x(t) +

[

0

1/m

]

u(t)

z(t) =
[

1 0

]

x(t).

■ We expect agreement between continuous-time and discrete-time

models at the sampling instants.

■ For simplicity, let k = b = m = T = 1. We can find,

Ad =

[

0.6597 0.5335

−0.5335 0.1262

]

and Bd =

[

0.3403

0.5335

]

.

■ Simulate both systems with the same input (u(t) constant over T )

Zero−Order
Hold

Unit Delay

z

1

States
Outputs

1
s

Chirp Signal

Cd

K*u

C

K*u

Bd

K*u

B

K*u

Ad

K*u

A

K*u

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

4

5

Time (s)

V
a
lu

e

Comparing CT states and DT states

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

Time (s)

V
a
lu

e

Comparing CT output and DT output

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–21

2.5: Continuous-time observability and controllability

■ If a system is observable, we can determine the initial condition of the

state vector x(0) via processing the input to the system u(t) and the

output of the system z(t).

■ Since we can simulate the system if we know x(0) and u(t) this also

implies that we can determine x(t) for t ≥ 0.

x(t) = eAt x(0) +

∫ t

0

eA(t−τ)Bu(τ ) dτ .

■ Therefore, it should not be surprising that a system must be

observable for the Kalman filter to work.

■ If we have a system modeled in state-space form

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) + Du(t),

and we have initial conditions z(0), ż(0), z̈(0), how do we find x(0)?

z(0) = Cx(0) + Du(0)

ż(0) = C(Ax(0) + Bu(0)
︸ ︷︷ ︸

ẋ(0)

) + Du̇(0)

= C Ax(0) + C Bu(0) + Du̇(0)

z̈(0) = C A2x(0) + C ABu(0) + C Bu̇(0) + Dü(0).

■ In general,

z(k)(0) = C Akx(0) + C Ak−1Bu(0) + · · · + C Bu(k−1)(0) + Du(k)(0),

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–22





z(0)

ż(0)

z̈(0)




 =






C

C A

C A2






︸ ︷︷ ︸

O(C,A)

x(0) +






D 0 0

C B D 0

C AB C B D






︸ ︷︷ ︸

T






u(0)

u̇(0)

ü(0)




 ,

where T is a (block) “Toeplitz matrix”.

■ Thus, if O(C, A) is invertible, then

x(0) = O
−1














z(0)

ż(0)

z̈(0)




 − T






u(0)

u̇(0)

ü(0)














.

■ We say that {C, A} is an observable pair if O is nonsingular.

■ One possible approach to determining the system state, directly from

the equations:

u(t) z(t)
A, B, C, D

u

u̇

ü

z

ż

z̈

11

ss

s2s2

−T

O
−1

x

x̂

■ The Kalman filter is a more practical observer that doesn’t use

differentiators.

■ Regardless of the approach, it turns out that the system must be

observable to be able to determine the initial state.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–23

CONCLUSION: If O is nonsingular, then we can determine/estimate the

initial state of the system x(0) using only u(t) and z(t) (and therefore,

we can estimate x(t) for all t ≥ 0).

ADVANCED TOPIC: If some states are unobservable but are stable, then

an observer will still converge to the true state, even though the initial

state x(0) may not be uniquely determined.

EXAMPLE: Two unobservable networks

(Redrawn)

1�

1�
1�1�

1�

1�
1F1F

1H1H

2�2�

x

x1x1

x2x2
z zzuu

■ In the first, z(t) = u(t) ∀ t .

• The state-space model output equation has C matrix equal to zero.

• Therefore, O = 0. Not observable.

◆ For whatever it is worth, the overall state-space model for this

circuit is

ẋ(t) = −
1

C
x(t) +

1

C
u(t)

z(t) = u(t).

■ In the second, if u(t) = 0, x1(0) 6= 0 and x2(0) = 0, then z(t) = 0 and

we cannot determine x1(0) (circuit redrawn for u(t) = 0).

Continuous-time controllability: Can I get there from here?

■ “Controllability” is a dual idea to observability. We won’t go into as

much depth here since it is not as important for our topic of study.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–24

■ Controllability asks the question, “can I move from any initial state to

any desired state via suitable selection of the control input u(t)?”

■ The answer boils down to a condition on a matrix called the

controllability matrix

C =
[

B AB · · · An−1B
]

.

TEST: If C is nonsingular, then the system is controllable.

EXAMPLE: Two uncontrollable networks.

1� 1�

1�

1�

1�

1�

1F 1F
x

x1 x2z

u u

■ In the first one, if x(0) = 0 then x(t) = 0 ∀ t . Cannot influence state!

■ In the second one, if x1(0) = x2(0) then x1(t) = x2(t) ∀ t . Cannot

independently alter state.

■ Controllability is studied in more depth in ECE5520: Multivariable

Control Systems I.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–25

2.6: More insight; discrete-time controllability and observability

Diagonal systems, controllability and observability

■ We can gain insight by considering a system in diagonal form

ẋ(t) =









λ1 0

λ2

. . .

0 λn









x(t) +









γ1

γ2

...

γn









u(t)

z(t) =
[

δ1 δ2 · · · δn

]

x(t) +
[

0

]

u(t).

u(t) z(t)

x1(t)

xn(t)

γ1

γn

δ1

δn

λ1

λn

∫

∫

...

■ When controllable? When observable?

O =









C

C A
...

C An−1









=









δ1 δ2 · · · δn

λ1δ1 λ2δ2 · · · λnδn

. . .

λn−1
1 δ1 λn−1

2 δ2 · · · λn−1
n δn









Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–26

=









1 1 · · · 1

λ1 λ2 · · · λn

. . .

λn−1
1 λn−1

2 · · · λn−1
n









︸ ︷︷ ︸

Vandermonde matrixV









δ1 0

δ2

. . .

0 δn









.

■ Singular?

det{O} = (δ1 · · · δn) det{V} = (δ1 · · · δn)
∏

i< j

(λ j − λi).

CONCLUSION: Observable ⇐⇒ λi 6= λ j , i 6= j and δi 6= 0 i = 1, · · · , n.

u(t)u(t) z(t)z(t)

x1(t) x1(t)

x2(t) x2(t)

1

s + 1

1

s + 1

1

s + 1

1

s + 2

■ If λ1 = λ2 then not observable. Can only “observe” the sum x1 + x2.

■ If δk = 0 then cannot observe mode k.

■ What about controllability? Analysis is basically the same: just switch

the roles of δs and γ s.

CONCLUSION: Controllable ⇐⇒ λi 6= λ j , i 6= j and γi 6= 0 i = 1, · · · , n.

u(t)u(t) z(t) z(t)

x1(t)x1(t)

x2(t) x2(t)

1

s + 1

1

s + 1

1

s + 1

1

s + 2

■ If λ1 = λ2 then not controllable. Can only “control” the sum x1 + x2.

■ If γk = 0 then cannot control mode k.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–27

Discrete-time controllability

■ Similar concept for discrete-time. Form the discrete-time

controllability matrix (where we use the discrete-time A and B

matrices)

C =
[

B AB · · · An−1B
]

.

■ The matrix C is invertible iff the system is controllable.

Discrete-time observability

■ Can we reconstruct the state x0 from the output zk and input uk?

zk = Cxk + Duk

z0 = Cx0 + Du0

z1 = C [Ax0 + Bu0] + Du1

z2 = C
[

A2x0 + ABu0 + Bu1

]

+ Du2

...

zn−1 = C
[

An−1x0 + An−2Bu0 + · · · + Bun−1

]

+ Dun−1.

■ In vector form, we can write








z0

z1

...

zn−1









=









C

C A
...

C An−1









︸ ︷︷ ︸

O

x0 +









D 0 · · · 0

C B D · · · 0

C AB C B · · · 0
...

... . . . D









︸ ︷︷ ︸

T









u0

u1

...

un−1









.

■ So,

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–28

x0 = O
−1











z0

...

zn−1




 − T






u0

...

un−1









 .

■ If O is invertible, x0 may be reconstructed with any zk, uk. We say that

{C, A} form an “observable pair.”

■ Do more measurements of zn, zn+1, . . . help in reconstructing x0? No!

(Caley–Hamilton theorem). So, if the original state is not “observable”

with n measurements, then it will not be observable with more than n

measurements either.

■ Since we know uk and the dynamics of the system, if the system is

observable we can determine the entire state sequence xk, k ≥ 0

once we determine x0

xn = Anx0 +

n−1
∑

i=0

An−1−i Buk

= An
O

−1











z0

...

zn−1




 − T






u0

...

un−1









 + C






un−1

...

u0




 .

■ A perfectly good observer (no differentiators...), but still not nearly as

good as the Kalman filters we will develop.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, STATE-SPACE DYNAMIC SYSTEMS 2–29

Appendix: Plett notation versus textbook notation

■ For a continuous-time state-space model, I use:

ẋ(t) = A(t)x(t) + B(t)u(t) + Bw(t)w(t)

z(t) = C(t)x(t) + D(t)u(t) + Dv(t)v(t).

■ For a continuous-time state-space model, Simon uses:

ẋ(t) = A(t)x(t) + B(t)u(t) + w(t)

y(t) = C(t)x(t) + v(t).

■ For a continuous-time state-space model, Bar-Shalom uses:

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)ṽ(t)

z(t) = C(t)x(t) + w̃(t).

■ For a discrete-time state-space model, I use:

xk+1 = Akxk + Bkuk + wk

zk = Ckxk + Dkuk + vk.

■ For a discrete-time state-space model, Simon uses:

xk+1 = Fkxk + Gkuk + 3kwk

yk = Ckxk + vk.

■ For a discrete-time state-space model, Bar-Shalom uses:

x(k + 1) = F(k)x(k) + G(k)u(k) + Ŵ(k)v(k)

z(k) = H(k)x(k) + w(k).

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett


