
ECE5550: Applied Kalman Filtering 1–1

INTRODUCTION TO KALMAN FILTERS

1.1: What does a Kalman filter do?

� A Kalman filter is a tool—an algorithm usually implemented as a
computer program—that uses sensor measurements to infer the
internal hidden state of a dynamic system.

� Some examples help to give an idea of how this might be useful:

• Using radar angle and range measurements in an air-traffic control
system to determine the three-dimensional location and speed of
aircraft approaching an airport (tracking);

• Using live-motion video capture of marker dots placed on actors to
track physical movement and aid creation of animation in films;

• Using measurements of external electrical and thermal conditions
of battery cells to determine internal “state of charge” and “state of
health” of a hybrid electric vehicle battery pack;

• Using measurements of the earth’s magnetic field, GPS, and
accelerations to determine my own position, orientation, and
velocity in three dimensions (navigation);

• Using financial market data to predict future prices of traded
securities and commodities;

and many others.
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� Because the Kalman filter is a tool, it is very versatile. Its application
areas are very diverse. Caution: If all you have is a hammer,
everything looks like a nail! Same with Kalman filters!

� Kalman filters estimate the state of a dynamic system.

� A system’s state is a vector of values that completely summarizes the
effects of the past on the system.

� An example is the present position, orientation, linear and angular
velocity of an aircraft: how the aircraft came to be in this state is not
relevant; all future behavior depends only on the present state and
future inputs (engine thrust, wind, etc.) to that aircraft.

� We cannot generally measure the state of a dynamic system directly.
Even if we can, we often choose not to because it is too expensive or
too complex.

� Instead, we make measurements that are somehow related to the
state. They are linear or nonlinear functions of members of the state.

� Consider the following model of a linear dynamic system

xk = Axk−1 + Buk−1 + wk−1

zk = Cxk + Duk + vk.

� Here:

• xk is the system state vector at time index k.

• uk is the measurable (deterministic) input to the system.

• wk is the disturbance or process noise: an unmeasurable input that
affects the state.

• zk is a sensor measurement, somehow related to xk.
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• vk is sensor noise that corrupts the measurement.

• A, B, C , and D are matrices, specific to the system we are
observing, that describe its dynamic behavior.

• The first equation is the “state equation” or “process equation” that
describes how the state evolves over time.

• The second equation is the “output equation” that describes how
the measured output relates to the state.

� We will see many models of this (and similar) form this semester.

� For example, consider the one-dimensional motion of a rigid object.

• The state comprises position pk and velocity (speed) sk[
pk

sk

]
︸ ︷︷ ︸

xk

=
[

1 �T
0 1

]
︸ ︷︷ ︸

A

[
pk−1

sk−1

]
︸ ︷︷ ︸

xk−1

+
[

0
�T

]
︸ ︷︷ ︸

B

uk−1 + wk−1,

where �T is the time interval between iterations k − 1 and k.

• The measurement may be a noisy position estimate

zk =
[

1 0
]

︸ ︷︷ ︸
C

[
pk

sk

]
+ vk.
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1.2: The basic idea of the Kalman filter

� Our goal is generally to estimate as well as we can (in some sense)
the values of state vector xk given all past measurements z0, z1, . . . zk .

� A helpful way to think about the problem is in terms of conditional
probabilities

xk−2 xk−1 xk

zk−2 zk−1 zk

f (zk | xk)

f (xk | xk−1)

Observed
Unobserved

� The observations allow us to “peek” at what is happening in the true
system. Based on observations and our model, we estimate the state.

� Discrete-time Kalman filters (the focus of this course) repeatedly
execute two steps:

1. Predict the present state value based on all past available data.
For example, a linear Kalman filter computes

x̂−
k = Ax̂+

k−1 + Buk−1,

where x̂−
k is the prediction of xk.

2. Estimate the present state value, by updating the prediction based
on all presently available data. For example, a linear Kalman filter
computes

x̂+
k = x̂−

k + L(zk − (Cx̂−
k + Duk)).

� A very straightforward idea. But. . .

• What should L be?

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2009, 2014, 2016, 2018, Gregory L. Plett



ECE5550, INTRODUCTION TO KALMAN FILTERS 1–5

• How do we make this optimal?

• What about nonlinear systems?

• What if we don’t know uk (as in the tracking application)?

� There are lots of nuances. You can “learn” KF in a week, but you can
also spend years exploring the breadth and depth of the subject.

� Our focus will be on learning the most useful forms of KF and how to
apply them robustly to real problems.

The background to what we will study in this course

� Because a Kalman filter is a kind of estimator, we will need to study
some ideas from estimation theory.

� Because disturbances and sensor noises are not deterministic, we
will need to already know basic (undergraduate) probability (really
well) and study some ideas from random process theory.

� Because the models we use are based very heavily on matrix math,
we will need to already know the mechanics of linear algebra (really
well) and we will need to study some ideas from linear and nonlinear
system theory.

Kalman

Uncertainty Analysis
(mean, covariance)

Models

Lowest Minimum
Error/uncertainty

Minimize
Error/uncertainty

Calculate (mean, covariance)

Mathematical Foundations

Dynamic
Systems

Probability
Theory

Least
Squares

Least Mean
Squares

Stochastic
Systems

Filtering
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� It is possible to go really deep into any one of these individual
areas—the more background you have the better—but our focus will
be on developing methods that we can apply to real problems.

� The lectures will be primarily theoretical, and the homework/projects
will be primarily applications.

� Some knowledge of the Laplace, z, and Fourier transforms is helpful
to understand certain topics covered in lecture, but will not be critical
for implementing Kalman filters and succeeding in this course.

� We will cover only the background material that we will ultimately
apply. (The textbooks have much more information that can add to
the richness of your experience in this course.)

� Be forewarned: You will see that I use different mathematical notation
from the textbooks.

• There are multiple conventions in common use. I choose the most
compact one that is most compatible with other courses I teach.

• I include a glossary of notation in each chapter of notes to aid your
interpretation/translation of one system of notation versus another.

� We will make extensive use of MATLAB.

• Prior experience with MATLAB is not necessary. We will teach
what is needed as we go.

• However, general programming knowledge is very important
(variables, procedures, conditions, loops. . . ).
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1.3: Examples of applications of Kalman filtering

� Knowledge of how KF works is necessary to be able to adapt it to
new situations.

� It is not generally sufficient to simply implement a toolbox function.

� The following examples are ones that my students and I have been
directly involved with.

OBJECTIVE: Track marker dots on actors.

� State: x , y position and velocity of dots in frame.

� Observation: x , y positions of dots in frame (unlabeled).

� Issues: Data association, tracking when dots are obscured.

OBJECTIVE: Localize bad guys.

� State: x , y position and velocity.

� Observation: Radar azimuth/elevation (maybe range).
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� Issues: Nonlinear relationship between measurements and
position; measurements arriving to KF out-of-sequence.

OBJECTIVE: SOC estimation for battery cells.

� State: SOC, polarization voltages, hysteresis voltages.
� Observations: Current, temperature, and voltage under load.
� Issues: Lack of available simple battery model, nonlinear

dynamics and measurement.

OBJECTIVE: SOH estimation for battery cells.

� State: Resistance and capacity of battery cells.
� Observations: Current, temperature, and voltage under load.
� Issues: Parameter estimation; not state estimation.

OBJECTIVE: Localize myself (navigation).

� State: Position, orientation.
� Observations: Accelerations, rotations, GPS fixes.
� Issues: Correct for drift of IMU using GPS.
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Next steps

� Review of matrix algebra (see Appendix A).

� Modeling systems in “state space form.”

� Review of random processes.

� Kalman filter derivation.

� Then, more advanced topics: How do we make this thing actually
work?
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