
ECE4540/5540: Digital Control Systems 6–1

DIGITAL FILTER STRUCTURES AND

QUANTIZATION EFFECTS

6.1: Direct-form network structures

■ So far, we have assumed infinite-precision arithmetic when

implementing our digital controllers.

■ In reality, this is not possible.

• If we are lucky, we have the luxury of using floating-point arithmetic

(single- or double-precision).

• Often times, however, we will be restricted to fixed-point arithmetic

due to cost constraints.

• Both suffer quantization and overflow effects (although to a much

lower degree in floating-point implementations).

■ We look at these real-world considerations in this unit of notes.

Canonical network structures

■ The first consideration is how to implement a transfer function D(z) as

a “network” of primitive arithmetic operations: add, multiply, delay.

• For software realizations, the network corresponds to a flowchart

of the filter algorithm.

• For hardware realizations, the network describes the actual circuit

elements and their interconnection.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–2

■ We will see that the performance of a digital implementation is

affected substantially by the choice of network structure.

■ There are a number of named “canonical” network structures for

implementing a transfer function, all of which have

• N delay elements,

• 2N (2-input) adders,

• 2N + 1 multipliers.

Direct-form II canonical form

■ To obtain the so-called “direct forms” of filter structure, we start with

the familiar LCCDE equation:
N∑

k=0

ak y[n − k] =

M∑

m=0

bmx[n − m]

■ For convenience,

• Assume a0 = 1 (We can scale other ak and bk so that this is true).

• Assume N = M (We can always make some coefficients ak or bk

equal to zero to make this true).

■ Then, we get that the transfer function is equal to:

H(z) =

∑N
n=0 bnz−n

1 +
∑N

n=1 anz−n
=

1

1 +
∑N

n=1 anz−n
×

N∑

n=0

bnz−n.

■ We can realize this transfer function as a cascade of the denominator

dynamics followed by the numerator dynamics:

• The denominator dynamics implement a feedback path with

w[n] = x[n] − a1w[n − 1] − a2w[n − 2] − · · · − aNw[n − N].

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–3

• The numerator dynamics implement a feedforward path with

y[n] = b0w[n] + b1w[n − 1] + b2w[n − 2] + · · · + bNw[n − N].

■ We can realize the

overall transfer

function as shown:

x[n] y[n]w[n]
+

+

++

+

+

z−1

z−1

z−1z−1

z−1

z−1

...

−a1

−a2

−aN

b0

b1

b2

bN

■ Notice that it is

possible to combine

the delay elements

and end up with a

simpler structure:

x[n] y[n]

+

+

+

+

+

+

z−1

z−1

z−1

...... ...

−a1

−a2

−aN

b0

b1

b2

bN

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–4

Transpose networks and the direct-form I canonical form

■ For any given network with a certain transfer function H(z), we can

generate a “transpose” of the network that has a different structure

but the same transfer function.

■ To obtain the transpose, follow these steps:

1. Start with the original network structure.

2. Replace all data flows with flows in the reverse direction.

3. Replace all summation nodes with branch nodes and all branch

nodes with summations.

4. Exchange x[n] and y[n].

x[n] y[n]

+

++

+

z−1

z−1

−a1

−a2

b1

b2

⇐⇒

x[n] y[n]
+

+

+

z−1

z−1

−a1

−a2

b1

b2

■ If we take the transpose of a “Direct Form II” network (example on

left), we obtain a “Direct Form I” network structure (example on right).

■ The direct forms are simple to grasp and to implement, but have

some serious problems for high-order transfer functions.

■ Therefore, we look at several other canonical forms.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–5

6.2: Parallel and cascade-form network structures

Parallel canonical forms I and II

■ To obtain the “Parallel Forms” of filter structure, re-write H(z) as a

partial fraction expansion:

H(z) = γ0 +

L∑

i=1

γ0i + γ1i z
−1

1 + α1i z−1 + α2i z−2

where L =

⌊
N + 1

2

⌋
.

■ If N is odd, there will be one first-order term in the summation.

■ The structures of the two parallel forms look like:

PARALLEL FORM I:

x[n] y[n]

+

++

z−1

z−1

......

γ0

γ01

γ11 −α11

−α21

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–6

PARALLEL FORM II:

x[n] y[n]
++

+

+

z−1

z−1

......

γ0

γ01

γ11−α11

−α21

■ Again, these two forms are transposes of each other.

■ Also, they have the same number of delays, (two input) adders and

multipliers as the direct form implementations.

Cascade canonical forms I and II

■ To obtain the “Cascade Forms” of filter structure, re-write H(z) as a

product of second-order polynomials:

H(z) = b0

L∏

i=1

1 + β1i z
−1 + β2i z

−2

1 + α1i z−1 + α2i z−2

where L =

⌊
N + 1

2

⌋
.

■ If N is odd, there will be one first-order term in the product

(α2L = β2L = 0.)

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–7

■ The structures of the two cascade forms look like:

CASCADE FORM I:

x[n] y[n]. . .

++

+ +

++

z−1

z−1 z−1

z−1

b0

β11

β21

−α11

−α21

β1L

β2L

−α1L

−α2L

CASCADE FORM II:

x[n] y[n]. . .

+

++

++ +

++

z−1

z−1

z−1

z−1

b0

β11

β21

−α11

−α21

β1L

β2L

−α1L

−α2L

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–8

6.3: Implications of fixed-point arithmetic

■ Now that we have studied the most common filter structures, we

examine some of the real-life implications of using each structure.

■ There are tradeoffs: To determine which is best for a particular case,

there are four different factors that we must look at:

1. Coefficient quantization: The filter parameters are quantized such

that they are implemented in finite precision.

• Thus, the filter we implement is not exactly H(z), the desired

filter, but Ĥ (z), which we hope is “close” to H(z).

• We can check whether Ĥ(z) meets the control design

specifications, and modify it if necessary.

• The structure of the filter network has a drastic effect on its

sensitivity to coefficient quantization.

2. Signal quantization: Rounding or truncation of signals in the filter.

• It occurs during the operation of the filter and can best be viewed

as a random noise source added at the point of quantization.

3. Dynamic range scaling: We sometimes need to perform scaling to

avoid overflows (where the signal value exceeds some maximum

permitted value) at points in the network.

• In cascade systems, the ordering of stages can significantly

influence the attainable dynamic range.

4. Limit cycles: These occur when there is a zero or constant input,

but there is an oscillating output.

• Note that this arises from nonlinearities in the system

(quantization), since a linear system cannot output a frequency

different from those present at its input.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–9

Binary representations of real numbers

■ There are two basic choices (with some variations) when

implementing non-integer numbers on a digital computer:

floating-point and fixed-point representation.

■ The fixed-point number system we will consider uses B + 1 bits:

x̂ = Xm

(

−b0 +

B∑

i=1

bi2
−i

)

= Xmx̂B.

■ We represent our number in binary as: x̂B = b0.b1b2b3 · · · bB.

• If b0 = 0, then 0 ≤ x̂ ≤ Xm(1 − 2−B).

• If b0 = 1, then −Xm ≤ x̂ < 0.

■ The “step size” of quantization is the smallest interval between two

quantized numbers = Xm2−B = $.

■ The fixed-point conversion error is: e = Xmx̂B − x .

• For twos-complement truncation, −$ < e ≤ 0;

• For twos-complement rounding −$/2 < e ≤ $/2.

■ Floating point arithmetic splits the B + 1 bits into “mantissa” bits M

and “exponent” bits E such that

x̂ = M2E where − 1 ≤ |M| < 1.

■ The exponent basically allows moving the decimal point (actually,

binary point) around in the number.

• With a fixed number of bits, floating-point representation allows

much greater dynamic range of the values it can represent.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–10

• However, mathematical operations using floating point arithmetic

are much harder to implement.

◆ Hardware implementations require significantly more logic than

fixed-point implementations;

◆ Software implementations require significantly more operations,

so run much more slowly on the same processor.

■ Floating point arithmetic, although much harder to implement, poses

less of a problem to the digital filter designer than fixed point

arithmetic. Why?

EXAMPLE: Multiply 13/16 by 9/128.

■ Note,
13

16
=

(
1

2
+

1

4
+

1

16

)
× 20 and

9

128
=

(
1

2
+

1

16

)
× 2−3.

Fixed Point Floating Point

0.11010000 0.11010 000

×0.00010010 ×0.10010 101

110100000 = 0.01110101 101

110100000000 = 0.11101 100

= 0.0000111010100000

■ Comments:

• To store the result without losing precision, fixed point requires 12

bits but floating point requires 11 bits.

• Generally, floating-point results will be much better than fixed-point

results: double-precision math almost never gives problems to the

control engineer.

• Hardware DSP chips exist with floating point arithmetic built in.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–11

6.4: Coefficient quantization effects

Direct-form implementations

■ Recall that for a Direct Form implementation of an IIR system, we

write the transfer function of the system as:

H(z) =

∑N
k=0 bkz−k

1 +
∑N

k=1 akz−k
.

■ In our filter designs so far, we have assumed that the coefficients ak

and bk of the filters can be arbitrary real numbers.

■ To realize this system we need to quantize the coefficients ak, and bk

to fit our maximum precision.

■ Thus, the transfer function that we actually realize is:

Ĥ(z) =

∑N
k=0 b̂kz−k

1 +
∑N

k=1 âkz−k
.

■ The question is: “What effect does this have on our system’s

implementation?”

■ Alternately, “What happens to the poles and zeros of the system

when we quantize the coefficients?”

• Clearly, the poles and zeros realized by the system will be the

poles and zeros of Ĥ(z), not of H(z).

• The zeros are obtained by factoring the numerator of Ĥ(z), and the

poles are obtained by factoring the denominator of Ĥ(z).

◆ We see that the position of one particular zero is affected by all

of the coefficients b̂k, and that the position of a particular pole is

affected by all of the coefficients âk.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–12

◆ Thus, the effect of quantizing a specific coefficient is not isolated

in any way, but affects all poles or zeros in the function.

• A non-obvious result, which may be obtained with a little math, is

that closely clustered poles and zeros are most affected.

◆ Thus, narrow-band filters of any sort will be most strongly

changed.

QUESTION: So, what do we do about this?

ANSWER: We try to control the effect by localizing it using parallel or

cascade forms.

Coefficient quantization in a 2nd-order direct-form section

■ Cascade and parallel form implementations are made up of sections

of cascaded or parallel second-order direct-form filters.

■ Thus, to be able to see how coefficient quantization affects these filter

forms, we must first examine how it affects the 2nd-order section.

■ A second-order section with complex poles can be written as:

H(z) =
1

(1 − re jθz−1)(1 − re− jθz−1)
=

1

(1 − 2r cos θ z−1 + r2z−2)
.

■ These can be realized by the filter form

on the right.

■ The coefficients that require

quantization are: r cos θ and −r2.

■ Note: If both r2 < 1 and |r cos θ | < 1

then the system is stable.

x[n] y[n]

+

+

z−1

z−1

2r cos θ

−r2

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–13

QUESTION: Why do we quantize r cos θ and not 2r cos θ?

ANSWER: The multiply by 2 can be performed exactly by a shift register.

EXAMPLE: To see which poles can be implemented by this structure

using fixed-point arithmetic, suppose that four bits are available.

■ The coefficient structure is then a.bcd.

■ The positive values we can represent are:

0.001, 0.010, 0.011 . . . and 0.111. (We can

similarly compute negative values.)

■ So, r cos θ can take on these eight values,

and so can r2.

■ The intersection of allowable coefficients

give us the grid shown. 0 0.5 1
0

0.2

0.4

0.6

0.8

1

■ Observations:

• Narrow-band lowpass and narrow-band highpass filters are most

sensitive to coefficient quantization, and thus require more bits to

implement.

• Sampling at too high a rate is bad, since it pushes poles closer to

+1 (where the implementable pole density is smallest.)

• Sensitivity increases for higher-order direct form realizations.

Poles may end up outside the unit circle after rounding—unstable!

SOLUTION: Rather than implementing the second-order section in direct

form, we can choose an alternate network structure. For example, the

coupled form implementation is shown,

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–14

■ All of the coefficients of this

network are of the form r cos θ

and r sin θ .

■ The quantized poles are at in-

tersections of evenly spaced

horizontal and vertical lines.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x[n]

y[n]

w[n]

+

++

z−1

z−1r cos θ

r cos θ

r sin θ

−r sin θ

■ The price we pay for this improved pole distribution is an increased

number of multipliers: four instead of two.

Coefficient quantization in cascade- and parallel-form implementations

■ Cascade- and parallel-form realizations consist of combinations of

second-order direct-form systems.

■ However, in both cases, each pair of complex-conjugate poles is

realized independently of all the other poles.

■ Thus, the error in a particular pole pair is independent of its distance

from the other poles of the transfer function.

• For the cascade form, the same argument holds for the zeros

since they are realized as independent second-order factors.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–15

◆ Thus the cascade form is generally much less sensitive to

coefficient quantization than the equivalent direct-form

realization.

• The zeros of the parallel form function are realized implicitly.

◆ They result from combining the quantized second-order sections

to obtain a common denominator.

◆ Thus, a particular zero location is affected by quantization errors

in the numerator and denominator coefficients of all the

second-order sections.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–16

6.5: A2D/D2A signal quantization effects

■ In a typical digital filtering system there will be multiple sources of

signal quantization:

x(t) y(t)16-bit16-bit 32-bit

A2D DSP D2A

Quantization in the A2D conversion process

■ The first source of quantization error is the A2D conversion process.

■ We can quantize a signal in at least three different ways:

Rounding Trunc (twos-complement) Trunc (sign/mag)

−
$

2

$

2
−$ 0 −$ $

1

$

1

$ 1

2$

■ Rounding is the most common as it generally gives the best results.

■ The limits ±Xm of the quantized range might be selected using known

maximum values of a particular input signal.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–17

■ Alternately, we might choose Xm based step size based on the

variance of the input signal.

• Assume a random input with variance σ 2 and zero mean.

• Then, we might let Xm = 4σ .

• Any sample greater in magnitude than 4σ gets quantized to the

closest bin (this is called “four sigma scaling”.)

• We could have chosen Xm = 3σ (three-sigma scaling), or even

Xm = 5σ (five-sigma scaling).

■ For a given number of quantizer bins (and therefore bits in the

representation), we are trading off quantization distortion in the

overload or granular regions.

Granular RegionOverload Region Overload Region

[k]

4σ 4σ
■ The quantizer error e[n] is equal to

x[n] − xc(nT). If we assume minimal

overload error, we can model e[n] as:

+xc(nT) x[n]

e[n]

where e[n] is a random process having probability density function:

−
$

2

$

2

1

$

■ The mean of the quantization error is:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–18

E
[
e[n]

]
=

∫ $/2

−$/2

e
1

$
de =

1

$
·

e2

2

∣∣∣∣
$/2

−$/2

=
1

$

[
$2

8
−

$2

8

]
= 0.

■ The variance (power) of the quantization error is:

E
[
(e[n] − e[n])2

]
=

∫ $/2

−$/2

e2 1

$
de =

$2

12
.

■ The quantization error e[n] and the quantized signal x[n] are

independent.

■ e[n] does depend on xc(nT), but for reasonably complicated signals

and for small enough $, they are considered uncorrelated.

■ What is the signal to noise ratio?

■ The signal power is σ 2 =

(
Xm

4

)2

(assuming four-sigma scaling). The

quantizer error power is E[e2] =
$2

12
.

■ Now, if we have B + 1 bits to store the quantized result, then there will

be 2B+1 bins of width $.

$ =
2Xm

2B+1
= Xm2−B

■ Therefore,

E[e2] =
X2

m

12
· 2−2B.

■ The signal to noise ratio is then

SNR = 10 log10

[(
Xm

4

)2

X2
m

12
· 2−2B

]

= 10 log10

[
22B

]
+ 10 log10

[
12/16

]

= 6.02B − 1.25 [dB]

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–19

■ So, for each additional bit, we get a 6.02 dB increase in SNR.

■ For 16 bits (B = 15), SNR=89 dB.

■ It would seem that changing the k-sigma scaling of the quantizer will

only change the 1.25 dB constant, but recall that we assumed

minimal overload error.

• Changing the k-sigma scaling will change the pdf of the error

process, and make our approximation less (or more) realistic. The

formula is good for values of k around four.

Quantization in the D2A conversion process

■ Now, let’s consider the quantizer in the D2A converter.

■ Assuming that we quantize the internal 32-bit data to 16 bits to be

used by the D/A converter, the quantization noise can be

approximated by a continuous random process uniformly distributed

between half of the step size, similar to the case of the A2D converter.

■ This lowers the total SNR by another 3dB. (To calculate total SNR, all

the noise powers are added up first, and then the ratio is calculated.

3dB simply means that the signal-to-noise power ratio is halved, as

the noise power is doubled.)

SNR =
S

N1 + N2 + . . .

■ So, if we started out with 89 dB because we performed 16 bit

quantization with our sampler, then the resulting SNR after D2A

conversion is 86 dB.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–20

6.6: DSP-calculation signal quantization effects

■ The second quantization noise source, introduced by rounding and

truncation inside a DSP, is more complicated.

■ First, let’s take any two numbers, a and b, of 16 bits each.

■ If we multiply them together, ab will need at most 31 bits to represent

the result without losing precision.

■ Let’s look at quantization noise in IIR filters:

31

16

16 16

16

x[n] y[n]
+

z−1

Q

■ IIR filters cannot be implemented with perfect precision.

• A quantizer must be placed at the output of a multiplier to limit the

number of bits in a recursive calculation.

• We need to quantify this quantization noise in order to determine

the number of bits needed to satisfy a given SNR.

■ FIR filters, on the other hand, can be implemented without

quantization noise, if the number of bits increases with the filter order.

• We seldom do this, however as the A2D and D2A converters have

already introduced some quantization noise.

• There is no point to enforce perfect precision inside a DSP when a

non-zero noise power already exists.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–21

16

31

16

31
16

31

16

31

16

31

16

31

16

31

x[n]

y[n]
+++++

z−1 z−1 z−1 z−1

■ There are two effects to be considered when we design a quantizer

for multipliers and accumulators:

1. Quantizer step size should be kept as small as possible because

of the square term in quantization noise power, $2/12.

2. Xm should be large enough to prevent overflow.

■ Of course, these two effects contradict each other and represent a

design trade-off.

EXAMPLE: Consider the following second-order section:

x[n] y[n]
++

++

z−1z−1

z−1 z−1

QUESTION: How many quantization noise sources are there in the filter?

ANSWER: It depends on where the quantizers are placed. We can have

either 1 or 5.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–22

■ Assuming we have M noise sources, then the total noise power will

be M × $2/12.

■ To calculate the noise power after filtering, we need to borrow some

math from random processes.

• The Fourier transform of a random process doesn’t exist, but the

Fourier transform of the autocorrelation function of a stationary

random process does exist, called the power spectrum density.

• The power spectrum density at the output of a filter is the

multiplication of the power spectrum density of the input and the

square of the filter frequency response, as shown in the following

figure:

(tempor

x[n] y[n]

PX(e jω) PY (e jω) = PX(e jω)|H(e jω)|2
H(e jω)

■ The noise power at the output of a filter is the integration of its power

spectrum density:

σ 2
f = σ 2

e ×
1

2π

∫ π

−π

∣∣H(e jω)
∣∣2 dω

where we have assumed that the input noise power spectrum density

is a constant variance σ 2
e (a white random process with zero mean).

■ By Parseval’s Theorem,

1

2π

∫ π

−π

∣∣H(e jω)
∣∣2 dω =

∞∑

n=−∞

|h[n]|2

so: σ 2
f = σ 2

e

∞∑

n=−∞

|h[n]|2.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–23

■ The output noise power can be calculated by either equation, as an

integral of the power spectrum density over all frequencies, or as a

scaled infinite summation of the impulse response squared.

■ Usually it is easier to calculate the infinite summation if the impulse

response takes on a closed form.

EXAMPLE: Consider the following filter:

x[n] y[n]w[n]
+

z−1

a

b

■ We first find the transfer function from w[n] to y[n]

y[n] = w[n] + ay[n − 1]

Y (z)(1 − az−1) = W (z)

Hyw(z) =
Y (z)

W (z)
=

1

1 − az−1
=

z

z − a
.

■ We next find the impulse response from w[n] to y[n]

hyw[n] = an1[n].

■ Next, the infinite summation of the squared absolute value of the

impulse response
∞∑

n=−∞

|an1[n]|2 =

∞∑

n=0

|a2|n =
1

1 − a2
.

■ The noise power at the filter output is:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–24

2︸︷︷︸
2

sources

×
X2

m2−2B

12︸ ︷︷ ︸
σ 2

e

×
1

1 − a2︸ ︷︷ ︸∑
|h[n]|2

EXAMPLE: Consider the following filter:
x[n] y[n]w[n]

+

+ +

+

z−1

z−1

■ The noise power at the filter output is:

2 ×
X2

m2−2B

12

∞∑

n=−∞

|hyx[n]|2 + 3 ×
X2

m2−2B

12

■ To calculate the signal power, we use the same concept of power

spectrum density since the input signal is merely another random

process.

■ The signal power at the output of a filter is usually expressed as:

σ 2
s = σ 2

input

∞∑

n=−∞

|h[n]|2

where σ 2
input is the input signal power. [Input assumed “white” too!]

■ The total SNR is the ratio of the signal power to the noise power.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–25

6.7: Dynamic range scaling: Criteria

■ Overflow occurs when two numbers are added and the result requires

more than B + 1 bits to store.

EXAMPLE: For four-bit quantization:

0.111 positive number (7/8)

+ 0.011 positive number (3/8)

1.010 negative number (−6/8)

■ In this overflow situation we can either “clip” the result or leave it as is.

■ To clip the result, replace a positive result with 0.1111. . . ; a negative

result with 1.00000. . . .

■ The input/output relationship of a

clipping (saturating) quantizer is:

■ We would like to ensure that

saturation does not occur.

Scaling criterion #1: Bounded-input-bounded output.

■ In this criterion we want to make sure that every node in the filter

network is bounded by some number.

■ If we follow the convention that each number represents a fraction of

unity (with a possible implied scaling factor) each node in the network

must be constrained to have a magnitude less than 1 to avoid

overflow.

■ Pick any node in the network w[n]. Its response can be expressed as:

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–26

w[n] =

∞∑

m=−∞

x[n − m]hwx[m]

|w[n]| =

∣∣∣∣∣

∞∑

m=−∞

x[n − m]hwx[m]

∣∣∣∣∣

≤

∞∑

m=−∞

|x[n − m]hwx[m]|

≤ xmax

∞∑

m=−∞

|hwx[m]|.

■ To make sure that |w[n]| < 1, we need to introduce a scaling factor s

such that:

xmaxs ≤
1∑∞

m=−∞ |hwx[m]|

■ s should always be less than 1.

■ If s is greater than 1, then xmax is less than 1, implying that the

previous stage didn’t use the full dynamic range available. Dynamic

range is wasted, reducing signal power unnecessarily.

■ The design of the scaling factor is therefore to always give the signal

the maximum dynamic range possible, as the quantization noise

power is a constant once the step size $ is determined.

■ Bounded-input-bounded-output criterion usually results in a very

small s, which reduces the signal power and therefore the overall

SNR.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–27

Scaling criterion #2: Frequency-response criterion.

■ This criterion assumes we are inputting a narrow-band signal

x[n] = xmax cos ω0n to the filter.

■ To avoid overflow at node w[n] given this input signal, we need to

ensure that

|w[n]| = |Hwx(e
jω0)|xmax ≤ 1.

■ The scaling factor s should be chosen so that:

xmaxs ≤
1

max0≤ω≤π |Hwx(e jω)|
.

■ Because max
0≤ω≤π

|Hwx(e
jω)| ≤

∞∑

m=−∞

|hwx[m]|, the scaling factor derived

using Criterion #1 is always smaller than the scaling factor derived

using Criterion #2.

EXAMPLE: Consider the following simple filter. Assuming that xmax = 1,

scale the input so that |y[n]| is always less than 1.

x[n] y[n]w[n]
+

z−1

a

b

■ To find the scaling factor using Criterion #1, we need to calculate the

summation of the absolute values of the impulse response:

s =
1∑∞

m=−∞ |h[m]|
=

1∑∞
m=0 |b||a|m

=
1 − |a|

|b|
.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–28

EXAMPLE: Find the output SNR

■ The output noise power is simply 2 × $2/12 × 1/(1 − a2).

■ To calculate the signal power, assume that x[n] is a white random

signal uniformly distributed between 1 and −1.

• Its mean is 0 and its variance is 1/3.

• The signal power at the output of the filter is
1

3
s2 b2

1 − a2
.

■ The total SNR is:

1

3
s2 b2

1 − a2
×

12(1 − a2)

2$2
=

2s2b2

$2
=

2(1 − |a|)2

$2
.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–29

6.8: Dynamic range scaling: Application

Scaling for parallel and cascade structures

■ Scaling strategy for cascade or parallel second-order IIR filters is a

trade-off between avoiding overflow and reducing

signal-to-quantization noise of the overall system.

■ For cascade IIR filters, let’s take a look at the following example, a

three-stage lowpass filter:

H(z) = b0

3∏

k=1

(1 + b1kz−1 + b2kz−2)

(1 − a1kz−1 − a2kz−2)
.

■ Because there is a small gain constant b0, the three cascade stages

actually produce high gain at some internal nodes to produce an

overall gain of unity at dc.

• If we put the gain constant at the input to the filter, the signal

power is reduced immediately, while the noise power is to be

amplified by the rest of the system.

• On the other hand, if we put the gain constant at the end of the

filter, we will have overflow along the cascade because of the high

gain introduced internally by the three stages.

■ The scaling strategy is to distribute the gain constant along the three

stages so that overflow is just avoided at each stage of the cascade.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–30

EXAMPLE: H(z) = s1H1(z)s2H2(z)s3H3(z).
x[n] y[n]w1[n] w2[n] w3[n]
s1

s2 s3

+ +

+++

++++

+ + +

z−1

z−1

z−1z−1

z−1 z−1

■ Noise power,

Pf (ω) =
2−2B

12

[
3s2

2|H2(e
jω)|2s2

3|H3(e
jω)|2

|A1(e jω)|2
+

5s2
3|H3(e

jω)|2

|A2(e jω)|2

+
5

|A3(e jω)|2
+ 3

]

■ Note: 1/Ak(e
jω) is the transfer function of the feedback from wk[n] to

the output of that filter stage.

■ To maximize the total SNR is not a trivial task. Let’s first make sure

that no overflow can happen at all nodes. Using our Criterion #2:

• Scaling s1 according to s1 max
ω

|H1(e
jω)| < 1,

• Scaling s2 according to s1s2 max
ω

|H1(e
jω)H2(e

jω)| < 1,

• Scaling s3 according to s1s2s3 = b0.

QUESTION: How do we pair poles and zeros in H1, H2, and H3 to make

our stages?

Pole-zero pairing in cascade IIR filters

■ There are N ! ways to pair zeros and poles if there are N cascade

stages, which is obviously a very computationally intensive problem.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–31

■ Optimal solutions can be found through dynamic programming, but a

very good heuristic algorithm proposed by Jackson is usually used.1

1. The pole that is closest to the unit circle should be paired with the

zero that is closest to it in the z-plane.

2. Step 1 should be repeatedly applied until all the poles and zeros

have been paired.

■ The intuition behind Step 1 is based on the observation that a

second-order section with high gain (its poles close to the unit circle)

is undesirable because it can cause overflow and amplify quantization

noise.

■ Pairing a pole that is close to the unit circle with an adjacent zero

tends to reduce the peak gain of the section, equalizing the gain

along the cascade stages.

1 Leland Jackson, Digital Filters and Signal Processing, 3d, Kluwer Academic Publish-
ers, 1996.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–32

Cascade stage ordering

■ Jackson’s advice isn’t as useful here: “Second-order sections should

be ordered according to the closeness of the poles to the unit circle,

either in order of increasing closeness to the unit circle or in order of

decreasing closeness to the unit circle.”

■ The reason for the uncertainty is this:

• A highly peaked filter section (poles close to the unit circle) should

be put toward the beginning of the cascade so that its transfer

function doesn’t occur often in the noise power equation.

• On the other hand, a highly peaked section should be placed

toward the end of the cascade to avoid excessive reduction of the

signal level in the early stages of the cascade (small s values at

the beginning of a cascade attenuate signal power but not

quantization noise power).

• Therefore without extensive simulation, the best we can have is a

set of “rules of thumb”, one of which is stated as above.

■ Parallel IIR filters are a bit easier to deal with, because the issue of

pairing and ordering does not arise.

• Jackson concluded that the total signal-to-quantization noise of the

parallel form is comparable to that of the best pairing and ordering

of the cascade form.

• But cascade form is more commonly used because of its control

over zeros as we discussed in coefficient quantization.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–33

6.9: Zero-input limit cycles

■ The term “zero-input limit cycle” refers to the phenomenon where a

system’s output continues to oscillate indefinitely while the input

remains equal to zero, caused by the nonlinear characteristic of a

quantizer in the feedback loop of the system.

■ We will consider the limit-cycle effects for only first-order and

second-order filters.

EXAMPLE: Consider the filter y[n] = ay[n − 1] + x[n].

(system

x[n] y[n]
+

z−1

a

■ Limit cycles appear when the system behaves as if there is a pole on

the unit circle. How could this happen?

■ Let’s take a closer look at quantizing ay[n − 1].

|Q(ay[n − 1]) − ay[n − 1]| ≤
1

2
(2−B).

■ Therefore,

|Q(ay[n − 1])| − |ay[n − 1]| ≤
1

2
(2−B).

■ If |Q(ay[n − 1])| = |y[n − 1]|, this implies

|y[n − 1]| − |ay[n − 1]| ≤
1

2
(2−B).

■ In other words, we can define a deadband of:

|y[n − 1]| ≤
1
2
(2−B)

1 − |a|
.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–34

■ Whenever y[n] falls within this deadband when the input is zero, the

filter remains in the limit cycle until an input is applied.

EXAMPLE: Suppose that we use a 4-bit quantizer to implement a

first-order filter of a = 1/2.

■ We calculate the deadband size to be
1
2
(2−3)

1 − 1
2

= 2−3 =
1

8
.

■ If the initial condition y[−1] is equal to 7/8, or 0.111, then:

ay[−1] = y[0] = 0.0111 → 0.100

ay[0] = y[1] = 0.0100 → 0.010

ay[1] = y[2] = 0.0010 → 0.001

ay[2] = y[3] = 0.0001 → 0.001

ay[3] = y[4] = 0.0001 → 0.001

QUESTION: What if a = −1/2?

ANSWER: The output will oscillate between 1/8 and −1/8.

■ For second-order sections, the analysis is a bit more complicated:

y[n] = x[n] + Q(a1y[n − 1]) + Q(a2y[n − 2]).

■ Recall that a1 corresponds to 2r cos θ and a2 corresponds to r2.

■ We concentrate on the a2 term, as it defines the distance of the two

complex-conjugate poles to the origin.

■ If we have:

Q(a2y[n −2]) = −y[n −2] and |Q(a2y[n −2])−a2y[n −2]| ≤
1

2
(2−B)

then |y[n − 2]| ≤
1
2
(2−B)

|1 + a2|
, the deadband for a second-order filter.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

ECE4540/5540, DIGITAL FILTER STRUCTURES AND QUANTIZATION EFFECTS 6–35

■ When the input is zero and the output falls within this range, the

effective value of a2 is such that the poles are on the unit circle.

QUESTION: What does a1 do?

ANSWER: a1 controls the oscillation frequency.

EXAMPLE: y[n] = Q(1/2y[n − 1]) + Q(−7/8y[n − 2]) with a four-bit

quantizer.

■ The deadband is equal to 2−3 ×
1

2
× 8 =

1

2
.

■ If the initial condition is such that y[−1] = y[−2] = 1/8, the output will

oscillate between 0, −1/8, −1/8, 0, 1/8, 1/8, etc.

■ Adding dither to the input signal can sometimes be effective in

eliminating limit cycles. See Franklin.

Where to from here?

■ We have now completed the fundamental material of this course.

■ We can analyze and design hybrid control systems using traditional

means.

■ We have seen that some less common methods, such as direct

coefficient optimization and Ragazzini’s method, can improve on

simple lead/lag (and so forth) designs.

■ How far can we take this idea? Can we adaptively optimize

control-system design?

■ That’s the topic we look at last in this course.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett

