
ECE4540/5540: Digital Control Systems 5–1

DIGITAL CONTROLLER DESIGN

5.1: Direct digital design: Steady-state accuracy

■ We have spent quite a bit of time discussing digital hybrid system

analysis, and some time on controller design via emulation.

■ We now look at “direct digital design.”

Specifications:

■ Steady-state accuracy,

■ Transient response

■ Absolute/ relative stability,

■ Sensitivity,

■ Disturbance rejection,

■ Control effort.

Steady-state accuracy

■ How well does a control system track step/ramp/. . . inputs?

■ General formulation: Y (z) = T (z)R(z).

■ The error is: e[k] = r[k]− y[k]. In Laplace domain:

E(z) = R(z)− T (z)R(z)

= [1− T (z)]R(z).
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ECE4540/5540, DIGITAL CONTROLLER DESIGN 5–2

■ Use the final-value theorem to find ess.

ess = lim
z→1

(z − 1)[1− T (z)]R(z).

Unity-feedback systems:

■ If the system is of the form (unity-feedback)

r [k] y[k]G(z)D(z)

■ Then,

T (z) =
D(z)G(z)

1 + D(z)G(z)

1− T (z) =
1

1 + D(z)G(z)
.

■ Let

D(z)G(z) =
K
∏m

i=1(z − zi)

(z − 1)N
∏p

i=1(z − pi)
, zi ̸= 1, pi ̸= 1.

■ Also, define the “Bode Gain”

Kdc = K

∏m
i=1(z − zi)

∏p
i=1(z − pi)

∣
∣
∣
∣

z=1

which is the dc-gain with all poles at z = 1 removed.

■ Consider a step input.

ess = lim
z→1

(z − 1)

[

1

1 + D(z)G(z)

]

z

z − 1

= lim
z→1

1

1 + D(z)G(z)
.

• If K p = lim
z→1

D(z)G(z) then ess =
1

1 + K p

.
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• If N = 0 then ess =
1

1 + Kdc

.

• If N > 0 then ess = 0.

■ Now, consider a ramp input.

ess = lim
z→1

(z − 1)

[

1

1 + D(z)G(z)

]

T z

(z − 1)2

= lim
z→1

T

(z − 1) + (z − 1)D(z)G(z)
.

• If Kv = lim
z→1

1

T
(z − 1)D(z)G(z) then ess =

1

Kv
=

T

Kdc

.

• If N = 1 then ess =
T

Kdc

.

• If N > 1 then ess = 0 (and so forth).

General unity-feedback result

■ Poles and large gains at z = 1 of D(z)G(z) decrease ess but also

decrease stability.

■ System design is a tradeoff between steady-state accuracy, relative

stability, and complexity.
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5.2: Direct digital design: Other requirements

Transient response

■ If the system is dominated by second-order poles near z = 1, then we

can determine pole locations for transient-response (step-response)

specifications.

ωn ≥ 1.8/tr

σ ≥ 4.6/ts

Mp ≈ e−πζ/
√

1−ζ 2
. 0.1

0.9
1

ttr

Mptp

ts

■ To convert these specifications to the z-plane,

• r = e−σ T .

• Use zgrid to plot locus of constant ζ and ωn.

• Mark regions of acceptable poles on plot.

EXAMPLE: Plot the specifications for

■ Mp ≤ 16% −→ ζ ≥ 0.5.

■ ts < 10 s −→ σ ≥ 0.5.

■ tr ≈ 1.8 s −→ ωn ≈ 1.

■ T = 0.2 s.

■ Then, r = e−σ T = e−0.1 = 0.9.

■ Our three boundaries are plotted. What is the region of acceptable

closed-loop poles?
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ECE4540/5540, DIGITAL CONTROLLER DESIGN 5–5

■ For dominant second-order systems, transient-response design can

also be done using frequency-response information.

■ Mp (percent overshoot) and Mr (resonant peak) are related through ζ :

Mp = 1 + e−ζ/
√

1−ζ 2

Mr =
1

2ζ
√

1− ζ 2

• Use Mr < 2 dB.

■ Settling time,

ts ≈
4

ωbζ

√

(1− 2ζ 2) +
√

4ζ 4 − 4ζ 2 + 2,

where ωb is the closed-loop bandwidth.

■ Also, trωb ≈ 2.

Relative stability

■ Want GM ≫ 1 and PM ≫ 0.

■ PM ≈ 100ζ (especially for second-order systems).

■ Only sure way to measure GM and PM is Nyquist plot.

Sensitivity and disturbance rejection

■ If we define S(z) = 1− T (z) then

Y (z) = T (z)R(z) + S(z)W (z) + T (z)V (z)

= [1− S(z)]R(z) + S(z)W (z) + [1− S(z)]V (z)

for a unity-feedback system.
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■ Want sensitivity small for

good disturbance rejection

and tracking, but large for

sensor-noise rejection and

robustness.

■ This typically places

constraints on the “loop gain”

L(z) = D(z)G H(z).
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Control effort

■ There are always physical constraints on control effort.

|u(t)| < # saturation limits
∫ t f

0

|u(τ )| dτ < # finite total resources

|u2(t)| < # finite power

■ Designing controllers with constrained control effort can be difficult.

Subject of “optimal control.”

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2017, 2009, 2004, 2002, 2001, 1999, Gregory L. Plett



ECE4540/5540, DIGITAL CONTROLLER DESIGN 5–7

5.3: Phase-lag compensation

■ Compensators/controllers come in many varieties.

• Some common types are phase-lead, phase-lag, and PID.

■ Root-locus and Bode techniques can be used to design

compensators.

■ We mostly consider compensation using a first-order system:

D(z) = Kd

(z − z0)

(z − z p)
.

■ We first consider using Bode methods to design our compensator, so

we need to convert D(z)→ D(w).

D(w) = D(z)|z=1+(T/2)w
1−(T/2)w

,

which is also first-order, and has transfer function

D(w) = a0

[

1 + w/ωw0

1 + w/ωwp

]

,

where ωw0
= zero location and ωwp

= pole location in the w-plane; a0

is the dc-gain.

■ We will eventually need to convert the compensator back to D(z).

The correspondences are

Kd = a0

[
ωwp

(ωw0 + 2/T )

ωw0
(ωwp

+ 2/T )

]

z0 =
2/T − ωw0

2/T + ωw0

z p =
2/T − ωwp

2/T + ωwp

.

■ If |ωw0| < |ωwp
| then compensator is a “lead” compensator.

■ If |ωw0
| > |ωwp

| then compensator is a “lag” compensator.
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Phase-lag compensation

■ A phase-lag compensator has its pole closer to the origin (of the

w-plane) than its zero (closer to 1 in the z-plane).

■ The Bode plot of a typical lag compensator is

20 log10(a0)

20 log10

(
a0ωwp

ωw0

)1
ωwp ωw0

−90◦

ωwp ωw0

■ Low-frequency gain is a0, high-frequency gain is 20 log10

(
a0ωwp

ωw0

)

dB.

■ We consider designing a compensator for the system

r (t) y(t)
T

1− e−sT

s
G p(s)D(z)

■ Let G(s) =
(

1− e−sT

s

)

G p(s), G(z) = Z[G(s)], G(w) = G(z)|z=1+(T/2)w
1−(T/2)w

.

■ Lag controller adds phase. Must be careful NOT to add phase near

crossover of G( jωw).

■ Therefore, keep both the pole and zero at low frequency.

Phase-lag design method (Bode)

■ System ess specifications determine dc-gain a0.

■ Desired phase margin PM also specified.
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1. Plot Bode plot of G(w).

2. Determine frequency ωw1 where phase of G(w) is about

−180◦ + PM + 5◦. The crossover of the compensated system will

occur at approximately this frequency.

3. Choose ωw0
= 0.1ωw1

. This ensures that little phase lag is introduced

at new crossover (actually, about 5◦ . . . see above)

4. At ωw1
we want |D(ωw1

)G(ωw1
)| = 1. The gain of the compensator at

“high frequency” is a0ωwp
/ωw0

.
∣
∣
∣
∣

a0ωwp

ωw0

G( jωw1
)

∣
∣
∣
∣
= 1

a0ωwp

ωw0

=
1

|G( jωw1)|
or

ωwp
=

0.1ωw1

a0|G( jωw1)|
.

5. Design is complete since we know a0, ωw0
, and ωwp

. Note that if

H(s) ̸= 1, then we replace G(w) with G H(w).

EXAMPLE: Let G p(s) =
1

s(s + 1)(0.5s + 1)
and T = 0.05 s.

G(z) =
z − 1

z
Z

[

1

s2(s + 1)(0.5s + 1)

]

=
z − 1

z

[

0.005z

(z − 1)2
−

1.5z

z − 1
+

2z

z − 0.9512
−

0.5z

z − 0.9048

]

■ Plot Bode plot of G(w)
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10
−3

10
−2

10
−1

10
0

10
1

−60

−40

−20

0

20

40

60

10
−3

10
−2

10
−1

10
0

10
1

−270

−180

−120

−90

0

Blue: Plant; Red: Lag; Green: Compensated

Frequency (warped rads/sec)

M
a
g
n
itu

d
e

(d
B

)
P

h
a
se

(d
e
g
)

■ Design spec gives a0 = 0 dB, PM = 55◦.

■ From graph, we see that ̸ G( jωw) = (−180◦ + 55◦ + 5◦) = −120◦ at

ωw1
≈ 0.36. Also, |G( jωw1

)| ≈ 2.57.

■ ωw0
= 0.1ωw1

= 0.036 and ωwp
=

0.1ωw1

a0|G( jωw1
)|

= 0.014.

■ Combining the above, and converting from D(w) to D(z) we get

D(z) =
0.3891z − 0.3884

z − 0.9993
.

Finite-precision problem

■ When implementing a phase-lag filter we may have difficulty.

■ Coefficients of filter stored as binary fixed-point values.

■ For example,

Value =
b7

21
+

b6

22
+

b5

23
+ · · · +

b0

28

for an 8-bit fixed-point value.
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EXAMPLE: (0.11000001)2 =
(

1

2
+

1

4
+

1

256

)

10

= (0.75390625)10.

■ Minimum value that can be represented is zero.

■ Maximum value is (0.11111111)2 = (1− 1/256)10 = (0.99609375)10.

■ For previous example, need denominator coefficient of 0.9993 but

implement 0.99609375. Need numerator coefficients

(0.3891)10 ➠ (0.01100011)2 = (0.38671875)10

(0.38840)10 ➠ (0.01100011)2 = (0.38671875)10

■ Compensator zero is shifted to “1” causing a dc-gain of zero. We get

D(z)implemented =
0.38671875(z − 1)

z − 0.99609375
.
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■ Phase margin of 70◦ (good).

■ System type reduced (bad).

■ Need more bits in implementation or smarter implementation method.
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5.4: Phase-lead compensation

■ A phase-lead compensator has its zero closer to the origin in the

w-plane than its pole (closer to 1 in the z-plane).

■ Low-frequency gain of 20 log10 a0 dB.

■ High-frequency gain of 20 log10

a0ωwp

ωw0

dB. (same)

]

20 log10(a0)

20 log10

(
a0ωwp

ωw0

)

ωw0
ωwm

ωwp ωw0
ωwm

ωwp

θm

■ Adds phase. Maximum phase shift occurs at

ωwm
=
√

ωwp
ωw0

geometric mean

The phase shift is

θm = tan−1

[

1

2

(
√

ωwp

ωw0

−

√

ωw0

ωwp

)]

.

At this location,

|D( jωwm
)| = a0

√
ωwp

ωw0

.

■ Note that lead controller decreases phase near crossover.

• Stabilizing effect, but

• Increases high-frequency gain, . . . destabilizing.

■ Design tends to be trial-and-error.
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Phase-lead design method (Bode)

■ System ess specifications determine dc-gain a0.

■ Desired phase margin PM also specified.

1. Crossover frequency must be generated ωw1
(more later). Then, spec

is D( jωw1
)G(ωw1

) = 1 ̸ (−180◦ + PM). Gain margin not specified, but

must be “adequate.”

2. We see that

|D( jωw1)| =
1

|G( jωw1
)|

and

̸ D( jωw1
) = −180◦ + PM − ̸ G( jωw1

)
'= θ .

3. Can derive (Appendix I of Phillips/Nagle)

a1 =
1− a0|G( jωw1)| cos θ

ωw1
|G( jωw1

)| sin θ
and b1 =

cos θ − a0|G( jωw1)|
ωw1

sin θ
,

where ωw0
= a0/a1 and ωwp

= 1/b1.

■ Note that this design method only works when certain constraints on

the value chosen for ωw1
are met. First, θ > 0 since this is a lead

compensator. Also, system must be stable.

I) θ > 0 leads to ̸ G( jωw1) < −180◦ + PM.

II) |D( jωw1)| > a0 for lead compensator, so |G( jωw1)| < 1/a0.

III) b1 must be positive for stability. cos θ > a0|G( jωw1
)|.

■ Note: If H(s) ̸= 1 then replace G(w) with G H(w) everywhere.

EXAMPLE: Revisit previous example.

■ Unity dc-gain, a0 = 1 and PM ≥ 55◦.
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■ Choose ωw1: ̸ G( jωw1) < −125◦ by condition (I).

■ |G( jωw1
)| < 1 by condition (II).

■ Select (arbitrarily) ωw1
= 1.2. Then, ̸ G( jωw1

) = −173◦, and

|G( jωw1
)| = 0.45. Thus, conditions (I) and (II) are met.

■ Verify: θ = −180 + 55 + 173 = 48◦. cos(θ) = 0.67 > |G( jωw1)| = 0.45

so condition (III) is met as well.

■ Therefore, our selection for ωw1
is valid. Continue with design.

a1 =
1− (1)(0.4576)(cos(48◦))

(1.2)(0.4576)(sin(48◦))
= 1.701

b1 =
cos(48◦)− (1)(0.4576)

(1.2)(sin(48◦))
= 0.2387.

■ So,

D(w) =
a1w + a0

b1w + 1

=
1.701w + 1

0.2387w + 1

D(z) =
6.539(z − 0.9710)

z − 0.8106
.

■ The PM for this controller is

55◦ and the GM is 12.3 dB.

■ A different choice of ωw1

would give same PM but

different GM.
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■ Compare the two

examples from an

open-loop perspective.

■ Phase-lead has larger

bandwidth.
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■ Compare from a closed-

loop perspective.

■ Again, phase-lead has

large closed-loop

bandwidth or large

high-frequency gain.
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■ This may magnify effects due to sensor noise, and accentuate

unmodeled high-frequency dynamics.

■ One possible solution is to add a pole to D(w) at high frequency (so

not to change PM, but to reduce high-frequency gain).
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5.5: Lead/lag tradeoffs; other compensators

■ In summary, some possible advantages of phase-lag compensation

are:

1. The low-frequency characteristics are maintained or improved.

2. The stability margins are improved.

3. The bandwidth is reduced, which is an advantage if high-frequency noise is a

problem. Also, for other reasons, reduced bandwidth may be an advantage.

■ Some possible disadvantages of phase-lag compensation are:

1. The reduced bandwidth may be a problem in some systems.

2. The system transient response will have one very slow term. This will become

evident when root-locus design is covered.

3. Numerical problems with filter coefficients may result.

■ Some possible advantages of phase-lead compensation are:

1. Stability margins are improved.

2. High-frequency performance, such as speed-of-response, is improved.

3. Phase-lead compensation is required to stabilize certain types of systems.

■ Some possible disadvantages of phase-lead compensation are:

1. Any high-frequency noise problems are accentuated.

2. Large signals may be generated, which may damage the system or at least

result in nonlinear operation of the system. Since the design assumed linearity,

the results of the nonlinear operation will not be immediately evident.

Lag-Lead Compensation

■ System specifications cannot always be achieved using a first-order

(lead or lag) compensator.

■ For example, low steady-state error may give very large bandwidth if

a lead compensator is used.
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■ One option is to cascade lag and lead filters.

Mag Phase

■ Lag increases low-frequency gain.

■ Lead increases bandwidth and stability margins.

Lead-lag design method (Bode)

■ Design lag first for acceptable Bode gain.

■ Design lead for resulting system to give bandwidth and stability.

PID compensation

■ A practical PID compensator has transfer function

D(z) = K

[

1 +
T

2TI

(

z + 1

z − 1

)

+ TD

(

z − 1

T z

)]

.

Note that a bilinear integrator and a reverse-Euler derivative were

used.

Mag Phase
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■ Integrator term improves steady-state performance.

■ Derivative term improves stability and PM.

PID design method (Bode)

■ Very similar to lead design. Use D(w) = K +
K

TIw
+ K TDw.

■ Find D(w) such that

D( jωw1
)G( jωw1

) = 1 ̸ − 180◦ + PM

for a selected ωw1
. Let θ = −180◦ + PM − ̸ G( jωw1

).

■ Then, we can show that

K =
cos(θ)

|G( jωw1)|

and

TDωw1 +
1

TIωw1

= tan(θ).

■ Note that TD and TI are not uniquely specified. Choose one to meet

some other specification. Increasing TD increases bandwidth.

Decreasing TI decreases steady-state errors.
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5.6: Root-locus design

■ An alternative design method is to use the root locus.

■ Locus uses open-loop D(z)G H(z) information to plot locus of

closed-loop poles.

■ By adding dynamics to D(z) we change the locus.

Phase-lag controller

■ To design a root-locus lag controller, we assume that the

uncompensated system has good transient response but poor

steady-state response.

■ We set

D(z) =
(

1− z p

1− z0

)

︸ ︷︷ ︸

Kd

(

z − z0

z − z p

)

.

■ Note D(z) has unity dc-gain and Kd < 1. We place the pole near

(very near) z = 1 and the zero a little to the left of the pole.

■ Consider the uncompensated

locus to the right. Pick a gain Ku

to give pole locations za and za.

Assume that these pole locations

are chosen to provide good

transient response.

za

z̄a

z3

z2z1

■ Add the lag pole and zero very close to z = 1. The two poles and zero

are so close together, they behave almost like a single pole. The

locus is unchanged, except around z = 1.
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z′a

z̄′a

z3

z2z1

z p

z0

︸ ︷︷ ︸

Expanded scale
■ But, consider the gain Kc to get poles at z′a and z′a. The compensator

gain Kd =
1− z p

1− z0

< 1.

■ The uncompensated gain is the gain to put poles at za and za without

D(z).

Ku =
|za − z2||za − z3|

|za − z1|
.

■ The compensated gain is

Kc =
|z′a − z p||z′a − z2||z′a − z3|

Kd|z′a − z0||z′a − z1|

≈
|za − z2||za − z3|

Kd|za − z1|

=
Ku

Kd

> Ku.

■ Therefore, the lag compensator allows us to use larger gain for the

same transient response and hence steady-state error is improved.

Phase-lag design procedure (root-locus method)

1. Plot locus of uncompensated system. Find acceptable pole locations

for transient response on the locus. Set Ku = gain to put poles there.

2. Determine from specifications the required gain Kc to meet

steady-state error requirements.
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3. Compute Kd = Ku/Kc.

4. Choose compensator pole location close to z = 1.

5. The compensator zero is

z0 = 1−
1− z p

Kd

.

6. Iterate (if necessary) to perfection (choosing slightly different pole

location).

Phase-lead controller

■ A phase-lead controller generally speeds up the transient response of

a system.

D(z) = Kd

(z − z0)

(z − z p)
, Kd =

1− z p

1− z0

> 1.

■ That is, the zero is closer than the pole to the unit circle.

Phase-lead design procedure (root-locus method)

1. Choose desired pole locations zb and zb.

2. Place the zero of the compensator to cancel a stable pole of G(z).

3. Choose either the gain of the compensated system Kc or the

compensator pole z p such that D(z) is phase-lead.

4. Then, for zb to be on the locus, we must satisfy

Kc D(z)G(z)|z=zb
= −1

Solve for the unknown, which is either Kc or z p.

■ Note that we only solve for one pole location. The other roots may not

be satisfactory. May need trial-and-error approach to design.
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za

z̄a

zb

z̄b

z3

z0 = z2

z pz1

Pole-zero Cancellation

■ Can it occur?

If our zero is too far left If our zero is too far right

z3

z2z0z p

z3

z2 z0z p

■ Either way, the locus is still okay. (What if we tried to cancel an

unstable pole?)
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5.7: Numeric design of PID controllers

■ A PID controller is implemented via difference equations: e.g.,

u[k] = u[k − 1] +

K

[(

1 +
T

TI

+
TD

T

)

e[k]−
(

1 +
2TD

T

)

e[k − 1] +
TD

T
e[k − 2]

]

or,

u[k] = u[k − 1] + q0e[k] + q1e[k − 1] + q2e[k − 2]

where q0, q1, and q2 are constants.

■ Different sets of {q0, q1, q2} give different performance.

■ Can select a set of parameters to satisfy some design specifications.

■ Some types of design spec:

IAE : J =
∑

k

|e[k]| ISE : J =
∑

k

|e[k]|2.

ITAE : J =
∑

k

k|e[k]|

■ Over large number of samples, select q = {q0, q1, q2} to minimize J .

Function minimization in one dimension

■ What value of q minimizes

J (q) = q2 + 2q + 5?

■ Start with a guess, then refine until

required accuracy is achieved.

J (q)

q−4−3−2−1 0 1 2 3 4

1. Start with a guess. Say, q = 3.

2. Set the “step size” to a small value. Say γ = 10−3, and set the

gradient “test step size” δq to a value smaller than γ .
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3. Estimate the slope:
∂ J

∂q
≈

J (q + δq)− J (q)

δq
.

4. Update parameters: q ← q − γ

(

∂ J

∂q

)

.

5. Repeat from (3) until convergence.

■ Note that update is in negative direction of gradient.

Function minimization in two dimensions

■ Suppose we need to minimize a

function of two variables, q0 and

q1. For example,

J (q0, q1) = (q0 − 2)2 + (q1 + 1)2.

J (q0, q1)

■ Instead of a curve to track along, we have a three-dimensional

surface.

1. Start with a guess. Say, q0 = 5 and q1 = 3 .

2. Set the “step size” to a small value. Say γ = 10−3, and set the

gradient “test step sizes” δq0 = δq1 to a value smaller than γ .

3. Estimate the slope in the q0-direction:

∂ J

∂q0

≈
J (q0 + δq0, q1)− J (q0, q1)

δq0

4. Estimate the slope in the q1-direction:

∂ J

∂q1

≈
J (q0, q1 + δq1)− J (q0, q1)

δq1

5. Normalize the gradient for better performance

' =

√
(

∂ J

∂q0

)2

+
(

∂ J

∂q1

)2

.
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6. Update q0 and q1:

q0 ← q0 −
γ

'

(

∂ J

∂q0

)

q1 ← q1 −
γ

'

(

∂ J

∂q1

)

.

7. Repeat from (3) until convergence.

■ Note: In many dimensions,

performance optimization is

complicated and “global”

minimum is not guaranteed.

Function minimization in three(+) dimensions

■ Our PID controller design problem is a problem in three variables.

1. Start with a guess. q = {q0, q1, q2}.

2. Set the “step size” to a small value. Say γ = 10−3, and set the

gradient “test step sizes” δq0 = δq1 = δq2 to a value smaller than γ .

3. Estimate the slope in the q0-direction:

∂ J

∂q0

≈
J (q0 + δq0, q1, q2)− J (q0, q1, q2)

δq0

4. Estimate the slope in the q1-direction:

∂ J

∂q1

≈
J (q0, q1 + δq1, q2)− J (q0, q1, q2)

δq1

5. Estimate the slope in the q2-direction:

∂ J

∂q2

≈
J (q0, q1, q2 + δq2)− J (q0, q1, q2)

δq2
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6. Normalize the gradient for better performance

' =

√
(

∂ J

∂q0

)2

+
(

∂ J

∂q1

)2

+
(

∂ J

∂q2

)2

.

7. Update q0, q1 and q2:

q0 ← q0 −
γ

'

(

∂ J

∂q0

)

q1 ← q1 −
γ

'

(

∂ J

∂q1

)

q2 ← q2 −
γ

'

(

∂ J

∂q2

)

.

8. Repeat from (3) until convergence.

g=zpk([0.1+0.1*j 0.1-0.1*j],[0.3+0.5*j 0.3-0.5*j 0.8],1,-1);

gamma=0.01; dq=0.001; T=20;

wgtfn=[0:T]; % for ITAE

q0 = 0.1; q1 = 0.1; q2 = 0.1;

maxiter=410; J=zeros([1 maxiter]);

for i=1:maxiter,

d=tf([q0+dq q1 q2],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J1=wgtfn*abs(1-s);

d=tf([q0 q1+dq q2],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J2=wgtfn*abs(1-s);

d=tf([q0 q1 q2+dq],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J3=wgtfn*abs(1-s);

d=tf([q0 q1 q2],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J(i)=wgtfn*abs(1-s);

if (mod(i-10,100)==0),

J(i), plot(0:T,s); axis([0 T 0 1.4]); drawnow;

end
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p1=(J1-J(i))/dq; p2=(J2-J(i))/dq; p3=(J3-J(i))/dq;

Delta=sqrt(p1*p1+p2*p2+p3*p3);

q0=q0-(gamma/Delta)*p1; q1=q1-(gamma/Delta)*p2; q2=q2-(gamma/Delta)*p3;

end

■ Optimization progressing:
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J

Iteration
■ Note that each time we adapt {q0, q1, q2} we need to simulate the

system performance (e.g., output to a step input) four times.

Initial guess for K , TI and TD:

■ Ziegler–Nichols can give a good initial guess for PID parameters.

■ “Rules of thumb” for selecting K , TI , TD.

■ Not optimal in any sense—just provide “good” performance.

METHOD I: If system has step response like this,

Slope, A/τ

A

τd τ

Y (s)

U (s)
=

Ae−τds

τ s + 1
,

(first-order system plus delay)

■ We can easily identify A, τd, τ from this step response.
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■ Don’t need complex model!

■ Tuning criteria: Ripple in impulse response decays to 25% of its value

in one period of ripple

Period1

0.25

RESULTING TUNING RULES:

P PI PID

K =
τ

Aτd

TI = ∞
TD = 0

K =
0.9τ

Aτd

TI =
τd

0.3
TD = 0

K =
1.2τ

Aτd

TI = 2τd

TD = 0.5τd

METHOD II: Configure system as

Kur (t) y(t)Plant

■ Turn up gain Ku until system produces oscillations (on stability

boundary) Ku = “ultimate gain.”

Period, Pu
1

RESULTING TUNING RULES:

P PI PID

K = 0.5Ku

TI = ∞
TD = 0

K = 0.45Ku

TI =
1

1.2
Pu

TD = 0

K = 0.6Ku

TI = 0.5Pu

TD =
Pu

8
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5.8: Direct design method of Ragazzini

■ An interesting design method computes D(z) directly.

■ Note: The closed-loop transfer function is

T (z) =
D(z)G(z)

1 + D(z)G(z)

(1 + D(z)G(z))T (z) = D(z)G(z)

D(z)G(z)(T (z)− 1) = −T (z)

D(z) =
1

G(z)

T (z)

1− T (z)
.

■ Can control design be this simple?

■ The problem is that this technique may ask for the impossible:

(non-causal, unstable . . . ).

Causality:

■ If D(z) is causal, then it has no poles at∞. D(∞) must be finite or

zero. Therefore, T (z) must have enough zeros at∞ to cancel out

poles at∞ from
1

G(z)
.

• T (z) must have a zero at infinity of the same order as the order of

the zero of G(z) at infinity.

■ Put another way, the delay in T (z) must be at least as long as the

delay in G(z).

Stability:

■ If G(z) has unstable poles, they cannot be canceled directly by D(z)

or there will be trouble!
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■ The characteristic equation of the closed-loop system is

1 + D(z)G(z) = 0

Let D(z) =
c(z)

d(z)
and G(z) =

b(z)

a(z)
. Then

1 +
c(z)

d(z)

b(z)

a(z)
= 0.

■ Let the unstable pole in G(z) be at α, so a(z) = (z − α)a(z). To cancel

it, c(z) = (z − α)c(z), and

(z − α)a(z)d(z) + (z − α)c(z)b(z) = 0

(z − α)[a(z)d(z) + c(z)b(z)] = 0.

■ The unstable root is still a factor of the characteristic equation! (oops).

■ Unstable poles must be canceled via the feedback mechanism. This

imposes constraints on T (z).

• [1− T (z)] must contain as zeros all the poles of G(z) outside the

unit circle.

• T (z) must contain as zeros all the zeros of G(z) outside the unit

circle.

Steady-state accuracy:

■ Assume that the system is to be of type-I with velocity constant Kv.

■ Note:

E(z) = [1− T (z)]R(z).

■ We must have zero steady-state error to a step. Therefore

lim
z→1

(z − 1)[1− T (z)]
z

(z − 1)
= 0

or T (1) = 1.
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■ Must have 1/Kv error to a unit ramp. Therefore

lim
z→1

(z − 1)[1− T (z)]
T z

(z − 1)2
=

1

Kv
.

■ Use l’hôpital’s rule to evaluate:

−T
dT (z)

dz

∣
∣
∣
∣
z=1

=
1

Kv
.

EXAMPLE: Consider T = 1 s, G(z) = 0.0484

[

z + 0.9672

(z − 1)(z − 0.9048)

]

.

■ Want T (z) to approximate s2 + s + 1 = 0, or, converting to z-plane,

z2 − 0.7859z + 0.3679 = 0.

■ So,

T (z) =
b0 + b1z−1 + b2z−2 + · · ·

1− 0.7859z−1 + 0.3679z−2
.

■ Causality requires T (z)|z=∞ = 0 because G(∞) = 0, so b0 = 0.

■ Note that G(z) has no poles outside the unit circle, so don’t need to

worry about that.

■ Zero steady-state error to a step requires

T (1) =
b1 + b2 + · · ·

1− 0.7859 + 0.3679
= 1.

Therefore,

b1 + b2 + · · · = 0.5820.

■ Steady-state error of 1/Kv to a unit ramp (let Kv = 1)

1

Kv
= −

dT (z)

dz

∣
∣
∣
∣
z=1

1 = +
dT (z)

dz−1

∣
∣
∣
∣
z=1
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=
(0.5820)[b1 + 2b2 + 3b3 + · · · ]− (0.5820)[−0.7859 + 0.3679(2)]

(0.5820)2
,

or, b1 + 2b2 + 3b3 + · · · = 0.5318.

■ So, we have two constraints. We can satisfy these constraints with

just b1 and b2:

b1 = 0.6321

b2 = −0.0501.

■ Then,

T (z) =
0.6321z − 0.0501

z2 − 0.7859z + 0.3679
.

and
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0

D(z) =
1

G(z)

T (z)

1− T (z)
= 13.07

(z − 0.9048)

(z + 0.9672)

(z − 0.07932)

(z − 0.418)
.

■ Note that T (z) has two well damped poles. Why the oscillation?

U (z)

R(z)
=

D(z)

1 + D(z)G(z)
=

T (z)

G(z)

= 13.07
(z − 0.0793)

(z2 − 0.7859z + 0.3679)

(z − 1)(z − 0.9048)

(z + 0.9672)
.

■ This has a poorly damped pole at −0.9672. Aha! This corresponds to

the zero of G(z) at −0.9672.

■ A solution: Use a b3 term in T (z) and add the constraint that

T (z)|z=−0.9672 = 0.
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