LEAST-SQUARES ESTIMATION

4.1: Deterministic least squares

- Least-squares estimation core of all future work.
- \blacksquare Make multiple measurements of a constant vector X.

$$Y = HX + v$$
, where

 $Y \in \mathbb{R}^m$, Vector of measurements; $y_i = H_i^T X + v_i$.

 $H \in \mathbb{R}^{m \times n}$, Measurement matrix assumed constant and known.

 $X \in \mathbb{R}^n$, Constant state vector.

 $v \in \mathbb{R}^m$, Error vector.

- Assume that $m \ge n$ Too many measurements.
 - Often there is no (exact) solution for *X*.
 - Therefore, need to estimate *X*.

GOAL: Find an estimate of X (called \hat{X}) given these erroneous measurements.

IDEAL SITUATION: Pick \hat{X} to minimize $|e_X| = |X - \hat{X}|$.

- Not possible since *X* not available for comparison.
- Instead, define $\hat{Y} = H\hat{X}$, $e_Y = Y \hat{Y}$, and pick \hat{X} to minimize $J = \frac{1}{2}e_Y^T e_Y = \frac{1}{2}[Y H\hat{X}]^T [Y H\hat{X}].$
- Interpretation: Pick \hat{X} so that the square of the outputs agree as much as possible $\stackrel{\blacksquare}{\longrightarrow}$ "least squares".

NOTE: (Vector calculus)

1.
$$\frac{d}{dX}Y^{T}X = Y.$$
2.
$$\frac{d}{dX}X^{T}Y = Y.$$
3.
$$\frac{d}{dX}X^{T}AX = (A + A^{T})X \dots \text{ for symmetric } A \dots 2AX.$$

Expanding the cost function:

$$J = \frac{1}{2} [Y - H\hat{X}]^T [Y - H\hat{X}]$$
$$2J = Y^T Y - \hat{X}^T H^T Y - Y^T H \hat{X} + \hat{X}^T H^T H \hat{X}.$$

■ Stationary point at $dJ/d\hat{X} = 0$.

$$\frac{\mathrm{d}(2J)}{\mathrm{d}\hat{X}} = -2H^TY + 2H^TH\hat{X} = 0.$$

Least-squares estimator:

$$\hat{X}_{LSE} = (H^T H)^{-1} H^T Y = \underbrace{H^{-L}}_{} Y.$$
left pseudo-inverse

• Question: Is this stationary point a minimum?

$$\frac{\mathrm{d}^2 J}{\mathrm{d}\hat{X}^2} = H^T H,$$

and $H^T H > 0$ (generally) if H has rank n or higher.

- So, stationary point is a minimum if rank(H) = n.
- Question: Does $(H^T H)^{-1}$ exist? (Is $H^T H$ invertible?)
 - If rank(H) = n, yes.
- Geometric interpretation: $\hat{X} = (H^T H)^{-1} H^T Y$ is the *projection* of Y onto the subspace spanned by the columns of H. The error is orthogonal to the columns of H.

- Note: We have said nothing (or at least very little) about the form of the measurement errors *v*.
- Note: In MATLAB, Xhat=H\Y;

Deterministic weighted least squares

- Often find that some measurements are better than others, so we want to emphasize them more in our estimate.
- Use a weighting function

$$J_W = \frac{1}{2} e_Y^T W e_Y = \frac{1}{2} [Y - H\hat{X}]^T W [Y - H\hat{X}].$$

- A useful choice of W is $W = \text{diag}(w_i)$, $i = 1 \dots m$.
 - 1. $w_i > 0$.
 - 2. $\sum_{i=1}^{m} w_i = 1 \text{ (normalized)}$
 - 3. If y_j is a good measurement (*i.e.*, clean with very small errors), then make w_j relatively large.
- Large w_i puts much more emphasis on that measurement.

$$\frac{\mathrm{d}J_W}{\mathrm{d}\hat{X}} = 0 \qquad \Longrightarrow \qquad \hat{X}_{WLSE} = (H^T W H)^{-1} H^T W Y.$$

- Note: $W = \frac{1}{m}I$ recovers least-square estimate.
- If $H \in \mathbb{R}^{m \times n}$ and m = n, $\operatorname{rank}(H) = n$ then a unique solution will exist for this \hat{X}_{LSE} .
- What if m > n? We would like to see some averaging (seems like a good thing to try).

■ Does $\hat{X} = (H^T H)^{-1} H^T Y$ average?

EXAMPLE: Consider a simple case: x a scalar, m measurements Y so

$$y_i = x + v_i$$
.

(*i.e.*, $H_i = 1$ for each).

■ So, $H = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T \in \mathbb{R}^{m \times 1}$ and $H^T H = m$.

$$\hat{X} = (H^T H)^{-1} H^T Y = \frac{1}{m} [1 \ 1 \ \cdots \ 1] Y$$
$$= \frac{1}{m} \sum_{j=1}^{m} y_j,$$

i.e., averaging!

■ How does weighting change this? Let y₁ be the really good measurement and the rest are all tied for last.

$$W = \left[egin{array}{cccc} w_1 & & 0 \ & \ddots & & \ & & 1 \ 0 & & 1 \end{array}
ight].$$

■ Let's see how w_1 changes the solution.

$$H^{T}WH = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} w_1 & & 0 \\ & \ddots & \\ & & 1 \\ 0 & & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} w_1 & 1 & \cdots & 1 \end{bmatrix}}_{H^{T}W} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = w_1 + (m-1).$$

So,

$$\hat{X}_{WLSE} = (H^T W H)^{-1} H^T W Y = \frac{1}{w_1 + (m-1)} (w_1 y_1 + y_2 + y_3 + \dots + y_m).$$

- If y_i are approx. the same size and $w_1 \to \infty$ then $\hat{X}_{WLSE} = \frac{w_1 y_1}{w_1} = y_1$.
- Weighting emphasized our good, clean measurement and eliminated the averaging process to use the good piece of data available. We see this all the time, very important.

EXAMPLE: Suppose that a number of measurements $y(t_k)$ are made at times t_k with the intent of fitting a parabola to the data.

$$y(t) = x_1 + x_2t + x_3t^2$$

with three measurements: y(0) = 6; y(1) = 0; y(2) = 0.

■ We have

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \qquad Y = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}; \qquad H = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}.$$

■ For Y = HX + v we can solve for the least-squares estimate $\hat{X} = (H^T H)^{-1} H^T Y$. The parabola through the three points is

$$y = 6 - 9t + 3t^2.$$

■ Now suppose we used more measurements: y(0.5) = 5. Error is no longer zero.

New
$$H = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0.5 & 0.25 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \qquad e = Y - H\hat{X} = \begin{bmatrix} -0.6 \\ 1.6 \\ -1.2 \\ 0.2 \end{bmatrix}$$

Error is perpendicular to all columns of H.

EXAMPLE: Weighted least squares.

- Incorporate into the estimator design that some measurements may be better than others.
- Let $W = \text{diag}\{0.05, 0.8, 0.05, 0.1\}$. Emphasize y(0.5).

New error vector:

$$e = [-1.33 \ 0.22 \ -2.67 \ 0.22]^T.$$

■ No longer perpendicular to the columns of *H*.

4.2: Stochastic least squares

■ Slightly different formulation: Same results but different interpretation.

$$Y = HX + v$$
, where

 $Y \in \mathbb{R}^m$, Vector of measurements; $y_i = H_i^T X + v_i$.

 $H \in \mathbb{R}^{m \times n}$, Measurement matrix assumed constant and known.

 $X \in \mathbb{R}^n$, Completely unknown (no statistical model).

 $v \in \mathbb{R}^m$, Rand vector $\sim \mathcal{N}(0, R)$, R diagonal (X, v) independent.

- Noise v must be Gaussian for our linear method to be optimal... otherwise, nonlinear methods must be used.
- Use maximum likelihood approach \longrightarrow Select estimate \hat{X} of X to be the value of X that maximizes the probability of our observations Y.

TWO STEPS:

- Find the pdf of Y given unknown constant parameter X: $f_{Y;X}(y;X)$.
 - Note: $f_{Y|X}(y;X)$ works pretty much like the conditional pdf, $f_{Y|X}(y|x)$ except that it recognizes that X is not a random variable per se since it does not have a pdf.
 - Read $f_{Y;X}(y;X)$ as "the pdf of Y parameterized by X".
- Select $\hat{X} = X$ value that yields a maximum value of $f_{Y;X}(y;X)$.
- 1. What is the distribution of $f_{Y;X}(y;X)$?
 - If v is Gaussian, and X an unknown (but constant) parameter, then Y = HX + v must be Gaussian.

■ Therefore, the distribution of *Y* parameterized by *X* is Gaussian. To determine the full pdf, must find mean and covariance:

$$\mathbb{E}[Y;X] = \mathbb{E}[HX + v;X]$$

$$= \mathbb{E}[HX;X] + \mathbb{E}[v;X]$$

$$= HX.$$

$$\Xi_{Y;X} = \mathbb{E}[(Y - \bar{y})(Y - \bar{y})^T;X]$$

$$= \mathbb{E}[YY^T - \bar{y}Y^T - Y\bar{y}^T + \bar{y}\bar{y}^T;X]$$

$$= \mathbb{E}[YY^T;X] - \bar{y}\bar{y}^T$$

$$= \mathbb{E}[(HX + v)(HX + v)^T;X] - (HX)(HX)^T$$

$$= \mathbb{E}[vv^T] = R.$$

■ So, $f_{Y \cdot X}(y; X) \sim \mathcal{N}(HX, R)$

$$= \frac{1}{(2\pi)^{n/2}|R|^{1/2}} \exp \left\{ -\underbrace{\frac{1}{2}(Y - HX)^T R^{-1}(Y - HX)}_{J} \right\}.$$

- 2. Now, pick $\hat{X} = X$ that maximizes $f_{Y:X}(y;X)$.
 - Achieved by minimizing exponent of $\exp\{-J\}$.

$$\hat{X} = \arg\min_{X} \left\{ \frac{1}{2} (Y - HX)^{T} R^{-1} (Y - HX) \right\}.$$

■ This is a weighted least-squares problem where $W = R^{-1}$. Then

$$\hat{X} = (H^T R^{-1} H)^{-1} H^T R^{-1} Y.$$

Consistent with previous interpretation?

4.3: Metrics for our estimates

- 1. "Bias": Is $\mathbb{E}[X \hat{X}] = 0$ for all m large enough to obtain a solution?
- 2. "Consistency": Does $\lim_{m\to\infty} \mathbb{E}[(X-\hat{X})^T(X-\hat{X})] = 0$? That is, does \hat{X} converge to X in mean-square as we collect more data?
- 3. "Minimum-Variance": Is it the best estimate?

Metrics of WLSE

■ Use $W = R^{-1}$ where $\mathbb{E}[vv^T] = R$.

BIAS: Note

$$X - \hat{X} = X - \underbrace{(H^T R^{-1} H)^{-1} H^T R^{-1}}_{H_R^{-L}} \underbrace{(HX + v)}_{Y}$$
$$= X - (H_R^{-L} HX + H_R^{-L} v).$$

Now,
$$H_R^{-L}H=(H^TR^{-1}H)^{-1}(H^TR^{-1}H)=I$$
, so
$$X-\hat{X}=-H_R^{-L}v$$

$$\mathbb{E}[X-\hat{X}]=-\mathbb{E}[H_R^{-L}v]=0$$

since $\mathbb{E}[v] = 0$ and we assumed that H, W are known (deterministic). Therefore, WLSE unbiased by zero-mean noise.

CONSISTENCY:
$$\lim_{m\to\infty} Q_1 = \mathbb{E}[(X-\hat{X})^T(X-\hat{X})] = 0$$
?

- Know that $X \hat{X} = -H_R^{-L}v$.
- Define $Q_2 = \mathbb{E}[(X \hat{X})(X \hat{X})^T]$. Q_1 is an inner product; Q_2 is an outer product.
- Since $z^Tz = \operatorname{trace}(zz^T)$ then $Q_1 = \operatorname{trace}(Q_2)$.

■ Then,

$$Q_{2} = \mathbb{E}[H_{R}^{-L}vv^{T}H_{R}^{-LT}] = H_{R}^{-L}\mathbb{E}[vv^{T}]H_{R}^{-LT}$$

$$= (H^{T}R^{-1}H)^{-1}H^{T}R^{-1}RR^{-1}H(H^{T}R^{-1}H)^{-1}$$

$$= (H^{T}R^{-1}H)^{-1}.$$

■ Therefore, for consistency, need to check

$$\lim_{m \to \infty} Q_1 = \lim_{m \to \infty} \text{trace}\{(H^T R^{-1} H)^{-1}\} \stackrel{?}{=} 0.$$

EXAMPLE: $y_i = x + v_i$, m measurements.

- $\blacksquare v_i \sim \mathcal{N}(0, \sigma^2)$ and i.i.d. $\blacksquare V \sim \mathcal{N}(0, \sigma^2 I)$ and $R = \sigma^2 I$.
- $\blacksquare H = [1 \ 1 \ \cdots \ 1]^T$ and $H^T H = m$.
- Test:

$$\lim_{m \to \infty} \operatorname{trace}\{(H^T R^{-1} H)^{-1}\} = \lim_{m \to \infty} \operatorname{trace}\{(H^T (\sigma^2 I)^{-1} H)^{-1}\}$$

$$= \lim_{m \to \infty} \operatorname{trace}\left\{\left(\frac{H^T H}{\sigma^2}\right)^{-1}\right\}$$

$$= \lim_{m \to \infty} \frac{\sigma^2}{m} \to 0.$$

Therefore, consistent.

MINIMUM-VARIANCE: An estimator \hat{X} is called a minimum-variance estimator if

$$\mathbb{E}[(\hat{X} - X)^T (\hat{X} - X)] \le \mathbb{E}[(\hat{X}' - X)^T (\hat{X}' - X)]$$

where \hat{X}' is any other estimator. Here, we assume unbiased: $\mathbb{E}[\hat{X}] = \mathbb{E}[\hat{X}'] = X$.

Special case: Linear unbiased estimators. Consider any linear unbiased estimator.

$$\hat{X}' = BY$$

where
$$Y = HX + v$$
. ($\mathbb{E}[v] = 0$, $\Xi_v = \sigma^2 I$).

■ We will show that among all estimators of this form, the one with the minimum variance property is the least-squares estimate

$$\hat{X}_{LS} = (H^T H)^{-1} H^T Y.$$

- $\blacksquare \mathbb{E}[\hat{X}'] = \mathbb{E}[BY] = \mathbb{E}[BHX + Bv] = BHX.$
- But, $\mathbb{E}[\hat{X}'] = X$ since assumed unbiased. Therefore BHX = X or BH = I.

$$\Xi_{\hat{X}'} = \mathbb{E}[(\hat{X}' - X)(\hat{X}' - X)^T]$$

$$= \mathbb{E}[(BHX + Bv - X)(BHX + Bv - X)^T]$$

$$= \mathbb{E}[Bvv^TB^T]$$

$$= \sigma^2 BB^T.$$

- To find the estimator with the minimum variance, find B subject to BH = I to make $trace(\sigma^2 BB^T)$ as small as possible.
- Without loss of generality, write

$$\hat{X}' = BY = (B_o + \bar{B})Y$$

where $B_o = (H^T H)^{-1} H^T$, the least-squares coefficients.

$$\operatorname{trace}(\sigma^2 B B^T) = \operatorname{trace}(\sigma^2 (B_o + \bar{B})(B_o + \bar{B})^T)$$
$$= \operatorname{trace}(\sigma^2 (B_o B_o^T + B_o \bar{B}^T + \bar{B} B_o^T + \bar{B} \bar{B}^T)).$$

- Now, BH = I, so $(B_o + \bar{B})H = I$. By definition of B_o we have $I + \bar{B}H = I$ or $\bar{B}H = 0$ and $H^T\bar{B}^T = 0$.
- Therefore $B_o \bar{B}^T = (H^T H)^{-1} H^T \bar{B}^T = 0$.
- Therefore $\bar{B}B_o^T = \bar{B}H(H^TH)^{-1} = 0$. So,

$$\operatorname{trace}(\sigma^2 B B^T) = \operatorname{trace}(\sigma^2 (B_o B_o^T + \bar{B} \bar{B}^T)),$$

but for any matrix B the diagonal terms of BB^T are always sums of squares and hence non-negative. Therefore, the above equation is minimized when $\bar{B}=0$.

■ Conclusion:

$$\hat{X}_{LS} = (H^T H)^{-1} H^T Y$$

is the minimum-variance, unbiased linear estimate of X. (BLUE="Best Linear Unbiased Estimator")

4.4: Recursive estimation

- All of the processing so far has been "batch" → Collect ALL the data and reduce it at once.
- Problem: If a new piece of data comes along, we have to repeat the entire calculation over again!
- Would like to develop a *RECURSIVE* form of the estimator so that we can easily include new data as it is obtained → *REAL TIME*.
 - 1. Set up data collection.
 - 2. Discuss batch process and analyze it to develop recursive form.
 - 3. Look at properties of new estimator.

Basic example

- Data collection in two lumps. Collect two vectors y_1 and y_2 .
 - 1. $y_1 = H_1X_1 + v_1$ and $v_1 \sim \mathcal{N}(0, R_1)$. Assume X constant but no statistical properties known. Use maximum likelihood.
 - 2. More data *from same* X. $(X_1 = X_2)$. $y_2 = H_2X_2 + v_2$ and $v_2 \sim \mathcal{N}(0, R_2)$.
- y_1 , y_2 may be measurements at one time or two distinct times.
- Eventually, would like to use
 - Part 1 of the estimate process $y_1 \to \hat{X}_1$.
 - Part 2 of the estimate process \hat{X}_1 and $y_2 \to \hat{X}_2$.
- Start with batch approach to find \hat{X}_2 .
 - Final result after all data has been reduced and used.

- Can write \hat{X}_2 as $\hat{X}_2 = \hat{X}_1 + \delta x$ so that δx is clearly a function of y_2 .
 - ◆ Then, we have the update/recursion that we really need.

BATCH:

$$\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \begin{bmatrix}
H_1 \\
H_2
\end{bmatrix} X + \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}$$

so that Y = HX + v.

■ We will assume that $v \sim \mathcal{N}(0, R)$, where

$$R = \left[\begin{array}{cc} R_1 & 0 \\ 0 & R_2 \end{array} \right].$$

That is, no correlation between v_1 and v_2 .

- If R_1 and R_2 are diagonal this is not a bad assumption.
 - Noises not correlated within either data stream, so not correlated between data-collection processes either.
- Solution: $(H^T R^{-1} H) \hat{X}_2 = H^T R^{-1} Y$.

1.
$$H^T R^{-1} H = \begin{bmatrix} H_1^T & H_2^T \end{bmatrix} \begin{bmatrix} R_1^{-1} & 0 \\ 0 & R_2^{-1} \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \end{bmatrix} = \begin{bmatrix} (H_1^T R_1^{-1} H_1) + (H_2^T R_2^{-1} H_2) \end{bmatrix}.$$

2. $H^T R^{-1} = \left[H_1^T R_1^{-1} H_2^T R_2^{-1} \right]$. Therefore,

$$[(H_1^T R_1^{-1} H_1) + (H_2^T R_2^{-1} H_2)] \hat{X}_2 = H_1^T R_1^{-1} y_1 + H_2^T R_2^{-1} y_2.$$

■ Further analysis: Define

1.
$$\hat{X}_2 = \hat{X}_1 + \delta x$$
.

2.
$$\hat{X}_1 = (H_1^T R_1^{-1} H_1)^{-1} H_1^T R_1^{-1} y_1$$
.

GOAL: Find δx as a function of y_2 , \hat{X}_1 Things we know and new things we measured.

■ Consistent with batch estimate if same data used. Batch can easily handle correlated v.

SOLUTION: Let
$$Q_2 = [(H_1^T R_1^{-1} H_1) + (H_2^T R_2^{-1} H_2)]^{-1}$$
. Let $Q_1 = [H_1^T R_1^{-1} H_1]^{-1}$.

■ Batch solution becomes (Second line: $Q_1^{-1}\hat{X}_1 = H_1^T R_1^{-1} y_1$)

$$Q_{2}^{-1}\hat{X}_{2} = H_{1}^{T}R_{1}^{-1}y_{1} + H_{2}^{T}R_{2}^{-1}y_{2}$$

$$Q_{2}^{-1}\hat{X}_{1} + Q_{2}^{-1}\delta x = Q_{1}^{-1}\hat{X}_{1} + H_{2}^{T}R_{2}^{-1}y_{2}$$

$$Q_{2}^{-1}\delta x = (Q_{1}^{-1} - Q_{2}^{-1})\hat{X}_{1} + H_{2}^{T}R_{2}^{-1}y_{2}$$

$$Q_{2}^{-1}\delta x = -H_{2}^{T}R_{2}^{-1}H_{2}\hat{X}_{1} + H_{2}^{T}R_{2}^{-1}y_{2} = H_{2}^{T}R_{2}^{-1}(y_{2} - H_{2}\hat{X}_{1})$$

$$\delta x = \underbrace{\left[H_{1}^{T}R_{1}^{-1}H_{1} + H_{2}^{T}R_{2}^{-1}H_{2}\right]^{-1}}_{Q_{2}} \underbrace{H_{2}^{T}R_{2}^{-1}(y_{2} - H_{2}\hat{X}_{1})}_{\hat{y}_{2}}.$$
prediction error

- In desired form since $\delta x = \text{fn}(y_2, \hat{X}_1)$.
- Recall Q_1 from our consistency check. $Q_1 = \mathbb{E}\left[(X \hat{X}_1)(X \hat{X}_1)^T\right]$. Called the *ERROR COVARIANCE MATRIX*.
- $\blacksquare X \hat{X}_1 = H_R^{-L}v$. Therefore

$$Q_{1} = \mathbb{E} \left[H_{R}^{-L} v v^{T} H_{R}^{-LT} \right]$$
$$= H_{R}^{-L} R H_{R}^{-LT} = \left(H_{1}^{T} R^{-1} H_{1} \right)^{-1}.$$

Same as defined above!

Note:

$$Q_{2} = (H^{T}R^{-1}H)^{-1}$$

$$= [H_{1}^{T}R_{1}^{-1}H_{1} + H_{2}^{T}R_{2}^{-1}H_{2}]^{-1}$$

$$= [Q_{1}^{-1} + H_{2}^{T}R_{2}^{-1}H_{2}]^{-1},$$

or, the simple update formula

$$Q_2^{-1} = Q_1^{-1} + H_2^T R_2^{-1} H_2.$$

Recursive Estimation

- $\bullet \hat{X}_1 = Q_1 H_1^T R_1^{-1} y_1; \qquad Q_1^{-1} = H_1^T R_1^{-1} H_1.$
- $\bullet \hat{X}_2 = \hat{X}_1 + Q_2 H_2^T R_2^{-1} \left[y_2 H_2 \hat{X}_1 \right]; \quad Q_2^{-1} = Q_1^{-1} + H_2^T R_2^{-1} H_2.$
- The $y_2 H_2 \hat{X}_1$ term is called the "innovations process" or the "prediction error".
- Innovation compares the new measurement with prediction based on old estimate. → What is new in this data?

Special Cases

- 1. First set of data collected was not very good, so we get a poor first estimate. $Q_1^{-1} \approx 0$.
 - Therefore, $Q_2^{-1} \approx H_2^T R_2^{-1} H_2$, and $\hat{X}_2 = \hat{X}_1 + \left(H_2^T R_2^{-1} H_2\right)^{-1} H_2^T R_2^{-1} \left[y_2 H_2 \hat{X}_1\right]$ $= \left(H_2^T R_2^{-1} H_2\right)^{-1} H_2^T R_2^{-1} y_2.$
 - Use only second data set to form estimate.

- 2. Second measurement poor. $R_2 \to \infty$.
 - Therefore $Q_2 \approx Q_1$ and the update gain

$$Q_2 H_2^T R_2^{-1} \approx Q_1 H_2^T R_2^{-1} \to 0.$$

■ If $y - H_1 \hat{X}_1$ small, $\hat{X}_2 \approx \hat{X}_1$. Not much updating.

EXAMPLE: First take k measurements. $y_i = x + v_i$. $R_1 = I$, $H_i = I$. Therefore,

$$\hat{X}_1 = \frac{1}{k} \sum_{i=1}^k y_i;$$
 $Q_1 = (H_1^T H_1)^{-1} = \frac{1}{k} I.$

■ Take one more measurement: $y_{k+1} = x + v_{k+1}$. $R_2 = I$. $H_2 = I$.

$$Q_{2}^{-1} = Q_{1}^{-1} + H_{2}^{T} H_{2} = (k+1)I. \qquad Q_{2} = \frac{1}{k+1}I$$

$$\hat{X}_{2} = \hat{X}_{1} + Q_{2}H_{2}^{T} \left(y_{k+1} - H_{2}\hat{X}_{1}\right)$$

$$= \hat{X}_{1} + \frac{1}{k+1} \left(y_{k+1} - \hat{X}_{1}\right)$$

$$= \frac{k\hat{X}_{1} + y_{k+1}}{k+1}.$$

- Update is a weighted sum of \hat{X}_1 and y_{k+1} .
- For equal noises, note that we get very small updates as $k \to \infty$.
- If the noise on y_{k+1} small, $R_2 = \sigma^2 I$, where $\sigma^2 \ll 1$

$$Q_2^{-1} = Q_1^{-1} + H_2^T R_2^{-1} H_2 = k + 1/\sigma^2 \dots Q_2 = \frac{\sigma^2}{\sigma^2 k + 1} I.$$

■ Now,

$$\hat{X}_2 = \hat{X}_1 + \frac{\sigma^2}{\sigma^2 k + 1} \frac{1}{\sigma^2} \left(y_{k+1} - \hat{X}_1 \right)$$

$$=\frac{\sigma^2k\hat{X}_1+y_{k+1}}{\sigma^2k+1}.$$

■ As $\sigma^2 \to 0$, $\hat{X}_2 \approx y_{k+1}$, as expected.

General form of recursion

Initialize algorithm with $\hat{X_0}$ and $Q_0^{-1} pprox 0.$ for $k=0\ldots\infty,$

% Update covar matrix.

$$Q_{k+1} = \left[Q_k^{-1} + H_{k+1}^T R_{k+1}^{-1} H_{k+1} \right]^{-1}.$$

% Update estimate.

$$\hat{X}_{k+1} = \hat{X}_k + Q_{k+1}H_{k+1}^TR_{k+1}^{-1}\left[y_{k+1} - H_{k+1}\hat{X}_k\right].$$
 endfor

4.5: Example: Equation-error system identification

- Some types of system identification can be solved using least-squares optimization.
- One is known as <u>equation error</u>, and is computed as shown in the diagram:

■ In the diagram, given measurements of $\{u[k], y[k]\}, \hat{y}[k]$ is computed to be

$$\hat{y}[k] = -\hat{a}_1 y[k-1] - \dots - \hat{a}_n y[k-n] + \hat{b}_1 u[k-1] + \dots + \hat{b}_n u[k-n].$$

- Note that $\hat{y}[k] = y[k]$ only when there is no source of error. Not equal if noisy measurements or plant model errors.
- At each k, we denote this equation error as $e_e[k] = y[k] \hat{y}[k]$.

$$e_{e}[k] = y[k] + \hat{a}_{1}y[k-1] + \dots + \hat{a}_{n}y[k-n] - \hat{b}_{1}u[k-1] - \dots - \hat{b}_{n}u[k-n]$$
$$= y[k] - a_{e}[k]\hat{\theta}$$

where
$$a_e[k] = \begin{bmatrix} -y[k-1] & -y[k-2] & \cdots & u[k-1] & u[k-2] & \cdots \end{bmatrix}$$
.

- Let $E_e = \begin{bmatrix} e_e[1] & \cdots & e_e[n] \end{bmatrix}^T$ then $E_e = Y A_e \hat{\theta}$.
- Summary:

$$J = \min_{\hat{\theta}} f(E_e), \qquad E_e = Y - A_e \hat{\theta},$$

and E_e is linear in $\hat{\theta}$!

■ Some choices for $f(\cdot)$:

1.
$$\min_{\hat{\theta}} \sum_{k=1}^{n} |e[k]| = ||e[k]||_{1}.$$

2.
$$\min_{\hat{\theta}} \sum_{k=1}^{n} e^{2}[k] = \|e[k]\|_{2} = \min_{\hat{\theta}} E_{e}^{T} E_{e}$$
.

- 3. $\min_{\hat{\theta}} \max_{k} |e[k]| = ||e[k]||_{\infty}$.
- An analytic solution exists for (2). The other two cases may be solved with Linear Programming.

Least-squares equation error

- Given $\{u[k], y[k]\}$, form Y, A_e .
- $\min_{\hat{\theta}} E_e^T E_e = \min_{\hat{\theta}} (Y A_e \hat{\theta})^T (Y A_e \hat{\theta}) \implies A_e^T A_e \hat{\theta} = A_e^T Y, \text{ the MMSE solution.}$
- If A_e is full rank, $(A_e^T A_e)^{-1}$ exists and

$$\hat{\theta} = (A_e^T A_e)^{-1} A_e^T Y.$$

- When is A_e full rank?
 - 1. $n > \operatorname{size}(\hat{\theta})$.
 - 2. u[k] is "sufficiently exciting".
 - 3. $\hat{\theta}$ is identifiable (one unique $\hat{\theta}$).

EXAMPLE: First-order system.

$$u[k] \longrightarrow \frac{b}{z+a} \longrightarrow y[k]$$

$$\bullet e_e[k] = y[k] + \hat{a}y[k-1] - \hat{b}u[k-1].$$

$$E_{e} = \begin{bmatrix} y[1] \\ y[2] \\ y[3] \end{bmatrix} - \begin{bmatrix} -y[0] & u[0] \\ -y[1] & u[1] \\ -y[2] & u[2] \end{bmatrix} \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix}$$

$$\hat{\theta} = (A_{a}^{T} A_{e})^{-1} A_{a}^{T} Y.$$

Stochastic performance of least squares

■ We are interested in the consistency of the least-squares estimate solution $\hat{\theta}$ when our system measurements contain noise.

$$\begin{array}{c}
v[k] \\
\downarrow \\
\theta_{opt}
\end{array}$$

- Specifically, does $\mathbb{E}[\hat{\theta}] \to \theta_{opt}$ as number of measurements $\to \infty$, and if so, what about the variance of the error $\mathbb{E}\left[(\hat{\theta} \theta_{opt})^T(\hat{\theta} \theta_{opt})\right]$?
- lacktriangle In the following, assume $heta_{opt}$ exists and

$$y[k] = a_e[k]\theta_{opt} + e_e[k]$$

or,

$$Y = A_e \theta_{opt} + E_e$$
.

The asymptotic least-square estimate

$$\hat{\theta} = \mathbb{E}[\hat{\theta}(\infty)]$$

can be determined by taking the expected value of the normal equations

$$A_e^T A_e \hat{\theta} = A_e^T Y$$
$$\mathbb{E} \left[A_e^T A_e \hat{\theta} \right] = \mathbb{E} \left[A_e^T Y \right]$$

with A_e full rank and $R_A = \mathbb{E}\left[A_e^T A_e\right]$

$$\mathbb{E}[\hat{\theta}] \to R_A^{-1} \mathbb{E} \left[A_e^T Y \right].$$

■ Now, $Y = A_e \theta_{opt} + E_e$

$$\mathbb{E}[\hat{\theta}] \to R_A^{-1} \mathbb{E} \left[A_e^T [A_e \theta_{opt} + E_e] \right]$$
$$= \theta_{opt} + R_A^{-1} \mathbb{E} \left[A_e^T E_e \right].$$

So, the least-squares estimate is unbiased if

$$\mathbb{E}\left[A_e^T E_e\right] = 0.$$

Since

$$\mathbb{E}\left[A_e^T E_e\right] = \mathbb{E}\left[\sum_{k=1}^{\infty} a_e^T[k] e_e[k]\right]$$
$$= \sum_{k=1}^{\infty} \mathbb{E}\left[a_e^T[k] e_e[k]\right],$$

we know that the estimate will be unbiased if for every k

$$\mathbb{E}\left[a_e^T[k]e_e[k]\right] = 0.$$

■ Let's check equation-error system ID for bias. Let

$$Y(z) = \frac{B(z)}{z^n + A(z)}U(z) + V(z)$$

or

$$y[k] = -a_1 \bar{y}[k-1] - \dots - a_n \bar{y}[k-n] + b_1 u[k-1] + \dots + b_n u[k-n] + v[k].$$

■ Now, $y[k] = \bar{y}[k] + v[k]$ or $\bar{y}[k] = y[k] - v[k]$.

$$y[k] = -a_1 y[k-1] - \dots - a_n y[k-n]$$

$$+b_1 u[k-1] + \dots + b_n u[k-n]$$

$$+v[k] + a_1 v[k-1] + \dots + a_n v[k-n].$$

■ Check for bias:

$$y[k] = a_e[k]\theta + e_e[k]$$

where

$$a_e[k] = \begin{bmatrix} -y[k-1] & \cdots & -y[k-n], & u[k-1] & \cdots & u[k-n] \end{bmatrix}$$

$$e_e[k] = v[k] + a_1v[k-1] + \cdots + a_nv[k-n].$$

$$\mathbb{E}\left[a_e^T[k]e_e[k]\right] = \mathbb{E}\begin{bmatrix} -y[k-1] \\ \vdots \\ -y[k-n] \\ u[k-1] \\ \vdots \\ u[k-n] \end{bmatrix} e_e[k]$$

$$= \mathbb{E} \begin{bmatrix} -\bar{y}[k-1] - v[k-1] \\ \vdots \\ -\bar{y}[k-n] - v[k-n] \\ u[k-1] \\ \vdots \\ u[k-n] \end{bmatrix} \begin{bmatrix} v[k] - a_1v[k-1] \cdots \\ -a_nv[k-n] \end{bmatrix}$$

$$\neq 0, \quad \text{even for white } v[k]!$$

Therefore, the least-squares estimation error results in a solution that is biased.

$$\mathbb{E}[\hat{\theta}_e] \not\to \theta_{opt}$$

unless

1.
$$v[k] \equiv 0$$
 or

2. $a_i = 0$ for $i = 1 \dots n$ (FIR) and v[k] is white.

EXAMPLE:
$$G(z) = \frac{b}{z-a}$$
. $\theta = \begin{bmatrix} a \\ b \end{bmatrix}$.

- Assume u[k] is zero-mean white noise with variance σ_u^2 and v[k] is zero-mean white noise with variance σ_v^2 .
- So,

$$\bar{y}[k] = a\bar{y}[k-1] + bu[k-1]$$
$$y[k] - v[k] = a(y[k-1] - v[k-1]) + bu[k-1]$$

so that

$$y[k] = ay[k-1] + bu[k-1] + v[k] - av[k-1]$$
$$= \left[y[k-1] \ u[k-1] \right] \theta + e_e[k]$$

$$= a_e[k]\theta + e_e[k].$$

ullet The expected asymptotic estimate $\hat{ heta}$ is

$$\hat{\theta} = \mathbb{E} \left[a_e^T[k] a_e[k] \right]^{-1} \mathbb{E} \left[a_e^T[k] y[k] \right]$$

where

$$\mathbb{E}\left[a_e^T[k]a_e[k]\right] = \mathbb{E}\left[\begin{array}{cc} y^2[k-1] & y[k-1]u[k-1] \\ y[k-1]u[k-1] & u^2[k-1] \end{array}\right] = \left[\begin{array}{cc} \sigma_y^2 & 0 \\ 0 & \sigma_u^2 \end{array}\right]$$

and

$$\mathbb{E}\left[a_e^T[k]y[k]\right] = \mathbb{E}\left[\begin{array}{c} y[k]y[k-1] \\ y[k]u[k-1] \end{array}\right] = \mathbb{E}\left[\begin{array}{c} a\sigma_y^2 - a\sigma_v^2 \\ b\sigma_u^2 \end{array}\right].$$

■ Then,

$$\hat{\theta} = \begin{bmatrix} a(1 - \sigma_v^2 / \sigma_y^2) \\ b \end{bmatrix} = \theta_{opt} + \text{bias}.$$

■ We can express this bias term as a function of SNR.