LEAST-SQUARES ESTIMATION

4.1: Deterministic least squares

- Least-squares estimation core of all future work.
- Make multiple measurements of a constant vector X.

$$ Y = HX + v, \quad \text{where} $$

- $Y \in \mathbb{R}^m$, Vector of measurements; $y_i = H_i^T X + v_i$.
- $H \in \mathbb{R}^{m \times n}$, Measurement matrix assumed constant and known.
- $X \in \mathbb{R}^n$, Constant state vector.
- $v \in \mathbb{R}^m$, Error vector.

- Assume that $m \geq n \Rightarrow$ Too many measurements.
 - Often there is no (exact) solution for X.
 - Therefore, need to estimate X.

GOAL: Find an estimate of X (called \hat{X}) given these erroneous measurements.

IDEAL SITUATION: Pick \hat{X} to minimize $|e_X| = |X - \hat{X}|$.

- Not possible since X not available for comparison.
- Instead, define $\hat{Y} = H\hat{X}$, $e_y = Y - \hat{Y}$, and pick \hat{X} to minimize

$$ J = \frac{1}{2} e_y^T e_y = \frac{1}{2} [Y - H\hat{X}]^T [Y - H\hat{X}] $$

- Interpretation: Pick \hat{X} so that the square of the outputs agree as much as possible \Rightarrow “least squares”.

NOTE: (Vector calculus)

1. \[\frac{d}{dX} Y^T X = Y. \]
2. \[\frac{d}{dX} X^T Y = Y. \]
3. \[\frac{d}{dX} X^T AX = (A + A^T)X \ldots \text{for symmetric } A \ldots 2AX. \]

- Expanding the cost function:
 \[J = \frac{1}{2}[Y - H \hat{X}]^T [Y - H \hat{X}] \]
 \[2J = Y^T Y - \hat{X}^T H^T Y - Y^T H \hat{X} + \hat{X}^T H^T H \hat{X}. \]

- Stationary point at \(\frac{dJ}{d\hat{X}} = 0 \).
 \[\frac{d(2J)}{d\hat{X}} = -2 H^T Y + 2H^T H \hat{X} = 0. \]

- Least-squares estimator:
 \[\hat{X}_{LSE} = (H^T H)^{-1} H^T Y = H^{-L} Y. \]
 left pseudo-inverse

- Question: Is this stationary point a minimum?
 \[\frac{d^2 J}{d\hat{X}^2} = H^T H, \]
 and \(H^T H > 0 \) (generally) if \(H \) has rank \(n \) or higher.
 - So, stationary point is a minimum if \(\text{rank}(H) = n \).

- Question: Does \((H^T H)^{-1} \) exist? (Is \(H^T H \) invertible?)
 - If \(\text{rank}(H) = n \), yes.

- Geometric interpretation: \(\hat{X} = (H^T H)^{-1} H^T Y \) is the projection of \(Y \)
 onto the subspace spanned by the columns of \(H \). The error is orthogonal to the columns of \(H \).
Note: We have said nothing (or at least very little) about the form of the measurement errors v.

Note: In MATLAB, $\hat{X} = H \backslash Y$;

Deterministic weighted least squares

- Often find that some measurements are better than others, so we want to emphasize them more in our estimate.

- Use a weighting function

 $$J_W = \frac{1}{2} e_Y^T W e_Y = \frac{1}{2} [Y - H \hat{X}]^T W [Y - H \hat{X}]$$

- A useful choice of W is $W = \text{diag}(w_i), i = 1 \ldots m$.

 1. $w_i > 0$.
 2. $\sum_{i=1}^{m} w_i = 1$ (normalized)
 3. If y_j is a good measurement (i.e., clean with very small errors), then make w_j relatively large.

- Large w_j puts much more emphasis on that measurement.

 $$\frac{dJ_W}{d\hat{X}} = 0 \quad \Rightarrow \quad \hat{X}_{WLS} = (H^T W H)^{-1} H^T W Y$$

- Note: $W = \frac{1}{m} I$ recovers least-square estimate.

- If $H \in \mathbb{R}^{m \times n}$ and $m = n$, $\text{rank}(H) = n$ then a unique solution will exist for this \hat{X}_{LSE}.

- What if $m > n$? We would like to see some averaging (seems like a good thing to try).
Does $\hat{X} = (H^T H)^{-1} H^T Y$ average?

EXAMPLE: Consider a simple case: x a scalar, m measurements Y so

$$y_i = x + v_i.$$

(i.e., $H_i = 1$ for each).

So, $H = [1 \ 1 \ \cdots \ 1]^T \in \mathbb{R}^{m \times 1}$ and $H^T H = m$.

$$\hat{X} = (H^T H)^{-1} H^T Y = \frac{1}{m} [1 \ 1 \ \cdots \ 1] Y$$

$$= \frac{1}{m} \sum_{j=1}^{m} y_j,$$

i.e., averaging!

How does weighting change this? Let y_1 be the really good measurement and the rest are all tied for last.

$$W = \begin{bmatrix} w_1 & 0 \\ \vdots \\ 1 \\ 0 & 1 \end{bmatrix}.$$

Let's see how w_1 changes the solution.

$$H^T W H = [1 \ 1 \ \cdots \ 1]
\begin{bmatrix}
 w_1 & 0 & & 0 \\
 & \ddots & \ddots & \ddots \\
 & & w_1 & 0 \\
 & & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix} 1 \\
 1 \\
 \vdots \\
 1 \end{bmatrix} = \begin{bmatrix} w_1 \\
 1 \\
 \vdots \\
 1 \end{bmatrix} = w_1 + (m - 1).$$
So,
\[\hat{X}_{\text{WLSE}} = (H^T WH)^{-1} H^T W Y = \frac{1}{w_1 + (m - 1)} (w_1 y_1 + y_2 + y_3 + \cdots + y_m). \]

If \(y_i \) are approx. the same size and \(w_1 \to \infty \) then \(\hat{X}_{\text{WLSE}} = \frac{w_1 y_1}{w_1} = y_1 \).

Weighting emphasized our good, clean measurement and eliminated the averaging process to use the good piece of data available. ➡️ We see this all the time, very important.

EXAMPLE: Suppose that a number of measurements \(y(t_k) \) are made at times \(t_k \) with the intent of fitting a parabola to the data.
\[y(t) = x_1 + x_2 t + x_3 t^2 \]
with three measurements: \(y(0) = 6; \ y(1) = 0; \ y(2) = 0 \).

We have
\[X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \quad Y = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}; \quad H = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}. \]

For \(Y = H X + v \) we can solve for the least-squares estimate \(\hat{X} = (H^T H)^{-1} H^T Y \). The parabola through the three points is
\[y = 6 - 9t + 3t^2. \]

Now suppose we used more measurements: \(y(0.5) = 5 \). Error is no longer zero.
\[\text{New } H = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0.5 & 0.25 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \quad e = Y - H \hat{X} = \begin{bmatrix} -0.6 \\ 1.6 \\ -1.2 \\ 0.2 \end{bmatrix}. \]

Error is perpendicular to all columns of \(H \).
EXAMPLE: Weighted least squares.

- Incorporate into the estimator design that some measurements may be better than others.

- Let $W = \text{diag}\{0.05, 0.8, 0.05, 0.1\}$. Emphasize $y(0.5)$.

- New error vector:

 $e = \begin{bmatrix} -1.33 & 0.22 \\ -2.67 & 0.22 \end{bmatrix}^T$.

- No longer perpendicular to the columns of H.

4.2: Stochastic least squares

- Slightly different formulation: Same results but different interpretation.

\[Y = HX + v, \quad \text{where} \]
\[Y \in \mathbb{R}^m, \quad \text{Vector of measurements; } y_i = H_i^T X + v_i. \]
\[H \in \mathbb{R}^{m \times n}, \quad \text{Measurement matrix assumed constant and known.} \]
\[X \in \mathbb{R}^n, \quad \text{Completely unknown (no statistical model).} \]
\[v \in \mathbb{R}^m, \quad \text{Rand vector } \sim \mathcal{N}(0, R), \quad R \text{ diagonal } (X, v) \text{ independent.} \]

- Noise \(v \) must be Gaussian for our linear method to be optimal. . . otherwise, nonlinear methods must be used.

- Use maximum likelihood approach \(\Rightarrow \) Select estimate \(\hat{X} \) of \(X \) to be the value of \(X \) that maximizes the probability of our observations \(Y \).

TWO STEPS:

- Find the pdf of \(Y \) given unknown constant parameter \(X \):
 \[f_{Y;X}(y; X). \]
 - Note: \(f_{Y;X}(y; X) \) works pretty much like the conditional pdf, \(f_{Y|X}(y|x) \) except that it recognizes that \(X \) is not a random variable per se since it does not have a pdf.
 - Read \(f_{Y;X}(y; X) \) as “the pdf of \(Y \) parameterized by \(X \”).
 - Select \(\hat{X} = X \) value that yields a maximum value of \(f_{Y;X}(y; X) \).

1. What is the distribution of \(f_{Y;X}(y; X) \)?

- If \(v \) is Gaussian, and \(X \) an unknown (but constant) parameter, then \(Y = HX + v \) must be Gaussian.
Therefore, the distribution of Y parameterized by X is Gaussian. To determine the full pdf, must find mean and covariance:

\[
E[Y; X] = E[H X + v; X] = E[H X; X] + E[v; X] = H X.
\]

\[
E_{Y;X} = E[(Y - \bar{y})(Y - \bar{y})^T; X] = E[YY^T - \bar{y}Y^T - Y\bar{y}^T + \bar{y}\bar{y}^T; X] = E[YY^T; X] - \bar{y}\bar{y}^T = E[(H X + v)(H X + v)^T; X] - (H X)(H X)^T = E[v v^T] = R.
\]

So, $f_{Y;X}(y; X) \sim \mathcal{N}(H X, R)$

\[
= \frac{1}{(2\pi)^{n/2}|R|^{1/2}} \exp \left\{ -\frac{1}{2} (Y - H X)^T R^{-1} (Y - H X) \right\}.
\]

2. Now, pick $\hat{X} = X$ that maximizes $f_{Y;X}(y; X)$.

- Achieved by minimizing exponent of $\exp\{-J\}$.
- $\hat{X} = \arg \min_X \left\{ \frac{1}{2} (Y - H X)^T R^{-1} (Y - H X) \right\}$.

- This is a weighted least-squares problem where $W = R^{-1}$. Then

\[
\hat{X} = (H^T R^{-1} H)^{-1} H^T R^{-1} Y.
\]

Consistent with previous interpretation?
4.3: Metrics for our estimates

1. “Bias”: Is \(E[X - \hat{X}] = 0 \) for all \(m \) large enough to obtain a solution?

2. “Consistency”: Does \(\lim_{m \to \infty} E[(X - \hat{X})^T(X - \hat{X})] = 0 \)? That is, does \(\hat{X} \) converge to \(X \) in mean-square as we collect more data?

3. “Minimum-Variance”: Is it the best estimate?

Metrics of WLSE

- Use \(W = R^{-1} \) where \(E[\nu \nu^T] = R \).

BIAS: Note

\[
X - \hat{X} = X - \left(H^T R^{-1} H \right)^{-1} H^T R^{-1} (HX + \nu) H_R^{-L} Y
\]

\[
= X - (H_R^{-L} HX + H_R^{-L} \nu).
\]

- Now, \(H_R^{-L} H = (H^T R^{-1} H)^{-1} (H^T R^{-1} H) = I \), so

\[
X - \hat{X} = -H_R^{-L} \nu
\]

\[
E[X - \hat{X}] = -E[H_R^{-L} \nu] = 0
\]

since \(E[\nu] = 0 \) and we assumed that \(H, W \) are known (deterministic).

Therefore, WLSE unbiased by zero-mean noise.

CONSISTENCY: \(\lim_{m \to \infty} Q_1 = E[(X - \hat{X})^T(X - \hat{X})] = 0? \)

- Know that \(X - \hat{X} = -H_R^{-L} \nu \).

- Define \(Q_2 = E[(X - \hat{X})(X - \hat{X})^T] \). \(Q_1 \) is an inner product; \(Q_2 \) is an outer product.

- Since \(z^T z = \text{trace}(zz^T) \) then \(Q_1 = \text{trace}(Q_2) \).
Then,
\[
Q_2 = \mathbb{E}[H_R^{-L} v v^T H_R^{-LT}] = H_R^{-L} \mathbb{E}[v v^T] H_R^{-LT} = (H^T R^{-1} H)^{-1} H^T R^{-1} R R^{-1} H (H^T R^{-1} H)^{-1} = (H^T R^{-1} H)^{-1}.
\]

Therefore, for consistency, need to check
\[
\lim_{m \to \infty} Q_1 = \lim_{m \to \infty} \text{trace}\{(H^T R^{-1} H)^{-1}\} \equiv 0.
\]

EXAMPLE: \(y_i = x + v_i\), \(m\) measurements.

- \(v_i \sim \mathcal{N}(0, \sigma^2)\) and i.i.d. \(\Rightarrow V \sim \mathcal{N}(0, \sigma^2 I)\) and \(R = \sigma^2 I\).
- \(H = [1 \ 1 \ \cdots \ 1]^T\) and \(H^T H = m\).
- Test:
\[
\lim_{m \to \infty} \text{trace}\{(H^T R^{-1} H)^{-1}\} = \lim_{m \to \infty} \text{trace}\{(H^T (\sigma^2 I)^{-1} H)^{-1}\} = \lim_{m \to \infty} \text{trace}\left\{\left(\frac{H^T H}{\sigma^2}\right)^{-1}\right\} = \lim_{m \to \infty} \frac{\sigma^2}{m} \to 0.
\]

Therefore, consistent.

MINIMUM-VARIANCE: An estimator \(\hat{X}\) is called a minimum-variance estimator if
\[
\mathbb{E}[(\hat{X} - X)^T (\hat{X} - X)] \leq \mathbb{E}[(\hat{X}' - X)^T (\hat{X}' - X)]
\]
where \(\hat{X}'\) is any other estimator. Here, we assume unbiased:
\[
\mathbb{E}[\hat{X}] = \mathbb{E}[\hat{X}'] = X.
\]
Special case: Linear unbiased estimators. Consider any linear unbiased estimator.

\[\hat{X}' = BY, \]

where \(Y = HX + v \). \((\mathbb{E}[v] = 0, \mathbb{E}_v = \sigma^2 I) \).

We will show that among all estimators of this form, the one with the minimum variance property is the least-squares estimate

\[\hat{X}_{LS} = (H^T H)^{-1} H^T Y. \]

\[\mathbb{E}[\hat{X}'] = \mathbb{E}[BY] = \mathbb{E}[BH X + Bv] = BHX. \]

But, \(\mathbb{E}[\hat{X}'] = X \) since assumed unbiased. Therefore \(BHX = X \) or \(BH = I \).

\[\mathbb{E}_\hat{X}' = \mathbb{E}[(\hat{X}' - X)(\hat{X}' - X)^T] \]
\[= \mathbb{E}[(BH X + Bv - X)(BH X + Bv - X)^T] \]
\[= \mathbb{E}[Bvv^T B^T] \]
\[= \sigma^2 BB^T. \]

To find the estimator with the minimum variance, find \(B \) subject to \(BH = I \) to make \(\text{trace}(\sigma^2 BB^T) \) as small as possible.

Without loss of generality, write

\[\hat{X}' = BY = (B_o + \tilde{B})Y \]

where \(B_o = (H^T H)^{-1} H^T \), the least-squares coefficients.

\[\text{trace}(\sigma^2 BB^T) = \text{trace}(\sigma^2 (B_o + \tilde{B})(B_o + \tilde{B})^T) \]
\[= \text{trace}(\sigma^2 (B_o B_o^T + B_o \tilde{B}^T + \tilde{B} B_o^T + \tilde{B} \tilde{B}^T)). \]
- Now, \(BH = I \), so \((B_o + \tilde{B}) H = I \). By definition of \(B_o \) we have
 \(I + \tilde{B} H = I \) or \(\tilde{B} H = 0 \) and \(H^T \tilde{B}^T = 0 \).
- Therefore \(B_o \tilde{B}^T = (H^T H)^{-1} H^T \tilde{B}^T = 0 \).
- Therefore \(\tilde{B} B_o^T = \tilde{B} H (H^T H)^{-1} = 0 \). So,

\[
\text{trace}(\sigma^2 BB^T) = \text{trace}(\sigma^2 (B_o B_o^T + \tilde{B} \tilde{B}^T)),
\]

but for any matrix \(B \) the diagonal terms of \(BB^T \) are always sums of squares and hence non-negative. Therefore, the above equation is minimized when \(\tilde{B} = 0 \).

- Conclusion:

\[
\hat{X}_{LS} = (H^T H)^{-1} H^T Y
\]

is the minimum-variance, unbiased linear estimate of \(X \).

(BLUE=“Best Linear Unbiased Estimator”)
4.4: Recursive estimation

- All of the processing so far has been “batch” ➔ Collect ALL the data and reduce it at once.
- Problem: If a new piece of data comes along, we have to repeat the entire calculation over again!
- Would like to develop a RECURSIVE form of the estimator so that we can easily include new data as it is obtained ➔ REAL TIME.

1. Set up data collection.
2. Discuss batch process and analyze it to develop recursive form.
3. Look at properties of new estimator.

Basic example

- Data collection in two lumps. Collect two vectors \(y_1 \) and \(y_2 \).
 1. \(y_1 = H_1 X_1 + v_1 \) and \(v_1 \sim \mathcal{N}(0, R_1) \). Assume \(X \) constant but no statistical properties known. Use maximum likelihood.
 2. More data from same \(X \). (\(X_1 = X_2 \)). \(y_2 = H_2 X_2 + v_2 \) and \(v_2 \sim \mathcal{N}(0, R_2) \).
- \(y_1, y_2 \) may be measurements at one time or two distinct times.
- Eventually, would like to use
 - Part 1 of the estimate process \(y_1 \rightarrow \hat{X}_1 \).
 - Part 2 of the estimate process \(\hat{X}_1 \) and \(y_2 \rightarrow \hat{X}_2 \).
- Start with batch approach to find \(\hat{X}_2 \).
 - Final result after all data has been reduced and used.
• Can write \(\hat{X}_2 \) as \(\hat{X}_2 = \hat{X}_1 + \delta x \) so that \(\delta x \) is clearly a function of \(y_2 \).

• Then, we have the update/recursion that we really need.

BATCH:

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} =
\begin{bmatrix}
 H_1 \\
 H_2
\end{bmatrix} X +
\begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix}
\]

so that \(Y = HX + v \).

• We will assume that \(v \sim N(0, R) \), where

\[
R = \begin{bmatrix}
 R_1 & 0 \\
 0 & R_2
\end{bmatrix}.
\]

That is, no correlation between \(v_1 \) and \(v_2 \).

• If \(R_1 \) and \(R_2 \) are diagonal this is not a bad assumption.

• Noises not correlated within either data stream, so not correlated between data-collection processes either.

• Solution: \((H^T R^{-1} H) \hat{X}_2 = H^T R^{-1} Y \).

1. \(H^T R^{-1} H = \begin{bmatrix}
 H_1^T \\
 H_2^T
\end{bmatrix} \begin{bmatrix}
 R_1^{-1} & 0 \\
 0 & R_2^{-1}
\end{bmatrix} \begin{bmatrix}
 H_1 \\
 H_2
\end{bmatrix} =
\]

\[
(H_1^T R_1^{-1} H_1) + (H_2^T R_2^{-1} H_2).
\]

2. \(H^T R^{-1} = \begin{bmatrix}
 H_1^T R_1^{-1} \\
 H_2^T R_2^{-1}
\end{bmatrix} \). Therefore,

\[
(H_1^T R_1^{-1} H_1) + (H_2^T R_2^{-1} H_2) \hat{X}_2 = H_1^T R_1^{-1} y_1 + H_2^T R_2^{-1} y_2.
\]

• Further analysis: Define

1. \(\hat{X}_2 = \hat{X}_1 + \delta x \).

2. \(\hat{X}_1 = (H_1^T R_1^{-1} H_1)^{-1} H_1^T R_1^{-1} y_1 \).
GOAL: Find δx as a function of y_2, $\hat{X}_1 \Rightarrow$ Things we know and new things we measured.

- Consistent with batch estimate if same data used. Batch can easily handle correlated v.

SOLUTION: Let $Q_2 = [(H_1^T R_1^{-1} H_1) + (H_2^T R_2^{-1} H_2)]^{-1}$. Let $Q_1 = [H_1^T R_1^{-1} H_1]^{-1}$.

- Batch solution becomes (Second line: $Q_1^{-1} \hat{X}_1 = H_1^T R_1^{-1} y_1$)

$$Q_2^{-1} \hat{X}_2 = H_1^T R_1^{-1} y_1 + H_2^T R_2^{-1} y_2$$

$$Q_2^{-1} \hat{X}_1 + Q_2^{-1} \delta x = Q_1^{-1} \hat{X}_1 + H_2^T R_2^{-1} y_2$$

$$Q_2^{-1} \delta x = (Q_1^{-1} - Q_2^{-1}) \hat{X}_1 + H_2^T R_2^{-1} y_2$$

$$Q_2^{-1} \delta x = -H_2^T R_2^{-1} H_2 \hat{X}_1 + H_2^T R_2^{-1} y_2 = H_2^T R_2^{-1} (y_2 - H_2 \hat{X}_1)$$

$$\delta x = \left[H_1^T R_1^{-1} H_1 + H_2^T R_2^{-1} H_2 \right]^{-1} H_2^T R_2^{-1} (y_2 - H_2 \hat{X}_1).$$

- In desired form since $\delta x = \text{fn}(y_2, \hat{X}_1)$.

- Recall Q_1 from our consistency check. $Q_1 = \mathbb{E}[(X - \hat{X}_1)(X - \hat{X}_1)^T]$. Called the ERROR COVARIANCE MATRIX.

- $X - \hat{X}_1 = H_R^{-L} v$. Therefore

$$Q_1 = \mathbb{E} \left[H_R^{-L} v v^T H_R^{-LT} \right] = H_R^{-L} R H_R^{-LT} = (H_1^T R^{-1} H_1)^{-1}.$$
Note:

\[Q_2 = (H^T R^{-1} H)^{-1} \]
\[= [H_1^T R_1^{-1} H_1 + H_2^T R_2^{-1} H_2]^{-1} \]
\[= [Q_1^{-1} + H_2^T R_2^{-1} H_2]^{-1}, \]

or, the simple update formula

\[Q_2^{-1} = Q_1^{-1} + H_2^T R_2^{-1} H_2. \]

Recursive Estimation

- \(\hat{X}_1 = Q_1 H_1^T R_1^{-1} y_1; \quad Q_1^{-1} = H_1^T R_1^{-1} H_1. \)
- \(\hat{X}_2 = \hat{X}_1 + Q_2 H_2^T R_2^{-1} \left[y_2 - H_2 \hat{X}_1 \right]; \quad Q_2^{-1} = Q_1^{-1} + H_2^T R_2^{-1} H_2. \)
- The \(y_2 - H_2 \hat{X}_1 \) term is called the “innovations process” or the “prediction error”.
- Innovation compares the new measurement with prediction based on old estimate. ★ What is new in this data?

Special Cases

1. First set of data collected was not very good, so we get a poor first estimate. \(Q_1^{-1} \approx 0. \)
 - Therefore, \(Q_2^{-1} \approx H_2^T R_2^{-1} H_2, \) and
 \[\hat{X}_2 = \hat{X}_1 + (H_2^T R_2^{-1} H_2)^{-1} H_2^T R_2^{-1} \left[y_2 - H_2 \hat{X}_1 \right] \]
 \[= (H_2^T R_2^{-1} H_2)^{-1} H_2^T R_2^{-1} y_2. \]
 - Use only second data set to form estimate.
2. Second measurement poor. $R_2 \to \infty$.

- Therefore $Q_2 \approx Q_1$ and the update gain
 \[Q_2 H_2^T R_2^{-1} \approx Q_1 H_2^T R_2^{-1} \to 0. \]

- If $y - H_1 \hat{X}_1$ small, $\hat{X}_2 \approx \hat{X}_1$. Not much updating.

Example: First take k measurements. $y_i = x + v_i$. $R_1 = I$, $H_i = I$.

Therefore,
\[
\hat{X}_1 = \frac{1}{k} \sum_{i=1}^{k} y_i; \quad Q_1 = (H_1^T H_1)^{-1} = \frac{1}{k} I.
\]

- Take one more measurement: $y_{k+1} = x + v_{k+1}$. $R_2 = I$. $H_2 = I$.
 \[
 Q_2^{-1} = Q_1^{-1} + H_2^T H_2 = (k + 1) I. \quad \implies \quad Q_2 = \frac{1}{k + 1} I
 \]

\[
\hat{X}_2 = \hat{X}_1 + Q_2 H_2^T (y_{k+1} - H_2 \hat{X}_1)
\]
\[
= \hat{X}_1 + \frac{1}{k + 1} (y_{k+1} - \hat{X}_1)
\]
\[
= \frac{k \hat{X}_1 + y_{k+1}}{k + 1}.
\]

- Update is a weighted sum of \hat{X}_1 and y_{k+1}.

- For equal noises, note that we get very small updates as $k \to \infty$.

- If the noise on y_{k+1} small, $R_2 = \sigma^2 I$, where $\sigma^2 \ll 1$
 \[
 Q_2^{-1} = Q_1^{-1} + H_2^T R_2^{-1} H_2 = k + 1/\sigma^2 \quad \implies \quad Q_2 = \frac{\sigma^2}{\sigma^2 k + 1} I.
 \]

- Now,
 \[
 \hat{X}_2 = \hat{X}_1 + \frac{\sigma^2}{\sigma^2 k + 1} \frac{1}{\sigma^2} (y_{k+1} - \hat{X}_1)
 \]
$$= \frac{\sigma^2 k \hat{X}_1 + y_{k+1}}{\sigma^2 k + 1}.$$

- As $\sigma^2 \to 0$, $\hat{X}_2 \approx y_{k+1}$, as expected.

General form of recursion

Initialize algorithm with \hat{X}_0 and $Q_0^{-1} \approx 0$.

for $k = 0 \ldots \infty$,

% Update covar matrix.

$$Q_{k+1} = \left[Q_k^{-1} + H_{k+1}^T R_{k+1}^{-1} H_{k+1} \right]^{-1}.$$

% Update estimate.

$$\hat{X}_{k+1} = \hat{X}_k + Q_{k+1} H_{k+1}^T R_{k+1}^{-1} \left[y_{k+1} - H_{k+1} \hat{X}_k \right].$$
4.5: Example: Equation-error system identification

- Some types of system identification can be solved using least-squares optimization.
- One is known as equation error, and is computed as shown in the diagram:

 ![Diagram](image)

 In the diagram, given measurements of \(\{u[k], y[k]\} \), \(\hat{y}[k] \) is computed to be
 \[
 \hat{y}[k] = -\hat{a}_1 y[k - 1] - \cdots - \hat{a}_n y[k - n] + \hat{b}_1 u[k - 1] + \cdots + \hat{b}_n u[k - n].
 \]

 Note that \(\hat{y}[k] = y[k] \) only when there is no source of error. Not equal if noisy measurements or plant model errors.

- At each \(k \), we denote this equation error as \(e_e[k] = y[k] - \hat{y}[k] \).

 \[
 e_e[k] = y[k] + \hat{a}_1 y[k - 1] + \cdots + \hat{a}_n y[k - n] - \hat{b}_1 u[k - 1] - \cdots - \hat{b}_n u[k - n]
 \]

 where \(a_e[k] = \begin{bmatrix} -y[k - 1] & -y[k - 2] & \cdots & u[k - 1] & u[k - 2] & \cdots \end{bmatrix} \).

- Let \(E_e = \begin{bmatrix} e_e[1] & \cdots & e_e[n] \end{bmatrix}^T \) then \(E_e = Y - A_e \hat{\theta} \).

- Summary:

 \[
 J = \min_{\hat{\theta}} f(E_e), \quad E_e = Y - A_e \hat{\theta},
 \]

 and \(E_e \) is linear in \(\hat{\theta} \)!
Some choices for $f(\cdot)$:

1. $\min_{\hat{\theta}} \sum_{k=1}^{n} |e[k]| = \|e[k]\|_1$.
2. $\min_{\hat{\theta}} \sum_{k=1}^{n} e^2[k] = \|e[k]\|_2 = \min_{\hat{\theta}} E_e^T E_e$.
3. $\min_{\hat{\theta}} \max_k |e[k]| = \|e[k]\|_\infty$.

An analytic solution exists for (2). The other two cases may be solved with Linear Programming.

Least-squares equation error

- Given $\{u[k], y[k]\}$, form Y, A_e.
- $\min_{\hat{\theta}} E_e^T E_e = \min_{\hat{\theta}} (Y - A_e \hat{\theta})^T (Y - A_e \hat{\theta}) \Rightarrow A_e^T A_e \hat{\theta} = A_e^T Y$, the MMSE solution.

- If A_e is full rank, $(A_e^T A_e)^{-1}$ exists and
 $$\hat{\theta} = (A_e^T A_e)^{-1} A_e^T Y.$$

- When is A_e full rank?
 1. $n > \text{size}(\hat{\theta})$.
 2. $u[k]$ is “sufficiently exciting”.
 3. $\hat{\theta}$ is identifiable (one unique $\hat{\theta}$).

EXAMPLE: First-order system.

\[u[k] \quad \xrightarrow{\frac{b}{z+a}} \quad y[k] \]
\[e_k = y[k] + \hat{a} y[k - 1] - \hat{b} u[k - 1]. \]

\[
E_e = \begin{bmatrix}
y[1] \\
y[2] \\
y[3]
\end{bmatrix} - \begin{bmatrix}
y[0] & u[0] \\
\end{bmatrix} \begin{bmatrix}
\hat{a} \\
\hat{b}
\end{bmatrix}
\]

\[\hat{\theta} = (A_e^T A_e)^{-1} A_e^T Y. \]

Stochastic performance of least squares

- We are interested in the consistency of the least-squares estimate solution \(\hat{\theta} \) when our system measurements contain noise.

![Diagram](image)

- Specifically, does \(\mathbb{E}[\hat{\theta}] \rightarrow \theta_{opt} \) as number of measurements \(\rightarrow \infty \), and if so, what about the variance of the error \(\mathbb{E}\left[(\hat{\theta} - \theta_{opt})^T (\hat{\theta} - \theta_{opt}) \right] \)?

- In the following, assume \(\theta_{opt} \) exists and

\[y[k] = a_e[k] \theta_{opt} + e_e[k] \]

or,

\[Y = A_e \theta_{opt} + E_e. \]

- The asymptotic least-square estimate

\[\hat{\theta} = \mathbb{E}[\hat{\theta}(\infty)] \]

can be determined by taking the expected value of the normal equations.
\[
A_e^T A_e \hat{\theta} = A_e^T Y \\
\mathbb{E}\left[A_e^T A_e \hat{\theta}\right] = \mathbb{E}\left[A_e^T Y\right]
\]

with \(A_e \) full rank and \(R_A = \mathbb{E}\left[A_e^T A_e\right] \)

\[
\mathbb{E}[\hat{\theta}] \rightarrow R_A^{-1} \mathbb{E}\left[A_e^T Y\right].
\]

- Now, \(Y = A_e \theta_{opt} + E_e \)

\[
\mathbb{E}[\hat{\theta}] \rightarrow R_A^{-1} \mathbb{E}\left[A_e^{T} [A_e \theta_{opt} + E_e]\right]
\]

\[
= \theta_{opt} + R_A^{-1} \mathbb{E}\left[A_e^{T} E_e\right].
\]

- So, the least-squares estimate is unbiased if

\[
\mathbb{E}\left[A_e^{T} E_e\right] = 0.
\]

- Since

\[
\mathbb{E}\left[A_e^{T} E_e\right] = \mathbb{E}\left[\sum_{k=1}^{\infty} a_e^{T} [k] e_e[k]\right]
\]

\[
= \sum_{k=1}^{\infty} \mathbb{E}\left[a_e^{T} [k] e_e[k]\right],
\]

we know that the estimate will be unbiased if for every \(k \)

\[
\mathbb{E}\left[a_e^{T} [k] e_e[k]\right] = 0.
\]

- Let’s check equation-error system ID for bias. Let

\[
Y(z) = \frac{B(z)}{z^n + A(z)} U(z) + V(z)
\]

or

\[
y[k] = -a_1 \tilde{y}[k - 1] - \cdots - a_n \tilde{y}[k - n] + b_1 u[k - 1] + \cdots + b_n u[k - n] + v[k].
\]
Now, \(y[k] = \bar{y}[k] + v[k] \) or \(\bar{y}[k] = y[k] - v[k] \).

\[
y[k] = -a_1 y[k-1] - \cdots - a_n y[k-n] + b_1 u[k-1] + \cdots + b_n u[k-n] + v[k] + a_1 v[k-1] + \cdots + a_n v[k-n].
\]

Check for bias:

\[
y[k] = a_e[k] \theta + e_e[k]
\]

where

\[
a_e[k] = \begin{bmatrix} -y[k-1] & \cdots & -y[k-n] \\ u[k-1] & \cdots & u[k-n] \end{bmatrix}
\]

\[
e_e[k] = v[k] + a_1 v[k-1] + \cdots + a_n v[k-n].
\]

\[
\mathbb{E} \left[a_e^T[k] e_e[k] \right] = \mathbb{E} \begin{bmatrix} -y[k-1] \\ \vdots \\ -y[k-n] \\ u[k-1] \\ \vdots \\ u[k-n] \end{bmatrix} e_e[k]
\]
\[\begin{bmatrix} -\bar{y}[k-1] - v[k-1] \\ \vdots \\ -\bar{y}[k-n] - v[k-n] \\ u[k-1] \\ \vdots \\ u[k-n] \end{bmatrix} = \mathbb{E} \begin{bmatrix} v[k] - a_1 v[k-1] \\ \vdots \\ -a_n v[k-n] \end{bmatrix} \]

\(\neq 0, \) even for white \(v[k]! \)

- Therefore, the least-squares estimation error results in a solution that is biased.

\[\mathbb{E}[\hat{\theta}_e] \neq \theta_{opt} \]

unless

1. \(v[k] \equiv 0 \) or
2. \(a_i = 0 \) for \(i = 1 \ldots n \) (FIR) and \(v[k] \) is white.

EXAMPLE: \(G(z) = \frac{b}{z-a} \). \(\theta = \begin{bmatrix} a \\ b \end{bmatrix} \).

- Assume \(u[k] \) is zero-mean white noise with variance \(\sigma_u^2 \) and \(v[k] \) is zero-mean white noise with variance \(\sigma_v^2 \).

- So,

\[\bar{y}[k] = a \bar{y}[k-1] + bu[k-1] \]

\[y[k] - v[k] = a (y[k-1] - v[k-1]) + bu[k-1] \]

so that

\[y[k] = a y[k-1] + bu[k-1] + v[k] - av[k-1] \]

\[= \begin{bmatrix} y[k-1] \\ u[k-1] \end{bmatrix} \theta + e_e[k] \]
\[= a_e[k] \theta + e_e[k]. \]

- The expected asymptotic estimate \(\hat{\theta} \) is
 \[
 \hat{\theta} = \mathbb{E} \left[a_e^T[k] a_e[k] \right]^{-1} \mathbb{E} \left[a_e^T[k] y[k] \right]
 \]
 where
 \[
 \mathbb{E} \left[a_e^T[k] a_e[k] \right] = \mathbb{E} \begin{bmatrix}
 y^2[k - 1] & y[k - 1] u[k - 1] \\
 y[k - 1] u[k - 1] & u^2[k - 1]
 \end{bmatrix} = \begin{bmatrix}
 \sigma_y^2 & 0 \\
 0 & \sigma_u^2
 \end{bmatrix}
 \]
 and
 \[
 \mathbb{E} \left[a_e^T[k] y[k] \right] = \mathbb{E} \begin{bmatrix}
 y[k] y[k - 1] \\
 y[k] u[k - 1]
 \end{bmatrix} = \mathbb{E} \begin{bmatrix}
 a \sigma_y^2 - a \sigma_v^2 \\
 b \sigma_u^2
 \end{bmatrix}.
 \]

- Then,
 \[
 \hat{\theta} = \begin{bmatrix}
 a (1 - \sigma_v^2 / \sigma_y^2) \\
 b
 \end{bmatrix} = \theta_{opt} + \text{bias}.
 \]

- We can express this bias term as a function of SNR.