ECE5530: Multivariable Control Systems II. 4—1

LEAST-SQUARES ESTIMATION

4.1: Deterministic least squares

m | east-squares estimation core of all future work.
= Make multiple measurements of a constant vector X.

Y =HX + v, where

e R™,  Vector of measurements; y; = H' X + v;,.

e R™", Measurement matrix assumed constant and known.
e R", Constant state vector.

€ R™, Error vector.

e X T~

m Assume that m > n » Too many measurements.

« Often there is no (exact) solution for X.
e Therefore, need to estimate X.

GOAL: Find an estimate of X (called X) given these erroneous
measurements.

IDEAL SITUATION: Pick X to minimize |ex| = |X — X|.
= Not possible since X not available for comparison.
= Instead, define Y = HX, ey =Y — Y, and pick X to minimize
1, 1

J = eyey = [Y - HX]|'[Y — HX].

m |Interpretation: Pick X so that the square of the outputs agree as
much as possible ™ “least squares”.
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ECES5530, LEAST-SQUARES ESTIMATION

NOTE: (Vector calculus)

d
1. —Y'xX =Y.
2. —_ X'y =v.
dX

d .
3. d—XXTAX = (A+ A")X ... for symmetric A ... 24X.

= Expanding the cost function:

1 . .
J = 5[Y — HX]'[Y — HX]

20J =YTYy —XTHTY —YTHX + XTHTHX.

= Stationary point at dJ/dX = 0.
d(2J N
( A) = 2H'Y +2H"HX = 0.

dX

m | east-squares estimator:

% _ T -1 T _ —L
Xie=HTH)'HTY = H - Y.

left pseudo-inverse

= Question: Is this stationary point a minimum?
d?J
dx?
and H H > 0 (generally) if H has rank = or higher.

— H'H,

e S0, stationary point is a minimum if rank(H ) = n.
= Question: Does (H” H) ! exist? (Is H' H invertible?)

e If rank(H) = n, yes.

= Geometric interpretation: X = (H” H)"'H"Y is the projection of Y
onto the subspace spanned by the columns of H. The error is

orthogonal to the columns of H.
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ECES5530, LEAST-SQUARES ESTIMATION 4-3
= Note: We have said nothing (or at least very little) about the form of
the measurement errors v.

m Note: In MATLAB, Xhat=H\Y;

Deterministic weighted least squares

m Often find that some measurements are better than others, so we
want to emphasize them more in our estimate.

= Use a weighting function
1

1 . .
Jw = Ee;Wey = 5[Y — HX]"W[Y — HX].

m A useful choice of W is W = diag(w;),i = 1...m.

1.w,->0.

m
2. ) "w; = 1 (normalized)
i=1
3. If y; is a good measurement (i.e., clean with very small errors),

then make w; relatively large.

= | arge w; puts much more emphasis on that measurement.
dJw

7 =0 w  Xya=H WH I TH'WY.

1 :
= Note: W = —1 recovers least-square estimate.
m

m If H € R and m = n, rank(H) = n then a unique solution will exist
for this X, .

m What if m > n? = We would like to see some averaging (seems like a
good thing to try).
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s Does X = (H'H) 'H”Y average?

EXAMPLE: Consider a simple case: x a scalar, m measurements Y so
Yi =X + ;.
(i.e., H; = 1 for each).
#So,H=[11---1]"erR™and H'H = m.

. 1
X=H"H'H'Y =—[11 ---1]Y
m

1 m
=~ Z Vi
J=1
I.e., averaging!

= How does weighting change this? Let y; be the really good
measurement and the rest are_all tied for Ias_t.
w1 0

W =

0 1

m Let’'s see how w; changes the solution.

w1 0 1
1
H'WH=[11 - 1] |

0 1 1

- -

1

=[w; 1 -+ 1] |=w+@m=1).
H}rW 1
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= S0,

A 1
Xwpse = (H'WH)'H'WY = (wiy1+y24y3+-+Vm).
wy + (m—1)
. A w
m |f y; are approx. the same size and w; — oo then Xy sz = D V1.
w1

m Weighting emphasized our good, clean measurement and eliminated
the averaging process to use the good piece of data available. ™ We
see this all the time, very important.

EXAMPLE: Suppose that a number of measurements y(z;) are made at
times 1, with the intent of fitting a parabola to the data.

y(t) = x1 + X2t + x3t°
with three measurements: y(0) = 6; y(1) = 0; y(2) = 0.

= We have
[ x; | [ 6 (12 [100]
X=|x|; Y=1]0]|; H=|1bt |=|111
| x5 | | 0 | 1| [ 124)]

m For Y = HX + v we can solve for the least-squares estimate
X = (H"H)'H"Y. The parabola through the three points is

y =6—9t + 3t%

= Now suppose we used more measurements: y(0.5) = 5. Error is no

longer zero.
10 0 | 0.6 |
1 0.5 0.25 A 1.6
New H = , e=Y -—HX =
1 1 1 —1.2
1 2 4 0.2

Error is perpendicular to all columns of H.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2016,2010, 2008, 2006, 2004, 2002, 2001, 1999, Gregory L. Plett



ECES5530, LEAST-SQUARES ESTIMATION 4-6

y=6-9t+3t> y=6.6-7.4t+2t
12 : 12 '
10 10
8t al
o 6 o 6
> >
= &
> 4t > 4t
2t ol
ot ol
-2} : 5 3 R 1 2 3 a
Time Time

EXAMPLE: Weighted least squares.

m [ncorporate into the estimator design that some measurements may
be better than others.

m Let W = diag{0.05,0.8,0.05,0.1}. Emphasize y(0.5).

y=7.33-5.56t+0.89t°

12
101
8} = New error vector:
o 6
g e =[—-1.33022 —2.670.22]".
2 = No longer perpendicular to the
= . columns of H.
0 1 2 3 4
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4.2: Stochastic least squares

= Slightly different formulation: Same results but different interpretation.

Y =HX + v, where

Y € R™, Vector of measurements; y; = H! X + v;.

H e R™" Measurement matrix assumed constant and known.

X € R", Completely unknown (no statistical model).

v € R”, Randvector ~ N (0, R), Rdiagonal (X, v) independent.

= Noise v must be Gaussian for our linear method to be
optimal. . . otherwise, nonlinear methods must be used.

= Use maximum likelihood approach m Select estimate X of X to be
the value of X that maximizes the probability of our observations Y.

TWO STEPS:

= Find the pdf of Y given unknown constant parameter X:
Jrx(y; X).
e Note: fy.x(y; X) works pretty much like the conditional pdf,

frix (y|x) except that it recognizes that X is not a random
variable per se since it does not have a pdf.

e Read fy.x(y; X) as “the pdf of Y parameterized by X”.
= Select X = X value that yields a maximum value of fy.x(y; X).

1. What is the distribution of fy.x(y; X)?

m If v is Gaussian, and X an unknown (but constant) parameter, then
Y = HX + v must be Gaussian.
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m Therefore, the distribution of Y parameterized by X is Gaussian.
To determine the full pdf, must find mean and covariance:

E[Y: X] = E[HX + v; X]
= E[HX; X] + E[v; X]
= HX.

Eyix = E[(Y = 7)Y —7)"; X]

=E[YY' —3Y" —Y5" + 55" X]
=E[YY"; X] -y’
=E[(HX +v)(HX +v)"; X]— (HX)(HX)T
= E[vv’] = R.

" S0, frx(y;X) ~N(HX,R)

1
T (27-[)n/2|R|1/2

1
exp {1 — 5(Y — HX)"R™Y(Y — HX)

-~

J

2. Now, pick X = X that maximizes fy.x(y; X).
m Achieved by minimizing exponent of exp{—J}.
N 1
= X = argmin 5(Y —HX)"RY(Y — HX)}.
= This is a weighted least-squares problem where W = R™!. Then
X =(HTR'H)'HTR Y.

Consistent with previous interpretation?
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4.3: Metrics for our estimates

1. “Bias”: Is E[X — X] = 0 for all m large enough to obtain a solution?
2. “Consistency”: Does lim E[(X — X)"(X — X)] = 0? That is, does X

converge to X in mean-square as we collect more data?
3. “Minimum-Variance”: Is it the best estimate?

Metrics of WLSE

s Use W = R~ ! where E[vv’] = R.
BIAS: Note

X-X=X-(H'R'H)"'H'R"' (HX +v)

—L
Hp Y

=X — (Hy"HX + Hp"v).

s Now, Hy!H = (H"R'H) '(H"R"'H) = I, so

since E[v] = 0 and we assumed that H, W are known (deterministic).
Therefore, WLSE unbiased by zero-mean noise.

CONSISTENCY: lim O, = E[(X — X)T(X — X)] = 0?

m—00

= Know that X — X = —H " v.

= Define 0, = E[(X — X)(X — X)T]. 0, is an inner product; O, is an
outer product.

= Since 7'z = trace(zz") then Q; = trace(Q»).
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= Then,

0, = E[H'vv" HH| = HPE[vv | HHT
=(H'"R'H)'"H"R'RR'HH"R'H)™!
= (H'R'H)™..

» Therefore, for consistency, need to check
lim Q) = lim trace{(H" R™'H)™} ~0.
EXAMPLE: y; = x + v;, m measurements.
=y, ~N(0,0% and i.i.d. ™ V ~ A (0,0%]) and R = o1 .
sH=[11--1]"and H'"H =m.

m Test:

lim trace{(H ' R'H)™ "} = lim trace{(H ' (¢*I1)'H)™}

m—0o0 m—0o0

{ HTH\
= lim trace ( )
m—00 0'2

O.2

= lim — — 0.
m—o0 Mm

Therefore, consistent.

MINIMUM-VARIANCE: An estimator X is called a minimum-variance
estimator if

E[(X — X)T(X — X)] <E[(X'— X)T (X' — X)]

where X’ is any other estimator. Here, we assume unbiased:
E[X] = E[X'] = X.
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= Special case: Linear unbiased estimators. Consider any linear
unbiased estimator.

A

X' = BY,
where Y = HX +v. (E[v] =0, B, = o*]).

= We will show that among all estimators of this form, the one with the
minimum variance property is the least-squares estimate

X,s=HTH)'HTY.
s E[X'] = E[BY] = E[BHX + Bv] = BHX.

= But, E[X'] = X since assumed unbiased. Therefore BHX = X or
BH = 1.

24 =E[(X' — X)(X' = X)T]
— E[(BHX + Bv — X)(BHX + Bv — X)"]
= E[Bvv BT]
= o’BB".

= To find the estimator with the minimum variance, find B subject to
BH = I to make trace(c>BB’) as small as possible.

m Without loss of generality, write
X' = BY = (B, + B)Y
where B, = (H"H)"'HT, the least-squares coefficients.
trace(o’BB") = trace(¢*(B, + B)(B, + B)")

= trace(oz(BoBoT + B,BT + BBOT + BB")).
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= Now, BH = I, so (B, + B)H = I. By definition of B, we have
I+BH=1orBH=0and H' BT = 0.

= Therefore B,B" = (H"H)'H"B" = 0.
= Therefore BB = BH(H"H)™' = 0. So,
trace(c>BBT) = trace(az(BoBoT + BBT)),

but for any matrix B the diagonal terms of BB’ are always sums of
squares and hence non-negative. Therefore, the above equation is
minimized when B = 0.

m Conclusion:
X, s =HTH)'HTY
is the minimum-variance, unbiased linear estimate of X.
(BLUE="Best Linear Unbiased Estimator”)
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4.4: Recursive estimation

= All of the processing so far has been “batch” = Collect ALL the data
and reduce it at once.

m Problem: If a new piece of data comes along, we have to repeat the
entire calculation over again!

= Would like to develop a RECURSIVE form of the estimator so that we
can easily include new data as it is obtained = REAL TIME.

1. Set up data collection.
2. Discuss batch process and analyze it to develop recursive form.
3. Look at properties of new estimator.

Basic example

m Data collection in two lumps. Collect two vectors y; and y,.

1. yi = HiX; + vy and v; ~ N (0, R;). Assume X constant but no
statistical properties known. Use maximum likelihood.

2. More data from same X. (X; = X,). y, = H,X, + v, and
vy ~ N(0, Ry).

= )1, y» may be measurements at one time or two distinct times.
= Eventually, would like to use

o Part 1 of the estimate process y; — X.
« Part 2 of the estimate process X; and y, — X,.

= Start with batch approach to find X,.

e Final result after all data has been reduced and used.
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o Can write X, as X, = X; + 8x so that §x is clearly a function of y,.

+ Then, we have the update/recursion that we really need.
BATCH:

bA H1 U1
........... = | X |

Y2 H2 (%)

Y H v

sothatY = HX + v.
= We will assume that v ~ N (0, R) , where
R, O
R = .
0 R,
That is, no correlation between v; and v,.

m If Ry and R, are diagonal this is not a bad assumption.

e Noises not correlated within either data stream, so not correlated
between data-collection processes either.

= Solution: (H'R™'H)X, = H'R'Y.

] RT' 0 || H

1. H'R'H = | H] H]

[(H Ry H1) + (H) Ry Hy)).
2. H'R' = [HlTRl‘1§H2TR2—1] . Therefore,

[(HTRT'H)) + (HI R;'Hy)|Xo = H Ry, + HI R 'y,
» Further analysis: Define

1. )22 = )21 + Sx.
2. X, = (H'R"H))'HTR{'y,.
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GOAL: Find éx as a function of y,, )21 w Things we know and new things
we measured.

= Consistent with batch estimate if same data used. Batch can easily
handle correlated v.

SOLUTION: Let O, = [(H| R{'H)) + (H) R;'H,)]"". Let
Q1 = [HlTRl_lHl]_l-

= Batch solution becomes (Second line: O7'X, = HI R7'y,)
0;'X, = HI'R'y, + HI RS 'y,
05' X1 + 05'8x = O7' X1 + Hy Ry ' y»
0;'8x = (07" = 07 ) X1 + HY Ry ' y»
Q215x = = TR H2X1 + H Rz V2 = 2TR2_1()’2 - Hz)el)
éx = LHlTRl_lHl + HzTRz_lHZ]_ HzTRz_l(yz —iz/)_g_l)

0, _ V2
prediction error

= In desired form since §x = fn(y,, X1).

= Recall O, from our consistency check. Q; = E [(X — X)X - Xl)T].
Called the ERROR COVARIANCE MATRIX.
= X — X; = Hzv. Therefore
O, =E[Hy"vv HZ"']
1

= Hy"RHz"" = (H/R'H,)"

Same as defined above!
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= Note:

0,=(H"R'H)"
— [HTR;'H, + HI R;'H,]"
= [0+ H] R;'H]
or, the simple update formula

0;' =07+ H'R;'H,.

Recursive Estimation

= X, = QHR'y;;  O7'=H{R'H,

= X> = X + Q,H] R;’ [Y2 — Hz)el]; 0;' = 07"+ H)R'H,.

m The y, — H,X, term is called the “innovations process” or the
“prediction error”.

= [nnovation compares the new measurement with prediction based on
old estimate. ™ What is new in this data?

Special Cases

1. First set of data collected was not very good, so we get a poor first
estimate. 97! ~ 0.
= Therefore, 0, ~ H R;'H,, and

X, = X\ + (H Ry'H,) ™

HzTRz_l [J’2 — Hz)el]
_ —1 _
= (H) Ry'H))  Hy R;'ya.

m Use only second data set to form estimate.
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2. Second measurement poor. R, — <.

» Therefore 0, ~ Q; and the update gain
0,H) R;' ~ Q H] R;' — 0.
s If y — H, X, small, X, ~ X;. Not much updating.

EXAMPLE: First take kK measurements. y; =x +v;. Ry =1, H; = 1.
Therefore,

k
~ 1 1
Xi=—) y H'H)'=—1I.
1= 2 y 01 =( D! =7
= Take one more measurement: yy 1 = x + vx11. Ro=1. H, = 1.
1
HlHy= (k+1)1. m™ =——1]

X, =X + 0.H,) (J’k+1 — Hz)fl)
= X, + : ( X)
= A 1 Yi+1 1

_k)21+)’k+1
k+1

= Update is a weighted sum of X, and yi.;.
= For equal noises, note that we get very small updates as k£ — .

= [f the noise on y,., small, R, = o1, where 6% « 1

0, ' =07'"+ H/R)'H, =k +1/0* ... Q,=

= Now,
2

A A 0] 1 />
X=X = (v = %)
2 1+02k—|—102 Vi +1 1
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. o’k X1 + Yk+1
o2k +1

s As o2 — 0, X, ~ yr41, as expected.

General form of recursion

Initialize algorithm with”fgandggalw(l
fork =0...00,

[e]

% Update covar matrix.
~1 T p-1 -1
Qi1 = |0r + Hy Ry Hia]|

[e]

% Update estimate.

N n o n
Xiv1 = Xi + Or1 Hi Ry [)’k+1 - Hk+1Xk]-
endfor
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4.5: Example: Equation-error system identification

= Some types of system identification can be solved using
least-squares optimization.

= One is known as equation error, and is computed as shown in the
diagram:

v[k]
- G(2) fé* yIK]
ulk] — ¥ J—» e. = “equation error”
~ G(2) VK]
5 )

= In the diagram, given measurements of {u[k], y[k]}, y[k] is computed
to be

P[] = —a\ylk — 1] — -+ — anylk —n] + byulk — 1]+ -+ + byulk — n].
= Note that y[k] = y[k] only when there is no source of error. Not equal
if noisy measurements or plant model errors.

m At each k, we denote this equation error as e.[k] = y[k] — V[k].

e, k] = y[k] + a1ylk — 1]+ - + an,ylk —n] — bjulk — 1] — - -- — byulk — n]
= y[k] — a.[k]f
where a,[k] = [—y[k—l] Cylk—2] - ulk —1] uk —2] ]

T N
sletE, = [ee[l] oo e,ln] ] then E, = ¥ — 4,8.

= Summary:

A

J = min f(E,), E.=Y —A,0,
§

and E, is linear in 8!
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= Some choices for f(-):

1. min ) [e[k]| = [le[k]|l,
O k=1

2. min ¥ e*[k] = |e[k]||, = min ETE,.
9; K] = llelk]ll, = min E,

3. minmax |e[k]| = le[k]llo
6

= An analytic solution exists for (2). The other two cases may be solved
with Linear Programming.

Least-squares equation error

= Given {u[k], y[k]}, form Y, A..
lmmE E, = mm(Y A4,0)7 (Y — A,0) mw ATA,0 = ATY, the MMSE

solutlon

n If A, is full rank, (A A,)~" exists and
) = (AT4,)7'4ly.
m When is A, full rank?

1.n > size(d).
2. ulk] is “sufficiently exciting”.
3. 0 is identifiable (one unique 6).

EXAMPLE: First-order system.

b
ulk] >| ——y > y[k]
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we, k] = ylk] +aylk — 1] — bulk — 1].

Cy[1] ] [ —yl0] ufo] | ;
E.=| y[2] |—| —y[1] u[1] [b}
LBl [ -yRlupR &=

Y A, o

D>
I

= (Al'A,)7'AlY.

Stochastic performance of least squares

= We are interested in the consistency of the least-squares estimate

solution # when our system measurements contain noise.
v(k]
u[k] —| G(2) 4:35—')’[/{]

g 4

opt

» Specifically, does E[é] — 6,,; @s number of measurements— oo, and
if so, what about the variance of the error E [(é — 0,,)7 (6 — Hopt)]?

= |n the following, assume 0,,, exists and
yIk] = aclk]Oop: + eclk]
or,
Y = Abpps + E..
» The asymptotic least-square estimate
0 = E[f(c0)]

can be determined by taking the expected value of the normal
equations
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4-22

AT4,0 = ATy
B[alab]=xr[4lY]
with A4, full rank and R4 = E[A4] A, ]
E[f] - R;'E[ATY].
= Now, ¥ = A4.0,,; + E.
E[A] = R;'E[AT[A.0,p + E.]]
= Oop + R;'E[A]E.].
m S0, the least-squares estimate is unbiased if
E[AlE.] = 0.
= Since

E[A!E.]

e

E [iT [k]ee[k]}
k=1

E [al [kle[k]],

[
E

k=1
we know that the estimate will be unbiased if for every k

E [al [k]e.[k]] = 0.

m L et’s check equation-error system ID for bias. Let

_ B(2)
Y(z) = o A(z)U(Z) + V(2)

or

ylkl = —a1ylk = 1] = --- —a,y[k — n]

+byulk — 1] + -+ + byulk — n] + v[k].
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v[k]
Sl v
> G(2) 4l ]fé > y k]
ulk] — Y
» G(z) > J[k]
5
= Now, y[k] = y[k] + v[k] or y[k] = y[k] — v[k].
ylk] = —arylk = 1] —---—auylk —nj

+bulk — 1] 4 --- + byulk — n]

+vlk] +awlk = 1] +--- + a,v[k —n].

m Check for bias:
VK] = a.[k10 + e.[k]
where
aclk] = | —yle —1] -+ —ylk—n]. ulk—1] -+ ulk —n] |

e.[k] = v[k] + aivlk — 1]+ --- + a,v[k — n].

—y[k—1] |

—ylk —n]

alk — 1] ee|k]

E[al [kle.[k]] = E

u[k.—n] 1
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[ —Flk—1]—v[k—1]

—y[k—n].—v[k—n] [vlk] —av[k —1]---

ulk — 1] —a,v[k —n]]
il ulk — n] | 1
# 0, even for white v[k]!

m Therefore, the least-squares estimation error results in a solution that
IS biased.

E[0c] # Oups
unless
1. v[k]=0o0r
2.a;, =0fori =1...n (FIR) and v[k] is white.

b
EXAMPLE: G(z) = .0 = {a }
Z—a b

= Assume u[k] is zero-mean white noise with variance o> and v[k] is
zero-mean white noise with variance o

= So,
k] = ajlk — 1] + bulk — 1]
Ikl = vlk] = a (y[k — 1] — vk — 1]) + bulk — 1]
so that
VIk] = ay[k — 1] + bulk — 1] + v[k] — av[k — 1]
=[ym—uum—u]9+@m
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= alk]0 + e.[k].

» The expected asymptotic estimate dis

6 = E[a! [Kla[k]] " E [a] K]y [K]]

where
T _ k=11 ylk—1ulk—=11 | | o} 0
E [a] ka.[k]] = E [ e e e } _ [ g }
and
T | ylklylk =11 | | ao; —ao;
E|a, [k]y[k]]_E[y[k]u[k—l]} _E|: yboj }
= Then,

j_ |:a(1 — of/oyz)

b :| — Qopl ‘|‘ biaS.

= We can express this bias term as a function of SNR.
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