FREQUENCY-RESPONSE ANALYSIS

8.1: Motivation to study frequency-response methods

Advantages and disadvantages to root-locus design approach:

ADVANTAGES:

- Good indicator of transient response.
- Explicitly shows location of closed-loop poles. Tradeoffs are clear.

DISADVANTAGES:

- Requires transfer function of plant be known.
- Difficult to infer all performance values.
- Hard to extract steady-state response (sinusoidal inputs).
- Frequency-response methods can be used to supplement root locus:
 - Can infer performance and stability from same plot.
 - Can use measured data when no model is available.
 - Design process is independent of system order (# poles).
 - Time delays handled correctly $(e^{-s\tau})$.
 - Graphical techniques (analysis/synthesis) are "quite simple."

What is a frequency response?

 We want to know how a linear system responds to sinusoidal input, in steady state. • Consider system Y(s) = G(s)U(s) with input $u(t) = u_0 \cos(\omega t)$, so

$$U(s) = u_0 \frac{s}{s^2 + \omega^2}.$$

With zero initial conditions,

$$Y(s) = u_0 G(s) \frac{s}{s^2 + \omega^2}.$$

Do a partial-fraction expansion (assume distinct roots)

$$Y(s) = \frac{\alpha_1}{s - a_1} + \frac{\alpha_2}{s - a_2} + \dots + \frac{\alpha_n}{s - a_n} + \frac{\alpha_0}{s - j\omega} + \frac{\alpha_0^*}{s + j\omega}$$
$$y(t) = \underbrace{\alpha_1 e^{a_1 t} + \alpha_2 e^{a_2 t} + \dots + \alpha_n e^{a_n t}}_{\text{If stable, these decay to zero.}} + \alpha_0 e^{j\omega t} + \alpha_0^* e^{-j\omega t}.$$

$$y_{ss}(t) = \alpha_0 e^{j\omega t} + \alpha_0^* e^{-j\omega t}.$$

• Let $\alpha_0 = Ae^{j\phi}$. Then,

$$y_{ss} = Ae^{j\phi}e^{j\omega t} + Ae^{-j\phi}e^{-j\omega t}$$
$$= A\left(e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}\right)$$
$$= 2A\cos\left(\omega t + \phi\right).$$

We find α_0 via standard partial-fraction-expansion means:

$$\begin{aligned} \alpha_0 &= \left[(s - j\omega) Y(s) \right]_{s = j\omega} \\ &= \left[\frac{u_0 s G(s)}{(s + j\omega)} \right]_{s = j\omega} \\ &= \frac{u_0(j\omega) G(j\omega)}{(2j\omega)} = \frac{u_0 G(j\omega)}{2} \end{aligned}$$

Substituting into our prior result

$$y_{ss} = u_0 |G(j\omega)| \cos (\omega t + \angle G(j\omega)).$$

- Important LTI-system fact: If the input to an LTI system is a sinusoid, the "steady-state" output is a sinusoid of the same frequency but different amplitude and phase.
- **FORESHADOWING:** Transfer function at $s = j\omega$ tells us response to a sinusoid...but also about stability as $i\omega$ -axis is stability boundary!
- **EXAMPLE:** Suppose that we have a system with transfer function

$$G(s) = \frac{2}{3+s}.$$

Then, the system's frequency response is

$$G(j\omega) = \frac{2}{3+s}\bigg|_{s=j\omega} = \frac{2}{3+j\omega}.$$

The magnitude response is

$$A(j\omega) = \left|\frac{2}{3+j\omega}\right| = \frac{|2|}{|3+j\omega|} = \frac{2}{\sqrt{(3+j\omega)(3-j\omega)}} = \frac{2}{\sqrt{9+\omega^2}}.$$

The phase response is

$$\phi(j\omega) = \angle \left(\frac{2}{3+j\omega}\right)$$

$$= \angle (2) - \angle (3+j\omega)$$

$$= 0 - \tan^{-1}(\omega/3).$$

T

- Now that we know the amplitude and phase response, we can find the amplitude gain and phase change caused by the system for any specific frequency.
- For example, if $\omega = 3 \text{ rad s}^{-1}$,

$$A(j3) = \frac{2}{\sqrt{9+9}} = \frac{\sqrt{2}}{3}$$
$$\phi(j3) = -\tan^{-1}(3/3) = -\pi/4.$$

8.2: Plotting a frequency response

 There are two common ways to plot a frequency response in the magnitude and phase for all frequencies.

EXAMPLE:

$$R$$

$$U(s) \stackrel{+\circ}{\longrightarrow} C \stackrel{+}{\longrightarrow} Y(s)$$

$$-\circ \stackrel{-}{\longrightarrow} G(s) = \frac{1}{1 + RCs}$$

Frequency response

$$G(j\omega) = \frac{1}{1 + j\omega RC} \quad (\text{let } RC = 1)$$
$$= \frac{1}{1 + j\omega}$$
$$= \frac{1}{\sqrt{1 + \omega^2}} \angle -\tan^{-1}(\omega).$$

- We will need to separate magnitude and phase information from rational polynomials in $j\omega$.
 - Magnitude = magnitude of numerator / magnitude of denominator

$$\frac{\sqrt{\mathbb{R}(\mathsf{num})^2 + \mathbb{I}(\mathsf{num})^2}}{\sqrt{\mathbb{R}(\mathsf{den})^2 + \mathbb{I}(\mathsf{den})^2}}$$

• Phase = phase of numerator – phase of denominator

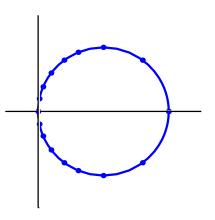
$$\tan^{-1}\left(\frac{\mathbb{I}(\mathsf{num})}{\mathbb{R}(\mathsf{num})}\right) - \tan^{-1}\left(\frac{\mathbb{I}(\mathsf{den})}{\mathbb{R}(\mathsf{den})}\right).$$

Plot method #1: Polar plot in complex plane

- Evaluate $G(j\omega)$ at each frequency for $0 \le \omega < \infty$.
- Result will be a complex number at each frequency: a + jb or $Ae^{j\phi}$.

- Plot each point on the complex plane at (a + jb) or $Ae^{j\phi}$ for each frequency-response value.
- Result = polar plot.
- We will later call this a "Nyquist plot".

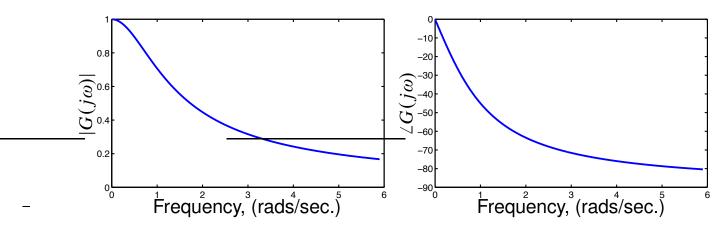
 ω $G(j\omega)$ 0 $1.000\angle 0.0^{\circ}$ 0.5 $0.894\angle -26.6^{\circ}$ 1.0 $0.707\angle -45.0^{\circ}$ 1.5 $0.555\angle -56.3^{\circ}$ 2.0 $0.447\angle -63.4^{\circ}$ 3.0 $0.316\angle -71.6^{\circ}$ 5.0 $0.196\angle -78.7^{\circ}$ 10.0 $0.100\angle -84.3^{\circ}$ ∞ $0.000\angle -90.0^{\circ}$



- The polar plot is parametric in ω, so it is hard to read the frequency-response for a specific frequency from the plot.
- We will see later that the polar plot will help us determine stability properties of the plant and closed-loop system.

Plot method #2: Magnitude and phase plots

 We can replot the data by separating the plots for magnitude and phase making two plots versus frequency.



The above plots are in a natural scale, but usually a log-log plot is made This is called a "Bode plot" or "Bode diagram."

Reason for using a logarithmic scale

- Simplest way to display the frequency response of a rational-polynomial transfer function is to use a Bode Plot.
- Logarithmic $|G(j\omega)|$ versus logarithmic ω , and logarithmic $\angle G(j\omega)$ versus ω .

REASON:

$$\log_{10}\left(\frac{ab}{cd}\right) = \log_{10}a + \log_{10}b - \log_{10}c - \log_{10}d.$$

➤ The polynomial factors that contribute to the transfer function can be split up and evaluated separately.

$$G(s) = \frac{(s+1)}{(s/10+1)}$$

$$G(j\omega) = \frac{(j\omega+1)}{(j\omega/10+1)}$$

$$|G(j\omega)| = \frac{|j\omega+1|}{|j\omega/10+1|}$$

$$\log_{10}|G(j\omega)| = \log_{10}\sqrt{1+\omega^2} - \log_{10}\sqrt{1+\left(\frac{\omega}{10}\right)^2}.$$

• Consider:

$$\log_{10}\sqrt{1+\left(\frac{\omega}{\omega_n}\right)^2}$$

• For $\omega \ll \omega_n$,

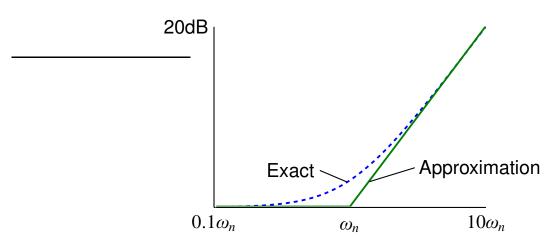
$$\log_{10}\sqrt{1+\left(\frac{\omega}{\omega_n}\right)^2}\approx\log_{10}(1)=0.$$

• For $\omega \gg \omega_n$,

$$\log_{10}\sqrt{1+\left(\frac{\omega}{\omega_n}\right)^2}\approx\log_{10}\left(\frac{\omega}{\omega_n}\right).$$

KEY POINT: Two straight lines on a log-log plot; intersect at $\omega = \omega_n$.

• Typically plot $20 \log_{10} |G(j\omega)|$; that is, in dB.

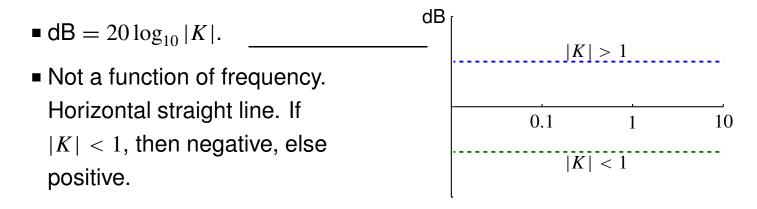


 A transfer function is made up of first-order zeros and poles, complex zeros and poles, constant gains and delays. We will see how to make straight-line (magnitude- and phase-plot) approximations for all these, and combine them to form the appropriate Bode diagram.

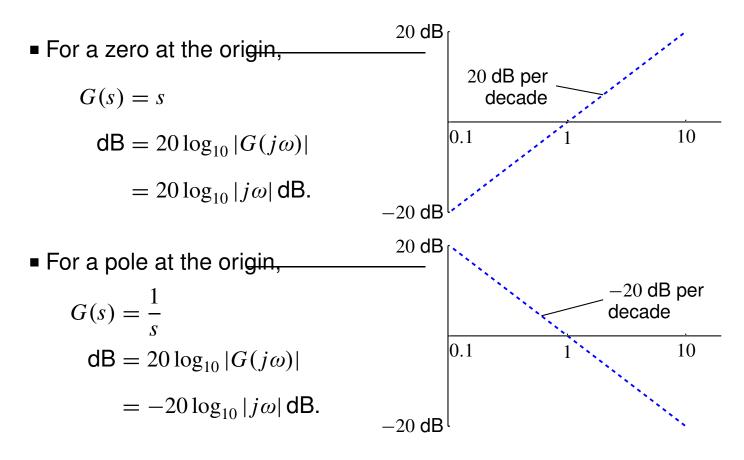
8.3: Bode magnitude diagrams (a)

- The $log_{10}(\cdot)$ operator lets us break a transfer function up into pieces.
- If we know how to plot the Bode plot of each piece, then we simply add all the pieces together when we're done.

Bode magnitude: Constant gain



Bode magnitude: Zero or pole at origin



- Both are straight lines, slope $= \pm 20 \, dB$ per decade of frequency.
 - Line intersects ω -axis at $\omega = 1$.
- For an *n*th-order pole or zero at the origin,

$$d\mathbf{B} = \pm 20 \log_{10} |(j\omega)^n|$$
$$= \pm 20 \log_{10} \omega^n$$
$$= \pm 20n \log_{10} \omega.$$

- Still straight lines.
- Still intersect ω -axis at $\omega = 1$.
- But, $slope = \pm 20n \, dB$ per decade.

Bode magnitude: Zero or pole on real axis, but not at origin

• For a zero on the real axis, (LHP or RHP), the standard Bode form is

$$G(s) = \left(\frac{s}{\omega_n} \pm 1\right),\,$$

which ensures unity dc-gain.

If you start out with something like

$$G(s)=(s+\omega_n),$$

then factor as

$$G(s) = \omega_n \left(\frac{s}{\omega_n} + 1\right).$$

Draw the gain term (ω_n) separately from the zero term ($s/\omega_n + 1$).

In general, a LHP or RHP zero has standard Bode form

$$G(s) = \left(\frac{s}{\omega_n} \pm 1\right)$$

$$G(j\omega) = \pm 1 + j\left(\frac{\omega}{\omega_n}\right)$$

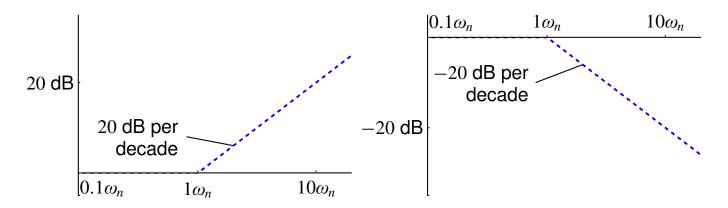
$$20 \log_{10} |G(j\omega)| = 20 \log_{10} \sqrt{1 + \left(\frac{\omega}{\omega_n}\right)^2}$$
• For $\omega \ll \omega_n$, $20 \log_{10} \sqrt{1 + \left(\frac{\omega}{\omega_n}\right)^2} \approx 20 \log_{10} \sqrt{1} = 0$.
• For $\omega \gg \omega_n$, $20 \log_{10} \sqrt{1 + \left(\frac{\omega}{\omega_n}\right)^2} \approx 20 \log_{10} \left(\frac{\omega}{\omega_n}\right)$.

- Two straight lines on a log scale which intersect at $\omega = \omega_n$.
- For a pole on the real axis, (LHP or RHP) standard Bode form is

$$G(s) = \left(\frac{s}{\omega_n} \pm 1\right)^{-1}$$

$$20 \log_{10} |G(j\omega)| = -20 \log_{10} \sqrt{1 + \left(\frac{\omega}{\omega_n}\right)^2}.$$

This is the same except for a minus sign.



8.4: Bode magnitude diagrams (b)

Bode magnitude: Complex zero pair or complex pole pair

For a complex-zero pair (LHP or RHP) standard Bode form is

$$\left(\frac{s}{\omega_n}\right)^2 \pm 2\zeta \left(\frac{s}{\omega_n}\right) + 1,$$

which has unity dc-gain.

If you start out with something like

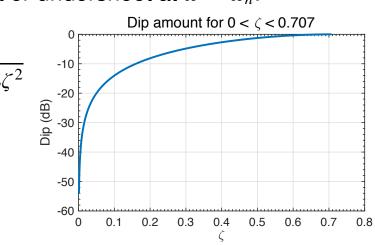
$$s^2 \pm 2\zeta \omega_n s + \omega_n^2$$
,

which we have seen before as a "standard form," the dc-gain is ω_n^2 .

• Convert forms by factoring out ω_n^2

$$s^{2} \pm 2\zeta \omega_{n}s + \omega_{n}^{2} = \omega_{n}^{2} \left[\left(\frac{s}{\omega_{n}} \right)^{2} \pm 2\zeta \left(\frac{s}{\omega_{n}} \right) + 1 \right].$$

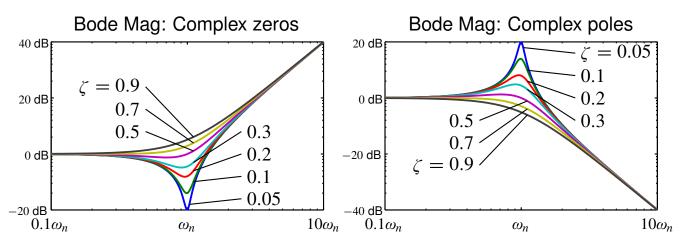
- Complex zeros do not lend themselves very well to straight-line approximation.
- If $\zeta = 1$, then this is $\left(\frac{s}{\omega_n} \pm 1\right)^2$.
- Double real zero at $\omega_n \implies$ slope of 40 dB/decade.
- For $\zeta \neq 1$, there will be overshoot or undershoot at $\omega \approx \omega_n$.
- For other values of ζ :
 - Dip frequency: $\omega_d = \omega_n \sqrt{1 2\zeta^2}$
 - Value of $|H(j\omega_d)|$ is: $20 \log_{10}(2\zeta \sqrt{(1-\zeta^2)}).$
 - Note: There is no dip unless $0 < \zeta < 1/\sqrt{2} \approx 0.707$.



We write complex poles (LHP or RHP) as

$$G(s) = \left[\left(\frac{s}{\omega_n} \right)^2 \pm 2\zeta \left(\frac{s}{\omega_n} \right) + 1 \right]^{-1}.$$

- The resonant peak frequency is $\omega_r = \omega_n \sqrt{1 2\zeta^2}$
- Value of $|H(j\omega_r)|$ is $-20\log_{10}(2\zeta\sqrt{(1-\zeta^2)})$.
 - Same graph as for "dip" for complex-conjugate zeros.
- Note that there is no peak unless $0 < \zeta < 1/\sqrt{2} pprox 0.707$.
- For $\omega \ll \omega_n$, magnitude $\approx 0 \, dB$.
- For $\omega \gg \omega_n$, magnitude slope = -40 dB/decade.



Bode magnitude: Time delay

- $G(s) = e^{-s\tau} \quad \dots \quad |G(j\omega)| = 1.$
- $20 \log_{10} 1 = 0 \, dB.$
- Does not change magnitude response.

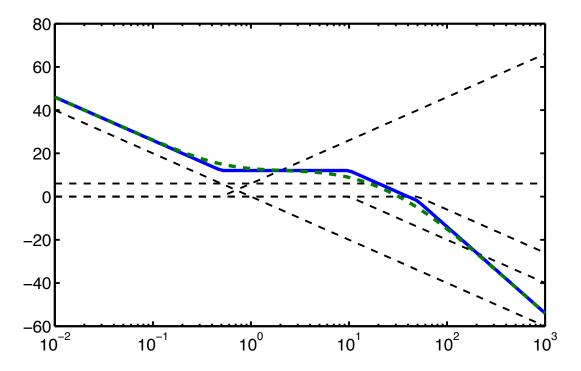
EXAMPLE: Sketch the Bode magnitude plot for

$$G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$$

 The first step is to convert the terms of the transfer function into "Bode standard form".

$$G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)} = \frac{\frac{2000\cdot0.5}{10\cdot50}\left(\frac{s}{0.5}+1\right)}{s\left(\frac{s}{10}+1\right)\left(\frac{s}{50}+1\right)}$$
$$G(j\omega) = \frac{2\left(\frac{j\omega}{0.5}+1\right)}{j\omega\left(\frac{j\omega}{10}+1\right)\left(\frac{j\omega}{50}+1\right)}.$$

- We can see that the components of the transfer function are:
 - DC gain of $20 \log_{10} 2 \approx 6 \, dB$;
 - Pole at origin;
 - One real zero not at origin, and
 - Two real poles not at origin.



8.5: Bode phase diagrams (a)

- Bode diagrams consist of the magnitude plots we have seen so far,
- *BUT,* also phase plots. These are just as easy to draw.
- *BUT,* they differ depending on whether the dynamics are RHP or LHP.

Finding the phase of a complex number

- Plot the location of the number as a vector in the complex plane.
- Use trigonometry to find the phase.
- For numbers with positive real part,

$$\angle(\#) = \tan^{-1}\left(\frac{\mathbb{I}(\#)}{\mathbb{R}(\#)}\right).$$

For numbers with negative real part,

$$\angle(\#) = 180^\circ - \tan^{-1}\left(\frac{\mathbb{I}(\#)}{|\mathbb{R}(\#)|}\right).$$

• If you are lucky enough to have the "atan2(y, x)" function, then

$$\angle(\#) = atan2(\mathbb{I}(\#), \mathbb{R}(\#))$$

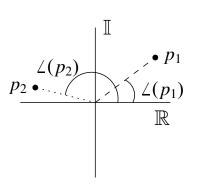
for any complex number.

Also note,

$$\angle \left(\frac{ab}{cd}\right) = \angle (a) + \angle (b) - \angle (c) - \angle (d).$$

Finding the phase of a complex function of ω

This is the same as finding the phase of a complex number, if specific values of ω are substituted into the function.



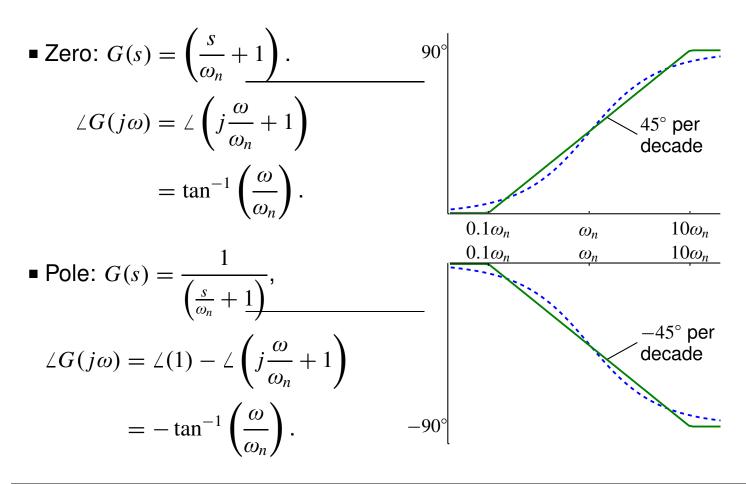
Bode phase: Constant gain

- G(s) = K. • $\angle(K) = \begin{cases} 0^{\circ}, & K \ge 0; \\ -180^{\circ}, & K < 0. \end{cases}$.
- Constant phase of 0° or -180° .

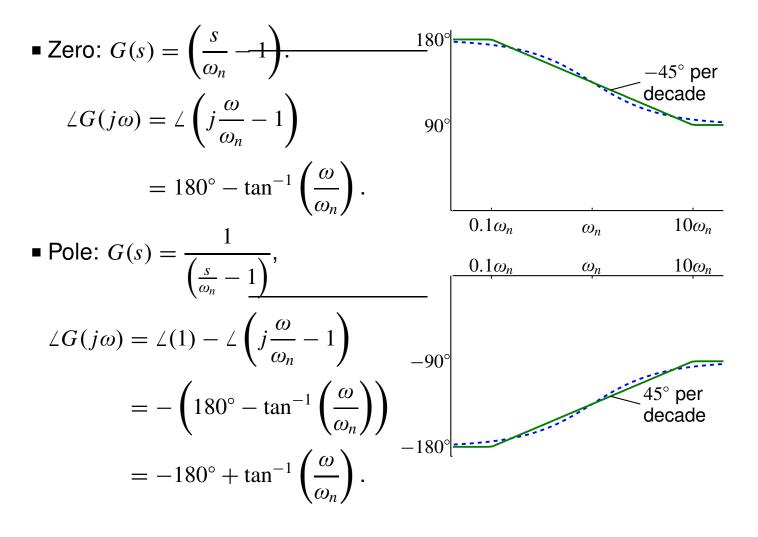
Bode phase: Zero or pole at origin

- Zero: G(s) = s, ... $G(j\omega) = j\omega = \omega \angle 90^{\circ}$.
- Pole: $G(s) = \frac{1}{s}$, ... $G(j\omega) = \frac{1}{j\omega} = \frac{-j}{\omega} = \frac{1}{\omega} \angle -90^{\circ}$.
- Constant phase of $\pm 90^{\circ}$.

Bode phase: Real LHP zero or pole



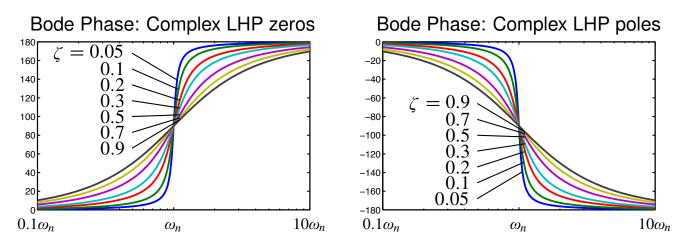
Bode phase: Real RHP zero or pole



8.6: Bode phase diagrams (b)

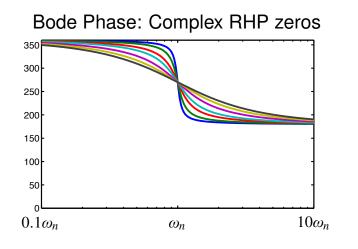
Bode phase: Complex LHP zero pair or pole pair

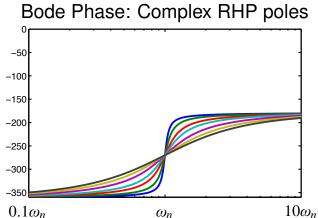
- Complex LHP zeros cause phase to go from 0° to 180°.
- Complex LHP poles cause phase to go from -180° to 0° .
- Transition happens in about $\pm \zeta$ decades, centered at ω_n .

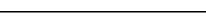


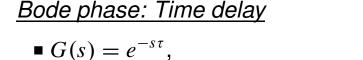
Bode phase: Complex RHP zero pair or pole pair

- Complex RHP zeros cause phase to go from 360° to 180°.
- Complex RHP poles cause phase to go from -360° to -180° .



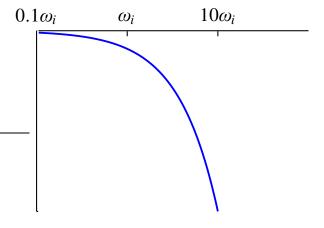






$$G(j\omega) = e^{-j\omega\tau} = 1\angle -\omega\tau$$

- $\angle G(j\omega) = -\omega\tau$ in radians.
 - $= -56.3\omega\tau$ in degrees.



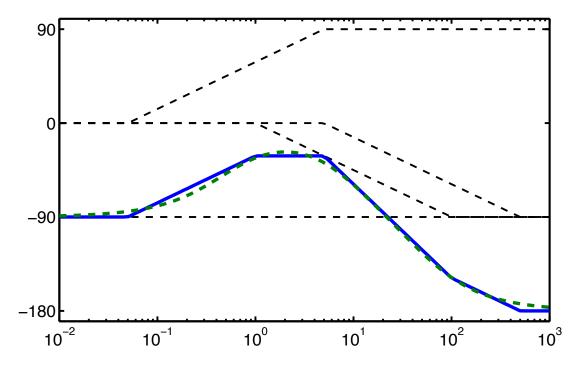
• Note: Line \rightarrow curve in log scale.

EXAMPLE: Sketch the Bode phase plot for

$$G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)} \quad \text{or} \quad G(j\omega) = \frac{2(j\omega/0.5+1)}{j\omega(j\omega/10+1)(j\omega/50+1)},$$

where we converted to "Bode standard form" in a prior example.

- Constant: K = +2. Zero phase contribution.
- Pole at origin: Phase contribution of -90° .
- Two real LHP poles: Phase from 0° to -90° , each.
- One real LHP zero: Phase from 0° to 90°.



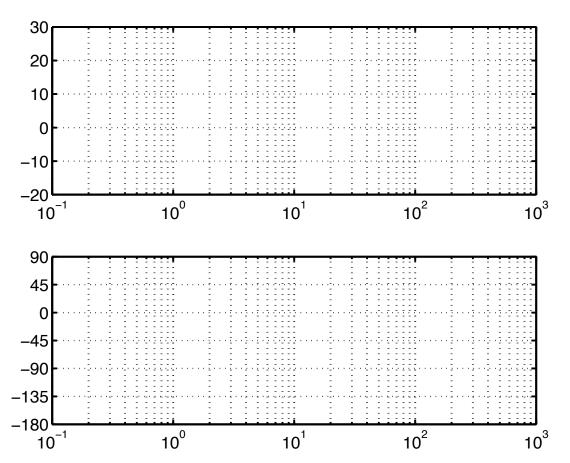
EXAMPLE: Sketch the Bode magnitude and phase plots for

$$G(s) = \frac{1200(s+3)}{s(s+12)(s+50)}.$$

First, we convert to Bode standard form, which gives

$$G(s) = \frac{1200(3)\left(1 + \frac{s}{3}\right)}{s(12)(50)\left(1 + \frac{s}{12}\right)\left(1 + \frac{s}{50}\right)}$$
$$G(j\omega) = \frac{6\left(1 + \frac{j\omega}{3}\right)}{j\omega\left(1 + \frac{j\omega}{12}\right)\left(1 + \frac{j\omega}{50}\right)}.$$

 Positive gain, one real LHP zero, one pole at origin, two real LHP poles.



8.7: Some observations based on Bode plots

Nonminimum-phase systems

- A system is called a nonminimum-phase if it has pole(s) or zero(s) in the RHP.
- Consider

$$G_{1}(s) = 10 \frac{s+1}{s+10} \begin{cases} zero at -1 \\ pole at -10 \end{cases} \begin{cases} minimum \\ phase \end{cases}$$

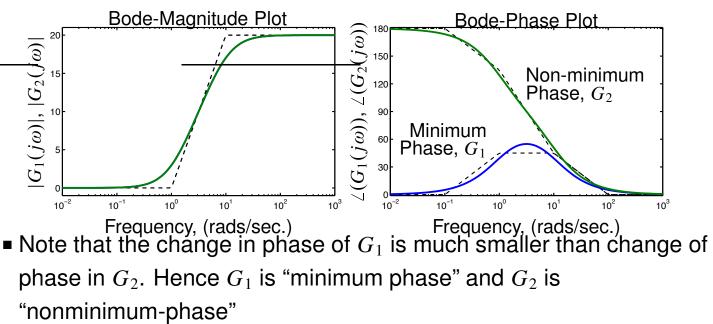
$$G_{2}(s) = 10 \frac{s-1}{s+10} \begin{cases} zero at +1 \\ pole at -10 \end{cases} \begin{cases} nonminimum \\ phase \end{cases}$$

• The magnitude responses of these two systems are:

$$|G_1(j\omega)| = 10 \frac{|j\omega+1|}{|j\omega+10|} = 10 \frac{\sqrt{\omega^2+1}}{\sqrt{\omega^2+100}}$$
$$|G_2(j\omega)| = 10 \frac{|j\omega-1|}{|j\omega+10|} = 10 \frac{\sqrt{\omega^2+1}}{\sqrt{\omega^2+100}}$$

which are the same!

The phase responses are very different:



Non-minimum phase usually associated with delay.

$$G_2(s) = G_1(s) \underbrace{\frac{s-1}{\underbrace{s+1}}}_{\text{Delay}}$$

- Note: $\frac{s-1}{s+1}$ is very similar to a first-order Padé approximation to a delay. It is the same when evaluated at $s = j\omega$.
- Consider using feedback to control a nonminimum-phase system.
 What do the root-locus plotting techniques tell us?
- Consequently, nonminimum-phase systems are harder to design controllers for; step response often tends to "go the wrong way," at least initially.

Steady-state errors from Bode magnitude plot

- Recall our discussion of steady-state errors to step/ramp/parabolic inputs versus "system type" (summarized on pg. 4–24)
- Consider a *unity-feedback* system.
- If the open-loop plant transfer function has N poles at s = 0 then the system is "type N"
 - K_p is error constant for type 0.
 - K_v is error constant for type 1.
 - K_a is error constant for type 2...
- For a unity-feedback system, $K_p = \lim_{s \to 0} G(s)$.
 - At low frequency, a type 0 system will have $G(s) \approx K_p$.
 - We can read this off the Bode-magnitude plot directly!

• Horizontal *y*-intercept at low frequency = K_p .

II

•
$$e_{ss} = \frac{1}{1 + K_p}$$
 for step input.

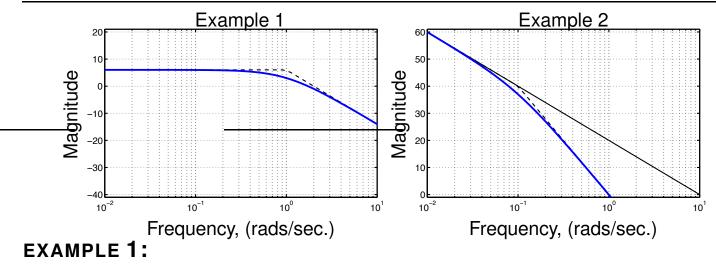
- $K_v = \lim_{s \to 0} sG(s)$, and is nonzero for a type 1 system.
 - At low frequency, a type 1 system will have $G(s) \approx \frac{K_v}{s}$.
 - At low frequency, $|G(j\omega)| \approx \frac{K_v}{\omega}$. Slope of $-20 \, \text{dB/decade}$.
 - Use the above approximation to extend the low-frequency asymptote to $\omega = 1$. The asymptote (*NOT THE ORIGINAL* $|G(j\omega)|$) evaluated at $\omega = 1$ is K_v .

••
$$e_{ss} = \frac{1}{K_v}$$
 for ramp input.

- $K_a = \lim_{s \to 0} s^2 G(s)$, and is nonzero for a type 2 system.
 - At low frequency, a type 2 system will have $G(s) \approx \frac{K_a}{s^2}$.
 - At low frequency, $|G(j\omega)| \approx \frac{K_a}{\omega^2}$. Slope of -40 dB/decade.
 - Again, use approximation to extend low-frequency asymptote to $\omega = 1$. The asymptote evaluated at $\omega = 1$ is K_a .

•
$$e_{ss} = \frac{1}{K_a}$$
 for parabolic input.

Similar for higher-order systems.



- ► Horizontal as $\omega \to 0$, so we know this is type 0.
- ► Intercept = $6 \, dB \dots K_p = 6 \, dB = 2$ [linear units].

EXAMPLE 2:

- Slope = $-20 \, dB/decade$ as $\omega \to 0$, so we know this is type 1.
- \blacktriangleright Extend slope at low frequency to $\omega = 1$.
- ► Intercept = 20 dB... $K_v = 20 \text{ dB} = 10$ [linear units].

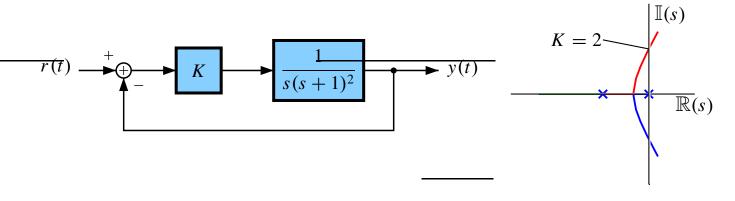
8.8: Stability revisited

- If we know the closed-loop *transfer function* of a system in rationalpolynomial form, we can use Routh to find stable ranges for K.
- Motivation: What if we only have open-loop frequency response?

A simple example

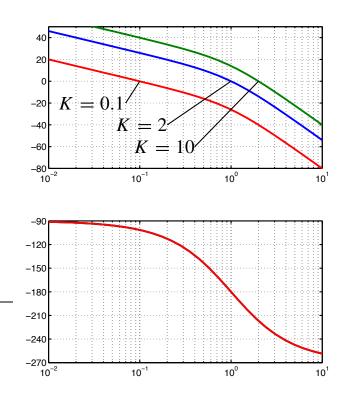
 Consider, for now, that we know the transfer-function of the system, and can plot the root-locus.

EXAMPLE:



- We see neutral stability at K = 2. The system is stable for K < 2 and unstable for K > 2.
- Recall that a point is on the root locus if |KG(s)| = 1 and $\angle G(s) = -180^{\circ}$.
- If system is neutrally stable, $j\omega$ -axis will have a point (points) where $|KG(j\omega)| = 1$ and $\angle G(j\omega) = -180^{\circ}$.

- Consider the Bode plot of
 KG(s)...
- A neutral-stability condition from Bode plot is: $|KG(j\omega_o)| = 1$ AND $\angle KG(j\omega_o) = -180^\circ$ at the same frequency ω_o .
- In this case, increasing $K \rightarrow \text{instability} \Rightarrow |KG(j\omega)| < 1$ at $\angle KG(j\omega) = -180^{\circ} = \text{stability.}$
- In some cases, decreasing $K \rightarrow \text{instability} \implies |KG(j\omega)| > 1$ at $∠KG(j\omega) = -180^\circ = \text{stability}.$



KEY POINT: We can find neutral stability point on Bode plot, but don't (yet) have a way of determining if the system is stable or not. Nyquist found a frequency-domain method to do so.

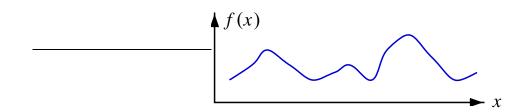
<u>Nyquist stability</u>

- Poles of closed-loop transfer function in RHP—the system is unstable.
- Nyquist found way to count closed-loop poles in RHP.
- If count is greater than zero, system is unstable.
- Idea:
 - First, find a way to count closed-loop poles inside a contour.
 - Second, make the contour equal to the RHP.
- Counting is related to complex functional mapping.

8.9: Interlude: Complex functional mapping

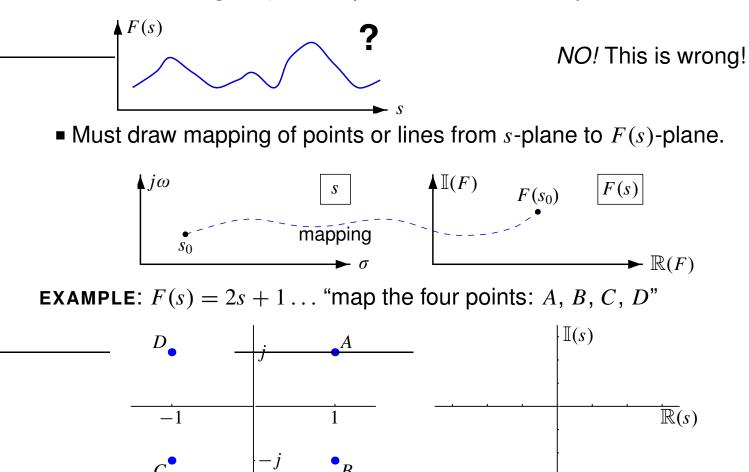
- Nyquist technique is a graphical method to determine system stability, regions of stability and MARGINS of stability.
- Involves graphing complex functions of s as a polar plot.

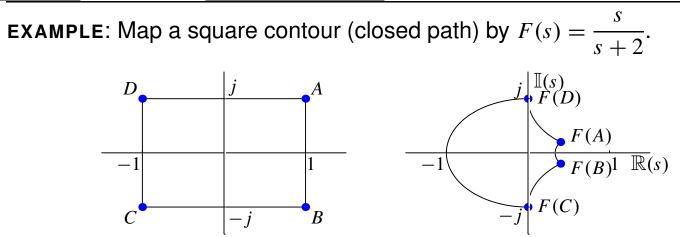
EXAMPLE: Plotting f(x), a real function of a real variable x.



This can be done.

EXAMPLE: Plotting F(s), a complex function of a complex variable s.





FORESHADOWING: By drawing maps of a specific contour, using a mapping function related to the plant open-loop frequency-response, we will be able to determine closed-loop stability of systems.

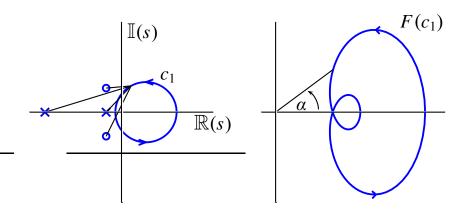
Mapping function: Poles of the function

- When we map a contour containing (encircling) poles and zeros of the mapping function, this *map* will give us information about how many poles and zeros are encircled by the contour.
- Practice drawing maps when we know poles and zeros. Evaluate

$$G(s)|_{s=s_o} = G(s_o) = |\vec{v}|e^{j\alpha}$$

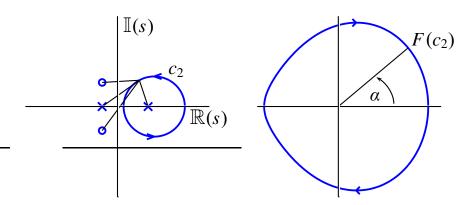
 $\alpha = \sum \angle (\text{zeros}) - \sum \angle (\text{poles}).$

EXAMPLE:



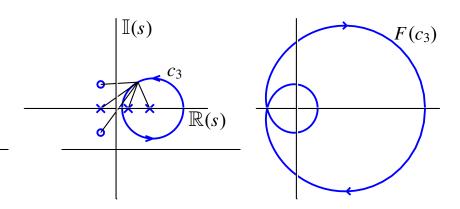
 In this example, there are no zeros or poles inside the contour. The phase α increases and decreases, but never undergoes a net change of 360° (does not encircle the origin).

EXAMPLE:



 One pole inside contour. Resulting map undergoes 360° net phase change. (Encircles the origin).

EXAMPLE:



In this example, there are two poles inside the contour, and the map encircles the origin twice.

8.10: Cauchy's theorem and Nyquist's rule

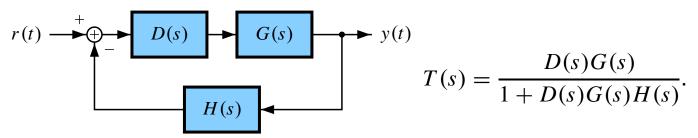
These examples give heuristic evidence of the general rule: Cauchy's theorem

"Let F(s) be the ratio of two polynomials in s. Let the closed curve C in the s-plane be mapped into the complex plane through the mapping F(s). If the curve C does not pass through any zeros or poles of F(s) as it is traversed in the CW direction, the corresponding map in the F(s)-plane encircles the origin N = Z - P times in the CW direction," where

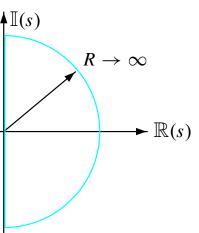
Z = # of zeros of F(s) in C,

P = # of poles of F(s) in C.

Consider the following feedback system:



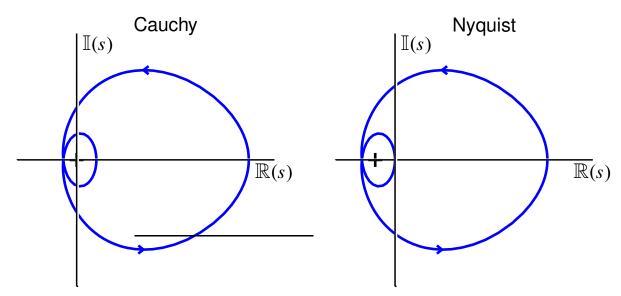
- For closed-loop stability, no poles of T(s) in RHP.
 - No zeros of 1 + D(s)G(s)H(s) in RHP.
 - Let F(s) = 1 + D(s)G(s)H(s).
 - Count zeros in RHP using Cauchy theorem! (Contour=entire RHP).
- The Nyquist criterion simplifies Cauchy's criterion for feedback systems of the above form.



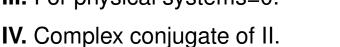
• Cauchy: F(s) = 1 + D(s)G(s)H(s). N = # of encirclements of origin.

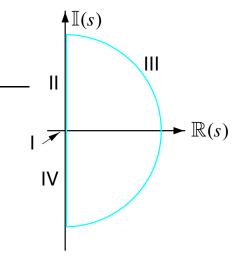
• Nyquist:
$$F(s) = D(s)G(s)H(s)$$
.

N = # of encirclements of -1.



- Simple? YES!!!
- Think of Nyquist path as four parts:
 - I. Origin. Sometimes a special case (later examples).
 - II. $+j\omega$ -axis. FREQUENCY-response of O.L. system! Just plot it as a polar plot.
 - **III.** For physical systems=0.





- So, for most physical systems, the Nyquist plot, used to determine *CLOSED-LOOP* stability, is merely a polar plot of *LOOP* frequency response D(jω)G(jω)H(jω).
- We don't even need a mathematical model of the system. Measured data of G(jω) combined with our known D(jω) and H(jω) are enough to determine closed-loop stability.

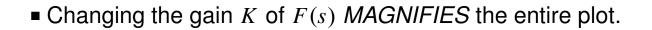
THE TEST:

- N = # encirclements of -1 point when F(s) = D(s)G(s)H(s).
- P = # poles of 1 + F(s) in RHP= # of open-loop unstable poles. (assuming that H(s) is stable—reasonable).
- Z = # of zeros of 1 + F(s) in RHP= # of closed-loop unstable poles.

Z = N + P

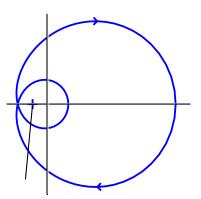
The system is stable iff Z = 0.

- Be careful counting encirclements!
- Draw line from -1 in any direction.
- Count # crossings of line and diagram.
- N =#CW crossings-#CCW crossings.



ENHANCED TEST: Loop transfer function is KD(s)G(s)H(s).

- N = # encirclements of -1/K point when F(s) = D(s)G(s)H(s).
- Rest of test is the same.
- Gives ranges of *K* for stability.



8.11: Nyquist test example

EXAMPLE: $D(s) = H(s) = 1$.					
$G(s) = \frac{5}{5}$	ω	$\mathbb{R}(G(j\omega))$	$\mathbb{I}(G(j\omega))$		
$G(s) = \frac{5}{(s+1)^2}$	0.0000	5.0000	0.0000		
or, $G(j\omega) = \frac{5}{(j\omega+1)^2}$	0.0019	4.9999	-0.0186		
$(j\omega) = (j\omega + 1)^2$	0.0040	4.9998	-0.0404		
I: At $s = 0$, $G(s) = 5$.	0.0088	4.9988	-0.0879		
II: At $s = j\omega$, $G(j\omega) = \frac{5}{(1 + j\omega)^2}$.	0.0191	4.9945	-0.1908		
	0.0415	4.9742	-0.4135		
III: At $ s = \infty$, $G(s) = 0$.	0.0902	4.8797	-0.8872		
IV: At $s = -j\omega$, $G(s) = \frac{5}{(1-j\omega)^2}$.	0.1959	4.4590	-1.8172		
	0.4258	2.9333	-3.0513		
$(1-j\omega)^2$	0.9253	0.2086	-2.6856		
$ \mathbb{T}(z) $	2.0108	-0.5983	-0.7906		
	4.3697	-0.2241	-0.1082		
	9.4957	-0.0536	-0.0114		
	20.6351	-0.0117	-0.0011		
$\mathbb{R}(s)$	44.8420	-0.0025	-0.0001		
	97.4460	-0.0005	-0.0000		
	500.0000	-0.0000	-0.0000		
ι.					

- No encirclements of -1, N = 0.
- No open-loop unstable poles P = 0.
- Z = N + P = 0. Closed-loop system is stable.
- No encirclements of -1/K for any K > 0.
 - So, system is stable for any K > 0.

- Confirm by checking Routh array.
- Routh array: $a(s) = 1 + KG(s) = s^2 + 2s + 1 + 5K$.

• Stable for any K > 0.

0	5.0000
0.1	4.9053
0.2	4.4492
0.5	2.4428
1.2	-0.5621
2.9	-0.4764
7.1	-0.0737
17.7	-0.0046
43.7	-0.0002
100.0	-0.0000
`	Zoom
	0.1 0.2 0.5 1.2 2.9 7.1 17.7 43.7

1(1)			
10)	1.2	-0.5621	-2.0241
. System ⊳ 0.	2.9	-0.4764	-0.1933
	7.1	-0.0737	0.0262
	17.7	-0.0046	0.0064
	43.7	-0.0002	0.0006
	100.0	-0.0000	0.0000
`	\setminus	Zoom	
$\mathbb{R}(s)$	- T		

 $\mathbb{I}(G(j\omega))$

-0.8008

-1.8624

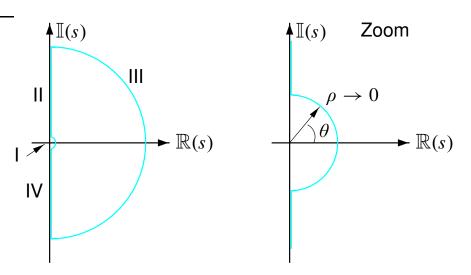
-3.2725

0

8.12: Nyquist test example with pole on $j\omega$ -axis

EXAMPLE: Pole(s) at origin. $G(s) = \frac{1}{s(\tau s + 1)}$.

- *WARNING*! We cannot blindly follow procedure!
- Nyquist path goes through pole at zero! (Remember from Cauchy's theorem that the path cannot pass directly through a pole or zero.)
- Remember: We want to count closed-loop poles inside a "box" that encompasses the RHP.
- So, we use a slightly-modified Nyquist path.



- The bump at the origin makes a detour around the offending pole.
- Bump defined by curve: $s = \lim_{\rho \to 0} \rho e^{j\theta}$, $0^{\circ} \le \theta \le 90^{\circ}$.
- From above,

$$G(s)|_{s=\rho e^{j\theta}} = \frac{1}{\rho e^{j\theta}(\tau \rho e^{j\theta} + 1)}, \qquad 0^{\circ} \le \theta \le 90^{\circ}$$

 \blacksquare Consider magnitude as $\rho \rightarrow 0$

$$\lim_{\rho \to 0} |G(s)|_{s=\rho e^{j\theta}} = \frac{1}{\rho |\tau \rho e^{j\theta} + 1|} \approx \frac{1}{\rho}.$$

• Consider phase as $\rho \rightarrow 0$

$$\lim_{\rho\to 0} \angle G(s)|_{s=\rho e^{j\theta}} = -\theta - \angle (\tau \rho e^{j\theta} + 1).$$

■ So,

$$\lim_{\rho \to 0} G(\rho e^{j\theta}) = \lim_{\rho \to 0} \frac{1}{\rho} \angle -\theta^+$$

- This is an arc of infinite radius, sweeping from 0° to $-90^{\circ+}$ (a little more than 90° because of contribution from $\frac{1}{(\tau s + 1)}$ term).
- WE CANNOT DRAW THIS TO SCALE!
- $\bullet Z = N + P.$
- N = # encirclements of -1. N = 0.
- P = # Loop transfer function poles inside *MODIFIED* contour. P = 0.
- Z = 0. Closed-loop system is stable.

EXAMPLE:

$$G(s) = \frac{1}{s^2(s+1)}$$

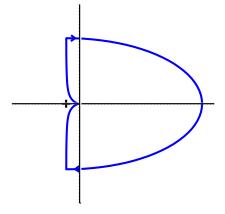
- Use modified Nyquist path again
- I: Near origin

$$G(s)|_{s=\rho e^{j\theta}} = \frac{1}{\rho^2 e^{j2\theta} (1+\rho e^{j\theta})}.$$

• Magnitude:
$$\lim_{\rho \to 0} |G(\rho e^{j\theta})| = \frac{1}{\rho^2 |1+\rho e^{j\theta}|} \approx \frac{1}{\rho^2}.$$

• Phase: $\lim_{\rho \to 0} \angle G(\rho e^{j\theta}) = 0 - [2\theta + \angle (1 + \rho e^{j\theta})] \approx -2\theta^+$. So,

$$\lim_{\rho \to 0} G(\rho e^{j\theta}) = \lim_{\rho \to 0} \frac{1}{\rho^2} \angle -2\theta^+ \qquad 0^\circ \le \theta \le 90^\circ.$$



- Infinite arc from 0° to $-180^{\circ+}$ (a little more than -180° because of $\frac{1}{1+s}$ term.)
- Z = N + P = 2 + 0 = 2. Unstable for K = 1.
- In fact, unstable for any K > 0!
- Matlab for above

num=[0 0

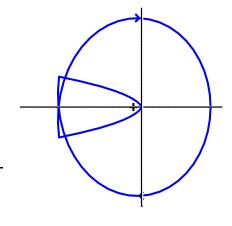
$$G(s) = \frac{1}{s^3 + s^2 + 0s + 0}$$

num=[0 0 0 1];
den=[1 1 0 0];

nyquist1(num, den);

```
axis([xmin xmax ymin ymax]);
```

- "nyquist1.m" is available on course web site.
- It repairs the standard Matlab "nyquist.m" program, which doesn't work when poles are on imaginary axis.
- "inyquist2.m" is also available. It draws contours around poles on the imaginary axis in the opposite way to "nyquist1.m". Counting is different.



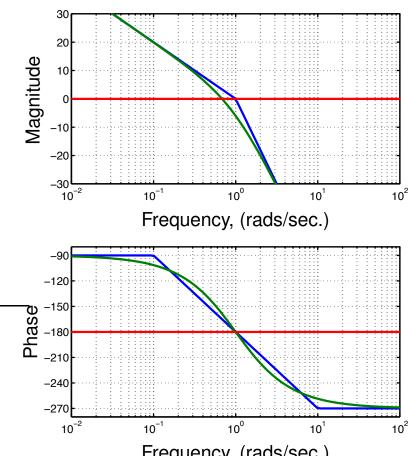
8.13: Stability (gain and phase) margins

- A large fraction of systems to be controlled are stable for small gain but become unstable if gain is increased beyond a certain point.
- The distance between the current (stable) system and an unstable system is called a "stability margin."
- Can have a gain margin and a phase margin.
- GAIN MARGIN: Factor by which the gain is less than the neutral stability value.
 - Gain margin measures "How much can we increase the gain of the loop transfer function L(s) = D(s)G(s)H(s) and still have a stable system?"
 - Many Nyquist plots are like this one. Increasing loop gain magnifies the plot.
 - GM =1/(distance between origin and place where Nyquist map crosses real axis).
- PM
- If we increase gain, Nyquist map "stretches" and we may encircle -1.
- For a stable system, GM > 1 (linear units) or GM > 0 dB.
- **PHASE MARGIN:** Phase factor by which phase is greater than neutral stability value.
 - Phase margin measures "How much delay can we add to the loop transfer function and still have a stable system?"

- PM = Angle to rotate Nyquist plot to achieve neutral stability = intersection of Nyquist with circle of radius 1.
- If we increase open-loop delay, Nyquist map "rotates" and we may encircle -1.
- For a stable system, $PM > 0^{\circ}$.

IRONY: This is usually easiest to check on Bode plot, even though derived on Nyquist plot!

- Define gain crossover as frequency where Bode magnitude is 0 dB.
- Define phase crossover as frequency where Bode phase is -180° .
- GM = 1/(Bode gain at phase-crossover frequency) if Bode gain is measured in linear units.
- GM = (- Bode gain at phase-crossover frequency) [dB] if Bode gain measured in dB.
- *PM* = Bode phase at gain-crossover −(−180°).



• We can also determine stability as *K* changes. Instead of defining gain crossover where $|G(j\omega)| = 1$, use the frequency where $|KG(j\omega)| = 1$.

- You need to be careful using this test.
 - It works if you apply it blindly and the system is minimum-phase.
 - You need to think harder if the system is nonminimum-phase.
 - Nyquist is the safest bet.

PM and performance

- A bonus of computing *PM* from the open-loop frequency response graph is that it can help us predict closed-loop system performance.
- PM is related to damping. Consider open-loop 2nd-order system

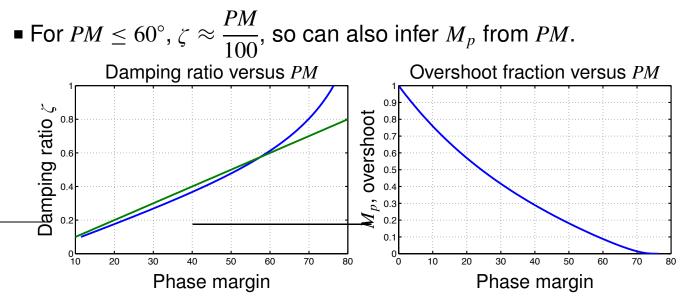
$$G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$$

with unity feedback,

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}.$$

• The relationship between *PM* and ζ is: (for this system)

$$PM = \tan^{-1} \left[\frac{2\zeta}{\sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2}} \right]$$



Lecture notes prepared by and copyright © 1998–2017, Gregory L. Plett and M. Scott Trimboli

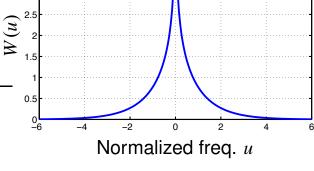
8.14: Preparing for control using frequency-response methods

Bode's gain-phase relationship

"For any stable minimum-phase system (that is, one with no RHP zeros or poles), the phase of G(jω) is uniquely related to the magnitude of G(jω)"

• Relationship:
$$\angle G(j\omega_o) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{dM}{du}\right) W(u) du$$
 (in radians)
 $M = \ln |G(j\omega)|$
 $u = \ln \left(\frac{\omega}{\omega_o}\right)$
 $\frac{dM}{du} \approx \text{slope } n \text{ of log-mag curve at } \omega = \omega_o$
 $W(u) = \text{weighting function} = \ln(\coth |u|/2)$
• $W(u) \approx \frac{\pi^2}{2} \delta(u)$. Using this re-
lationship, $\angle G(j\omega) \approx n \times 90^\circ$
 $(z)^{\frac{4}{2}} = \frac{1}{2} \int_{-\infty}^{\infty} \left(\frac{1}{2} + \frac{1}{2}\right) du$

if slope of Bode magnitudeplot is constant in the decadeneighborhood of ω .



- So, if $\angle G(j\omega) \approx -90^{\circ}$ if n = -1.
- So, if $\angle G(j\omega) \approx -180^{\circ}$ if n = -2.

KEY POINT: Want crossover $|G(j\omega)| = 1$ at a slope of about -1 for good *PM*. We will soon see how to do this (design!).

Closed-loop frequency response

- Most of the notes in this section have used the open-loop frequency response to predict closed-loop behavior.
- How about closed-loop frequency response?

$$T(s) = \frac{KD(s)G(s)}{1 + KD(s)G(s)}.$$

General approximations are simple to make. If,

$$|KD(j\omega)G(j\omega)| \gg 1$$
 for $\omega \ll \omega_c$
and $|KD(j\omega)G(j\omega)| \ll 1$ for $\omega \gg \omega_c$

where ω_c is the cutoff frequency where open-loop magnitude response crosses magnitude=1.

$$|T(j\omega)| = \left|\frac{KD(j\omega)G(j\omega)}{1 + KD(j\omega)G(j\omega)}\right| \approx \begin{cases} 1, & \omega \ll \omega_c;\\ |KD(j\omega)G(j\omega)|, & \omega \gg \omega_c. \end{cases}$$

• Note: $\omega_c \leq \omega_{bw} \leq 2\omega_c$.