ECE4510/5510: Feedback Control Systems. 81

FREQUENCY-RESPONSE ANALYSIS

8.1: Motivation to study frequency-response methods

m Advantages and disadvantages to root-locus design approach:
ADVANTAGES:

» Good indicator of transient response.
 Explicitly shows location of closed-loop poles. "™ Tradeoffs are
clear.
DISADVANTAGES:

» Requires transfer function of plant be known.
« Difficult to infer all performance values.
» Hard to extract steady-state response (sinusoidal inputs).

» Frequency-response methods can be used to supplement root locus:

» Can infer performance and stability from same plot.

o Can use measured data when no model is available.

» Design process is independent of system order (# poles).

o Time delays handled correctly (e ).

» Graphical techniques (analysis/synthesis) are “quite simple.”

What is a frequency response?

= \We want to know how a linear system responds to sinusoidal input, in
steady state.
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m Consider system Y (s) = G(s)U (s) with input u(t) = ugcos(wt), SO

S
U(s) = u0S2 s
m \With zero initial conditions,
S
Y(s) = qu(s)S2 s

= Do a partial-fraction expansion (assume distinct roots)
o o o, o o
Y(s) = —— + —— 4+ +——t—2L
S — a S — ar s—a, S—Jjo S+ jJo

y(t) = a1 + are™ + -+ a,e™ +ape’” + aje .

If stable, these decay to zero.

Vss(t) = ape’™ + age .
= Let ap = Ae’?. Then,
Vs = Ae/Pel® 1 Ao iPp— it
— A (ej(cot+¢) + e—j(wt+¢))
= 2A cos (wt + ¢).
We find «a via standard partial-fraction-expansion means:
ap = [(s — jw)Y (s)]
[ upsG(s)

_(S + ]CO) s=jw

_up(jo)G(jo)  ueG(jo)
- Qjw) 2

s=jw

m Substituting into our prior result

Yss = o] G (jw)| cos (vt + LG(jw)).
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m Important LTI-system fact: If the input to an LTI system is a sinusoid,
the “steady-state” output is a sinusoid of the same frequency but
different amplitude and phase.

FORESHADOWING: Transfer function at s = jw tells us response to a
sinusoid...but also about stability as jw-axis is stability boundary!

EXAMPLE: Suppose that we have a system with transfer function

Gs) = —
S) = ——.
3+
= Then, the system’s frequency response is
, 2 2
Gljo)= "~ =5
+ 5= 34+ jo
= The magnitude response is
: 2 12| 2 2
+jol B+jol VG+jo)B-jo) I+ w?

= The phase response is
D

o 2
¢(Jw)—1(3+jw) /
=/(2)— /(B + jo) T 2

.‘a)
PR
- [

|

|

|

|

%

3

=0 —tan" ' (w/3).
= Now that we know the amplitude and phase response, we can find
the amplitude gain and phase change caused by the system for any
specific frequency.

= For example, if o = 3rads ™,

2 N2
A(]3)—\/m—3

#(j3) = —tan"'(3/3) = —x /4.
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8.2: Plotting a frequency response

= There are two common ways to plot a frequency response " the
magnitude and phase for all frequencies.

EXAMPLE:
R
+ T + 1
U(s) C Y (s) G(s) = ——-+
~ J I+ RCs
= Frequency response
1
G(jow) = let RC =1
Uo)=1ore )
B 1
14 jo

1
= ——/ —tan (w).

V1 + w?

= We will need to separate magnitude and phase information from
rational polynomials in jw.

» Magnitude = magnitude of numerator / magnitude of denominator
VR(NumM)2 4 I(num)?2
JR(den)? + I(den)?
» Phase = phase of numerator — phase of denominator
4 I[(num)) 4 (]I(den))
tan — tan .
R(num) R(den)

Plot method #1: Polar plot in complex plane

» Evaluate G(jw) at each frequency for 0 < o < oo.

= Result will be a complex number at each frequency: a + jb or Ae’?.
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= Plot each point on the complex plane at (a + jb) or Ae’? for each
frequency-response value.

= Result = polar plot.

= We will later call this a “Nyquist plot”.

@ G(jw)

0 | 1.000£0.0°
0.5]0.894/ — 26.6°
1.0/ 0.7072 — 45.0°
1.5/ 0.555/ — 56.3°

2.0|0447/ —63.4° O

3.0/0.316/ —71.6°
5.0|0.196/ — 78.7°
10.0 10.100/ — 84.3°
oo | 0.000Z —90.0°

= The polar plot is parametric in w, so it is hard to read the
frequency-response for a specific frequency from the plot.

= We will see later that the polar plot will help us determine stability
properties of the plant and closed-loop system.

Plot method #2: Magnitude and phase plots

= We can replot the data by separating the plots for magnitude and
phase making two plots versus frequency.
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— @‘30'
8 0.6 Ny
S <
o4 1 O
== ~ —60
0.2 70

f:req uiancy,s(radg/sec.)s i:requzency,s(radg/sec.i

= The above plots are in a natural scale, but usually a log-log plot is
made ™ This is called a “Bode plot” or “Bode diagram.”

Reason for using a logarithmic scale

= Simplest way to display the frequency response of a
rational-polynomial transfer function is to use a Bode Plot.

m Logarithmic |G (jw)| versus logarithmic w, and logarithmic /G (jw)
Versus o.

REASON: b
a
log ( d) = logjga +log,gb —log;gc —log,,d.

cd
» The polynomial factors that contribute to the transfer function can
be split up and evaluated separately.

Gls) = (s(/Sl(J)r i)l)
Gle) =7 j(oeijolg_i)l)
G ()] = |jgjolo+4l-ll|
log,y |G (jo)| = logjo v'1 + @2 — log, \/1 + (%)2.
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= Consider:
o\ 2
m Forow <« w,,
o\ 2
logjo/ 1+ e log;o(1) = 0.
m Foro > w,,

| \/1 o\ | w

0 +1—) ~lo —1).

£10 ) £10 )

KEY POINT: Two straight lines on a Iog-Iog p|0t; intersect at w = @y, .

= Typically plot 201og,, |G (jw)|; that is, in dB.

20dB

Approximation

-
="
-

0.1w, Wy, 10w,

m A transfer function is made up of first-order zeros and poles, complex
zeros and poles, constant gains and delays. We will see how to make
straight-line (magnitude- and phase-plot) approximations for all these,
and combine them to form the appropriate Bode diagram.
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8.3: Bode magnitude diagrams (a)

= The log,,(-) operator lets us break a transfer function up into pieces.

= |f we know how to plot the Bode plot of each piece, then we simply
add all the pieces together when we're done.

Bode magnitude: Constant gain

dB = 201log,, | K| a8
| = (0] .
S R Klzdoo
= Not a function of frequency.
Horizontal straight line. If 01 ; 10
|K| < 1, then negative, else | ..
. K| <1
positive.
Bode magnitude: Zero or pole at origin
. 20 dB
= For a zero at the origin,
20 dB per P
G(s)=s decade
dB = 2010g,, |G (jw) oL 10
—20dB Y’
. 20 dB..
= For a pole at the origin, .
1 —20 dB per
G(s) =— “.— decade
S \'\ .
dB = 20log,) |G (je) o1 e Y
= —201o | dB.
o ljol 20dB
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= Both are straight lines, slope = +£20dB per decade of frequency.
e Line intersects w-axis atw = 1.
m For an nth-order pole or zero at the origin,
dB = +201log,, |(jo)"|
= +20log,, "
= +20n log,, w.
o Still straight lines.

¢ Still intersect w-axis at w = 1.

e But, slope = +20ndB per decade.

Bode magnitude: Zero or pole on real axis, but not at origin

m For a zero on the real axis, (LHP or RHP), the standard Bode form is

G(s) = (i + 1) |
(Op
which ensures unity dc-gain.

= |[f you start out with something like

G(s) = (s + wy),

G(s) = w, (i + 1) :
Wy,

Draw the gain term (w,) separately from the zero term (s /w, + 1).

then factor as

= In general, a LHP or RHP zero has standard Bode form

G(s) = (wi + 1)
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G(jw) = £1 + j (3)

n

2
@
201log,y |G (jw)| = 201log,, \/1 + (a)_)

n

2
= For o < wp, 201og, \/1 + (2) ~ 201og,, V1i=0.

n

2
sForw> w,  20log, / 1+ (3) ~ 201og;, (3)
a)n a)n

= Two straight lines on a log scale which intersect at o = w,.

m For a pole on the real axis, (LHP or RHP) standard Bode form is
—1
G(s) = (i + 1)
Wy,

2
w
201og,, |G(jw)| = —2010g10\/1 + (—) .

n

This is the same except for a minus sign.

20 dB /¢' —20 dB per /‘~~~~
. decade

20 dB per —20 dB
decade

0.10, Lo, 100,
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8.4: Bode magnitude diagrams (b)

Bode magnitude: Complex zero pair or complex pole pair

m For a complex-zero pair (LHP or RHP) standard Bode form is
2
(2 ()
Wy, Wy,

which has unity dc-gain.

= |f you start out with something like
st £ 20 w,s + 2,
which we have seen before as a “standard form,” the dc-gain is o?.

= Convert forms by factoring out o>

2
$2 £ 20w + 0 = o {(1) + 20 (i) + 1} .
, w,

= Complex zeros do not lend themselves very well to straight-line
approximation.
2
= lf £ = 1, then this is (ii 1) .
Wy
= Double real zero at w,, "™ slope of 40 dB/decade.

m For ¢ # 1, there will be overshoot or undershoot at v ~ w,.
Dip amount for 0 < ( < 0.707

= For other values of ¢: 0

« Dip frequency: wy = w,/1 — 22

e Value of |H(jw,)| is:
2010g,,(2¢V/ (1 — £2)).

o Note: There is no dip unless .

O<C‘ <1/\/§%O,707_ o o4 02 03 oé4 05 06 07 08

Dip (dB)

50 F
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= We write complex poles (LHP or RHP) as

w0=|(3) +x ()

o The resonant peak frequency is o, = w,v/1 — 22
e Value of |H(jw,)| is —201og,,(2¢ v (1 — ¢?)).

+ Same graph as for “dip” for complex-conjugate zeros.

« Note that there is no peak unless 0 < ¢ < 1/+/2 ~ 0.707 .
e FOor v « w,, magnitude ~ 0 dB.
e For v > w,, magnitude slope = —40 dB/decade.

Bode Mag: Complex zeros Bode Mag: Complex poles
40 dB T 20 dB
;=005
_ 0.1
oosl  © 83 {  odB 0.2
05 03 0.5 0.3
0.7
0dB 0.2 i —20dB} £ =09
0.1 '
0.05
—20dB —40 dB
0.1w, wy, 10w, 0.1w, wy, 10w,

Bode magnitude: Time delay

mG(s)=¢e " ... |G(w)| =1.

= Does not change magnitude response.

EXAMPLE: Sketch the Bode magnitude plot for
2000(s + 0.5)
s(s + 10)(s + 50)

G(s) =
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= The first step is to convert the terms of the transfer function into
“Bode standard form”.

Gls) = 20006 +05) s (G5 + 1)
s+ 10)(s+50)  s(H+1)(S5+1)
2 (L2 + 1)
G(jw) = G

jo (5 +1) (5% +1)

= We can see that the components of the transfer function are:
« DC gain of 201log,,2 ~ 6 dB;
 Pole at origin;
» One real zero not at origin, and

« Two real poles not at origin.

80

60

40

20

10 10 10 10 10 10
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8.5: Bode phase diagrams (a)

» Bode diagrams consist of the magnitude plots we have seen so far,
m BUT, also phase plots. These are just as easy to draw.

m BUT, they differ depending on whether the dynamics are RHP or LHP.

Finding the phase of a complex number

= Plot the location of the number as a vector in the complex plane.

= Use trigonometry to find the phase.
= For numbers with positive real part,

I
(16
=t (1), s
R(# (P2 .

# Pe LY 2

= For numbers with negative real part, R
o 1)

/(#) = 180° — tan 1(—)

#) R

= |f you are lucky enough to have the “atan2(y, x)” function, then
[(#) = atan2(l(#), R(#))
for any complex number.

= Also note,

/ (%) = /(a)+ L(b) — L(c) — L(d).
cd

Finding the phase of a complex function of w

m This is the same as finding the phase of a complex number, if specific
values of w are substituted into the function.
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Bode phase: Constant gain

mG(s) =K.
0°, K > 0;
—180°, K <0.

m Constant phase of 0° or —180°.

.m:{

Bode phase: Zero or pole at origin

mZero: G(s)=s, ... G(jw)=jo=w/90°.
1 1 —J 1

sPole: G(s)=—-, ... G(jo)= —=—L—=_"/_90°,
s jo o o

= Constant phase of £90°.

Bode phase: Real LHP zero or pole

m Zero: G(s) = (i + 1) : % =

n

45° per

0
(G(jw) = / (j— + 1)
@ decade

n '0'
o
= tan — 1. 7-°

w,)  le=m .

0.1w, W, 10w,

1
S
(& +1)

@
/G(jw)= /(1) -/ (j— + 1)
00

m Pole: G(s) =

n

a) O
= —tan” (—) : —90
Wy
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Bode phase: Real RHP zero or pole

mZero: G(s) = (i = 1). 1807
: . @
LG(jw) =/ (Jw— — 1) 90°
— 180° — tan~" (3) .
wy, . . .
1 0.1w, Wy, 10w,
= Pole: G(s) = —(L ~ ) 0.10, o) 100,
/G(jw) = /(1) = / (jﬁ _ 1)
Wy -9 ==

45° per
decade
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8.6: Bode phase diagrams (b)

Bode phase: Complex LHP zero pair or pole pair

= Complex LHP zeros cause phase to go from 0° to 180°.
= Complex LHP poles cause phase to go from —180° to 0°.

= Transition happens in about +¢ decades, centered at w,.

Bode Phase: Complex LHP zeros Bode Phase: Complex LHP poles

180

T

160
140}
120f
100}
80} -100}
60f -120}
40t ~140}

20F -160F

0 -180
0.1w, wy, 10w, 0.1w, wy, 10w,

Bode phase: Complex RHP zero pair or pole pair

= Complex RHP zeros cause phase to go from 360° to 180°.

= Complex RHP poles cause phase to go from —360° to —180°.

Bode Phase: Complex RHP zeros Bode Phase: Complex RHP poles

350

300

250

200

150

100

50

0
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Bode phase: Time delay

- G(S) — e—sr, 010), ; 1060,

G(jw)=e /" =1/ — w1
/G(jw) = —wr in radians.

= —56.3wt in degrees.

= Note: Line—curve in log scale.
EXAMPLE: Sketch the Bode phase plot for
2000(s + 0.5) , 2 (jw/0.5+ 1)
G(s) = G = :
)= Gr106+50 & VD=0 Ga/10+1) G307 1)

where we converted to “Bode standard form” in a prior example.

m Constant: K = +2. Zero phase contribution.
= Pole at origin: Phase contribution of —90°.
= Two real LHP poles: Phase from 0° to —90°, each.

m One real LHP zero: Phase from 0° to 90°.

90Ff

_180 i Il Il Il Il
107 107" 10° 10" 10° 10°
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EXAMPLE: Sketch the Bode magnitude and phase plots for
1200 (s + 3)
s (s +12) (s +50)°

= First, we convert to Bode standard form, which gives
B 1200 (3) (1 + %)
s(12) 50) (1+3) (14 2)

o 6(1+%")
U= jo (1+%) (1+’5'—‘5)'

G(s) =

G(s)

= Positive gain, one real LHP zero, one pole at origin, two real LHP

poles.
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8.7: Some observations based on Bode plots

Nonminimum-phase systems

m A system is called a nonminimum-phase if it has pole(s) or zero(s) in
the RHP.

= Consider
1] zeroat —1 minimum
Gis) = 10211 |
s+ 10| pole at — 10 phase
— 1] zero at + 1 nonminimum
Go(s) = 10— * »
s+ 10 pole at — 10 phase
= The magnitude responses of these two systems are:
Gi(ja)| = 102 _ g Y@t 1
1 jo+10] /w2 + 100
Go(jo)| 1Olja)—1| OVG)2+1
Jo)| = 1 0—F———r— =
’ jo+101 ~  e? 1 100

which are the same!

= The phase responses are very different:
Bode-Magnitude Plot —_

180

n
o
T

_Bode-Phase Plot_,

-
(&)
T
—_
(o))
[=)
T

\. Non-minimum |
\ Phase, G,

-

N

(=]
T

—_
(=)
T
©
(=]
T

| Minimum
Phase, G, .

(&)
T
(9]
[=]

1G1(jo)|, |G2(jw)]

L(G1(jw)), L(G2(jw)

N " " 0 ———’ " " K ——
10 10™ 10 10’ 10° 10° 107 10™ 10° 10’ 10° 10

Frequency, (rads/sec.) _ Frequency, (rads/sec.)
= Note that the change in phase of G, is much smaller than change of

phase in G,. Hence G is “minimum phase” and G, is
“nonminimum-phase”
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= Non-minimum phase usually associated with delay.

Go(s) = G (s)

s+ 1
s+ 1
Delay

= Note;

1 is very similar to a first-order Padé approximation to a
S
delay. It is the same when evaluated at s = jw.

m Consider using feedback to control a nonminimum-phase system.
What do the root-locus plotting techniques tell us?

m Consequently, nonminimum-phase systems are harder to design
controllers for; step response often tends to “go the wrong way,” at
least initially.

Steady-state errors from Bode magnitude plot

m Recall our discussion of steady-state errors to step/ramp/parabolic
inputs versus “system type” (summarized on pg. 4—24)

» Consider a unity-feedback system.

= |[f the open-loop plant transfer function has N poles at s = 0 then the
system is “type N”
e K, is error constant for type O.
e K, is error constant for type 1.
e K, is error constant for type 2...

= For a unity-feedback system, K, = lim G(s).

s—0

o At low frequency, a type 0 system will have G(s) ~ K.
» We can read this off the Bode-magnitude plot directly!

Lecture notes prepared by and copyright © 1998—-2017, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, FREQUENCY-RESPONSE ANALYSIS 8-22
 Horizontal y-intercept at low frequency = K,,.

11wy ess —

for step input.
1+ K, P np

m K, = limsG(s), and is nonzero for a type 1 system.

s—0

K,
o At low frequency, a type 1 system will have G(s) ~ —.
S

K,
o At low frequency, |G(jw)| ~ —. Slope of —20 dB/decade.
w

» Use the above approximation to extend the low-frequency
asymptote to w = 1. The asymptote (NOT THE ORIGINAL
|G(jw)|) evaluated at w = 1 is K,.

1
TS gy = — for ram in ut.
e © pINp

()]

» K, = lim s>G(s), and is nonzero for a type 2 system.

s—0

K,
« At low frequency, a type 2 system will have G(s) ~ —-.
S

K,
o At low frequency, |G(jw)| ~ —. Slope of —40 dB/decade.
w
» Again, use approximation to extend low-frequency asymptote to

o = 1. The asymptote evaluated at w = 1 is K,,.

1 .
ey = for parabolic input.

a

= Similar for higher-order systems.
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__Exampled _Example2

Magnitude

ook sl
_sob ol
Frequency, (rads/sec.) Frequency, (rads/sec.)

EXAMPLE 1:

» Horizontal as w — 0, so we know this is type O.
» Intercept =6dB...K, = 6dB = 2 [linear units].

EXAMPLE 2:
» Slope = —20 dB/decade as w — 0, so we know this is type 1.

» Extend slope at low frequency to w = 1.
» Intercept = 20dB. .. K, = 20dB = 10 [linear units].
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8.8: Stability revisited

= |f we know the closed-loop transfer function of a system in rational-
polynomial form, we can use Routh to find stable ranges for K.

= Motivation: What if we only have open-loop frequency response?

A simple example

= Consider, for now, that we know the transfer-function of the system,
and can plot the root-locus.

EXAMPLE:
I(s)
N 1 K=2 /
O e T 7
- \ R(s)
\

= WWe see neutral stability at K = 2. The system is stable for K < 2 and
unstable for K > 2.

m Recall that a point is on the root locus if | KG(s)| = 1 and
/G (s) = —180°.

m |f system is neutrally stable, jw-axis will have a point (points) where
IKG(jw)| =1and /G(jow) = —180°.
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= Consider the Bode plot of
KG(s)...

» A neutral-stability condition from
Bode plotis: |[KG(jw,)| =1 AND
/KG(jw,) = —180° at the same
frequency w,.

= |In this case, increasing
K —instability m» |[KG(jw)| < 1
at /KG(jw) = —180° =stability.

m [n some cases, decreasing
K —instability m» |[KG(jw)| > 1
at /KG(jw) = —180° =stability.

—oob K i—= ()

10™ 10° 10’

10™ 10° 10"

KEY POINT: We can find neutral stability point on Bode plot, but don’t
(yet) have a way of determining if the system is stable or not. Nyquist
found a frequency-domain method to do so.

Nyquist stability

m Poles of closed-loop transfer function in RHP—the system is unstable.

= Nyquist found way to count closed-loop poles in RHP.

m |f count is greater than zero, system is unstable.

m |[dea:

o First, find a way to count closed-loop poles inside a contour.

» Second, make the contour equal to the RHP.

= Counting is related to complex functional mapping.
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8.9: Interlude: Complex functional mapping

= Nyquist technique is a graphical method to determine system stability,
regions of stability and MARGINS of stability.

= Involves graphing complex functions of s as a polar plot.

EXAMPLE: Plotting f(x), a real function of a real variable x.
f(x)

/\/\/\

> X

= This can be done.

EXAMPLE: Plotting F(s), a complex function of a complex variable s.

A F(s) )
/\/\/\'/ NO! This is wrong!
- S

= Must draw mapping of points or lines from s-plane to F (s)-plane.

Ja S ]I(F) F(SQ) F(S)
g7 mapping f-----7
> o > R(F)

EXAMPLE: F(s) =2s + 1... “map the four points: A, B, C, D”

I
Do Jj OA (S)
1 1 "'  R@)
c® = °B
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EXAMPLE: Map a square contour (closed path) by F(s) = %
S

| I(s)

DQ J QA b F'(D)
\, F(A)
—J

-1 1 —1\\4/5 F(le R(s)

4 F(C)

C —j B

FORESHADOWING: By drawing maps of a specific contour, using a
mapping function related to the plant open-loop frequency-response,
we will be able to determine closed-loop stability of systems.

Mapping function: Poles of the function

= When we map a contour containing (encircling) poles and zeros of
the mapping function, this map will give us information about how
many poles and zeros are encircled by the contour.

= Practice drawing maps when we know poles and zeros. Evaluate

G(S)|s=s0 — G(So) — |1—)’|eja
a = ) /(zeros) — > /(poles).

EXAMPLE:

H(S) F(cy)

C]

)
N o

A
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= |n this example, there are no zeros or poles inside the contour. The
phase a increases and decreases, but never undergoes a net change
of 360° (does not encircle the origin).

EXAMPLE:
o :j::::::><;:02)
C2
AT A
N J

= One pole inside contour. Resulting map undergoes 360° net phase
change. (Encircles the origin).

EXAMPLE:
I(s) F(c3)

C3

— 30 €

NI

9

= |In this example, there are two poles inside the contour, and the map
encircles the origin twice.
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8.10: Cauchy’s theorem and Nyquist’s rule

m These examples give heuristic evidence of the general rule: Cauchy’s
theorem

“Let F(s) be the ratio of two polynomials in s. Let the closed
curve C in the s-plane be mapped into the complex plane
through the mapping F(s). If the curve C does not pass through
any zeros or poles of F(s) as it is traversed in the CW direction,
the corresponding map in the F(s)-plane encircles the origin

N = Z — P times in the CW direction,” where

Z = #of zeros of F(s) in C,
P = #of poles of F(s)in C.

= Consider the following feedback system:

(1) —> DGs) | G - (1)

D(s)G(s)

T'(s)= 1+ D(s)G(s)H(s)

H(s) je—

= For closed-loop stability, no poles of 7'(s) i)

in RHP. R — o0
e NO zeros of 1 + D(s)G(s)H (s) in RHP. / .
oelet F(s) =14+ D(s)G(s)H (s). RO

e Count zeros in RHP using Cauchy
theorem! (Contour=entire RHP).

= The Nyquist criterion simplifies Cauchy’s criterion for feedback
systems of the above form.
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m Cauchy: F(s) =14+ D(s)G(s)H(s). N = # of encirclements of origin.

m Nyquist: F(s) = D(s)G(s)H(s). N = # of encirclements of —1.

Cauchy Nyquist
Ii(s) I(s)

Rs) _S R(s)

=7
-/

= Simple? YES!!!
= Think of Nyquist path as four parts: M(s)

I. Origin. Sometimes a special case (later I
examples). :

Il. +jw-axis. FREQUENCY-response of s > R(s)

O.L. system! Just plot it as a polar plot. v

lll. For physical systems=0.

IV. Complex conjugate of Il.

m So, for most physical systems, the Nyquist plot, used to determine
CLOSED-LOOQORP stability, is merely a polar plot of LOOP frequency
response D(jw)G(jw)H (jw).

= We don’t even need a mathematical model of the system. Measured
data of G(jw) combined with our known D(jw) and H(jw) are
enough to determine closed-loop stability.
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THE TEST:
m N = # encirclements of —1 point when F(s) = D(s)G(s)H (s).

m P = # poles of 1 + F(s) in RHP= # of open-loop unstable poles. (as-
suming that H (s) is stable—reasonable).

m 7 = # of zeros of 1 + F(s) in RHP= # of closed-loop unstable poles.
Z=N+P

The system is stable iff Z = 0.

m Be careful counting encirclements! ﬂ

= Draw line from —1 in any direction.

L/

= Count # crossings of line and diagram.

m N = #CW crossings—#CCW crossings.

» Changing the gain K of F(s) MAGNIFIES the entire plot.

ENHANCED TEST: Loop transfer function is K D(s)G(s) H (s).
m N = # encirclements of —1/K point when F(s) = D(s)G(s)H (s).
m Rest of test is the same.

m Gives ranges of K for stability.
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8.11: Nyquist test example

EXAMPLE: D(s) = H(s) = 1.
5

(s +1)°
5

(o + 1)?

I: Ats =0, G(s) = 5.

G(s) =
or, G(jw) =
5

(1+ jo)*
iz At |s| = oo, G(s) = 0.

I: Ats = jo, G(jow) =

IVIAt s = —jo, G(s) =
5

(1 - jw)*

I(s)

R(s)

= No encirclements of —1, N = 0.

o  RG(jo)  UG(jw)
0.0000 5.0000 0.0000
0.0019 4.9999 -0.0186
0.0040 4.9998 -0.0404
0.0088 4.9988 -0.0879
0.0191 4.9945 -0.1908
0.0415 4.9742 -0.4135
0.0902 4.8797 -0.8872
0.1959 4.4590 -1.8172
0.4258 2.9333 -3.0513
0.9253 0.2086 -2.6856
2.0108 -0.5983 -0.7906
4.3697 -0.2241 -0.1082
9.4957 -0.0536 -0.0114

20.6351 -0.0117 -0.0011
44.8420 -0.0025 -0.0001
97.4460 -0.0005 -0.0000
500.0000 -0.0000 -0.0000

= No open-loop unstable poles P = 0.

m Z =N+ P = 0. Closed-loop system is stable.

= No encirclements of —1/K forany K > 0.

e SO, system is stable for any K > 0.
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= Confirm by checking Routh array.

= Routh array: a(s) = 1 + KG(s) = s* + 2s + 1 + 5K.

sl 1 145K
s! 2
s 145K
m Stable for any K > 0.
o  R(G(jw)) [(G(jw))
EXAMPLE: G(s) = >0 : 0 5.0000 0
(s + 1)*(s + 10) 0.1 49053  -0.8008
I G(0) =50/10=5. 0.2 4.4492 -1.8624
l: G(jw) = — 50. _ 0.5 2.4428 -3.2725
(jo+1)*jo+10) 1.2 05621  -2.0241
lll: G(c0) = 0.
2.9 -0.4764  -0.1933
IV: G(—jw) = G(jo)". 7.1 -0.0737 0.0262
= Note loop to left of origin. System 17.7 -0.0046 0.0064
is NOT stable for all K > 0. 43.7 -0.0002 0.0006
100.0 -0.0000 0.0000
Ii(s) Zoom

(

-+

R(s)
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8.12: Nyquist test example with pole on jw-axis

EXAMPLE: Pole(s) at origin. G(s) = —.
s(zs + 1)
» WARNING! We cannot blindly follow procedure!

= Nyquist path goes through pole at zero! (Remember from Cauchy’s
theorem that the path cannot pass directly through a pole or zero.)

= Remember: We want to count closed-loop poles inside a “box” that
encompasses the RHP.

= So, we use a slightly-modified Nyquist path.
All(s) A(s) Zoom

1]
[ p—0

7 - R(5) - R()

= The bump at the origin makes a detour around the offending pole.

= Bump defined by curve: s = lirr(l)pejg, 0° <6 < 90°.
p—>

= From above,

1
G($)|s=peiv = — . : 0° <6 <90°
(S)ls—peJ‘9 pefe(rpefe—l— 1) = =
= Consider magnitude as p — 0
1 1
lim |G (s)|,_ .0 = : N —.
p—>()| QB pltpel? + 11  p
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= Consider phase as p — 0

lim £ G(s)|s=peio = —0 — [(zpe’? + 1).
p—0

= S0,

|
hm G(pe!?) =1lim —/ — 67
p—0p

e This is an arc of |nf|n|te radius, sweeping from 0° to —90°* (a little
N 1
more than 90° because of contribution from —— term).

(zs + 1)
o WE CANNOT DRAW THIS TO SCALE!

m/Z=N+P.

m N = # encirclements of —1. N = 0.

inside MODIFIED contour. P = 0.

m P = # Loop transfer function poles y >

m 7 = 0. Closed-loop system is stable.

EXAMPLE:

1
YOG

» Use modified Nyquist path again

I: Near origin
1
p2el?(1 + peif)
. 1 1
= Magnitude: lim |G (pe’?)| = .
g p;ol (pe’”)| = PETEIIs

= Phase: lim LG(pe’) =0—[20+ L(1 + pe!)] ~ —267. So,
p—

G(S)ls:pej<9 =

1
lim G(pe’’) = lim —/ —20%  0° <6 < 90°.
p—0 p—0 p
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= nfinite arc from 0° to —180°" (a little
more than —180° because of

term.)
+ 5

m/7 =N+ P =2+ 0 = 2. Unstable for
K =1.

= |n fact, unstable for any K > 0!

= Matlab for above i

s3+524+0s+0

G(s) =

num=[0 0 0 1];
den=[1 1 0 0];
nyquistl (num, den) ;

axis ([xmin xmax ymin ymax]) ;

= “nyquist1.m” is available on course web site.

m |t repairs the standard Matlab “nyquist.m” program, which doesn’t

work when poles are on imaginary axis.

= “nyquist2.m” is also available. It draws contours around poles on the

imaginary axis in the opposite way to “nyquist1.m”. Counting is

different.
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8.13: Stability (gain and phase) margins

= A large fraction of systems to be controlled are stable for small gain
but become unstable if gain is increased beyond a certain point.

» The distance between the current (stable) system and an unstable
system is called a “stability margin.”

= Can have a gain margin and a phase margin.

GAIN MARGIN: Factor by which the gain is less than the neutral stability
value.

= Gain margin measures “How much can we increase the gain of the
loop transfer function L(s) = D(s)G(s)H (s) and still have a stable
system?”

= Many Nyquist plots are like this one.
Increasing loop gain magnifies the
plot.

m GM =1/(distance between origin and
place where Nyquist map crosses
real axis).

= |f we increase gain, Nyquist map
“stretches” and we may encircle —1.

= For a stable system, GM > 1 (linear units) or GM > 0dB.

PHASE MARGIN: Phase factor by which phase is greater than neutral
stability value.

= Phase margin measures “How much delay can we add to the loop
transfer function and still have a stable system?”
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m PM = Angle to rotate Nyquist plot to achieve neutral stability =
intersection of Nyquist with circle of radius 1.

8-38

m |f we increase open-loop delay, Nyquist map “rotates” and we may
encircle —1.

m For a stable system, PM > 0°.

IRONY: This is usually easiest to check on Bode plot, even though
derived on Nyquist plot!

m Define gain crossover as frequency where Bode magnitude is 0 dB.
m Define phase crossover as frequency where Bode phase is —180°.

30

» GM = 1/(Bode gain at © fz
phase-crossover g )
frequency) if Bode gain is <§ of
measured in linear units. 20p | o\
_30 Lo ;;;;;;;_1 Lo ;;;;;5;0 N\ z;;;;;;1 Pononiiin 2
» GM = (— Bode gain at 10 10 10 10 10
Frequency, (rads/sec.)
phase-crossover | |
frequency) [dB] if Bode

gain measured in dB.

Phase
3

= PM = Bode phase at
gain-crossover —(—180°).

-210

-240

-270

107 107"

= We can also determine stability as K chang uepr%tgag Sr’eaéflnmg

gain crossover where |G(jw)| = 1, use the frequency where
IKG(jo)| = 1.
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= You need to be careful using this test.

o It works if you apply it blindly and the system is minimum-phase.
 You need to think harder if the system is nonminimum-phase.
« Nyquist is the safest bet.

PM and performance

= A bonus of computing PM from the open-loop frequency response
graph is that it can help us predict closed-loop system performance.

m PM is related to damping. Consider open-loop 2nd-order system

G(s) = —
V= s(s + 2¢ wy)
with unity feedback,
602
T(s) -

T2y 20w, + w2
= The relationship between PM and ¢ is: (for this system)

4
\/\/1 + 404 — 272

. PM _
m For PM < 60°, ¢ =~ 100° so can also infer M, from PM.

PM = tan™!

Damping ratio versus PM Overshoot fraction versus PM

1

1

o 08 460.8-””
T ST N
= 06 90-6"””:””
s G>.)o.5 7 : 7 : 7 7 7
o 04 O 04 i AN o
& R 0B Qe
® o2 S 02k N

01 0 2i0 SiO 4i0 SiO 6i0 7i0 80 00 1iO 2i0 3i0 4iO 5i0 6i0 70 80

Phase margin Phase margin
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8.14: Preparing for control using frequency-response methods

Bode’s gain-phase relationship

= “For any stable minimum-phase system (that is, one with no RHP
zeros or poles), the phase of G(jw) is uniquely related to the
magnitude of G(jw)”

m Relationship: /G(jw,) = l/ (CL—M) W (u) du (in radians)
T J_ u

M =n|G(jow)|
@
u = In (—)
Wo
dM
T slope n of log-mag curve at o = w,
u

W (u) = weighting function = In(coth |u|/2)

2

W)~ %é(u). Using this re- T
lationship, /G(jw) ~ n x 90° s e | K
if slope of Bode magnitude- =1  J\ ]
plot is constant in the decade- I T 20 U NG S
neighborhood of w. —

Normalized freq.
= S0, if /G(jw) ~ —90°if n = —1. A

mSo,if /G(jw) =~ —180° if n = —2.

KEY POINT: Want crossover |G(jw)| = 1 at a slope of about —1 for good
PM. We will soon see how to do this (design!).
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Closed-loop frequency response

= Most of the notes in this section have used the open-loop frequency
response to predict closed-loop behavior.

= How about closed-loop frequency response?

T(s) — KD(s)G(s)
) = T K DeIGH)

» General approximations are simple to make. If,
|IKD(jow)G(jw)| > 1 for v < o,
and | KD(jo)G(jw)| < 1 for v > .

where o, is the cutoff frequency where open-loop magnitude
response crosses magnitude=1.

KD(jo)G(jw) | _ { 1, 0 < o,

T (jo)| = 1+ KD(jo)G(jow)| | IKD(jw)G(jw)|, o> w,.

m Note: o, < oy < 2m,.
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