
ECE4510/5510: Feedback Control Systems. 8–1

FREQUENCY-RESPONSE ANALYSIS

8.1: Motivation to study frequency-response methods

■ Advantages and disadvantages to root-locus design approach:

ADVANTAGES:

• Good indicator of transient response.

• Explicitly shows location of closed-loop poles. ➠ Tradeoffs are

clear.

DISADVANTAGES:

• Requires transfer function of plant be known.

• Difficult to infer all performance values.

• Hard to extract steady-state response (sinusoidal inputs).

■ Frequency-response methods can be used to supplement root locus:

• Can infer performance and stability from same plot.

• Can use measured data when no model is available.

• Design process is independent of system order (# poles).

• Time delays handled correctly (e−sτ ).

• Graphical techniques (analysis/synthesis) are “quite simple.”

What is a frequency response?

■ We want to know how a linear system responds to sinusoidal input, in

steady state.
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■ Consider system Y (s) = G(s)U (s) with input u(t) = u0 cos(ωt), so

U (s) = u0

s

s2 + ω2
.

■ With zero initial conditions,

Y (s) = u0G(s)
s

s2 + ω2
.

■ Do a partial-fraction expansion (assume distinct roots)

Y (s) =
α1

s − a1

+
α2

s − a2

+ · · · +
αn

s − an

+
α0

s − jω
+

α∗
0

s + jω

y(t) = α1ea1t + α2ea2t + · · · + αneant

︸ ︷︷ ︸

If stable, these decay to zero.

+α0e jωt + α∗
0e− jωt .

yss(t) = α0e jωt + α∗
0e− jωt.

■ Let α0 = Ae jφ. Then,

yss = Ae jφe jωt + Ae− jφe− jωt

= A
(

e j (ωt+φ) + e− j (ωt+φ)
)

= 2A cos (ωt + φ) .

We find α0 via standard partial-fraction-expansion means:

α0 =
[

(s − jω)Y (s)|
s= jω

=
[

u0sG(s)

(s + jω)

∣
∣
∣
∣
s= jω

= u0( jω)G( jω)

(2 jω)
= u0G( jω)

2
.

■ Substituting into our prior result

yss = u0|G( jω)| cos (ωt + ̸ G( jω)) .
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■ Important LTI-system fact: If the input to an LTI system is a sinusoid,

the “steady-state” output is a sinusoid of the same frequency but

different amplitude and phase.

FORESHADOWING: Transfer function at s = jω tells us response to a

sinusoid...but also about stability as jω-axis is stability boundary!

EXAMPLE: Suppose that we have a system with transfer function

G(s) =
2

3 + s
.

■ Then, the system’s frequency response is

G( jω) = 2

3 + s

∣
∣
∣
∣
s= jω

= 2

3 + jω
.

■ The magnitude response is

A( jω) =
∣
∣
∣
∣

2

3 + jω

∣
∣
∣
∣
=

|2|
|3 + jω| =

2
√

(3 + jω)(3 − jω)
=

2
√

9 + ω2
.

■ The phase response is

φ( jω) = ̸

(

2

3 + jω

)

= ̸ (2) − ̸ (3 + jω)

= 0 − tan−1 (ω/3) .

θ

ω

1 2 3

■ Now that we know the amplitude and phase response, we can find

the amplitude gain and phase change caused by the system for any

specific frequency.

■ For example, if ω = 3 rad s−1,

A( j3) =
2

√
9 + 9

=
√

2

3

φ( j3) = − tan−1(3/3) = −π/4.
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8.2: Plotting a frequency response

■ There are two common ways to plot a frequency response ➠ the

magnitude and phase for all frequencies.

EXAMPLE:

Y (s)U(s) C

R

G(s) = 1

1 + RCs

■ Frequency response

G( jω) = 1

1 + jωRC
(let RC = 1)

=
1

1 + jω

=
1

√
1 + ω2

̸ − tan−1(ω).

■ We will need to separate magnitude and phase information from

rational polynomials in jω.

• Magnitude = magnitude of numerator / magnitude of denominator
√

R(num)2 + I(num)2

√

R(den)2 + I(den)2
.

• Phase = phase of numerator − phase of denominator

tan−1

(

I(num)

R(num)

)

− tan−1

(

I(den)

R(den)

)

.

Plot method #1: Polar plot in complex plane

■ Evaluate G( jω) at each frequency for 0 ≤ ω < ∞.

■ Result will be a complex number at each frequency: a + jb or Ae jφ.
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■ Plot each point on the complex plane at (a + jb) or Ae jφ for each

frequency-response value.

■ Result = polar plot.

■ We will later call this a “Nyquist plot”.

ω G( jω)

0 1.000 ̸ 0.0◦

0.5 0.894 ̸ − 26.6◦

1.0 0.707 ̸ − 45.0◦

1.5 0.555 ̸ − 56.3◦

2.0 0.447 ̸ − 63.4◦

3.0 0.316 ̸ − 71.6◦

5.0 0.196 ̸ − 78.7◦

10.0 0.100 ̸ − 84.3◦

∞ 0.000 ̸ − 90.0◦

■ The polar plot is parametric in ω, so it is hard to read the

frequency-response for a specific frequency from the plot.

■ We will see later that the polar plot will help us determine stability

properties of the plant and closed-loop system.

Plot method #2: Magnitude and phase plots

■ We can replot the data by separating the plots for magnitude and

phase making two plots versus frequency.
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■ The above plots are in a natural scale, but usually a log-log plot is

made ➠ This is called a “Bode plot” or “Bode diagram.”

Reason for using a logarithmic scale

■ Simplest way to display the frequency response of a

rational-polynomial transfer function is to use a Bode Plot.

■ Logarithmic |G( jω)| versus logarithmic ω, and logarithmic ̸ G( jω)

versus ω.

REASON:

log10

(

ab

cd

)

= log10 a + log10 b − log10 c − log10 d .

➤ The polynomial factors that contribute to the transfer function can

be split up and evaluated separately.

G(s) = (s + 1)

(s/10 + 1)

G( jω) =
( jω + 1)

( jω/10 + 1)

|G( jω)| =
| jω + 1|

| jω/10 + 1|

log10 |G( jω)| = log10

√

1 + ω2 − log10

√

1 +
( ω

10

)2

.
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■ Consider:

log10

√

1 +
(

ω

ωn

)2

.

■ For ω ≪ ωn,

log10

√

1 +
(

ω

ωn

)2

≈ log10(1) = 0.

■ For ω ≫ ωn,

log10

√

1 +
(

ω

ωn

)2

≈ log10

(

ω

ωn

)

.

KEY POINT: Two straight lines on a log-log plot; intersect at ω = ωn.

■ Typically plot 20 log10 |G( jω)|; that is, in dB.

0.1ωn ωn 10ωn

Exact Approximation

20dB

■ A transfer function is made up of first-order zeros and poles, complex

zeros and poles, constant gains and delays. We will see how to make

straight-line (magnitude- and phase-plot) approximations for all these,

and combine them to form the appropriate Bode diagram.
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8.3: Bode magnitude diagrams (a)

■ The log10(·) operator lets us break a transfer function up into pieces.

■ If we know how to plot the Bode plot of each piece, then we simply

add all the pieces together when we’re done.

Bode magnitude: Constant gain

■ dB = 20 log10 |K |.

■ Not a function of frequency.

Horizontal straight line. If

|K | < 1, then negative, else

positive.

0.1 1 10

|K | > 1

|K | < 1

dB

Bode magnitude: Zero or pole at origin

■ For a zero at the origin,

G(s) = s

dB = 20 log10 |G( jω)|

= 20 log10 | jω| dB.

0.1 1 10

20 dB

−20 dB

20 dB per
decade

■ For a pole at the origin,

G(s) =
1

s

dB = 20 log10 |G( jω)|

= −20 log10 | jω| dB.

0.1 1 10

20 dB

−20 dB

−20 dB per
decade
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■ Both are straight lines, slope = ±20 dB per decade of frequency.

• Line intersects ω-axis at ω = 1.

■ For an nth-order pole or zero at the origin,

dB = ±20 log10 |( jω)n|

= ±20 log10 ωn

= ±20n log10 ω.

• Still straight lines.

• Still intersect ω-axis at ω = 1.

• But, slope = ±20n dB per decade.

Bode magnitude: Zero or pole on real axis, but not at origin

■ For a zero on the real axis, (LHP or RHP), the standard Bode form is

G(s) =
(

s

ωn

± 1

)

,

which ensures unity dc-gain.

■ If you start out with something like

G(s) = (s + ωn),

then factor as

G(s) = ωn

(

s

ωn

+ 1

)

.

Draw the gain term (ωn) separately from the zero term (s/ωn + 1).

■ In general, a LHP or RHP zero has standard Bode form

G(s) =
(

s

ωn

± 1

)
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G( jω) = ±1 + j

(

ω

ωn

)

20 log10 |G( jω)| = 20 log10

√

1 +
(

ω

ωn

)2

■ For ω ≪ ωn, 20 log10

√

1 +
(

ω

ωn

)2

≈ 20 log10

√
1 = 0.

■ For ω ≫ ωn, 20 log10

√

1 +
(

ω

ωn

)2

≈ 20 log10

(

ω

ωn

)

.

■ Two straight lines on a log scale which intersect at ω = ωn.

■ For a pole on the real axis, (LHP or RHP) standard Bode form is

G(s) =
(

s

ωn

± 1

)−1

20 log10 |G( jω)| = −20 log10

√

1 +
(

ω

ωn

)2

.

This is the same except for a minus sign.

0.1ωn 1ωn 10ωn

20 dB

20 dB per
decade

0.1ωn 1ωn 10ωn

−20 dB

−20 dB per
decade
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8.4: Bode magnitude diagrams (b)

Bode magnitude: Complex zero pair or complex pole pair

■ For a complex-zero pair (LHP or RHP) standard Bode form is
(

s

ωn

)2

± 2ζ

(

s

ωn

)

+ 1,

which has unity dc-gain.

■ If you start out with something like

s2 ± 2ζωns + ω2
n,

which we have seen before as a “standard form,” the dc-gain is ω2
n.

■ Convert forms by factoring out ω2
n

s2 ± 2ζωns + ω2
n = ω2

n

[
(

s

ωn

)2

± 2ζ

(

s

ωn

)

+ 1

]

.

■ Complex zeros do not lend themselves very well to straight-line

approximation.

■ If ζ = 1, then this is

(

s

ωn

± 1

)2

.

■ Double real zero at ωn ➠ slope of 40 dB/decade.

■ For ζ ̸= 1, there will be overshoot or undershoot at ω ≈ ωn.

■ For other values of ζ :

• Dip frequency: ωd = ωn

√

1 − 2ζ 2

• Value of |H( jωd)| is:

20 log10(2ζ
√

(1 − ζ 2)).

• Note: There is no dip unless

0 < ζ < 1/
√

2 ≈ 0.707 . 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ζ

-60

-50

-40

-30

-20

-10

0

D
ip

 (d
B)

Dip amount for 0 < ζ < 0.707
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■ We write complex poles (LHP or RHP) as

G(s) =
[
(

s

ωn

)2

± 2ζ

(

s

ωn

)

+ 1

]−1

.

• The resonant peak frequency is ωr = ωn

√

1 − 2ζ 2

• Value of |H( jωr)| is −20 log10(2ζ
√

(1 − ζ 2)).

◆ Same graph as for “dip” for complex-conjugate zeros.

• Note that there is no peak unless 0 < ζ < 1/
√

2 ≈ 0.707 .

• For ω ≪ ωn, magnitude ≈ 0 dB.

• For ω ≫ ωn, magnitude slope = −40 dB/decade.

Bode Mag: Complex zeros

0.05
0.1
0.2
0.30.5

0.7

ζ = 0.9

0.1ωn ωn 10ωn

−20 dB

0 dB

20 dB

40 dB

Bode Mag: Complex poles

ζ = 0.05

0.1
0.2
0.30.5

0.7
ζ = 0.9

0.1ωn ωn 10ωn

−40 dB

−20 dB

0 dB

20 dB

Bode magnitude: Time delay

■ G(s) = e−sτ . . . |G( jω)| = 1.

■ 20 log10 1 = 0 dB.

■ Does not change magnitude response.

EXAMPLE: Sketch the Bode magnitude plot for

G(s) = 2000(s + 0.5)

s(s + 10)(s + 50)
.
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■ The first step is to convert the terms of the transfer function into

“Bode standard form”.

G(s) =
2000(s + 0.5)

s(s + 10)(s + 50)
=

2000·0.5
10·50

(
s

0.5
+ 1

)

s
(

s
10

+ 1
) (

s
50

+ 1
)

G( jω) =
2

(

jω
0.5

+ 1
)

jω
(

jω
10

+ 1
)(

jω
50

+ 1
).

■ We can see that the components of the transfer function are:

• DC gain of 20 log10 2 ≈ 6 dB;

• Pole at origin;

• One real zero not at origin, and

• Two real poles not at origin.

10−2 10−1 100 101 102 103−60

−40

−20

0

20

40

60

80
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8.5: Bode phase diagrams (a)

■ Bode diagrams consist of the magnitude plots we have seen so far,

■ BUT, also phase plots. These are just as easy to draw.

■ BUT, they differ depending on whether the dynamics are RHP or LHP.

Finding the phase of a complex number

■ Plot the location of the number as a vector in the complex plane.

■ Use trigonometry to find the phase.

■ For numbers with positive real part,

̸ (#) = tan−1

(

I(#)

R(#)

)

.

■ For numbers with negative real part,

̸ (#) = 180◦ − tan−1

(

I(#)

|R(#)|

)

.

R

I

p1

̸ (p1)p2

̸ (p2)

■ If you are lucky enough to have the “atan2(y, x)” function, then

̸ (#) = atan2(I(#),R(#))

for any complex number.

■ Also note,

̸

(

ab

cd

)

= ̸ (a) + ̸ (b) − ̸ (c) − ̸ (d).

Finding the phase of a complex function of ω

■ This is the same as finding the phase of a complex number, if specific

values of ω are substituted into the function.
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Bode phase: Constant gain

■ G(s) = K .

■ ̸ (K ) =
{

0◦, K ≥ 0;
−180◦, K < 0.

.

■ Constant phase of 0◦ or −180◦.

Bode phase: Zero or pole at origin

■ Zero: G(s) = s, . . . G( jω) = jω = ω ̸ 90◦.

■ Pole: G(s) = 1

s
, . . . G( jω) = 1

jω
= − j

ω
= 1

ω
̸ − 90◦.

■ Constant phase of ±90◦.

Bode phase: Real LHP zero or pole

■ Zero: G(s) =
(

s

ωn

+ 1

)

.

̸ G( jω) = ̸

(

j
ω

ωn

+ 1

)

= tan−1

(

ω

ωn

)

.

0.1ωn ωn 10ωn

90◦

45◦ per
decade

■ Pole: G(s) =
1

(

s
ωn

+ 1
),

̸ G( jω) = ̸ (1) − ̸

(

j
ω

ωn

+ 1

)

= − tan−1

(

ω

ωn

)

.

0.1ωn ωn 10ωn

−90◦

−45◦ per
decade
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Bode phase: Real RHP zero or pole

■ Zero: G(s) =
(

s

ωn

− 1

)

.

̸ G( jω) = ̸

(

j
ω

ωn

− 1

)

= 180◦ − tan−1

(

ω

ωn

)

.

0.1ωn ωn 10ωn

90◦

180◦

−45◦ per
decade

■ Pole: G(s) = 1
(

s
ωn

− 1
),

̸ G( jω) = ̸ (1) − ̸

(

j
ω

ωn

− 1

)

= −
(

180◦ − tan−1

(

ω

ωn

))

= −180◦ + tan−1

(

ω

ωn

)

.

0.1ωn ωn 10ωn

−90◦

−180◦

45◦ per
decade

Lecture notes prepared by and copyright c⃝ 1998–2017, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, FREQUENCY-RESPONSE ANALYSIS 8–17

8.6: Bode phase diagrams (b)

Bode phase: Complex LHP zero pair or pole pair

■ Complex LHP zeros cause phase to go from 0◦ to 180◦.

■ Complex LHP poles cause phase to go from −180◦ to 0◦.

■ Transition happens in about ±ζ decades, centered at ωn.
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180
Bode Phase: Complex LHP zeros
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0.1
0.2
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Bode Phase: Complex LHP poles
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ζ = 0.9

0.1ωn ωn 10ωn

Bode phase: Complex RHP zero pair or pole pair

■ Complex RHP zeros cause phase to go from 360◦ to 180◦.

■ Complex RHP poles cause phase to go from −360◦ to −180◦.
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Bode Phase: Complex RHP zeros

0.1ωn ωn 10ωn
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Bode Phase: Complex RHP poles
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Bode phase: Time delay

■ G(s) = e−sτ ,

G( jω) = e− jωτ = 1 ̸ − ωτ

̸ G( jω) = −ωτ in radians.

= −56.3ωτ in degrees.

■ Note: Line→curve in log scale.

0.1ωi ωi 10ωi

EXAMPLE: Sketch the Bode phase plot for

G(s) = 2000(s + 0.5)

s(s + 10)(s + 50)
or G( jω) = 2 ( jω/0.5 + 1)

jω ( jω/10 + 1) ( jω/50 + 1)
,

where we converted to “Bode standard form” in a prior example.

■ Constant: K = +2. Zero phase contribution.

■ Pole at origin: Phase contribution of −90◦.

■ Two real LHP poles: Phase from 0◦ to −90◦, each.

■ One real LHP zero: Phase from 0◦ to 90◦.

10−2 10−1 100 101 102 103
−180

−90

0

90
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EXAMPLE: Sketch the Bode magnitude and phase plots for

G(s) =
1200 (s + 3)

s (s + 12) (s + 50)
.

■ First, we convert to Bode standard form, which gives

G(s) =
1200 (3)

(

1 + s
3

)

s (12) (50)
(

1 + s
12

) (

1 + s
50

)

G( jω) =
6

(

1 + jω
3

)

jω
(

1 + jω
12

) (

1 + jω
50

) .

■ Positive gain, one real LHP zero, one pole at origin, two real LHP

poles.

10−1 100 101 102 103−20

−10

0

10

20

30

10−1 100 101 102 103−180
−135
−90
−45
0
45
90
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8.7: Some observations based on Bode plots

Nonminimum-phase systems

■ A system is called a nonminimum-phase if it has pole(s) or zero(s) in

the RHP.

■ Consider

G1(s) = 10
s + 1

s + 10

}

zero at − 1

pole at − 10

}

minimum

phase

G2(s) = 10
s − 1

s + 10

}

zero at + 1

pole at − 10

}

nonminimum

phase

■ The magnitude responses of these two systems are:

|G1( jω)| = 10
| jω + 1|
| jω + 10|

= 10

√
ω2 + 1

√
ω2 + 100

|G2( jω)| = 10
| jω − 1|
| jω + 10|

= 10

√
ω2 + 1

√
ω2 + 100

which are the same!

■ The phase responses are very different:

10−2 10−1 100 101 102 103

0

5

10

15

20
Bode-Magnitude Plot

Frequency, (rads/sec.)

|G
1
(

jω
)|,

|G
2
(

jω
)|

10−2 10−1 100 101 102 103
0

30

60

90

120

150

180

Non-minimum
Phase, G2

Minimum
Phase, G1

Bode-Phase Plot

Frequency, (rads/sec.)

̸
(G

1
(

jω
))

,
̸
(G

2
(

jω
))

■ Note that the change in phase of G1 is much smaller than change of

phase in G2. Hence G1 is “minimum phase” and G2 is

“nonminimum-phase”
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■ Non-minimum phase usually associated with delay.

G2(s) = G1(s)
s − 1

s + 1
︸ ︷︷ ︸

Delay

■ Note:
s − 1

s + 1
is very similar to a first-order Padé approximation to a

delay. It is the same when evaluated at s = jω.

■ Consider using feedback to control a nonminimum-phase system.

What do the root-locus plotting techniques tell us?

■ Consequently, nonminimum-phase systems are harder to design

controllers for; step response often tends to “go the wrong way,” at

least initially.

Steady-state errors from Bode magnitude plot

■ Recall our discussion of steady-state errors to step/ramp/parabolic

inputs versus “system type” (summarized on pg. 4–24)

■ Consider a unity-feedback system.

■ If the open-loop plant transfer function has N poles at s = 0 then the

system is “type N ”

• K p is error constant for type 0.

• Kv is error constant for type 1.

• Ka is error constant for type 2...

■ For a unity-feedback system, K p = lim
s→0

G(s).

• At low frequency, a type 0 system will have G(s) ≈ K p.

• We can read this off the Bode-magnitude plot directly!
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• Horizontal y-intercept at low frequency = K p.

➠ ess =
1

1 + K p

for step input.

■ Kv = lim
s→0

sG(s), and is nonzero for a type 1 system.

• At low frequency, a type 1 system will have G(s) ≈ Kv

s
.

• At low frequency, |G( jω)| ≈
Kv

ω
. Slope of −20 dB/decade.

• Use the above approximation to extend the low-frequency

asymptote to ω = 1. The asymptote (NOT THE ORIGINAL

|G( jω)|) evaluated at ω = 1 is Kv.

➠ ess =
1

Kv
for ramp input.

■ Ka = lim
s→0

s2G(s), and is nonzero for a type 2 system.

• At low frequency, a type 2 system will have G(s) ≈
Ka

s2
.

• At low frequency, |G( jω)| ≈
Ka

ω2
. Slope of −40 dB/decade.

• Again, use approximation to extend low-frequency asymptote to

ω = 1. The asymptote evaluated at ω = 1 is Ka.

➠ ess = 1

Ka

for parabolic input.

■ Similar for higher-order systems.
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EXAMPLE 1:

➤ Horizontal as ω → 0, so we know this is type 0.

➤ Intercept = 6 dB. . .K p = 6 dB = 2 [linear units].

EXAMPLE 2:

➤ Slope = −20 dB/decade as ω → 0, so we know this is type 1.

➤ Extend slope at low frequency to ω = 1.

➤ Intercept = 20 dB. . . Kv = 20 dB = 10 [linear units].
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8.8: Stability revisited

■ If we know the closed-loop transfer function of a system in rational-

polynomial form, we can use Routh to find stable ranges for K .

■ Motivation: What if we only have open-loop frequency response?

A simple example

■ Consider, for now, that we know the transfer-function of the system,

and can plot the root-locus.

EXAMPLE:

r (t) y(t)K
1

s(s + 1)2

K = 2

I(s)

R(s)

■ We see neutral stability at K = 2. The system is stable for K < 2 and

unstable for K > 2.

■ Recall that a point is on the root locus if |K G(s)| = 1 and

̸ G(s) = −180◦.

■ If system is neutrally stable, jω-axis will have a point (points) where

|K G( jω)| = 1 and ̸ G( jω) = −180◦.
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■ Consider the Bode plot of

K G(s). . .

■ A neutral-stability condition from

Bode plot is: |K G( jωo)| = 1 AND

̸ K G( jωo) = −180◦ at the same

frequency ωo.

■ In this case, increasing

K →instability ➠ |K G( jω)| < 1

at ̸ K G( jω) = −180◦ =stability.

■ In some cases, decreasing

K →instability ➠ |K G( jω)| > 1

at ̸ K G( jω) = −180◦ =stability.

10−2 10−1 100 101−80

−60

−40

−20

0

20

40

10−2 10−1 100 101−270

−240

−210

−180

−150

−120

−90

K = 2
K = 10

K = 0.1

KEY POINT: We can find neutral stability point on Bode plot, but don’t

(yet) have a way of determining if the system is stable or not. Nyquist

found a frequency-domain method to do so.

Nyquist stability

■ Poles of closed-loop transfer function in RHP—the system is unstable.

■ Nyquist found way to count closed-loop poles in RHP.

■ If count is greater than zero, system is unstable.

■ Idea:

• First, find a way to count closed-loop poles inside a contour.

• Second, make the contour equal to the RHP.

■ Counting is related to complex functional mapping.
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8.9: Interlude: Complex functional mapping

■ Nyquist technique is a graphical method to determine system stability,

regions of stability and MARGINS of stability.

■ Involves graphing complex functions of s as a polar plot.

EXAMPLE: Plotting f (x), a real function of a real variable x .

x

f (x)

■ This can be done.

EXAMPLE: Plotting F(s), a complex function of a complex variable s.

?
s

F(s)

NO! This is wrong!

■ Must draw mapping of points or lines from s-plane to F(s)-plane.

s0

F(s0)
I(F)

R(F)

s F(s)jω

σ

mapping

EXAMPLE: F(s) = 2s + 1 . . . “map the four points: A, B, C , D”

A

BC

D

1−1

j

− j

I(s)

R(s)
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EXAMPLE: Map a square contour (closed path) by F(s) =
s

s + 2
.

A

BC

D

1−1

j

− j

F(A)

F(B)

F(C)

F(D)

1−1

j

− j

I(s)

R(s)

FORESHADOWING: By drawing maps of a specific contour, using a

mapping function related to the plant open-loop frequency-response,

we will be able to determine closed-loop stability of systems.

Mapping function: Poles of the function

■ When we map a contour containing (encircling) poles and zeros of

the mapping function, this map will give us information about how

many poles and zeros are encircled by the contour.

■ Practice drawing maps when we know poles and zeros. Evaluate

G(s)|s=so
= G(so) = |v⃗|e jα

α =
∑

̸ (zeros) −
∑

̸ (poles).

EXAMPLE:

R(s)

I(s)

c1

F(c1)

α
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■ In this example, there are no zeros or poles inside the contour. The

phase α increases and decreases, but never undergoes a net change

of 360◦ (does not encircle the origin).

EXAMPLE:

R(s)

I(s)

c2

F(c2)

α

■ One pole inside contour. Resulting map undergoes 360◦ net phase

change. (Encircles the origin).

EXAMPLE:

R(s)

I(s)

c3

F(c3)

■ In this example, there are two poles inside the contour, and the map

encircles the origin twice.
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8.10: Cauchy’s theorem and Nyquist’s rule

■ These examples give heuristic evidence of the general rule: Cauchy’s

theorem

“Let F(s) be the ratio of two polynomials in s. Let the closed

curve C in the s-plane be mapped into the complex plane

through the mapping F(s). If the curve C does not pass through

any zeros or poles of F(s) as it is traversed in the CW direction,

the corresponding map in the F(s)-plane encircles the origin

N = Z − P times in the CW direction,” where

Z = # of zeros of F(s) in C,

P = # of poles of F(s) in C .

■ Consider the following feedback system:

G(s)D(s)

H (s)

y(t)r (t)

T (s) =
D(s)G(s)

1 + D(s)G(s)H(s)
.

■ For closed-loop stability, no poles of T (s)

in RHP.

• No zeros of 1 + D(s)G(s)H(s) in RHP.

• Let F(s) = 1 + D(s)G(s)H(s).

• Count zeros in RHP using Cauchy

theorem! (Contour=entire RHP).

I(s)

R(s)

R → ∞

■ The Nyquist criterion simplifies Cauchy’s criterion for feedback

systems of the above form.
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■ Cauchy: F(s) = 1 + D(s)G(s)H(s). N = # of encirclements of origin.

■ Nyquist: F(s) = D(s)G(s)H(s). N = # of encirclements of −1.

R(s)

I(s)
Cauchy

R(s)

I(s)
Nyquist

■ Simple? YES!!!

■ Think of Nyquist path as four parts:

I. Origin. Sometimes a special case (later

examples).

II. + jω-axis. FREQUENCY-response of

O.L. system! Just plot it as a polar plot.

III. For physical systems=0.

IV. Complex conjugate of II.

I(s)

R(s)
I

II
III

IV

■ So, for most physical systems, the Nyquist plot, used to determine

CLOSED-LOOP stability, is merely a polar plot of LOOP frequency

response D( jω)G( jω)H( jω).

■ We don’t even need a mathematical model of the system. Measured

data of G( jω) combined with our known D( jω) and H( jω) are

enough to determine closed-loop stability.
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THE TEST:

■ N = # encirclements of −1 point when F(s) = D(s)G(s)H (s).

■ P = # poles of 1 + F(s) in RHP= # of open-loop unstable poles. (as-

suming that H (s) is stable—reasonable).

■ Z = # of zeros of 1 + F(s) in RHP= # of closed-loop unstable poles.

Z = N + P

The system is stable iff Z = 0.

■ Be careful counting encirclements!

■ Draw line from −1 in any direction.

■ Count # crossings of line and diagram.

■ N = #CW crossings−#CCW crossings.

■ Changing the gain K of F(s) MAGNIFIES the entire plot.

ENHANCED TEST: Loop transfer function is K D(s)G(s)H (s).

■ N = # encirclements of −1/K point when F(s) = D(s)G(s)H (s).

■ Rest of test is the same.

■ Gives ranges of K for stability.
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8.11: Nyquist test example

EXAMPLE: D(s) = H(s) = 1.

G(s) = 5

(s + 1)2

or, G( jω) =
5

( jω + 1)2

I: At s = 0, G(s) = 5.

II: At s = jω, G( jω) = 5

(1 + jω)2
.

III: At |s| = ∞, G(s) = 0.

IV: At s = − jω, G(s) =
5

(1 − jω)2
.

R(s)

I(s)

ω R(G( jω)) I(G( jω))

0.0000 5.0000 0.0000

0.0019 4.9999 -0.0186

0.0040 4.9998 -0.0404

0.0088 4.9988 -0.0879

0.0191 4.9945 -0.1908

0.0415 4.9742 -0.4135

0.0902 4.8797 -0.8872

0.1959 4.4590 -1.8172

0.4258 2.9333 -3.0513

0.9253 0.2086 -2.6856

2.0108 -0.5983 -0.7906

4.3697 -0.2241 -0.1082

9.4957 -0.0536 -0.0114

20.6351 -0.0117 -0.0011

44.8420 -0.0025 -0.0001

97.4460 -0.0005 -0.0000

500.0000 -0.0000 -0.0000

■ No encirclements of −1, N = 0.

■ No open-loop unstable poles P = 0.

■ Z = N + P = 0. Closed-loop system is stable.

■ No encirclements of −1/K for any K > 0.

• So, system is stable for any K > 0.
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■ Confirm by checking Routh array.

■ Routh array: a(s) = 1 + K G(s) = s2 + 2s + 1 + 5K .

s2 1 1 + 5K

s1 2

s0 1 + 5K

■ Stable for any K > 0.

EXAMPLE: G(s) =
50

(s + 1)2(s + 10)
.

I: G(0) = 50/10 = 5.

II: G( jω) =
50

( jω + 1)2( jω + 10)
.

III: G(∞) = 0.

IV: G(− jω) = G( jω)∗.

■ Note loop to left of origin. System

is NOT stable for all K > 0.

ω R(G( jω)) I(G( jω))

0 5.0000 0

0.1 4.9053 -0.8008

0.2 4.4492 -1.8624

0.5 2.4428 -3.2725

1.2 -0.5621 -2.0241

2.9 -0.4764 -0.1933

7.1 -0.0737 0.0262

17.7 -0.0046 0.0064

43.7 -0.0002 0.0006

100.0 -0.0000 0.0000

R(s)

I(s) Zoom
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8.12: Nyquist test example with pole on jω-axis

EXAMPLE: Pole(s) at origin. G(s) =
1

s(τ s + 1)
.

■ WARNING! We cannot blindly follow procedure!

■ Nyquist path goes through pole at zero! (Remember from Cauchy’s

theorem that the path cannot pass directly through a pole or zero.)

■ Remember: We want to count closed-loop poles inside a “box” that

encompasses the RHP.

■ So, we use a slightly-modified Nyquist path.

I(s)I(s)

R(s)R(s)
I

II
III

IV

ρ → 0

θ

Zoom

■ The bump at the origin makes a detour around the offending pole.

■ Bump defined by curve: s = lim
ρ→0

ρe jθ, 0◦ ≤ θ ≤ 90◦.

■ From above,

G(s)|s=ρe jθ = 1

ρe jθ(τρe jθ + 1)
, 0◦ ≤ θ ≤ 90◦

■ Consider magnitude as ρ → 0

lim
ρ→0

|G(s)|s=ρe jθ = 1

ρ|τρe jθ + 1|
≈ 1

ρ
.
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■ Consider phase as ρ → 0

lim
ρ→0

̸ G(s)|s=ρe jθ = −θ − ̸ (τρe jθ + 1).

■ So,

lim
ρ→0

G(ρe jθ) = lim
ρ→0

1

ρ
̸ − θ+

• This is an arc of infinite radius, sweeping from 0◦ to −90◦+ (a little

more than 90◦ because of contribution from
1

(τ s + 1)
term).

• WE CANNOT DRAW THIS TO SCALE!

■ Z = N + P .

■ N = # encirclements of −1. N = 0.

■ P = # Loop transfer function poles

inside MODIFIED contour. P = 0.

■ Z = 0. Closed-loop system is stable.

EXAMPLE:

G(s) =
1

s2(s + 1)

■ Use modified Nyquist path again

I: Near origin

G(s)|s=ρe jθ =
1

ρ2e j2θ(1 + ρe jθ)
.

■ Magnitude: lim
ρ→0

|G(ρe jθ)| =
1

ρ2|1 + ρe jθ|
≈

1

ρ2
.

■ Phase: lim
ρ→0

̸ G(ρe jθ) = 0 − [2θ + ̸ (1 + ρe jθ)] ≈ −2θ+. So,

lim
ρ→0

G(ρe jθ) = lim
ρ→0

1

ρ2
̸ − 2θ+ 0◦ ≤ θ ≤ 90◦.
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■ Infinite arc from 0◦ to −180◦+ (a little

more than −180◦ because of
1

1 + s
term.)

■ Z = N + P = 2 + 0 = 2. Unstable for

K = 1.

■ In fact, unstable for any K > 0!

■ Matlab for above

G(s) = 1

s3 + s2 + 0s + 0

num=[0 0 0 1];

den=[1 1 0 0];

nyquist1(num,den);

axis([xmin xmax ymin ymax]);

■ “nyquist1.m” is available on course web site.

■ It repairs the standard Matlab “nyquist.m” program, which doesn’t

work when poles are on imaginary axis.

■ “nyquist2.m” is also available. It draws contours around poles on the

imaginary axis in the opposite way to “nyquist1.m”. Counting is

different.
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8.13: Stability (gain and phase) margins

■ A large fraction of systems to be controlled are stable for small gain

but become unstable if gain is increased beyond a certain point.

■ The distance between the current (stable) system and an unstable

system is called a “stability margin.”

■ Can have a gain margin and a phase margin.

GAIN MARGIN: Factor by which the gain is less than the neutral stability

value.

■ Gain margin measures “How much can we increase the gain of the

loop transfer function L(s) = D(s)G(s)H(s) and still have a stable

system?”

■ Many Nyquist plots are like this one.

Increasing loop gain magnifies the

plot.

■ GM =1/(distance between origin and

place where Nyquist map crosses

real axis).

■ If we increase gain, Nyquist map

“stretches” and we may encircle −1.

PM

1

GM

■ For a stable system, GM > 1 (linear units) or GM > 0 dB.

PHASE MARGIN: Phase factor by which phase is greater than neutral

stability value.

■ Phase margin measures “How much delay can we add to the loop

transfer function and still have a stable system?”
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■ PM = Angle to rotate Nyquist plot to achieve neutral stability =

intersection of Nyquist with circle of radius 1.

■ If we increase open-loop delay, Nyquist map “rotates” and we may

encircle −1.

■ For a stable system, PM > 0◦.

IRONY: This is usually easiest to check on Bode plot, even though

derived on Nyquist plot!

■ Define gain crossover as frequency where Bode magnitude is 0 dB.

■ Define phase crossover as frequency where Bode phase is −180◦.

■ GM = 1/(Bode gain at

phase-crossover

frequency) if Bode gain is

measured in linear units.

■ GM = (− Bode gain at

phase-crossover

frequency) [dB] if Bode

gain measured in dB.

■ PM = Bode phase at

gain-crossover −(−180◦).

10−2 10−1 100 101 102−30

−20
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M
a
g
n
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P
h
a
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■ We can also determine stability as K changes. Instead of defining

gain crossover where |G( jω)| = 1, use the frequency where

|K G( jω)| = 1.
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■ You need to be careful using this test.

• It works if you apply it blindly and the system is minimum-phase.

• You need to think harder if the system is nonminimum-phase.

• Nyquist is the safest bet.

PM and performance

■ A bonus of computing PM from the open-loop frequency response

graph is that it can help us predict closed-loop system performance.

■ PM is related to damping. Consider open-loop 2nd-order system

G(s) = ω2
n

s(s + 2ζωn)

with unity feedback,

T (s) = ω2
n

s2 + 2ζωn + ω2
n

.

■ The relationship between PM and ζ is: (for this system)

PM = tan−1

⎡

⎢
⎣

2ζ
√

√

1 + 4ζ 4 − 2ζ 2

⎤

⎥
⎦

■ For PM ≤ 60◦, ζ ≈ PM

100
, so can also infer Mp from PM.
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8.14: Preparing for control using frequency-response methods

Bode’s gain-phase relationship

■ “For any stable minimum-phase system (that is, one with no RHP

zeros or poles), the phase of G( jω) is uniquely related to the

magnitude of G( jω)”

■ Relationship: ̸ G( jωo) = 1

π

∫ ∞

−∞

(

dM

du

)

W (u) du (in radians)

M = ln |G( jω)|

u = ln

(

ω

ωo

)

dM

du
≈ slope n of log-mag curve at ω = ωo

W (u) = weighting function = ln(coth |u|/2)

■ W (u) ≈
π2

2
δ(u). Using this re-

lationship, ̸ G( jω) ≈ n × 90◦

if slope of Bode magnitude-

plot is constant in the decade-

neighborhood of ω. −6 −4 −2 0 2 4 6
0
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■ So, if ̸ G( jω) ≈ −90◦ if n = −1.

■ So, if ̸ G( jω) ≈ −180◦ if n = −2.

KEY POINT: Want crossover |G( jω)| = 1 at a slope of about −1 for good

PM. We will soon see how to do this (design!).
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Closed-loop frequency response

■ Most of the notes in this section have used the open-loop frequency

response to predict closed-loop behavior.

■ How about closed-loop frequency response?

T (s) =
K D(s)G(s)

1 + K D(s)G(s)
.

■ General approximations are simple to make. If,

|K D( jω)G( jω)| ≫ 1 for ω ≪ ωc

and |K D( jω)G( jω)| ≪ 1 for ω ≫ ωc

where ωc is the cutoff frequency where open-loop magnitude

response crosses magnitude=1.

|T ( jω)| =
∣
∣
∣
∣

K D( jω)G( jω)

1 + K D( jω)G( jω)

∣
∣
∣
∣
≈

{

1, ω ≪ ωc;
|K D( jω)G( jω)|, ω ≫ ωc.

■ Note: ωc ≤ ωbw ≤ 2ωc.
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