
ECE4510/5510: Feedback Control Systems. 5–1

STABILITY ANALYSIS

5.1: Bounded-input bounded-output (BIBO) stability

! A system may be “stable,” “neutrally or marginally stable,” or
“unstable.” This can be illustrated using cones:

Stable Neutral Unstable

• The cone in the “stable” configuration can be perturbed by nudging
it from any direction, and its position will not change much.

• The cone in the “neutral” configuration can be nudged in the axial
direction without changing its position much, but if it is nudged in
the radial direction, it will roll and its position will change a lot. (The
“stability” of a neutral system depends on the input.)

• The cone in the “unstable” position can be nudged from any
direction, and its position will change a lot.

! We want stability because we don’t want a small input (e.g., possibly
disturbance, or a small change in the reference input) to cause the
output to grow without bound (seem to become “uncontrolled”).

! In system analysis, there are many ways to mathematically define
and evaluate whether a system is stable.
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! For LTI systems, all are basically the same, and equivalent to
“bounded-input bounded-output” or BIBO stability.

! If the system’s input is bounded by some positive constant K1

|u(t)| < K1 ∀t

then BIBO stability guarantees that the output will also be bounded by
some (possibly different) positive constant K2

|y(t)| < K2 ∀t .

! In the time domain,

y(t) =
∫ ∞

−∞
h(τ )u(t − τ ) dτ

|y(t)| =
∣∣∣∣

∫ ∞

−∞
h(τ )u(t − τ ) dτ

∣∣∣∣

≤
∫ ∞

−∞
|h(τ )| |u(t − τ )| dτ

≤ K1

∫ ∞

−∞
|h(τ )| dτ .

! So, |y(t)| < ∞ iff
∫ ∞

−∞
|h(τ )| dτ < ∞. This is one test for BIBO

stability.

y(t)u(t) C Stable? Note: (h(t) = 1(t)).

! Integrating the absolute value of a function can be very tricky.
Sometimes it’s easier to integrate a simpler function that gives an
upper bound instead.

! Consider h(t) = exp(−t) sin(2π t)1(t). Is this system BIBO stable?
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! The blue line in the figure is h(t);
and the green dotted line is |h(t)|.

! To determine stability, we need to
integrate to find the area under the
green dotted line—if this area is
finite, then the system is stable.  

 
h(t)
|h(t)|
exp(−t)

! Finding the exact answer for this integral is hard. But, the integral
under the green dotted line is less than the integral under the red line.

! So, if the integral under the red line is finite, the system is stable.
∫ ∞

0
e−t dt = −e−t

∣∣∞
0 = 1.

! So, we have determined that the system is BIBO stable, and we
didn’t need to integrate a very challenging piecewise function.

! We can also evaluate BIBO stability in the Laplace domain:

H(s) = Y (s)
R(s)

= K
∏m

1 (s − zi)∏n
1(s − pi)

m ≤ n.

(assume poles unique)

h(t) =
n∑

i=1

kiepi t1(t)

∫ ∞

−∞
|h(τ )| dτ < ∞ iff R(pi) < 0 ∀ i .

(If poles are not distinct, h(t) will have terms
k

(m − 1)!
tm−1epi t

for an mth order root.
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∫ ∞

−∞
|h(τ )| dτ < ∞ iff R(pi) < 0;

Same condition.)

! Laplace-domain condition for stability: All poles in the transfer
function must be in the open left hand plane. (i.e., none on jω axis.)

EXAMPLE: T (s) = 2
s2 + 3s + 2

. Is T (s) stable?

T (s) = 2
(s + 1)(s + 2)

,

! Roots at s = −1, s = −2. Stable!

EXAMPLE: T (s) = 10s + 24
s3 + 2s2 − 11s − 12

. Is T (s) stable?

T (s) = 10(s + 2.4)

(s + 1)(s − 3)(s + 4)
,

! Roots at s = −1, s = +3, s = −4. Unstable!

EXAMPLE: T (s) = s
s2 + 1

. Is T (s) stable?

T (s) = s
(s − j)(s + j)

,

! Roots at s = ± j . MARGINALLY stable.

! Use input = sin(t).

Y (s) = s
s2 + 1

1
s2 + 1

= s
(s2 + 1)2

y(t) = 1
2

t sin(t) . . . unbounded.

! MARGINALLY stable = unstable (bounded impulse response, but
unbounded output for some inputs.)
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5.2: Routh–Hurwitz stability (cases 0 and 1)

! Factoring high-degree polynomials to find roots is tedious and
numerically not well conditioned.

! Want other stability tests, and also MARGINS of stability.

(1) Routh test
(2) Root locus
(3) Nyquist test
(4) Bode stability margins






Can you tell this is
an important topic?

! In 1868, Maxwell found conditions on the coefficients of a transfer
function polynomial of 2nd and 3rd order to guarantee stability.

! It became the subject of the 1877 Adams Prize to determine
conditions for stability for higher-order polynomials.

! Routh won this prize, and the method is still useful.

Routh test “case 0”

! Consider the denominator a(s).

2nd order:
a(s) = s2 + a1s + a0 = (s − p1)(s − p2) = s2 − (p1 + p2)s + p1 p2.

3rd order:

a(s) = s3 + a2s2 + a1s + a0

= (s − p1)(s − p2)(s − p3)

=
[
s2 − (p1 + p2)s + p1 p2

] [
s − p3

]
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= s3 − (p1 + p2 + p3)s2 + (p1 p2 + p1 p3 + p2 p3)s − p1 p2 p3.

TREND: Stability " none of the coefficients ai can be ≤ 0.

Does this trend continue?

an−1 = (−1)× sum of all roots.
an−2 = sum of products of roots taken two at a time.
an−3 = (−1)× sum of products of roots taken three at a time.

...

a0 = (−1)n× product of all roots.

! Conclusions:

1. If any coefficient ai = 0, not all roots in LHP.
2. If any coefficient ai < 0, at least one root in RHP.

TEST: If any coefficient ai ≤ 0, system is unstable.

EXAMPLE: a(s) = s2 + 0s + 1.

! From conclusion (1), not all roots in LHP.

! Roots at s = ± j .

! “Marginally” stable.

EXAMPLE: a(s) = s3 + 2s2 − 11s − 12.

! From conclusion (2), at least one root is in RHP.

! Roots at s = −1, s = −4, s = +3.

! Unstable.

EXAMPLE: a(s) = s3 + s2 + 2s + 8.
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! We don’t know yet if this system is stable or not.

! Roots at s = −2, s = 1
2

± j
√

15
2

. Unstable, but how do we find out
without factoring?

Routh test “case 1”

! Once we have determined that ai > 0 ∀ i , we need to run the full
Routh test (“case 0” doesn’t really count).

! Very mechanical, not intuitive. Proof difficult.

! Start with characteristic polynomial (denominator of closed-loop
transfer function), a(s) = sn + an−1sn−1 + · · · + a1s + a0.

! Form “Routh array”.

• First two rows are coefficients directly copied from a(s);

• Remaining rows are calculated as shown.

sn an an−2 an−4 · · ·
sn−1 an−1 an−3 an−5 · · ·
sn−2 b1 b2 · · ·
sn−3 c1 c2 · · ·

...

s1 j1
s0 k1

b1 = −1
an−1

∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣

b2 = −1
an−1

∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣ · · ·

c1 = −1
b1

∣∣∣∣∣
an−1 an−3

b1 b2

∣∣∣∣∣

c2 = −1
b1

∣∣∣∣∣
an−1 an−5

b1 b3

∣∣∣∣∣ · · ·

TEST: Number of unstable roots = number of sign changes in left column.
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EXAMPLE: a(s) = s3 + s2 + 2s + 8.
s3 1 2
s2 1 8
s1 −6
s0 8 b1 = −1

1

∣∣∣∣∣
1 2
1 8

∣∣∣∣∣ = −(8 − 2) = −6

c1 = −1
−6

∣∣∣∣∣
1 8

−6 0

∣∣∣∣∣ = 1
6
(0 + 6 × 8) = 8

! Two sign changes (1 → −6, −6 → 8) Two roots in RHP.

EXAMPLE: a(s) = s2 + a1s + a0.
s2 1 a0

s1 a1

s0 a0 b1 = −1
a1

∣∣∣∣∣
1 a0

a1 0

∣∣∣∣∣ = −1
a1

(0 − a0a1) = a0

! Stable iff a1 > 0, a0 > 0.

EXAMPLE: a(s) = s3 + a2s2 + a1s + a0.
s3 1 a1

s2 a2 a0

s1 a1 − a0

a2
s0 a0

b1 = −1
a2

∣∣∣∣∣
1 a1

a2 a0

∣∣∣∣∣ = −1
a2

(a0 − a1a2)

= a1 − a0

a2

c1 = −1
b1

∣∣∣∣∣
a2 a0

b1 0

∣∣∣∣∣ = −1
b1

(−a0b1) = a0.

! Stable iff a2 > 0, a0 > 0, a1 >
a0

a2
.
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5.3: Routh–Hurwitz stability (cases 2 and 3)

Routh test “case 2”

! In the process of filling in the Routh array, we sometimes find an
element in first column = 0.

! This leads to a divide by zero computation in a subsequent step,
which has an indeterminate result.

! Solution: Replace the zero in the left column with ±ε as ε → 0. (Will
get same result for +ε and −ε.)

EXAMPLE: a(s) = s5 + 2s4 + 2s3 + 4s2 + 11s + 10.

s5 1 2 11
s4 2 4 10
s3 0 6

new s3 ε 6

s2 −12
ε

10

s1 6
s0 10

If ε > 0, two sign changes.
If ε < 0, two sign changes.
" Two poles in RHP.

b1 = −1
2

∣∣∣∣∣
1 2
2 4

∣∣∣∣∣ = −1
2

(4 − 4) = 0

b2 = −1
2

∣∣∣∣∣
1 11
2 10

∣∣∣∣∣ = −1
2

(10 − 22) = 6

c1 = −1
ε

∣∣∣∣∣
2 4
ε 6

∣∣∣∣∣ = −1
ε

(12 − 4ε) ≈ −12
ε

c2 = −1
ε

∣∣∣∣∣
2 10
ε 0

∣∣∣∣∣ = −1
ε

(0 − 10ε) = 10

d1 = ε

12

∣∣∣∣∣∣

ε 6
−12
ε

10

∣∣∣∣∣∣
= ε

12
(10ε + 72

ε
) ≈ 6

e1 = −1
6

∣∣∣∣∣∣

−12
ε

10

6 0

∣∣∣∣∣∣
= −1

6
(0 − 60) = 10
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Routh test “case 3”

! Sometimes an entire row in Routh array = 0.

! This means that polynomial factors such that one factor has
conjugate-MIRROR-roots, which can be configured as shown in the
figure:

I(s)

R(s)

I(s)

R(s)

I(s)

R(s)

! In any case, system is unstable. But how many RHP roots?

! Complete Routh array by making polynomial a1(s) from last non-zero
row in array. Poly has every second order of s only!!

• We do this in a reverse fashion from how we entered a(s) into the
array in the first place.

! It turns out that a1(s) is a factor of the original a(s). It is missing some
orders of s, so IS NOT STABLE (by “case 0”.)

! We want to see if it has roots in the RHP or only on the jω-axis.

! Replace zero row with coefficients from
da1(s)

ds
and continue.
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EXAMPLE: a(s) = s4 + s3 + 3s2 + 2s + 2.
s4 1 3 2
s3 1 2 0
s2 1 2
s1 0

new s1 2
s0 2

No sign changes in Routh
array. So, no RHP roots.
Roots of a1(s) at s = ± j

√
2.

Marginally stable.

b1 = −1
1

∣∣∣∣∣
1 3
1 2

∣∣∣∣∣ = 1

b2 = −1
1

∣∣∣∣∣
1 2
1 0

∣∣∣∣∣ = 2

c1 = −1
1

∣∣∣∣∣
1 2
1 2

∣∣∣∣∣ = 0
a1(s) = s2 + 2

da1(s)
ds

= 2s

d1 = −1
2

∣∣∣∣∣
1 2
2 0

∣∣∣∣∣ = 2

EXAMPLE: a(s) = s4 + 4 (Hard).

s4 1 0 4
s3 0 0

new s3 4 0
s2 0 4

new s2 ε 4

s1 −16
ε

s0 4

Two sign changes. Therefore
2 RHP poles. Other two
poles are mirrors in LHP.

a1(s) = s4 + 4; da1(s)
ds

= 4s3.

b1 = −1
4

∣∣∣∣∣
1 0
4 0

∣∣∣∣∣ = 0

b2 = −1
4

∣∣∣∣∣
1 4
4 0

∣∣∣∣∣ = 4

c1 = −1
ε

∣∣∣∣∣
4 0
ε 4

∣∣∣∣∣ = −16
ε

d1 = ε

16

∣∣∣∣∣∣

ε 4
−16
ε

0

∣∣∣∣∣∣
= 4
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5.4: Routh test as a design tool

! Consider the system:

R(s) Y (s)K
s + 1

s(s − 1)(s + 6)

T (s) = Y (s)
R(s)

=
K s+1

s(s−1)(s+6)

1 + K s+1
s(s−1)(s+6)

= K (s + 1)

s(s − 1)(s + 6) + K (s + 1)

! We might be interested in knowing for what values of K the system is
stable.

! Compute the denominator of the transfer function:

a(s) = s(s − 1)(s + 6) + K (s + 1)

= s3 + 5s2 + (K − 6)s + K .

! Perform the Routh test

s3 1 K − 6
s2 5 K

s1 4K − 30
5

s0 K

b1 = −1
5

∣∣∣∣∣
1 K − 6
5 K

∣∣∣∣∣ = −1
5

(K − 5(K − 6))

= (4K − 30)/5.

c1 = −1
b1

∣∣∣∣∣
5 K
b1 0

∣∣∣∣∣ = −1
b1

(−b1K ) = K

! For stability of the closed-loop system, K > 0, and K > 30/4.

! Step response for different values of K .
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0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5

 

K =7.5
K =13
K =25

A
m

pl
itu

de

Time (sec.)
EXAMPLE:

R(s) Y (s)K
[

1 + 1
TI s

]
1

(s + 1)(s + 2)

T (s) = Y (s)
R(s)

=
K TI s+K

TI s(s+1)(s+2)

1 + K TI s+K
TI s(s+1)(s+2)

= K TI s + K
TI s(s + 1)(s + 2) + K TI s + K

.

! a(s) = TI s3 + 3TI s2 + TI (2 + K )s + K .

s3 TI TI (2 + K )

s2 3TI K

s1 TI (K + 2) − K
3

s0 K

b1 = −1
3TI

∣∣∣∣∣
TI TI (2 + K )

3TI K

∣∣∣∣∣ = TI (K + 2) − K
3

c1 = −1
b1

∣∣∣∣∣
3TI K
b1 0

∣∣∣∣∣ = −1
b1

(−b1K ) = K
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! For stability of the closed-loop system, K > 0 and TI > 0 and

TI >
K

3(K + 2)
.

! Alternately, K < 0 and TI < 0 and TI <
K

3(K + 2)
for −2 < K < 0, (or

instead TI >
K

3(K + 2)
for K < −2 but this is a contradiction since the

quotient is positive and TI is negative by assumption).

0 2 4 6 8 10 12

0

0.5

1

1.5

Time (seconds)

K = 3, TI = 0.5

K = 1, TI = 0.25

K = 1, TI = ∞

A
m

pl
itu

de
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5.5: Advanced applications of the Routh test

! Note that the Routh test is not specifically a controls recipe.

• It is a geometric algorithm.
• It counts the number of roots of a polynomial that have R(si) ≥ 0.

Modification #1

! Suppose we want to ensure a settling-time specification (or some
form of robust stability), so we want R(si) ≤ −σ for all poles.

! Routh test doesn’t apply directly; but, perform a change of variables:

• Let p = s + σ . Then, si < −σ corresponds to pi < 0.

! So, we can perform a Routh test on a(p) instead of a(s).

EXAMPLE: Let T (s) = K
s2 + 4s + K

. For what values of K are all poles to
the left of s = −1?

! Note, σ = 1, and we let p = s + 1 or s = p − 1.

T (p) = K
(p − 1)2 + 4(p − 1) + K

= K
p2 − 2p + 1 + 4p − 4 + K

= K
p2 + 2p + K − 3

.

! So, a(p) = p2 + 2p + (K − 3). Form the Routh array:

p2 1 (K − 3)

p1 2
p0 (K − 3)

! If K > 3, the real part of all poles of
T (s) are less than −1. −5 −4 −3 −2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real axis

Im
ag

in
ar

y 
ax

is

Root locus

K = 3
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Modification #2

! When working with digital control systems, the complex frequency
domain is represented by “z” instead of “s”, and a system is stable if
all poles of T (z) have magnitude strictly less than 1.

! The stability region is the unit circle in
the z-plane.

! The Routh test does not apply directly.

! But, we can perform the change of variables (where α > 0)

z = 1 + αs
1 − αs

or s = 1
α

(
z − 1
z + 1

)
,

which is known as the bilinear transformation.

! We can show that this transformation maps the inside of the unit
circle in the z-plane to the left-half s-plane.

! Let z = re jθ . We have stability if z < 1. So, we want to show that r < 1
produces R(s) < 0.

! Substituting into the change of variables

s = 1
α

(
re jθ − 1
re jθ + 1

)
= 1

α

(
re jθ − 1
re jθ + 1

) (
re− jθ + 1
re− jθ + 1

)

= 1
α




r2 − 1 +

j2r sin θ︷ ︸︸ ︷
re jθ − re− jθ

r2 + 1 + re jθ + re− jθ
︸ ︷︷ ︸

2r cos θ




.

! Note that:
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• When r = 1, s is purely imaginary (translating the unit circle into
the jω axis)

• When r < 1, the real part of s is less than zero (translating the
inside of the unit disc into the left-half s-plane)

• When r > 1, the real part of s is greater than zero (translating the
outside of the unit disc into the right-half s-plane).

EXAMPLE: Let T (z) = K
z + (K − 0.5)

.

! We can see from inspection (for this simple example) that
−0.5 < K < 1.5 will result in a pole location that is between z = −1
and z = +1.

! But, let’s perform the bilinear transformation and the Routh test.
Choose α = 1.

T (s) = T (z)|z=1+s
1−s

= K
1+s
1−s + (K − 0.5)

= K (1 − s)
1 + s + (K − 0.5)(1 − s)

= K (1 − s)
(1.5 − K )s + (K + 0.5)

.

! Form the (trivial) Routh array:

s1 (1.5 − K )

s0 (K + 0.5)

! So, we have stability when K < 1.5 and
when K > −0.5, as expected.

Lecture notes prepared by and copyright c© 1998–2013, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, STABILITY ANALYSIS 5–18

5.6: Internal stability

! BIBO stability requires that the output be bounded for every possible
bounded input.

! However, a system may be input-output stable and still have
unbounded internal signals.

! The issue is internal stability.

! Consider the following diagram:

R(s)
E(s) U(s)

W (s)

Y (s)D(s) G(s)

! We can find the following four transfer functions:

Y (s)
R(s)

= D(s)G(s)
1 + D(s)G(s)

Y (s)
W (s)

= G(s)
1 + D(s)G(s)

.

U (s)
R(s)

= D(s)
1 + D(s)G(s)

U (s)
W (s)

= 1
1 + D(s)G(s)

.

! For internal stability, all four of these transfer functions must be stable.

EXAMPLE: Let G(s) = 1
s − 1

and D(s) = s − 1
s + 1

.

! Then,
Y (s)
R(s)

= D(s)G(s)
1 + D(s)G(s)

=
s−1

(s−1)(s+1)

1 + s−1
(s−1)(s+1)
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= s − 1
(s − 1)(s + 1) + (s − 1)

= 1
s + 1 + 1

= 1
s + 2

.

! This system passes the test for BIBO stability.

! However,
Y (s)
W (s)

= G(s)
1 + D(s)G(s)

=
1

s−1

1 + s−1
(s−1)(s+1)

= s + 1
(s − 1)(s + 1) + (s − 1)

= s + 1
(s − 1)(s + 2)

,

which is unstable.

! Therefore, this system is not internally stable.

! In this case, any (even very tiny) amount of disturbance will cause the
output y(t) to grow without bound. The feedback will not help.

! This brings up the point that it is important to avoid “bad”
cancellations of pole-zero pairs!

! We cannot stabilize a system by canceling an unstable pole with a
compensator zero.

• We will see the same idea again from a different perspective when
we look at root-locus design.
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