DYNAMIC RESPONSE

3.1: System response in the time domain

- We can now model dynamic systems with differential equations.
 What do these equations mean?
- We'll proceed by looking at a system's response to certain inputs in the time domain.
- Then, we'll see how the Laplace transform can make our lives a lot easier by simplifying the math.
- This will give insights into how we might specify the way the system should respond.
- Finally, we'll preview how adding dynamics (*e.g.*, a controller) can change how the system responds.

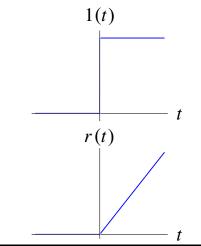
Some important input signals

- Several signals recur throughout this course.
- The unit step function:

$$1(t) = \begin{cases} 1, t \ge 0; \\ 0, \text{ otherwise} \end{cases}$$

The unit ramp function:

$$r(t) = \begin{cases} t, & t \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

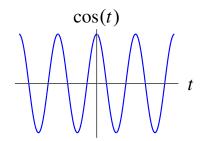


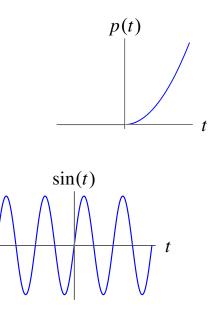
3–1

• The unit parabola function:

$$p(t) = \begin{cases} \frac{t^2}{2}, \ t \ge 0;\\ 0, \ \text{otherwise.} \end{cases}$$

The cosine/sine functions:





- The (ideal) impulse function, $\delta(t)$:
 - Very strange "generalized" function, defined only under an integral.

 $\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \,\mathrm{d}\tau = x(t).$

¹ Assumes that x(t) is continuous at $t = \tau$. Interpretation: no value of x(t) matters except that over the short range where $\delta(t)$ occurs.

Time response of a linear time invariant system

• Let y(t) be the output of an LTI system with input x(t).

$$y(t) = \mathbb{T}[x(t)]$$

$$= \mathbb{T}\left[\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau\right] \quad \text{(sifting)}$$

$$= \int_{-\infty}^{\infty} x(\tau)\mathbb{T}[\delta(t-\tau)] d\tau. \quad \text{(linear)}$$
Let $h(t,\tau) = \mathbb{T}[\delta(t-\tau)]$

$$= \int_{-\infty}^{\infty} x(\tau)h(t,\tau) d\tau$$
e invariant, $h(t,\tau) = h(t-\tau)$

If the system is time invariant,

 $h(t, \tau) = h(t - \tau)$ = $\int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau$ (time invariant) $\stackrel{\triangle}{=} x(t) * h(t).$

- The output of an LTI system is equal to the <u>convolution</u> of its <u>impulse</u> <u>response</u> with the input.
- This makes life EASY (TRUST me!)

EXAMPLE: Finding an impulse response:

- Consider a first-order system, $\dot{y}(t) + ky(t) = u(t)$.
- Let $y(0^-) = 0$, $u(t) = \delta(t)$.
- For positive time we have $\dot{y}(t) + ky(t) = 0$. Recall from your differential-equation math course: $y(t) = Ae^{st}$, solve for *A*, *s*.

$$\dot{y}(t) = Ase^{st}$$

$$Ase^{st} + kAe^{st} = 0$$
$$s + k = 0$$
$$s = -k.$$

• We have solved for *s*; now, solve for *A*.

$$\underbrace{\int_{0^{-}}^{0^{+}} \dot{y}(t) \, dt}_{y(t)|_{0^{-}}^{0^{+}}} + \underbrace{k \int_{0^{-}}^{0^{+}} y(t) \, dt}_{0} = \underbrace{\int_{0^{-}}^{0^{+}} \delta(t) \, dt}_{1}}_{y(0^{+}) - y(0^{-})} = 1$$
$$Ae^{-k0^{+}} - 0 = 1$$
$$A = 1.$$

- Response to impulse: $h(t) = e^{-kt}$, t > 0.
- $h(t) = e^{-kt} \mathbf{1}(t)$.
- Response of this system to general input:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} e^{-k\tau} 1(\tau)u(t-\tau) d\tau$$
$$= \int_{0}^{\infty} e^{-k\tau}u(t-\tau) d\tau.$$

3.2: Transfer functions

- Response to impulse = "impulse response": h(t).
- Response to general input = messy convolution: h(t) * u(t).
- To choose a simpler example, what is the response to a cosine?

$$A\cos(\omega t) = \frac{A}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

Break it down: What is the response to an exponential?

• Let $u(t) = e^{st}$, where s is complex.

$$y(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau) d\tau = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)} d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau)e^{st}e^{-s\tau} d\tau$$
$$= e^{st} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-s\tau} d\tau}_{\text{Transfer function, } H(s)}$$
$$= e^{st} H(s).$$

An est input decouples the convolution into two *independent* parts: a part depending on est and a part depending on h(t).

EXAMPLE:
$$\dot{y}(t) + ky(t) = u(t) = e^{st}$$
:
but, $y(t) = H(s)e^{st}$, $\dot{y}(t) = sH(s)e^{st}$,
 $sH(s)e^{st} + kH(s)e^{st} = e^{st}$
 $H(s) = \frac{1}{s+k}$ (I never integrated!)
 $y(t) = \frac{e^{st}}{s+k}$.

Response to a cosinusoid (revisited)

Let
$$s=j\omega$$
 $u(t)=e^{j\omega t}$ $y(t)=H(j\omega)e^{j\omega t}$
 $s=-j\omega$ $u(t)=e^{-j\omega t}$ $y(t)=H(-j\omega)e^{-j\omega t}$
 $u(t)=A\cos(\omega t)$ $y(t)=\frac{A}{2}\left[H(j\omega)e^{j\omega t}+H(-j\omega)e^{-j\omega t}\right]$

Now,
$$H(j\omega) \stackrel{\triangle}{=} M e^{j\phi}$$

 $H(-j\omega) = M e^{-j\phi}$ (can be shown for $h(t)$ real)
 $y(t) = \frac{AM}{2} \left[e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)} \right]$
 $= AM \cos(\omega t + \phi).$

- The response of an LTI system to a sinusoid is a sinusoid! (of the same frequency).
- **EXAMPLE:** Frequency response of our first order system:

$$H(s) = \frac{1}{s+k}$$

$$H(j\omega) = \frac{1}{j\omega+k}$$

$$M = |H(j\omega)| = \frac{1}{\sqrt{\omega^2 + k^2}}$$

$$\phi = \angle H(j\omega) = -\tan^{-1}\left(\frac{\omega}{k}\right)$$

$$y(t) = \frac{A}{\sqrt{\omega^2 + k^2}} \cos\left(\omega t - \tan^{-1}\left(\frac{\omega}{k}\right)\right).$$

Can we use these results to simplify convolution and get an easier way to understand dynamic response?

Defining the Laplace \mathcal{L}_{-} transform

We have seen that if a system has an impulse response h(t), we can compute a transfer function H(s),

$$H(s) = \int_{-\infty}^{\infty} h(t) e^{-st} \,\mathrm{d}t.$$

• Since we deal with causal systems (possibly with an impulse at t = 0), we can integrate from 0^- instead of negative infinity.

$$H(s) = \int_{0^{-}}^{\infty} h(t) e^{-st} \,\mathrm{d}t.$$

• This is called the one-sided (uni-lateral) Laplace transform of h(t).

-		•
Name	Time function, $f(t)$	Laplace tx., $F(s)$
Unit impulse	$\delta(t)$	1
Unit step	1(<i>t</i>)	$\frac{1}{s}$
Unit ramp	$t \cdot 1(t)$	$\frac{s}{1}{s^2}$
nth order ramp	$t^n \cdot 1(t)$	$\frac{n!}{s^{n+1}}$
Exponential	$\exp(-at)1(t)$	$\frac{1}{s+a}$
Ramped exponential	$t \exp(-at) 1(t)$	$\frac{1}{(s+a)^2}$
Sine	$\sin(bt)1(t)$	$\frac{b}{s^2 + b^2}$
Cosine	$\cos(bt)1(t)$	$\frac{s}{s^2 + b^2} \frac{b^2}{b}$
Damped sine	$e^{-at}\sin(bt)1(t)$	
Damped cosine	$e^{-at}\cos(bt)1(t)$	$\frac{(s+a)^2 + b^2}{(s+a)^2 + b^2}$
Diverging sine	$t\sin(bt)1(t)$	$\frac{(s+a)^2 + b^2}{2bs}$
Diverging cosine	$t\cos(bt)1(t)$	$\frac{(s^2 + b^2)^2}{s^2 - b^2}$ $\frac{(s^2 + b^2)^2}{(s^2 + b^2)^2}$

Laplace Transforms of Common Signals

Lecture notes prepared by and copyright © 1998–2013, Gregory L. Plett and M. Scott Trimboli

Properties of the Laplace transform

- Superposition: $\mathcal{L} \{af_1(t) + bf_2(t)\} = aF_1(s) + bF_2(s)$.
- Time delay: $\mathcal{L} \{ f(t \tau) \} = e^{-s\tau} F(s).$
- Time scaling: $\mathcal{L}\left\{f(at)\right\} = \frac{1}{|a|}F\left(\frac{s}{a}\right).$

(useful if original equations are expressed poorly in time scale. *e.g.*, measuring disk-drive seek speed in hours).

Differentiation:

$$\mathcal{L}\left\{\dot{f}(t)\right\} = sF(s) - f(0^{-})$$

$$\mathcal{L}\left\{\ddot{f}(t)\right\} = s^{2}F(s) - sf(0^{-}) - \dot{f}(0^{-})$$

$$\mathcal{L}\left\{f^{(m)}(t)\right\} = s^{m}F(s) - s^{m-1}f(0^{-}) - \dots - f^{(m-1)}(0^{-}).$$

• Integration: $\mathcal{L}\left\{\int_{0^{-}}^{t} f(\tau) d\tau\right\} = \frac{1}{s}F(s).$

• Convolution: Recall that y(t) = h(t) * u(t)

$$Y(s) = \mathcal{L} \{y(t)\} = \mathcal{L} \{h(t) * u(t)\}$$

= $\mathcal{L} \left\{ \int_{\tau=0^{-}}^{t} h(\tau)u(t-\tau) d\tau \right\}$
= $\int_{t=0^{-}}^{\infty} \int_{\tau=0^{-}}^{t} h(\tau)u(t-\tau) d\tau e^{-st} dt$
= $\int_{\tau=0^{-}}^{\infty} \int_{t=\tau^{-}}^{\infty} h(\tau)u(t-\tau) e^{-st} dt d\tau$.
Multiply by $e^{-s\tau} e^{s\tau}$

• Multiply by $e^{-s\tau}e^{s\tau}$

$$Y(s) = \int_{\tau=0^-}^{\infty} h(\tau) e^{-s\tau} \int_{t=\tau^-}^{\infty} u(t-\tau) e^{-s(t-\tau)} dt d\tau.$$

Lecture notes prepared by and copyright © 1998–2013, Gregory L. Plett and M. Scott Trimboli

Let $t' = t - \tau$: $Y(s) = \int_{\tau=0^{-}}^{\infty} h(\tau)e^{-s\tau} d\tau \int_{t'=0^{-}}^{\infty} u(t')e^{-st'} dt'$ Y(s) = H(s)U(s).

- The Laplace transform "unwraps" convolution for *general* input signals. Makes system easy to analyze.
- This is the most important property of the Laplace transform. This is why we use it. It converts differential equations into algebraic equations that we can solve quite readily.

3.3: The inverse Laplace transform

- The inverse Laplace transform converts $F(s) \rightarrow f(t)$.
- Once we get an intuitive feel for F(s), we won't need to do this often.
- The main tool for ILT is partial-fraction-expansion.

Assume :
$$F(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n}$$
$$= k \frac{\prod_{i=1}^n (s - z_i)}{\prod_{i=1}^n (s - p_i)} \quad \text{(zeros)} \quad \text{(poles)}$$
$$= \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2} + \dots + \frac{c_n}{s - p_n} \quad \text{if } \{p_i\} \text{ distinct}$$
so, $(s - p_1)F(s) = c_1 + \frac{c_2(s - p_1)}{s - p_2} + \dots + \frac{c_n(s - p_1)}{s - p_n}$
$$\text{let } s = p_1 : \quad c_1 = (s - p_1)F(s)|_{s = p_1}$$
$$c_i = (s - p_i)F(s)|_{s = p_i}$$
$$f(t) = \sum_{i=1}^n c_i e^{p_i t} 1(t) \quad \text{since } \mathcal{L} \left[e^{kt} 1(t) \right] = \frac{1}{s - k}.$$
EXAMPLE: $F(s) = \frac{5}{s^2 + 3s + 2} = \frac{5}{(s + 1)(s + 2)}.$
$$c_1 = (s + 1)F(s) \Big|_{s = -1} = \frac{5}{s + 2} \Big|_{s = -1} = 5$$
$$c_2 = (s + 2)F(s) \Big|_{s = -2} = \frac{5}{s + 1} \Big|_{s = -2} = -5$$
$$f(t) = (5e^{-t} - 5e^{-2t})1(t).$$

If F(s) has repeated roots, we must modify the procedure. e.g., repeated three times:

$$F(s) = \frac{k}{(s-p_1)^3(s-p_2)\cdots}$$

= $\frac{c_{1,1}}{s-p_1} + \frac{c_{1,2}}{(s-p_1)^2} + \frac{c_{1,3}}{(s-p_1)^3} + \frac{c_2}{s-p_2} + \cdots$
 $c_{1,3} = (s-p_1)^3 F(s) \Big|_{s=p_1}$
 $c_{1,2} = \left[\frac{d}{ds} \left((s-p_1)^3 F(s) \right) \Big|_{s=p_1}$
 $c_{1,1} = \frac{1}{2} \left[\frac{d^2}{ds^2} \left((s-p_1)^3 F(s) \right) \Big|_{s=p_1}$
 $c_{x,k-i} = \frac{1}{i!} \left[\frac{d^i}{ds^i} \left((s-p_i)^k F(s) \right) \Big|_{s=p_i}$.

EXAMPLE: Find the ILT of $H(s) = \frac{s+2}{(s+1)^2(s+3)} = \frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{s+3}.$

• We start with *B*,

$$B = \frac{s+3}{s+3}\Big|_{s=-1} = \frac{1}{2}.$$

• Next, we find A,

$$A = \left[\frac{d}{ds}\left(\frac{s+2}{s+3}\right)\right|_{s=-1}$$

= $\left[\frac{d}{ds}(s+2)(s+3)^{-1}\right|_{s=-1}$
= $\left[(s+2)(-1)(s+3)^{-2} + (s+3)^{-1}\right]_{s=-1}$
= $\left[-\frac{s+2}{(s+3)^2} + \frac{1}{s+3}\right]_{s=-1}$
= $-\frac{1}{4} + \frac{1}{2} = \frac{1}{4}$.

• Lastly, we find C,

$$C = \frac{s+2}{(s+1)^2} \bigg|_{s=-3} = -\frac{1}{4}.$$

Therefore, the inverse Laplace transform we are looking for is

$$h(t) = \left[\frac{1}{2}te^{-t} + \frac{1}{4}e^{-t} - \frac{1}{4}e^{-3t}\right]1(t).$$

EXAMPLE: Find ILT of $\frac{s+3}{(s+1)(s+2)^2}$.

- ans: $f(t) = (2e^{-t} 2e^{-2t} \underline{t}e^{-2t})1(t)$. from repeated root.
- Note that this is quite tedious, but MATLAB can help.
- Try MATLAB with two examples; first, $F(s) = \frac{5}{s^2 + 3s + 2}$.

Example 1.	Example 2.	
>> Fnum = [0 0 5];	>> Fnum = [0 0 1 3];	
>> Fden = [1 3 2];	>> Fden = conv([1 1],conv([1 2],[1 2]));	
<pre>[r,p,k] = residue(Fnum,Fden);</pre>	<pre>[r,p,k] = residue(Fnum,Fden);</pre>	
r = -5	r = -2	
5	-1	
p = -2	2	
-1	p = -2	
k = []	-2	
	-1	
	k = []	

When you use "residue" and get repeated roots, BE SURE to type "help residue" to correctly interpret the result.

Using the Laplace transform to solve problems

We can use the Laplace transform to solve both homogeneous and forced differential equations.

EXAMPLE:
$$\ddot{y}(t) + y(t) = 0$$
, $y(0^-) = \alpha$, $\dot{y}(0^-) = \beta$.
 $s^2 Y(s) - \alpha s - \beta + Y(s) = 0$
 $Y(s)(s^2 + 1) = \alpha s + \beta$
 $Y(s) = \frac{\alpha s + \beta}{s^2 + 1}$
 $= \frac{\alpha s}{s^2 + 1} + \frac{\beta}{s^2 + 1}$

From tables, $y(t) = [\alpha \cos(t) + \beta \sin(t)]1(t)$.

If initial conditions are zero, things are very simple.

EXAMPLE:

$$\ddot{y}(t) + 5\dot{y}(t) + 4y(t) = u(t), \qquad y(0^{-}) = 0, \ \dot{y}(0^{-}) = 0, \qquad u(t) = 2e^{-2t}1(t).$$

$$s^{2}Y(s) + 5sY(s) + 4Y(s) = \frac{2}{s+2}$$

$$Y(s) = \frac{2}{(s+2)(s+1)(s+4)}$$

$$= \frac{-1}{s+2} + \frac{2/3}{s+1} + \frac{1/3}{s+4}.$$
From tables, $y(t) = \left[-e^{-2t} + \frac{2}{3}e^{-t} + \frac{1}{3}e^{-4t} \right] 1(t).$

3.4: Time response versus pole locations

- If we wish to know how a system responds to some input (for example, an impulse response, or a step response), it seems like we need to do the following:
 - 1. Find the Laplace transform U(s) of the input u(t),
 - 2. Find the Laplace transform of the output Y(s) = H(s)U(s),
 - 3. Find the time response by taking the inverse Laplace transform of Y(s). That is, $y(t) = \mathcal{L}^{-1}(Y(s))$.
- This is true if we want a precise, *quantitative* answer.
- But, if we're interested only in a *qualitative* answer, we can learn a lot simply by looking at the pole locations of the transfer function.
- If we can represent $H(s) = \text{num}_H(s)/\text{den}_H(s)$ and $U(s) = \text{num}_U(s)/\text{den}_U(s)$, then we have

$$Y(s) = \frac{\operatorname{num}_{H}(s)\operatorname{num}_{U}(s)}{\operatorname{den}_{H}(s)\operatorname{den}_{U}(s)}$$
$$= \sum_{k} \frac{r_{k}}{s+p_{k}},$$

where "pole" $s = -p_k$ is a root of either den_{*H*}(*s*) or den_{*U*}(*s*).

- So, some of the system's response is due to the poles of the input signal, and some is due to the poles of the plant.
- Here, we're interested in the contribution due to the poles of the plant.
 - Neglecting the residues r_k , which simply scale the output by some fixed amount, we're interested in "what does an output of the type $\frac{1}{s+p_k}$ look like?"

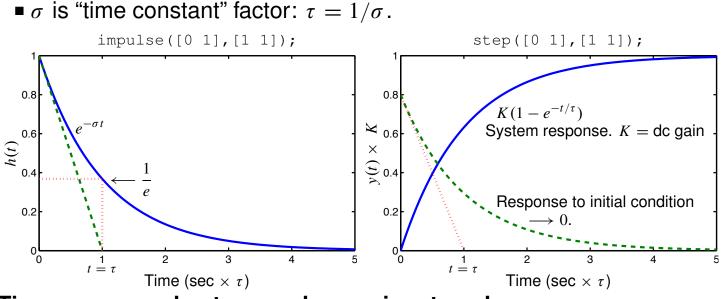
- That is, the poles *qualitatively* determine the behavior of the system; zeros (equivalently, residues) quantify this relationship.
- Note that the poles p_k may be real, or they may occur in complex-conjugate pairs.
- So, in the next sections, we look at the time responses of real poles and of complex-conjugate poles.

Time response due to a real pole

Consider a transfer function having a single real pole:

$$H(s) = \frac{1}{s + \sigma} \quad \Longrightarrow \quad h(t) = e^{-\sigma t} \mathbf{1}(t).$$

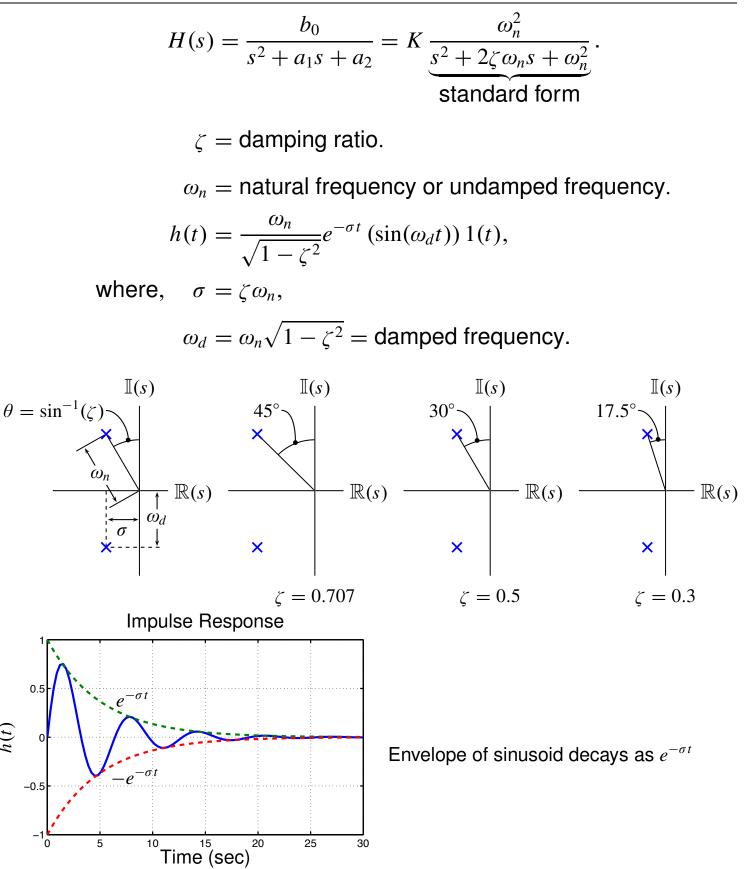
- If σ > 0, pole is at s < 0, STABLE i.e., impulse response decays, and any bounded input produces bounded output.
- If $\sigma < 0$, pole is at s > 0, UNSTABLE.

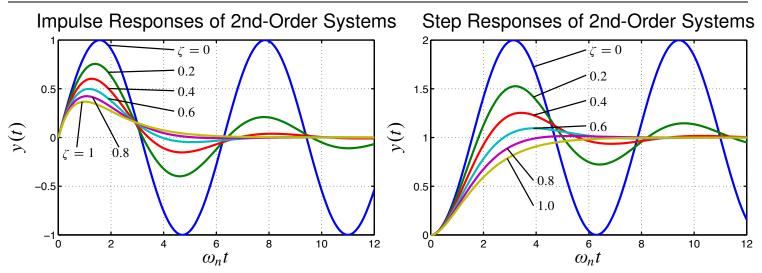


Time response due to complex-conjugate poles

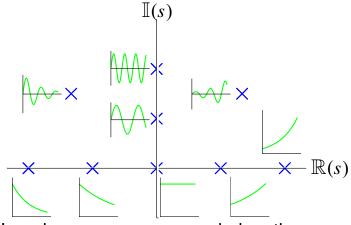
 Now, consider a <u>second-order</u> transfer function having complex-conjugate poles

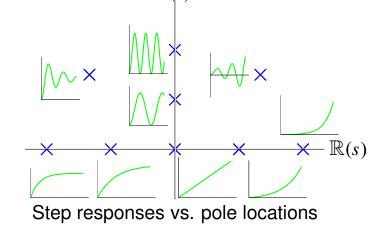
h(t)





• Low damping, $\zeta \approx 0$, oscillatory; High damping, $\zeta \approx 1$, no oscillations.





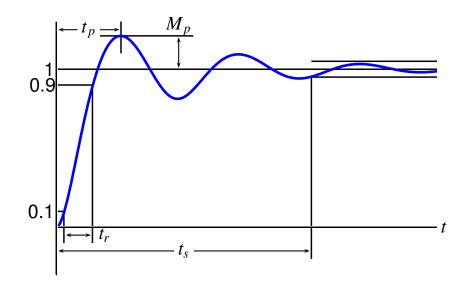
 $\mathbb{I}(s)$

Impulse responses vs. pole locations

- $0 < \zeta < 1$ underdamped.
- critically damped, $\zeta > 1$ over-damped. $\bullet \zeta = 1$

3.5: Time-domain specifications

- We have seen impulse and step responses for first- and second-order systems.
- Our control problem may be to specify exactly what the response SHOULD be.
- Usually expressed in terms of the step response.



- t_r = Rise time = time to reach vicinity of new set point.
- t_s = Settling time = time for transients to decay (to 5 %, 2 %, 1 %).
- M_p = Percent overshoot.
- t_p = Time to peak.

<u>Rise Time</u>

• All step responses rise in roughly the same amount of time (see pg. 3–17.) Take $\zeta = 0.5$ to be average.

 \blacksquare time from 0.1 to 0.9 is approx $\omega_n t_r = 1.8$:

$$t_r \approx \frac{1.8}{\omega_n}$$

- We could make this more accurate, but note:
 - Only valid for 2nd-order systems with no zeros.
 - Use this as approximate design "rule of thumb" and iterate design until spec. is met.

Peak Time and Overshoot

• Step response can be found from ILT of H(s)/s.

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right),$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}, \quad \sigma = \zeta \omega_n.$$

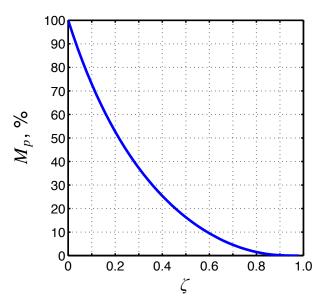
• Peak occurs when $\dot{y}(t) = 0$

$$\dot{y}(t) = \sigma e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right) - e^{-\sigma t} \left(-\omega_d \sin(\omega_d t) + \sigma \cos(\omega_d t) \right)$$
$$= e^{-\sigma t} \left(\frac{\sigma^2}{\omega_d} \sin(\omega_d t) + \omega_d \sin(\omega_d t) \right) = 0.$$

$$\omega_d t_p = \pi,$$

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi_{\text{Text}}}{\omega_n \sqrt{1 - \zeta^2}}.$$

- $M_p = e^{-\zeta \pi / \sqrt{1 \zeta^2}} \times 100.$
- (common values: $M_p = 16\%$ for $\zeta = 0.5$; $M_p = 5\%$ for $\zeta = 0.7$).

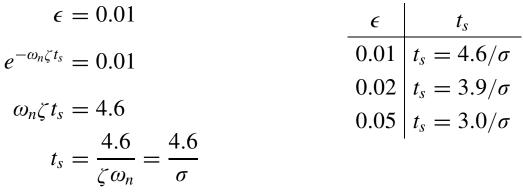


Settling Time

Determined mostly by decaying exponential

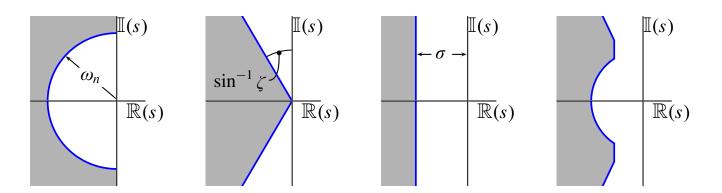
$$e^{-\omega_n \zeta t_s} = \epsilon$$
 ... $\epsilon = 0.01, 0.02, \text{ or } 0.05$

EXAMPLE:



Design synthesis

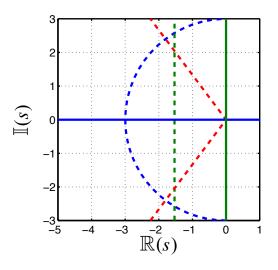
- Specifications on t_r , t_s , M_p determine pole locations.
- $\omega_n \geq 1.8/t_r$.
- $\zeta \ge fn(M_p)$. (read off of ζ versus M_p graph on page 3–19)
- $\sigma \ge 4.6/t_s$. (for example—settling to 1%)



EXAMPLE: Converting specs. to *s*-plane

■ Specs: $t_r \le 0.6$, $M_p \le 10\%$, $t_s \le 3$ sec. at 1%

- $\omega_n \ge 1.8/t_r = 3.0$ rad/sec.
- From graph of M_p versus ζ , $\zeta \ge 0.6$.
- $\sigma \ge 4.6/3 = 1.5$ sec.



EXAMPLE: Designing motor compensator

Suppose a servo-motor system for a pen-plotter has transfer function

$$\frac{0.5K_a}{s^2 + 2s + 0.5K_a} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}.$$

- Only one adjustable parameter K_a , so can choose only one spec: t_r , t_s or $M_p \implies$ Allow *NO* overshoot.
- $\bullet M_p = 0, \ \zeta = 1.$
- From transfer fn: $2 = 2\zeta \omega_n$ $\omega_n = 1$.
- $\omega_n^2 = 1^2 = 0.5K_a, \quad K_a = 2.0$
- Note: $t_s = 4.6$ seconds. We will need a better controller than this for a pen plotter!

3.6: Time response vs. pole locations: Higher order systems

 We have looked at first-order and second-order systems without zeros, and with unity gain.

Non-unity gain

• If we multiply by K, the dc gain is K. t_r , t_s , M_p , t_p are not affected.

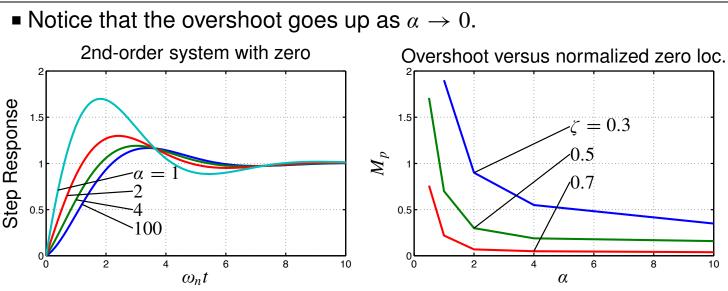
Add a zero to a second-order system

$$H_{1}(s) = \frac{2}{(s+1)(s+2)} \qquad H_{2}(s) = \frac{2(s+1.1)}{1.1(s+1)(s+2)} \\ = \frac{2}{s+1} - \frac{2}{s+2} \qquad H_{2}(s) = \frac{2(s+1.1)}{1.1(s+1)(s+2)} \\ = \frac{2}{1.1} \left(\frac{0.1}{s+1} + \frac{0.9}{s+2} \right) \\ = \frac{0.18}{s+1} + \frac{1.64}{s+2}$$

- Same dc gain (at s = 0).
- Coefficient of (s + 1) pole *GREATLY* reduced.
- General conclusion: a zero "near" a pole tends to cancel the effect of that pole.
- How about transient response?

$$H(s) = \frac{\frac{s}{\alpha\zeta\omega_n} + 1}{(s/\omega_n)^2 + 2\zeta s/\omega_n + 1}.$$

- Zero at $s = -\alpha \sigma$.
- Poles at $\mathbb{R}(s) = -\sigma$.
- Large α , zero far from poles \rightarrow no effect.
- $\alpha \approx 1$, large effect.



• A little more analysis; set $\omega_n = 1$

$$H(s) = \frac{\frac{s}{a\zeta} + 1}{s^2 + 2\zeta s + 1}$$

= $\frac{1}{s^2 + 2\zeta s + 1} + \left(\frac{1}{\alpha\zeta}\right) \frac{s}{s^2 + 2\zeta s + 1}$
= $H_o(s) + H_d(s).$

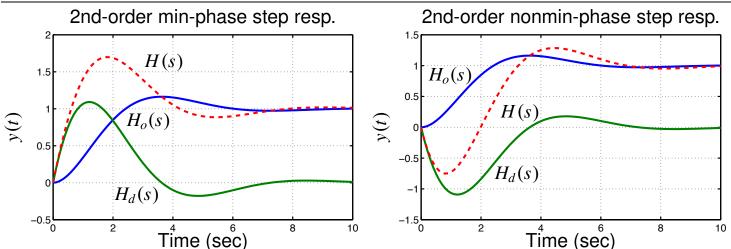
- $H_o(s)$ is the original response, without the zero.
- $H_d(s)$ is the added term due to the zero. Notice that

$$H_d(s) = \frac{1}{\alpha\zeta} s H_o(s).$$

The time response is a scaled version of the derivative of the time response of $H_o(s)$.

If any of the zeros in RHP, system is nonminimum phase.

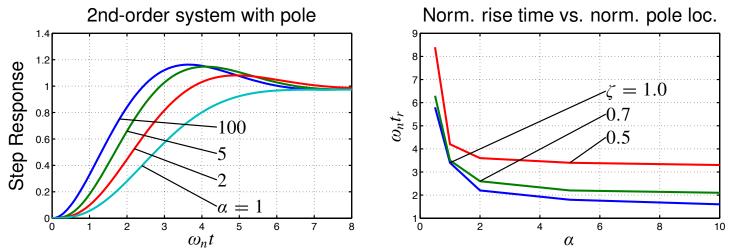
10



Add a pole to a second order system

$$H(s) = \frac{1}{\left(\frac{s}{\alpha\zeta\omega_n} + 1\right)\left[(s/\omega_n)^2 + 2\zeta s/\omega_n + 1\right]}.$$

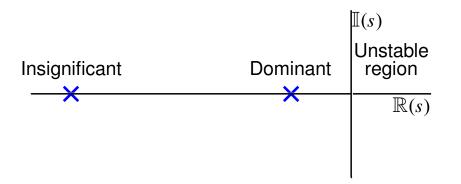
- Original poles at $\mathbb{R}(s) = -\sigma = -\zeta \omega_n$.
- New pole at $s = -\alpha \zeta \omega_n$.
- Major effect is an increase in rise time.



Summary of higher-order approximations

• Extra zero in LHP will increase overshoot if the zero is within a factor of \approx 4 from the real part of complex poles.

- Extra zero in RHP depresses overshoot, and may cause step response to start in wrong direction. **DELAY**.
- Extra pole in LHP increases rise-time if extra pole is within a factor of \approx 4 from the real part of complex poles.



- MATLAB 'step' and 'impulse' commands can plot higher order system responses.
- Since a model is an approximation of a true system, it may be all right to reduce the order of the system to a first or second order system. If higher order poles and zeros are a factor of 5 or 10 time farther from the imaginary axis.
 - Analysis and design much easier.
 - Numerical accuracy of simulations better for low-order models.
 - 1st- and 2nd-order models provide us with great intuition into how the system works.
 - May be just as accurate as high-order model, since high-order model itself may be inaccurate.

3.7: Changing dynamic response

- Topic of the rest of the course.
- Important tool: block diagram manipulation.

Block-diagram manipulation

- We have already seen block diagrams (see pg. 1–4).
- Shows information/energy flow in a system, and when used with Laplace transforms, can simplify complex system dynamics.
- Four BASIC configurations:

$$U(s) \longrightarrow H(s) \longrightarrow Y(s)$$

$$Y(s) = H(s)U(s)$$

$$U(s) \longrightarrow H_1(s) \longrightarrow H_2(s) \longrightarrow Y(s)$$

$$U(s) \xrightarrow{H_1(s)} H_2(s) \xrightarrow{+} Y(s)$$

 $R(s) \xrightarrow{+ U_1(s)} H_1(s) \xrightarrow{+ U_1(s)} Y(s)$

$$Y(s) = [H_1(s) + H_2(s)] U(s)$$

 $Y(s) = [H_2(s)H_1(s)]U(s)$

$$U_{1}(s) = R(s) - Y_{2}(s)$$

$$Y_{2}(s) = H_{2}(s)H_{1}(s)U_{1}(s)$$
so, $U_{1}(s) = R(s) - H_{2}(s)H_{1}(s)U_{1}(s)$

$$= \frac{R(s)}{1 + H_{2}(s)H_{1}(s)}$$

$$Y(s) = H_{1}(s)U_{1}(s)$$

$$= \frac{H_{1}(s)}{1 + H_{2}(s)H_{1}(s)}R(s)$$

Alternate representation

$$U(s) \xrightarrow{H(s)} Y(s)$$

$$U(s) \xrightarrow{H_1(s)} H_2(s) \xrightarrow{H_2(s)} Y(s)$$

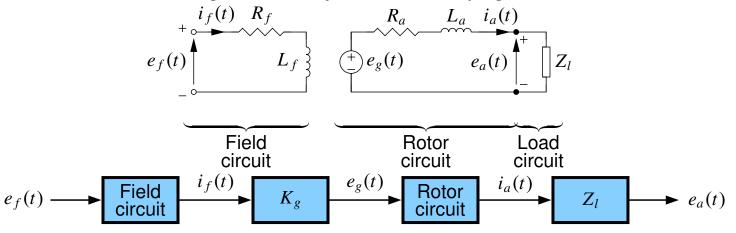
$$U(s) \longrightarrow Y(s)$$

$$H_{2}(s)$$

$$H_{3}(s)$$

$$R(s) \xrightarrow{H_1(s)} Y(s)$$
$$-H_2(s)$$

EXAMPLE: Recall dc generator dynamics from page 2–19



Compute the transfer functions of the four blocks.

$$e_f(t) = R_f i_f(t) + L_f \frac{d}{dt} i_f(t) \qquad e_g(t) = K_g i_f(t)$$

$$E_f(s) = R_f I_f(s) + L_f s I_f(s) \qquad E_g(s) = K_g I_f(s)$$

$$\frac{I_f(s)}{E_f(s)} = \frac{1}{R_f + L_f s}. \qquad \frac{E_g(s)}{I_f(s)} = K_g.$$

$$e_{a}(t) = i_{a}(t)Z_{l}$$

$$e_{g}(t) = R_{a}i_{a}(t) + L_{a}\frac{d}{dt}i_{a}(t) + e_{a}(t)$$

$$E_{g}(s) = Z_{l}I_{a}(s) + L_{a}sI_{a}(s) + L_{a}sI_{a}(s) + E_{a}(s)$$

$$= (R_{a} + L_{a}s + Z_{l})I_{a}(s)$$

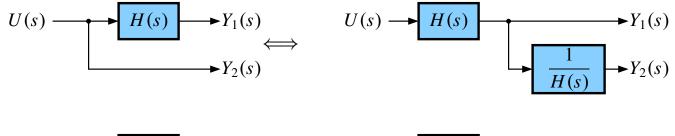
$$\frac{I_{a}(s)}{E_{g}(s)} = Z_{l}.$$

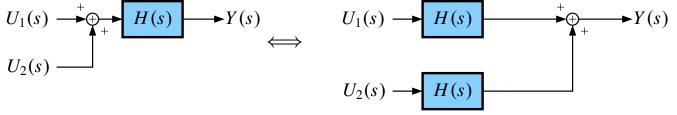
$$\frac{I_{a}(s)}{E_{g}(s)} = \frac{1}{L_{a}s + R_{a} + Z_{l}}.$$

• Put everything together.

$$\frac{E_a(s)}{E_f(s)} = \frac{E_a(s)}{I_a(s)} \frac{I_a(s)}{E_g(s)} \frac{E_g(s)}{I_f(s)} \frac{I_f(s)}{E_f(s)}$$
$$= \frac{K_g Z_l}{\left(L_f s + R_f\right) \left(L_a s + R_a + Z_l\right)}$$

Block-diagram algebra





EXAMPLE: Simplify:

