
ECE4510/5510: Feedback Control Systems. 3–1

DYNAMIC RESPONSE

3.1: System response in the time domain

■ We can now model dynamic systems with differential equations.
What do these equations mean?

■ We’ll proceed by looking at a system’s response to certain inputs in
the time domain.

■ Then, we’ll see how the Laplace transform can make our lives a lot
easier by simplifying the math.

■ This will give insights into how we might specify the way the system
should respond.

■ Finally, we’ll preview how adding dynamics (e.g., a controller) can
change how the system responds.

Some important input signals

■ Several signals recur throughout this course.

■ The unit step function:

1(t) =
{

1, t ≥ 0;
0, otherwise.

t

1(t)

■ The unit ramp function:

r(t) =
{

t, t ≥ 0;
0, otherwise.

t

r (t)
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■ The unit parabola function:

p(t) =

⎧
⎨

⎩

t2

2
, t ≥ 0;

0, otherwise.
t

p(t)

■ The cosine/sine functions:

t

cos(t)

t

sin(t)

■ The (ideal) impulse function, δ(t):

• Very strange “generalized” function, defined only under an integral.

δ(t) = 0, t ̸= 0 zero duration
∫ ∞

−∞
δ(t) dt = 1. unit area.

Symbol
t

δ(t)

• Sifting property:1
∫ ∞

−∞
x(τ )δ(t − τ ) dτ = x(t).

1 Assumes that x(t) is continuous at t = τ . Interpretation: no value of x(t) matters
except that over the short range where δ(t) occurs.
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Time response of a linear time invariant system

■ Let y(t) be the output of an LTI system with input x(t).

y(t) = T[x(t)]

= T
[∫ ∞

−∞
x(τ )δ(t − τ ) dτ

]
(sifting)

=
∫ ∞

−∞
x(τ )T[δ(t − τ )] dτ . (linear)

Let h(t, τ ) = T[δ(t − τ )]

=
∫ ∞

−∞
x(τ )h(t, τ ) dτ

If the system is time invariant, h(t, τ ) = h(t − τ )

=
∫ ∞

−∞
x(τ )h(t − τ ) dτ (time invariant)

△= x(t) ∗ h(t).

■ The output of an LTI system is equal to the convolution of its impulse
response with the input.

■ This makes life EASY (TRUST me!)

EXAMPLE: Finding an impulse response:

■ Consider a first-order system, ẏ(t) + ky(t) = u(t).

■ Let y(0−) = 0, u(t) = δ(t).

■ For positive time we have ẏ(t) + ky(t) = 0. Recall from your
differential-equation math course: y(t) = Aest , solve for A, s.

ẏ(t) = Asest
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Asest + k Aest = 0

s + k = 0

s = −k.

■ We have solved for s; now, solve for A.
∫ 0+

0−
ẏ(t) dt

︸ ︷︷ ︸
y(t)|0+

0−

+ k
∫ 0+

0−
y(t) dt

︸ ︷︷ ︸
0

=
∫ 0+

0−
δ(t) dt

︸ ︷︷ ︸
1

y(0+)− y(0−) = 1

Ae−k0+ − 0 = 1

A = 1.

■ Response to impulse: h(t) = e−kt , t > 0.

■ h(t) = e−kt1(t).

■ Response of this system to general input:

y(t) =
∫ ∞

−∞
h(τ )u(t − τ ) dτ

=
∫ ∞

−∞
e−kτ1(τ )u(t − τ ) dτ

=
∫ ∞

0
e−kτu(t − τ ) dτ .
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3.2: Transfer functions

■ Response to impulse = “impulse response”: h(t).

■ Response to general input = messy convolution: h(t) ∗ u(t).

■ To choose a simpler example, what is the response to a cosine?

A cos(ωt) = A
2

(
e jωt + e− jωt)

Break it down: What is the response to an exponential?

■ Let u(t) = est , where s is complex.

y(t) =
∫ ∞

−∞
h(τ )u(t − τ ) dτ =

∫ ∞

−∞
h(τ )es(t−τ ) dτ

=
∫ ∞

−∞
h(τ )este−sτ dτ

= est
∫ ∞

−∞
h(τ )e−sτ dτ

︸ ︷︷ ︸
Transfer function, H(s)

= est H(s).

■ An est input decouples the convolution into two independent parts: a
part depending on est and a part depending on h(t).

EXAMPLE: ẏ(t) + ky(t) = u(t) = est :

but , y(t) = H(s)est, ẏ(t) = s H(s)est,

s H(s)est + k H(s)est = est

H(s) = 1
s + k

(I never integrated!)

y(t) = est

s + k
.
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Response to a cosinusoid (revisited)

Let s= jω u(t)=e jωt y(t)=H( jω)e jωt

s=− jω u(t)=e− jωt y(t)=H(− jω)e− jωt

u(t)=A cos(ωt) y(t)= A
2

[
H( jω)e jωt + H(− jω)e− jωt]

Now, H( jω)
△= Me jφ

H(− jω) = Me− jφ (can be shown for h(t) real)

y(t) = AM
2

[
e j (ωt+φ) + e− j (ωt+φ)

]

= AM cos(ωt + φ).

■ The response of an LTI system to a sinusoid is a sinusoid! (of the
same frequency).

EXAMPLE: Frequency response of our first order system:

H(s) = 1
s + k

H( jω) = 1
jω + k

M = |H( jω)| = 1√
ω2 + k2

φ = ̸ H( jω) = − tan−1
(ω

k

)

y(t) = A√
ω2 + k2

cos
(
ωt − tan−1

(ω

k

))
.

■ Can we use these results to simplify convolution and get an easier
way to understand dynamic response?
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Defining the Laplace L− transform

■ We have seen that if a system has an impulse response h(t), we can
compute a transfer function H(s),

H(s) =
∫ ∞

−∞
h(t)e−st dt .

■ Since we deal with causal systems (possibly with an impulse at
t = 0), we can integrate from 0− instead of negative infinity.

H(s) =
∫ ∞

0−
h(t)e−st dt .

■ This is called the one-sided (uni-lateral) Laplace transform of h(t).

Laplace Transforms of Common Signals

Name Time function, f (t) Laplace tx., F(s)

Unit impulse δ(t) 1

Unit step 1(t)
1
s

Unit ramp t · 1(t)
1
s2

nth order ramp tn · 1(t)
n!

sn+1

Exponential exp(−at)1(t)
1

s + a
Ramped exponential t exp(−at)1(t)

1
(s + a)2

Sine sin(bt)1(t)
b

s2 + b2

Cosine cos(bt)1(t)
s

s2 + b2

Damped sine e−at sin(bt)1(t)
b

(s + a)2 + b2

Damped cosine e−at cos(bt)1(t)
s + a

(s + a)2 + b2

Diverging sine t sin(bt)1(t)
2bs

(s2 + b2)2

Diverging cosine t cos(bt)1(t)
s2 − b2

(s2 + b2)2
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Properties of the Laplace transform

■ Superposition: L {a f1(t) + b f2(t)} = aF1(s) + bF2(s).

■ Time delay: L { f (t − τ )} = e−sτ F(s).

■ Time scaling: L { f (at)} = 1
|a|F

( s
a

)
.

(useful if original equations are expressed poorly in time scale. e.g.,
measuring disk-drive seek speed in hours).

■ Differentiation:

L
{

ḟ (t)
}

= s F(s)− f (0−)

L
{

f̈ (t)
}

= s2F(s)− s f (0−)− ḟ (0−)

L
{

f (m)(t)
}

= sm F(s)− sm−1 f (0−)− . . .− f (m−1)(0−).

■ Integration: L
{∫ t

0−
f (τ ) dτ

}
= 1

s
F(s).

■ Convolution: Recall that y(t) = h(t) ∗ u(t)

Y (s) = L {y(t)} = L {h(t) ∗ u(t)}

= L
{∫ t

τ=0−
h(τ )u(t − τ ) dτ

}

=
∫ ∞

t=0−

∫ t

τ=0−
h(τ )u(t − τ ) dτ e−st dt

=
∫ ∞

τ=0−

∫ ∞

t=τ−
h(τ )u(t − τ ) e−st dt dτ .

t

τ

τ = t

Region of
integration

■ Multiply by e−sτesτ

Y (s) =
∫ ∞

τ=0−
h(τ )e−sτ

∫ ∞

t=τ−
u(t − τ )e−s(t−τ ) dt dτ .
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Let t ′ = t − τ :

Y (s) =
∫ ∞

τ=0−
h(τ )e−sτ dτ

∫ ∞

t ′=0−
u(t ′)e−st ′ dt ′

Y (s) = H(s)U (s).

■ The Laplace transform “unwraps” convolution for general input
signals. Makes system easy to analyze.

■ This is the most important property of the Laplace transform. This is
why we use it. It converts differential equations into algebraic
equations that we can solve quite readily.
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3.3: The inverse Laplace transform

■ The inverse Laplace transform converts F(s)→ f (t).

■ Once we get an intuitive feel for F(s), we won’t need to do this often.

■ The main tool for ILT is partial-fraction-expansion.

Assume : F(s) = b0sm + b1sm−1 + · · · + bm

sn + a1sn−1 + · · · + an

= k
∏m

i=1(s − zi)∏n
i=1(s − pi)

➠ (zeros)

(poles)

= c1

s − p1
+ c2

s − p2
+ · · · + cn

s − pn
if {pi} distinct.

so, (s − p1)F(s) = c1 + c2(s − p1)

s − p2
+ · · · + cn(s − p1)

s − pn

let s = p1 : c1 = (s − p1)F(s)|s=p1

ci = (s − pi)F(s)|s=pi

f (t) =
n∑

i=1

ciepi t1(t) since L
[
ekt1(t)

]
= 1

s − k
.

EXAMPLE: F(s) = 5
s2 + 3s + 2

= 5
(s + 1)(s + 2)

.

c1 = (s + 1)F(s)
∣∣∣
s=−1

= 5
s + 2

∣∣∣
s=−1

= 5

c2 = (s + 2)F(s)
∣∣∣
s=−2

= 5
s + 1

∣∣∣
s=−2

= −5

f (t) = (5e−t − 5e−2t)1(t).

■ If F(s) has repeated roots, we must modify the procedure. e.g.,
repeated three times:
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F(s) = k
(s − p1)3(s − p2) · · ·

= c1,1

s − p1
+ c1,2

(s − p1)2 + c1,3

(s − p1)3 + c2

s − p2
+ · · ·

c1,3 = (s − p1)
3F(s)

∣∣
s=p1

c1,2 =
[

d
ds

(
(s − p1)

3F(s)
)∣∣∣∣

s=p1

c1,1 = 1
2

[
d2

ds2

(
(s − p1)

3F(s)
)∣∣∣∣

s=p1

cx,k−i = 1
i!

[
di

dsi

(
(s − pi)

k F(s)
)∣∣∣∣

s=pi

.

EXAMPLE: Find the ILT of
H(s) = s + 2

(s + 1)2(s + 3)
= A

s + 1
+ B

(s + 1)2 + C
s + 3

.

■ We start with B,
B = s + 3

s + 3

∣∣∣∣
s=−1

= 1
2

.

■ Next, we find A,

A =
[

d
ds

(
s + 2
s + 3

)∣∣∣∣
s=−1

=
[

d
ds

(s + 2)(s + 3)−1
∣∣∣∣
s=−1

=
[
(s + 2)(−1)(s + 3)−2 + (s + 3)−1∣∣

s=−1

=
[
− s + 2

(s + 3)2 + 1
s + 3

∣∣∣∣
s=−1

= −1
4

+ 1
2

= 1
4

.
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■ Lastly, we find C ,

C = s + 2
(s + 1)2

∣∣∣∣
s=−3

= −1
4

.

■ Therefore, the inverse Laplace transform we are looking for is

h(t) =
[

1
2

te−t + 1
4

e−t − 1
4

e−3t
]

1(t).

EXAMPLE: Find ILT of
s + 3

(s + 1)(s + 2)2 .

■ ans: f (t) = (2e−t − 2e−2t − te−2t
︸︷︷︸

from repeated root.
)1(t).

■ Note that this is quite tedious, but MATLAB can help.

■ Try MATLAB with two examples; first, F(s) = 5
s2 + 3s + 2

.

Example 1. Example 2.

>> Fnum = [0 0 5]; >> Fnum = [0 0 1 3];

>> Fden = [1 3 2]; >> Fden = conv([1 1],conv([1 2],[1 2]));

[r,p,k] = residue(Fnum,Fden); [r,p,k] = residue(Fnum,Fden);

r = -5 r = -2

5 -1

p = -2 2

-1 p = -2

k = [] -2

-1

k = []

■ When you use “residue” and get repeated roots, BE SURE to type
“help residue” to correctly interpret the result.
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Using the Laplace transform to solve problems

■ We can use the Laplace transform to solve both homogeneous and
forced differential equations.

EXAMPLE: ÿ(t) + y(t) = 0, y(0−) = α, ẏ(0−) = β.

s2Y (s)− αs − β + Y (s) = 0

Y (s)(s2 + 1) = αs + β

Y (s) = αs + β

s2 + 1

= αs
s2 + 1

+ β

s2 + 1
.

From tables, y(t) = [α cos(t) + β sin(t)]1(t).

■ If initial conditions are zero, things are very simple.

EXAMPLE:
ÿ(t)+5ẏ(t)+4y(t) = u(t), y(0−) = 0, ẏ(0−) = 0, u(t) = 2e−2t1(t).

s2Y (s) + 5sY (s) + 4Y (s) = 2
s + 2

Y (s) = 2
(s + 2)(s + 1)(s + 4)

= −1
s + 2

+ 2/3
s + 1

+ 1/3
s + 4

.

From tables, y(t) =
[
−e−2t + 2

3
e−t + 1

3
e−4t

]
1(t).
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3.4: Time response versus pole locations

■ If we wish to know how a system responds to some input (for
example, an impulse response, or a step response), it seems like we
need to do the following:

1. Find the Laplace transform U (s) of the input u(t),
2. Find the Laplace transform of the output Y (s) = H(s)U (s),
3. Find the time response by taking the inverse Laplace transform of

Y (s). That is, y(t) = L−1(Y (s)).

■ This is true if we want a precise, quantitative answer.

■ But, if we’re interested only in a qualitative answer, we can learn a lot
simply by looking at the pole locations of the transfer function.

■ If we can represent H(s) = numH(s)/denH(s) and
U (s) = numU (s)/denU (s), then we have

Y (s) = numH(s)numU (s)
denH(s)denU(s)

=
∑

k

rk

s + pk
,

where “pole” s = −pk is a root of either denH(s) or denU (s).

■ So, some of the system’s response is due to the poles of the input
signal, and some is due to the poles of the plant.

■ Here, we’re interested in the contribution due to the poles of the plant.

• Neglecting the residues rk, which simply scale the output by some
fixed amount, we’re interested in “what does an output of the type

1
s + pk

look like?”
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• That is, the poles qualitatively determine the behavior of the
system; zeros (equivalently, residues) quantify this relationship.

■ Note that the poles pk may be real, or they may occur in
complex-conjugate pairs.

■ So, in the next sections, we look at the time responses of real poles
and of complex-conjugate poles.

Time response due to a real pole

■ Consider a transfer function having a single real pole:

H(s) = 1
s + σ

➠ h(t) = e−σ t1(t).

■ If σ > 0, pole is at s < 0, STABLE i.e., impulse response decays, and
any bounded input produces bounded output.

■ If σ < 0, pole is at s > 0, UNSTABLE.

■ σ is “time constant” factor: τ = 1/σ .

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
impulse([0 1],[1 1]);

Time (sec × τ )
t = τ

←− 1
e

e−σ t

h(
t)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
step([0 1],[1 1]);

Time (sec × τ )
t = τ

y(
t)
×

K

K (1− e−t/τ )
System response. K = dc gain

Response to initial condition
−→ 0.

Time response due to complex-conjugate poles

■ Now, consider a second-order transfer function having
complex-conjugate poles
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H(s) = b0

s2 + a1s + a2
= K

ω2
n

s2 + 2ζωns + ω2
n︸ ︷︷ ︸

standard form

.

ζ = damping ratio.

ωn = natural frequency or undamped frequency.

h(t) = ωn√
1− ζ 2

e−σ t (sin(ωdt)) 1(t),

where, σ = ζωn,

ωd = ωn

√
1− ζ 2 = damped frequency.

θ = sin−1(ζ )
I(s)

R(s)
ωd

σ

ωn

ζ = 0.707

I(s)

R(s)

45◦

ζ = 0.5

I(s)

R(s)

30◦

ζ = 0.3

I(s)

R(s)

17.5◦

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

e−σ t

−e−σ t

Time (sec)

h(
t)

Impulse Response

Envelope of sinusoid decays as e−σ t
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0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
ζ = 0

0.2
0.4
0.6

0.8ζ = 1

ωnt

y(
t)

Impulse Responses of 2nd-Order Systems

0 2 4 6 8 10 12
0

0.5

1

1.5

2
ζ = 0

0.2

0.4

0.6

0.8

1.0

ωnt

y(
t)

Step Responses of 2nd-Order Systems

■ Low damping, ζ ≈ 0, oscillatory; High damping, ζ ≈ 1, no oscillations.
I(s)

R(s)

Impulse responses vs. pole locations

I(s)

R(s)

Step responses vs. pole locations

■ 0 < ζ < 1 underdamped.

■ ζ = 1 critically damped, ζ > 1 over-damped.
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3.5: Time-domain specifications

■ We have seen impulse and step responses for first- and second-order
systems.

■ Our control problem may be to specify exactly what the response
SHOULD be.

■ Usually expressed in terms of the step response.

0.1

0.9
1

ttr

Mptp

ts

■ tr = Rise time = time to reach vicinity of new set point.

■ ts = Settling time = time for transients to decay (to 5 %, 2 %, 1 %).

■ Mp = Percent overshoot.

■ tp = Time to peak.

Rise Time

■ All step responses rise in roughly the same amount of time (see
pg. 3–17.) Take ζ = 0.5 to be average.

➠ time from 0.1 to 0.9 is approx ωntr = 1.8:

tr ≈
1.8
ωn

.
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■ We could make this more accurate, but note:

• Only valid for 2nd-order systems with no zeros.

• Use this as approximate design “rule of thumb” and iterate design
until spec. is met.

Peak Time and Overshoot

■ Step response can be found from ILT of H(s)/s.

y(t) = 1− e−σ t
(

cos(ωdt) + σ

ωd
sin(ωdt)

)
,

ωd = ωn

√
1− ζ 2, σ = ζωn.

■ Peak occurs when ẏ(t) = 0

ẏ(t) = σ e−σ t
(

cos(ωdt) + σ

ωd
sin(ωdt)

)
− e−σ t (−ωd sin(ωdt) + σ cos(ωdt))

= e−σ t
(

σ 2

ωd
sin(ωdt) + ωd sin(ωdt)

)
= 0.

■ So,

ωdtp = π,

tp = π

ωd
= π

ωn
√

1− ζ 2
.

■ Mp = e−ζπ/
√

1−ζ 2 × 100.

■ (common values: Mp = 16% for
ζ = 0.5; Mp = 5% for ζ = 0.7). 0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

ζ

M
p,

%
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Settling Time

■ Determined mostly by decaying exponential

e−ωnζ ts = ϵ . . . ϵ = 0.01, 0.02, or 0.05

EXAMPLE:

ϵ = 0.01

e−ωnζ ts = 0.01

ωnζ ts = 4.6

ts = 4.6
ζωn

= 4.6
σ

ϵ ts
0.01 ts = 4.6/σ

0.02 ts = 3.9/σ

0.05 ts = 3.0/σ

Design synthesis

■ Specifications on tr , ts, Mp determine pole locations.

■ ωn ≥ 1.8/tr .

■ ζ ≥ fn(Mp). (read off of ζ versus Mp graph on page 3–19)

■ σ ≥ 4.6/ts. (for example—settling to 1%)

I(s)

R(s)

ωn

I(s)

R(s)

sin−1 ζ

I(s)

R(s)

σ

I(s)

R(s)

EXAMPLE: Converting specs. to s-plane

■ Specs: tr ≤ 0.6, Mp ≤ 10%, ts ≤ 3 sec. at 1%
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■ ωn ≥ 1.8/tr = 3.0 rad/sec.

■ From graph of Mp versus ζ, ζ ≥ 0.6.

■ σ ≥ 4.6/3 = 1.5 sec.

−5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

R(s)

I(
s)

EXAMPLE: Designing motor compensator

■ Suppose a servo-motor system for a pen-plotter has transfer function
0.5Ka

s2 + 2s + 0.5Ka
= ω2

n

s2 + 2ζωns + ω2
n
.

■ Only one adjustable parameter Ka, so can choose only one spec: tr ,
ts or Mp ➠ Allow NO overshoot.

■ Mp = 0, ζ = 1.

■ From transfer fn: 2 = 2ζωn ➠ ωn = 1.

■ ω2
n = 12 = 0.5Ka, Ka = 2.0

■ Note: ts = 4.6 seconds. We will need a better controller than this for a
pen plotter!
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3.6: Time response vs. pole locations: Higher order systems

■ We have looked at first-order and second-order systems without
zeros, and with unity gain.

Non-unity gain

■ If we multiply by K , the dc gain is K . tr , ts, Mp, tp are not affected.

Add a zero to a second-order system

H1(s) =
2

(s + 1)(s + 2)
H2(s) =

2(s + 1.1)

1.1(s + 1)(s + 2)

=
2

s + 1
− 2

s + 2
=

2
1.1

(
0.1

s + 1
+ 0.9

s + 2

)

=
0.18
s + 1

+ 1.64
s + 2

■ Same dc gain (at s = 0).

■ Coefficient of (s + 1) pole GREATLY reduced.

■ General conclusion: a zero “near” a pole tends to cancel the effect of
that pole.

■ How about transient response?

H(s) =
s

αζωn
+ 1

(s/ωn)2 + 2ζ s/ωn + 1
.

• Zero at s = −ασ .

• Poles at R(s) = −σ .

■ Large α, zero far from poles ➠ no effect.

■ α ≈ 1, large effect.
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■ Notice that the overshoot goes up as α→ 0.

0 2 4 6 8 10
0

0.5

1

1.5

2

α = 1
2
4
100

ωnt

S
te

p
R

es
po

ns
e

2nd-order system with zero

0 2 4 6 8 10
0

0.5

1

1.5

2

ζ = 0.3
0.5
0.7

α

M
p

Overshoot versus normalized zero loc.

■ A little more analysis; set ωn = 1

H(s) =
s

αζ + 1

s2 + 2ζ s + 1

= 1
s2 + 2ζ s + 1

+
(

1
αζ

)
s

s2 + 2ζ s + 1
= Ho(s) + Hd(s).

■ Ho(s) is the original response, without the zero.

■ Hd(s) is the added term due to the zero. Notice that

Hd(s) = 1
αζ

s Ho(s).

The time response is a scaled version of the derivative of the time
response of Ho(s).

■ If any of the zeros in RHP, system is nonminimum phase.
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0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

H (s)

Ho(s)

Hd(s)

Time (sec)

y(
t)

2nd-order min-phase step resp.

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Ho(s)

H (s)

Hd(s)

Time (sec)

y(
t)

2nd-order nonmin-phase step resp.

Add a pole to a second order system

H(s) = 1(
s

αζωn
+ 1

)
[(s/ωn)2 + 2ζ s/ωn + 1]

.

■ Original poles at R(s) = −σ = −ζωn.

■ New pole at s = −αζωn.

■ Major effect is an increase in rise time.
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2nd-order system with pole
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nt

r

Norm. rise time vs. norm. pole loc.

Summary of higher-order approximations

■ Extra zero in LHP will increase overshoot if the zero is within a factor
of ≈ 4 from the real part of complex poles.
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■ Extra zero in RHP depresses overshoot, and may cause step
response to start in wrong direction. DELAY .

■ Extra pole in LHP increases rise-time if extra pole is within a factor of
≈ 4 from the real part of complex poles.

Unstable
regionDominantInsignificant

I(s)

R(s)

■ MATLAB ‘step’ and ‘impulse’ commands can plot higher order system
responses.

■ Since a model is an approximation of a true system, it may be all right
to reduce the order of the system to a first or second order system. If
higher order poles and zeros are a factor of 5 or 10 time farther from
the imaginary axis.

• Analysis and design much easier.

• Numerical accuracy of simulations better for low-order models.

• 1st- and 2nd-order models provide us with great intuition into how
the system works.

• May be just as accurate as high-order model, since high-order
model itself may be inaccurate.
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3.7: Changing dynamic response

■ Topic of the rest of the course.

■ Important tool: block diagram manipulation.

Block-diagram manipulation

■ We have already seen block diagrams (see pg. 1–4).

■ Shows information/energy flow in a system, and when used with
Laplace transforms, can simplify complex system dynamics.

■ Four BASIC configurations:

H (s) Y (s)U(s) Y (s) = H (s)U(s)

H1(s) H2(s) Y (s)U(s) Y (s) = [H2(s)H1(s)] U(s)

H1(s)

H2(s)

Y (s)U(s) Y (s) = [H1(s) + H2(s)] U(s)

H1(s)

H2(s)

Y (s)R(s)
U1(s)

Y2(s) U2(s)

U1(s) = R(s)− Y2(s)

Y2(s) = H2(s)H1(s)U1(s)

so, U1(s) = R(s)− H2(s)H1(s)U1(s)

= R(s)
1 + H2(s)H1(s)

Y (s) = H1(s)U1(s)

= H1(s)
1 + H2(s)H1(s)

R(s)
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■ Alternate representation
H (s)

H1(s)

H1(s)

H1(s) H2(s)

H2(s)

−H2(s)

Y (s)

Y (s)

Y (s)

Y (s)

U(s)

U(s)

U(s)

R(s)

EXAMPLE: Recall dc generator dynamics from page 2–19
R f Ra Lai f (t) ia(t)

e f (t) L f eg(t) Zlea(t)

︸ ︷︷ ︸
Field
circuit

︸ ︷︷ ︸
Rotor
circuit

︸ ︷︷ ︸
Load
circuit

e f (t) ea(t)
i f (t) eg(t) ia(t)Field

circuit Kg
Rotor
circuit Zl

■ Compute the transfer functions of the four blocks.

e f (t) = R f i f (t) + L f
d
dt

i f (t)

E f (s) = R f I f (s) + L f s I f (s)
I f (s)
E f (s)

= 1
R f + L f s

.

eg(t) = Kgi f (t)

Eg(s) = Kg I f (s)
Eg(s)
I f (s)

= Kg.
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ea(t) = ia(t)Zl

Ea(s) = Zl Ia(s)
Ea(s)
Ia(s)

= Zl.

eg(t) = Raia(t) + La
d
dt

ia(t) + ea(t)

Eg(s) = Ra Ia(s) + Las Ia(s) + Ea(s)

= (Ra + Las + Zl) Ia(s)
Ia(s)
Eg(s)

= 1
Las + Ra + Zl

.

■ Put everything together.
Ea(s)
E f (s)

= Ea(s)
Ia(s)

Ia(s)
Eg(s)

Eg(s)
I f (s)

I f (s)
E f (s)

= Kg Zl(
L f s + R f

)
(Las + Ra + Zl)

.

Block-diagram algebra

⇐⇒

⇐⇒

⇐⇒

H (s)

H (s)

H (s)H (s)

H (s)

1
H (s)

H1(s)H1(s) H2(s)

H2(s)

1
H2(s)

Y (s)Y (s)

Y (s)Y (s)

Y1(s)Y1(s)

Y2(s)Y2(s)

U(s)U(s)

U1(s)U1(s)

U2(s)
U2(s)

R(s)R(s)

“Unity Feedback”
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EXAMPLE: Simplify:

H1(s) H2(s)

H3(s)

H4(s)

H5(s)

H6(s)

Y (s)R(s)

H1(s)
1− H1(s)H3(s)

H2(s)

H4(s)

H5(s)

H6(s)

Y (s)R(s)

H1(s)
1− H1(s)H3(s)

H2(s)

H4(s)

H5(s)

H6(s)
H2(s)

Y (s)R(s)

︸ ︷︷ ︸
(

H1(s)H2(s)
1−H1(s)H3(s)

)

(
1+ H1(s)H2(s)H4(s)

1−H1(s)H3(s)

)

︸ ︷︷ ︸
H5(s)+ H6(s)

H2(s)

H1(s)H2(s)H5(s) + H1(s)H6(s)
1− H1(s)H3(s) + H1(s)H2(s)H4(s)

R(s) Y (s)
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