ECE4510/5510: Feedback Control Systems. 10-1

DIGITAL CONTROLLER IMPLEMENTATION

10.1: Some background in digital control

= We can implement our controllers with op-amp circuits (cf. Chap. 7).

= More commonly nowadays, we use digital computers (e.g.,
microcontrollers) to implement our control designs.

= There are two main approaches to digital controller design:

1. Emulation of an analog controller—we look at this here.
2. Direct digital design—subject of more advanced course.

= Emulation is when a digital computer approximates an analog
controller design.

r(t) ;(“)_e(tl D(s) MO):E—»—» y(t)

ANALOG:

DIGITAL:

0 o g e | ‘u(t)’ﬂ”y "

= Analog controller computes u(r) from e(¢) using differential equations.
For example,
u(t) + bu(t) = koe(t) + akpe(t).
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m Digital controller computes u(kT) from e(kT) using difference
equations. For example (we’ll see where this came from shortly),

wkT) = (1 — bT)u((k — D)T) + ko(a@T — De((k — )T) + koe(kT).

= To interface the computer controller to the “real world” we need an
analog-to-digital converter (to measure analog signals) and
digital-to-analog converter (to output signals).

= Sampling and outputting usually done synchronously, at a constant
rate. If sampling period = T, frequency = 1/T.

= The signals inside the computer (the sampled signals) are noted as
y(kT), or simply y [k]. y [k] is a discrete-time signal, where y(¢) is a
continuous-time signal.
y(t) y(kT) = ylk]

— ]

= S0, we can write the prior difference equation as

ulkl = (1 = bT)ulk — 1]+ ko(aT — 1)elk — 1] + koelk].

m Discrete-time signals are usually converted to continuous-time
signals using a zero-order hold:

T e.g., to convert u [k] tO u(¢).

Efficient implementation

= We look at some efficient pseudo-code for an implementation of

ulk] = (1 — bT)ulk — 1] + ko(aT — Delk — 1] + koe[k].
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= Qutput of digital controller u[k] depends on previous output u[k — 1]
as well as the previous and current errors e[k — 1] and e[k].

Real-Time Controller Implementation

x = 0. (initialization of “past” values for first loop through)
Define constants:
o1 =1-—bT.
oy = ko(aT — 1).
READ A/D to obtain y[k] and r[k].
elk] = r[k] — yl[k].
ulk] = x + koelk].
OUTPUT u«[k] to D/A and ZOH.
Now compute x for the next loop through:
x = oqulk] + azelk].

Go back to “READ” when T seconds have elapsed since last READ.

m Code is optimized to minimize latency between A2D read and D2A
write.

R = read. W = write.
C = compute. I =idle.
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10.2: “Digitization” (emulation of analog controllers)

= Continuous-time controllers are designed with Laplace-transform

techniques. The resulting controller is a function of “s”.
dx(r)
dr

x(t) —> 5 |—>y() =

m So, “s” is a derivative operator. There are several ways of
approximating this in discrete time.

Forward-rectanqular rule

= We first look at the “forward rectangular” rule. We write:
ox (1 t+o0t) — x(t
#0) 2 fim 20y 29D — x()
5t—0 Ot ot—0 ot

= [f sampling interval T = ., — t, is small,’
k+1DT)—x(kT k+ 1] — x|k
HMU%M(+); KD e xmwx[+; ulla}

Backward-rectanqular rule

) — —0
= We could also write x(r) 2 im x(?) = lim x(1) — xlt t).
5t—>0 Ot ot—0 ot
m Then, if 7 is small,
T)—x((k— 1T k] —x[k—1
w1y ~ XD xg D e i~ ;[ !

Bilinear (or Tustin) rule

= We could also re-index the forward-rectangular rule as
x[k] — x[k — 1]
T
to have the same right-hand-side as the backward-rectangular rule.

xlk—1] =

" Rule of thumb: Sampling frequency must be ~ 30 times the bandwidth of the analog
system being emulated for comparable performance.
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= Then, we average these two forms:
x[k]l+xlk—1] x[k] — x[k — 1]
2 - T |

Digitizing a controller

= Once we’ve chosen which rule to use, we “digitize” controller D(s) by

1. Writing U (s) = D(s)E(s).

n m d
2. Converting to differential equation:Zak u(t) Z . e(t).

dk
k=0
3. Replacing derivatives with differences.
_ U .
EXAMPLE: Digitize the lead or lag controller D(s) = (s) = OS +a using
E(s) s+ b

the forward-rectangular rule.

1. We write
U@)_hfiaE@)

(s +D)U(s) = ko(s + a) E(s)

2. We take the inverse-Laplace transform of this result, term-by-term to
get
u(t) + bu(t) = koe(t) + akpe(t).

3. Use “forward-rectangular rule” to digitize

ulk + 1] — ulk] elk + 1] — e[k]
T T + ae[k])

+ bulk] = ko (

ulk + 11 = ulk] +

T |:—bu[k] + ko (e[k + 17], — el + ae[k])]

= (1 = bT)ulk] + ko(aT — 1)e[k] + koe[k + 1],
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or,

ulkl = (1 = bT)ulk — 1]+ ko(aT — 1)elk — 1] + koelk].

» This is how we got the result at the beginning of this chapter of notes.

U (s) i s+a
E(s) s +b

EXAMPLE: Digitize the lead or lag controller D(s) = using

the backward-rectangular rule.
1. As before, we have
(s +b)U(s) = ko(s + a) E(s).
2. Again, we have
u(t) + bu(t) = koe(t) + akpe(t).
3. Use “backward-rectangular rule” to digitize

ulk] — ulk—1]
T

elk] — elk—1]
T

+ bulk] = ko (

ulk] = ulk—1] +
T [—bu[k] + ko (e[k] _Te[k_l] + ae[k])}
(1 4+ bT)ulk] = ulk—1] + ko(aT + 1)e[k] — kpe[k—1]

+ ae[k])

1
ulk] = [T (ulk—11+ ko(aT + 1)elk] — koelk—1]).
= Notice that this is a different result from before.
EXAMPLE: Digitize the lead or lag controller D(s) = Uts) = kos Ta using
E(s) s+ b

the bilinear rule.

1. As before, we have (s + b)U (s) = ko(s + a) E(s).
2. Again, we have u(t) + bu(t) = koe(t) + akoe(t).
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3. Using the bilinear rule is challenging since we need to have
derivatives in a specific format. We’'ll use a trick here (ECE4540/5540
teaches more advanced techniques that don’t need this trick).

= Re-index the differential equation:
u(t —T)+bu(t —T) =koe(t — T) + akpe(t — T).
= Add this to the prior version, and divide by 2
: (T B : o
[u(t) + u(t )} b [u(t) + u(t T)] ko |:e(t) + e(t T)}

2 2 2
+ ake [e(t) + e(t—T)]
2
k] —ulk—1 b k] —elk—1
[”[] - ]}—I—E[u[k]—i—u[k—l]]:ko[e[] L ]]

Clk()
+ > le[k] + e[k—1]].

= Rearranging,

(1 n b—T) uk] = (1 _ b—T) ulk—11+ ko (1 n £) e[k]
2 2 2
al

2 —bT 24+aT 2 —aT
k—1]+ k Kl — k
> pr kT kol kl = ko=

m Again, this is a different result from before.

ulk] = elk—1].
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10.3: The impact of the zero-order hold

= We illustrate the results of the prior three examples by substituting
numeric values.

I G o)) B 1
lLe’[D(s)—7O(S+10), G(S)_s(s—l—l)'

= Choose to try a sample rate of 20 Hz and also try 40 Hz.

(Note, BW of analog system is ~ 1Hz or so).

FORWARD-RECTANGULAR RULE: Digitizing D(s) gives

m 20Hz: ulk + 1] = 0.5u[k] + 70e[k + 1] — 63¢[k].

m 40Hz: ulk + 1] = 0.75u[k] + 70e[k + 1] — 66.5¢[k].
BACKWARD-RECTANGULAR RULE: Digitizing D(s) gives

m 20 Hz: ulk + 1] = 0.6666u[k] + 51.3333¢[k + 1] — 46.6666¢[k].

mA40Hz: ulk + 1] = 0.8u[k] + 58.8¢[k + 1] — 56¢[k].
BILINEAR RULE: Digitizing D(s) gives

m 20Hz: ulk + 1] = 0.6u[k] + 58.8¢e[k + 1] — 53.2¢[k].

mA40Hz: ulk + 1] = 0.7778u[k] + 63.7777e[k + 1] — 60.666¢[k].
Sampled at 20Hz | Sampled at 40Hz

==
==

1.5 1.5

~

—
T
—_
&
1

Plant output

Plént output

o
3
T

= analog

= = forward

= = bilinear
1

backward

. |
0 0.2
T|m

= IMPORTANT NOT.

—_

é ?1e digitized system ha

0

0

0.2

0.4 0.6

Time (sec) _
S poorer damping than

0.8

1

the original analog system. This will always be true when emulating
an analog controller. We see why next ...
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The D2A “Hold” Operation

u u(kT)

u(t)

- -

—

~N

avg. u(t)

| | | | | |

m Even if u(kT) is a perfect re-creation of the output of the analog
controller at t = kT, the “hold” in the D2A causes an “effective delay.”

= The delay is approximately equal to half of the sampling period: 7/2.

= Recall from frequency-response analysis and design, the magnitude
of a delayed response stays the same, but the phase changes:

T
Aphase = —

m For the previous example, sampling now at 10Hz, we have:

10" SRR SRR
o) 5
o} [
3 | \
‘E 10°F
(@)] E
S .
= \
-1 i P T T S R A | i ol H PR R R S
RS 10° 10" 102
@ 100 F
O -120f ==
Q 140} S~
) ~
I eof REN
D- _180 M M M PR S | M M M M ..I\A M M M PR
10" 10° 10’ 102
Frequency (rad/sec)
= The PM has changed from = 50° to ~ 30°.
PM :
R 100 ¢ changed from 0.5 t0 0.3 ... much less damping.
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= M, from about 20% to
about 30% . ..

1.5

m Faster sampling. ..
smaller T ... smaller
delay. .. smaller
change in response. ° o2 o4 08 08 1

. Time (sec)
Root-Locus View of the Delay

Plant output

= Recall that we can model a delay using a Padé approximation.

T | —sT/4
~delay —> T2 227
"o oy e 1+ s7/4

m Poles and zeros reflected about the jw-axis.

I(s)
x— 3Rl As T — 0, delay dynamics — oc.
T T
1
= Impact of delay: Suppose D(s)G(s) =
s+ a
1 With 1
5 | | delay | 5 ( | |
—"(l R(S) - "4 % Z (S)
T T

= Does the delayed locus make sense?
1—sT/4  (sT/4-1)
1+sT/4 (sT/4+1)
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= Gain is negative! We need to draw a 0° root locus, not the 180° locus
we are more familiar with.

= Conclusion: Delay destabilizes the system.

PID Control via Emulation

P: u(t) = Ke(t) _ |
L u(r) = /0 56(‘[) dr | PID: u(t) = K e(t)—l—?/oe(t) dr—l—TDé(t):|

_ I
D: u(r) = KTDé(t) o, u(t)=K]|e(t)+ Tie(t) + TD'é(t)i| :
. n 1

= Convert to discrete-time (use fwd. rule twice for é(r)).
T Tp 2Th Tp

ulk] = ulk—1]+K [(1 + T + 7) elk] — (1 + T) elk — 1]+ 7e[k — 2]] :

EXAMPLE:

360000
G(s) = K =5, Tp = 0.0008, T; = 0.003.
(s + 60)(s -+ 600)

Bode plot of cts-time OL system D(s)G (s) with the above PID D(s)
shows that BW ~ 1800 rad/sec, ~ 320Hz.

10xBW m T =0.3ms.

= From above,

ulk] = ulk — 11 + 5|:3.7667e[k] — 6.333e[k — 1] 4+ 2.6667¢e[k — 2]].

== continuous
: digital: T=0.3ms |
~aay, | digital: T=0.1ms

m Step response plotted to
the right.

= Performance not great,
so tried again with
T = 0.1 ms. Much better.

Speed (rads/sec)

4 5 g 10
Time (ms)
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= Note, however, that the error is mostly due to the rise time being too
fast, and the damping too low.
m FIDDLE with parameters
m jncrease K to slow the
system down; Increase
Tp to increase damping.
mw New K = 3.2, new
Tp = 0.3 ms. K 2 s 5 ’ 10
. Time (ms
KEY POINT: We can emulate a desired analog response, g]u} the delay
added to the system due to the D2A hold circuit will decrease
damping. This could even destabilize the system!!!

_;
)

= continuous

digital: T=0.3ms

—
T

Speed (rads/sec)

» This delay can be minimized by sampling at a high rate (expensive).

= Or, we can change the digital controller parameters, as in the last
example, to achieve the desired system performance BUT NOT BY
emulating the specific analog controller D(s).

= Hence the need for more advanced methods of digital control:
ECE4540/5540.
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