
ECE4510/5510: Feedback Control Systems. 9–1

FREQUENCY-RESPONSE DESIGN

9.1: PD and lead compensation networks

■ The frequency-response methods we have seen so far largely tell us

about stability and stability margins of a closed-loop system based on

open-loop response.

■ Now, we look at frequency-response based design methods which

primarily aim at improving stability margins.

■ Also, given the relationship between PM and performance, we have

some idea of transient response as well.

■ Start thinking of Bode-magnitude and Bode-phase plots as “LEGO” to

make the frequency response we want.

PD compensation

■ Compensator D(s) D K (1C TDs).

■ We have seen from root-locus that this has a stabilizing effect.

■ Magnitude and phase effect:
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■ PD controller increases phase for frequencies over ω � 0.1/TD. So,

locate 1/TD < crossover so that phase margin at crossover is better.

■ Problem: Magnitude response continues to increase as frequency

increases. This amplifies high-frequency sensor noise.

Lead compensation

■ Compensator D(s) D K

[
T s C 1

αT s C 1

]

, α < 1.

■ Approximate PD control for frequencies up to ω D
1

αT
.

■ Magnitude and phase effect:

1

T

1

αT
ωmax

K

Æ

K

α

0.1

T

1

T

1

αT

10

αT
ωmax

φmax

Æ

■ The phase contributed at frequency ω is

φ D tan�1 (T ω)� tan�1 (αT ω) .

■ To find where the maximum phase contribution is, we take the

derivative of φ with respect to ω and set it to zero

dφ

dω
D

d tan�1(T ω)

dω
�

d tan�1(αT ω)

dω

D

T

T 2ω2
C 1

�

αT

α2T 2ω2
C 1

D 0
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α2T 3ω2
C T D αT 3ω2

C αT

T 3ω2α(α � 1) D T (α � 1)

ωmax D
1

T
p

α
.

■ For this frequency, the amount of phase

added is

φmax D tan�1 (T ωmax)� tan�1 (αT ωmax)

D tan�1

(
1
p

α

)

︸ ︷︷ ︸

θ1

� tan�1

(
α
p

α

)

︸ ︷︷ ︸

θ2

To get a simpler expression, consider

the triangles to the right.
θ1

θ2

φmax

p 1
C

α

√
α C

α
2

p

α

1

�

α
α

■ We can solve for φmax using the law of cosines. This gives:

(1� α)2
D (1C α)C (α C α2)� 2

p

1C α
√

α C α2 cos (φmax)

1� 2α C α2
D 1C 2α C α2

� 2
p

1C α
√

α C α2 cos (φmax)

cos (φmax) D
4α

2
p

1C α
p

α C α2
D

2
p

α

(1C α)
.

■ Now, we remember that cos2(θ)C sin2(θ) D 1, so

sin2 (φmax) D 1�
4α

(1C α)2

D

(1C α)2
� 4α

(1C α)2

D

(1� α)2

(1C α)2
.

■ So, we conclude that
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φmax D sin�1

(
1� α

1C α

)

.

■ We can invert this to find α to add a certain phase φmax

α D
1� sin(φmax)

1C sin(φmax)
.

■ We can show that ωmax occurs mid-way between
1

T
and

1

αT
on a log

scale

log(ωmax) D log

(
1
p

T
p

αT

)

D log

(
1
p

T

)

C log

(
1

p

αT

)

D

1

2

[

log

(
1

T

)

C log

(
1

αT

)]

.

■ How much can we

improve phase with a

lead network?
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■ If we need more phase improvement, we can use a double-lead

compensator:

D(s) D K

[
T s C 1

αT s C 1

]2

.

■ Need to compromise between good phase margin and good sensor

noise rejection at high frequency.
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9.2: Design method #1 for lead controllers

■ Design specification include:

� Desired steady-state error.

� Desired phase margin.

■ Compute steady-state error of compensated system. Set equal to

desired steady-state error by computing K .

■ Evaluate the PM of the uncompensated system using the value of K

from above. ωmax initially set to crossover frequency.

■ Add a small amount of PM (5Æ to 12Æ) to the needed phase lead.

(Lead network moves crossover point, so need to design

conservatively): Gives φmax.

■ Determine α D
1� sin(φmax)

1C sin(φmax)
.

■ Determine T D
1

ωmax

p

α
.

■ Iterate if necessary (choose a slightly different ωmax or φmax).

EXAMPLE: Plant G(s) D
1

s(s C 1)

■ Specification 1: Want steady-state error for ramp input < 0.1.

■ Specification 2: Want overshoot Mp < 25%.

■ Start by computing steady-state error

ess D lim
s!0

s

[
1

1C D(s)G(s)

]

R(s)

D lim
s!0

[

1

s C D(s) 1
(sC1)

]

D

1

D(0)
.
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■ D(s) D K

[
T s C 1

αT s C 1

]

so D(0) D K .

■ So,
1

D(0)
D

1

K
D 0.1 . . . K D 10.

■ In Bode plot below, red line is original plant. Green line is plant with

added gain of K D 10, but no lead compensator.

■ We see that the new crossover is at 3 rad s�1, so ωmax D 3 rad s�1.

■ Overshoot specification Mp < 25% gives PM > 45Æ.

■ Evaluating (red line) Bode diagram of K G(s) at crossover, we see we

have a phase margin of 18Æ. Need about 27Æ more to meet spec.

■ Note, addition of pole and zero from lead network will shift crossover

frequency somewhat. To be safe, design for added phase of 37Æ

instead of 27Æ.

■ α D
1� sin(37Æ)

1C sin(37Æ)
D 0.25. T D

1
p

0.25(3)
D 0.667.

■ So, D(s) D 10

[
2s/3C 1

2s/12C 1

]

.

■ In plots below, the blue line is the Bode plot of the compensated

system K D(s)G(s).

� Also, uncompensated root locus is plotted top-right; compensated

root locus is plotted bottom-right.

■ We find that we just missed specifications: PM D 44Æ. Iterate if

desired to meet specs.
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■ Summary of design example.

1. Determine dc-gain so that steady-state errors meet spec.

2. Select α and T to achieve an acceptable PM at crossover.
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9.3: Design method #2 for lead controllers

■ Design specifications

� Desired closed-loop bandwidth requirements (rather than ess).

� Desired PM requirements.

■ Choose open-loop crossover frequency ωc to be half the desired

closed-loop bandwidth.

■ Evaluate KG D jG( jωc)j and φG D
6 G( jωc).

■ Compute phase lead required φmax D PM � φG � 180.

■ Compute α D
1� sin(φmax)

1C sin(φmax)
.

■ Compute T D
1

p

αωc

.

■ Compensation is

D(s) D K

[
T s C 1

αT s C 1

]

jD( jωc)j D K

√

1
α
C 1

α C 1
D K

p

α
p

α

√

1
α
C 1

α C 1
D

K
p

α
.

■ Open-loop gain at ωc is designed to be 1:

jD( jωc)jjG( jωc)j D 1

K
p

α
jG( jωc)j D 1

K D

p

α

KG

.

■ Our design is now complete.
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EXAMPLE: Desired gain crossover frequency of 10 radians per second.

Desired PM of 60Æ. G(s) D
1

s(s C 1)
.

■ KG D

∣
∣
∣
∣

1

j10( j10C 1)

∣
∣
∣
∣
D 0.01, φG D �174.3Æ.

■ φmax D 60Æ C 174.3Æ � 180Æ D 54.3Æ.

■ α D
1� sin(φmax)

1C sin(φmax)
D 0.1037.

■ T D
1

p

α10
D 0.3105.

■ K D D

p

α

KG

D 32.36.

■ Matlab code to automate this procedure:

% [K,T,alpha]=bod_lead(np,dp,wc,PM)

% Computes the lead compensation of the plant np/dp to have

% phase margin PM (in degrees) at crossover frequency wc (in radians/sec).

% e.g., [K,T,alpha]=bod_lead([1],[1 1 0],5,60);

function [K,T,alpha]=bod_lead(np,dp,wc,PM)

% first compute the plant response at wc.

[magc,phc]=bode(np,dp,wc);

% now, compute the needed phase lead at wc and convert to radians

% for use with "sine"

phir=(-180+PM-phc)*pi/180;

if abs(phir)pi/2,

fprintf('A simple phase lead/lag cannot change the phase by more\n');

fprintf('than +/- 90 degrees.\n');

error('Aborting.');

end;

% Compute alpha, T, and K for compensator

alpha=(1-sin(phir))/(1+sin(phir));

T=1/(wc*sqrt(alpha)); K=sqrt(alpha)/magc;
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% compute the new open-loop system by convolving the plant polynomials

% with the compensator polynomials.

nol=conv(np,K*[T 1]); dol=conv(dp,[alpha*T 1]);

% check the solution by plotting the Bode plot for the new open-loop

% polynomials. Include the frequency w=1

% to get the full resonance response to show the gain margin. Also, plot

% the uncompensated Bode response.

w=logspace(-2,1)*wc; w(34)=wc; clf;

[mag1,ph1]=bode(np,dp,w); [mag2,ph2]=bode(nol,dol,w);

subplot(211);

semilogx(w/wc,20*log10(mag1),'--'); hold on;

semilogx(w/wc,20*log10(mag2)); grid; plot(w/wc,0*w+1,'g-');

ylabel('Magnitude (dB)');

title('Phase-lead design (uncompensated=dashed; compensated=solid)');

subplot(212);

semilogx(w/wc,ph1,'--'); hold on; semilogx(w/wc,ph2); grid;

plot(w/wc,0*w-180+PM,'g-');

ylabel('Phase'); xlabel('Frequency/wc (i.e., "1"=wc)');

■ Matlab results:
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9.4: PI and lag compensation

PI compensation

■ In many problems it is important to keep bandwidth low, and also

reduce steady-state error.

■ PI compensation used here.

D(s) D K

[

1C
1

TI s

]

.

K

�

Æ

10K

1/TI 10/TI

�90Æ

0.1/TI 1/TI 10/TI

■ Infinite gain at zero frequency

� Reduces steady-state error to step, ramp, etc.

� But also has integrator “anti-windup” problems.

■ Adds phase below breakpoint.

� We want to keep breakpoint frequency very low to keep from

destabilizing system.
1

TI

� ωc.

Lag compensation

■ Approximates PI, but without integrator overflow.

D(s) D α

[
T s C 1

αT s C 1

]

α > 1.
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■ Primary objective of lag is to add 20 log10 α dB gain to low frequencies

without changing PM.

1

�

Æ

α

1

αT

1

T

�90Æ

1

αT

1

T

■ Steady-state response improves with little effect on transient

response.

Typical process

■ Assumption is that we need to modify (increase) the dc-gain of the

loop transfer function.

� If we apply only a gain, then ωc typically increases and the phase

margin decreases. NOT GOOD.

� Instead, use lag compensation to lower high-frequency gain.

■ Assume plant has gain K (adjustable), or that we insert a gain K into

the system. Adjust the open-loop gain K to meet phase margin

requirements (plus about 5Æ slop factor) at crossover without

additional compensation.

■ Draw Bode diagram of system using the gain K from above. Evaluate

low-frequency gain.

■ Determine α to meet low-frequency gain requirements.
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■ Choose one corner frequency ω D
1

T
(the zero) to be about one

decade below crossover frequency. (This way, the phase added by

the lag compensator will minimally affect PM. The phase added at

crossover will be about 5Æ, hence our previous slop factor).

■ The other corner frequency is at ω D
1

αT
.

■ Iterate design to meet spec.

EXAMPLE:

G(s) D
K

(
1

0.5
s C 1

)

(s C 1)
(

1
2
s C 1

).

■ Bode plot for plant is red line, below. Uncompensated root locus is

top-right plot.

■ We want to design compensator for PM � 25Æ, K p D 9.

1. Set K D 4.5 for PM D 30Æ. This gives crossover at ωc � 1.2

rads/sec. (Green line on Bode plot.)

2. Low-frequency gain now about 13 dB or 10(13/20)
D 4.5.

3. Should be raised by a factor of 2 to get K p D 9. So, α D 2.

4. Choose corner frequency at ω D 0.2 rads/sec.
1

T
D 0.2, or T D 5.

5. We then know other corner frequency ω D
1

αT
D

1

10
.

■ Altogether, we now

have the compensator

D(s) D 2

[
5s C 1

10s C 1

]

.
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■ Please understand that the “recipes” in these notes are not meant to

be exhaustive!

■ And, we often require both lead and lag to meet specs.

■ Many other approaches to control design using frequency-response

methods exist.

■ In fact, once you are comfortable with Bode plots, you can add poles

and zeros like LEGOs to build whatever frequency response you

might like (within the limitations of Bode’s gain-phase theorem).

■ Our next section gives some guidance on this.
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9.5: Design based on sensitivity

■ Goal: Develop conditions on Bode plot of loop transfer function

D(s)G(s) that will ensure good performance with respect to

sensitivity, steady-state errors and sensor noise.

� Steady-state performance = lower bound on system low-freq. gain.

� Sensor noise = upper bound on high-frequency gain.

■ Consider also the risk of an

unmodeled system resonance:

■ Magnitude may go over 1. Can

cause instability. Must ensure that

high-frequency gain is low so

magnitude does not go over 1. 10
-1
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■ Together, these help us design a

desired loop frequency response:

� Magnitude must be high at low

frequencies, and

� Low at high frequencies.
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D
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)G
(s

)

Sensitivity functions

■ The presence of noises also enters our design considerations.

r (t) y(t)

v(t)

w(t)

D(s) G(s)
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Y (s) D W (s)C G(s)D(s)[R(s)� V (s)� Y (s)]

[1C G(s)D(s)] Y (s) D W (s)C G(s)D(s)[R(s)� V (s)]

or, Y (s) D
1

1C G(s)D(s)
W (s)C

G(s)D(s)

1C G(s)D(s)
[R(s)� V (s)].

■ Tracking error
4

D R(s)� Y (s)

E(s) D R(s)�
1

1C G(s)D(s)
W (s)�

G(s)D(s)

1C G(s)D(s)
[R(s)� V (s)]

D

1

1C G(s)D(s)
[R(s)� W (s)]C

1

1C G(s)D(s)
G(s)D(s)V (s)

■ Define the “sensitivity function” S(s) to be

S(s)
4

D

1

1C G(s)D(s)

which is the transfer function from r(t) to e(t) and from w(t) to �e(t).

■ The “complementary sensitivity function” T (s) D 1� S(s)

1� S(s) D
G(s)D(s)

1C G(s)D(s)
D T (s)

which is the transfer function from r(t) to y(t).

■ If V D 0, then

Y (s) D S(s)W (s)C T (s)R(s)

and

E(s) D S(s)[R(s)�W (s)].

■ The sensitivity function here is related to the one we saw several

weeks ago

ST
G D

∂T

∂G
�

G

T
D

1C D(s)G(s)� D(s)G(s)

[1C D(s)G(s)]2
�

G(s)[1C D(s)G(s)]

G(s)

D

1

1C D(s)G(s)
D S(s).
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■ So S(s) is the sensitivity of the transfer function to plant perturbations.

■ Recall that T (s)C S(s) D 1, regardless of D(s) and G(s).

■ We would like T (s) D 1. Then S(s) D 0; Disturbance is cancelled,

design is insensitive to plant perturbation, steady-state error � 0.

■ BUT, for physical plants, G(s)! 0 for high frequencies (which forces

S(s)! 1).

■ Furthermore, the transfer function between V (s) and E(s) is T (s). To

reduce high frequency noise effects, T (s) ! 0 as frequency

increases, and S(s) � 1.

■ Typical sensitivity and complementary sensitivity (closed-loop

transfer) functions are:

S
ta

b
il

it
y

 S
p

ec
.

P
er

fo
rm

an
ce

 S
p

ec
.

j

S
(

jω
)j

j

T
(

jω
)j

■ Another view of sensitivity:

■ So, 1C D( jω)G( jω) is the

distance between the Nyquist

curve to the �1 point, and

S( jω) D
1

1C D( jω)G( jω)
. D( jω)G( jω)

I(s)

R(s)1 C D( jω)G( jω)
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■ A large value of jS( jω)j indicates a nearly unstable Nyquist plot.

■ The maximum value of jSj is a more accurate measure of stability

than PM or GM. So, we want max jS( jω)j small. How small?

■ Note: E( jω) D S( jω)R( jω)

jE( jω)j D jS( jω)R( jω)j D jS( jω)jjR( jω)j

put a frequency-based error bound such that if jE( jω)j � eb then

jS( jω)jjR( jω)j � eb

■ Let W1(ω) D R( jω)/eb. Then,

jS( jω)j �
1

W1(ω)
.

EXAMPLE: A unity-feedback system is to have an error less than 0.005

for all unity-amplitude sinusoids below 500 rads/sec. Draw jW1( jω)j

for this design.

■ Spectrum of R( jω) is unity for

0 � ω � 500.

■ Since eb D 0.005,

W1(ω) D
1

0.005
D 200
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■ We can translate this requirement into a loop-gain requirement. When

errors are small, loop gain is high, so jS( jω)j �
1

jD( jω)G( jω)j
and

1

jD( jω)G( jω)j
�

1

W1(ω)

or, jD( jω)G( jω)j � W1(ω)
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9.6: Robustness

■ Typically there is some uncertainty in the plant transfer function. We

want our design to be robustly stable, and to robustly give good

performance (often called H
1

design).

■ Uncertainty often expressed as multiplicative

G( jω) D Gn( jω)[1C W2( jω)1( jω)]

■ W2(ω) is a function of frequency expressing uncertainty, or size of

possible error in transfer function as a function of frequency.

■ W2(ω) is almost always small at low frequencies.

■ W2(ω) increases at high frequencies as unmodeled structural

flexibility is common.

■ “Typical W2”

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

Frequency (rads/sec.)

M
a
g
n
it
u
d
e

■ 1( jω) expresses uncertainty in phase. The only restriction is

j1( jω)j � 1.

Design

■ Assume design for nominal plant Gn(s) is stable. Thus,

1C D( jω)Gn( jω) 6D 0 8ω.
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■ For robust stability,

1C D( jω)G( jω) 6D 0 8ω

1C D( jω)Gn( jω)[1C W2(ω)1( jω)] 6D 0

1C D( jω)Gn( jω)

1C D( jω)Gn( jω)
︸ ︷︷ ︸

6D0 by assumption

C

D( jω)Gn( jω)

1C D( jω)Gn( jω)
W2(ω)1( jω) 6D 0

recall, T ( jω) D
D( jω)Gn( jω)

1C D( jω)Gn( jω)
,

[1C T ( jω)W2(ω)1( jω)] 6D 0

so, jT ( jω)W2(ω)1( jω)j < 1

or, jT ( jω)jW2(ω) < 1.

■ For high frequencies D( jω)Gn( jω) is typically small, so

T ( jω) � D( jω)Gn( jω). Thus

jD( jω)Gn( jω)jW2(ω) < 1

jD( jω)Gn( jω)j <
1

W2(ω)
.

EXAMPLE: The uncertainty in a plant model is described by a function

W2(ω) which is zero until ω D 3000 rads/sec, and increases linearly

from there to a value of 100 at ω D 10 000 rad s�1. It remains constant

at 100 for higher frequencies. Plot constraint on D( jω)Gn( jω).

■ Where W2(ω) D 0, there is no constraint on the magnitude of the loop

gain. Above ω D 3000, 1/W2(ω) is a hyperbola from 1 to 0.01 at

10, 000.
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■ Combining W1(ω) and W2(ω) requirements,
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■ Limitation: Crossover needs to be with slope � �1. So, cannot make

constraints too strict, or design will be unstable.
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