ECE4510/5510: Feedback Control Systems. 7-1

ROOT-LOCUS CONTROLLER DESIGN

7.1: Using root-locus ideas to design controller

= \We have seen how to draw a root locus for given plant dynamics.

= We include a variable gain K in a unity-feedback configuration—we
know this as proportional control.

= Sometimes, proportional control with a carefully chosen value of K is
sufficient for the closed-loop system to meet specifications.

» But, what if the set of closed-loop pole location does not
simultaneously satisfy the geometry that defines the specifications?

» We need to modify the locus itself by adding extra dynamics—a
compensator or controller D(s):

+

r(t)aT_—» K »1 D(s) —»| G() > y(1)

= We redraw the locus and pick K in order to put the poles where we
want them. HOW?

_ KD(s)G(s) ~
T(s) = T KDG)GG) Now, let G(s) = D(s)G(s)
= KG(E) w \\e know how to draw this locus!
1+ KG(s)

m Adding a compensator effectively adds dynamics to the plant.
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Adding a left-half-plane pole or zero

= Two questions: (1) What types of compensation should we use, and
(2) how do we figure out where to put the additional dynamics?

= In ECE4510/5510, the methods we discuss are “science-inspired art.”

o We need to get a “feel” for how the root locus changes when poles
and zeros are added, to understand what dynamics to use for D(s).

= In more advanced courses, we learn more powerful methods:

o In ECE5520, we learn how to put all closed-loop poles exactly
where we want them (but, where do we want them?)

o In ECE5530, we learn how to find the optimal set of pole locations.

m But, for us to get started, speaking in generalities, adding a
left-half-plane pole pulls the root locus to the right.

 This tends to lower the system’s relative stability and slow down
the settling of the response.

« But, providing that the closed-loop system is stable, the pole can

also decrease steady-state errors.

e In first plot: The system is stable for all K, responses are smooth.

X

e In second plot: System also stable for all K, but when poles
become complex, response shows overshoot and oscillations.
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o In third plot: The system is stable only for small K, and oscillations
increase as the poles approach the imaginary axis.

 But, steady-state error improves from left to right (assuming the
closed-loop system is stable).

m Again, generally speaking, adding a left-half-plane zero pulls the root
locus to the left.

» This tends to make the system more stable, and speed up the
settling of the response.

« Physically, a zero adds derivative control to the system, introducing
anticipation into the system, speeding up transient response.

« However, steady-state errors can get worse.

— —)T—)&
o In first plot: System is stable only for small K, and oscillates as
poles approach imaginary axis.

o In second plot: System is stable for all K, but still oscillates.
« In third and fourth plots: More stable, less oscillation.
» But, steady-state error degrades from left to right.

= Can’t physically add a zero without a pole: Must put pole very far left
in s-plane so we don’t deteriorate desired impact of zero.
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7.2: Reducing steady-state error

= WWe have a number of options available to us if we wish to reduce
steady-state error.

1) Proportional feedback

D(s) =1. u(t) = Ke(t)
KG(s)

14+ KG(s)

= Same as what we have already looked at.

T(s) =

= Controller consists of only a “gain knob.”

e Increasing gain K often reduces steady-state error, but can
degrade transient response.

« We have to take the locus “as given” since we have no extra
dynamics to modify it.

« Can’t independently choose steady-state error and transient
response. Can design for one or other, not both.

m Usually a very limited approach, but a good place to start.

2) Integral feedback

1 K [’
©O=7:  w=7 [ e
K G(s)
T(S): T[ S

1+ £60
I S
m Usually used to reduce/eliminate steady-state error. i.e., if e(t)
constant, u(z) will become very large and hopefully correct the error.

= |deally, we would like no error, e;; = 0. (Maybe 1 % to 2 % in reality)
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ANALYSIS: For a unity-feedback control system, the steady-state error to

a unit-step input is:

1
= 1FKDO0)G(0)

1
m |f we make D(s) = T thenass — 0, D(s) - o0
IS

1
=0
1+ o0

ess %

= Adding the integrator into the compensator has reduced error from

7K to zero for systems that do not have any free integrators.
P

» Adding the integrator increases the system type, but as steady-state
response improves, transient response often degrades.
1

EXAMPLE: G(s) = b > 0.
(s) (s +a)(s +b)’ ¢=v=
: 1 1
m Proportional feedback, D(s) = 1, G(0) = pre e = = %
I6s) = We can make e,, small by

making K very large, but this
often leads to poorly-damped
behavior and often requires
excessively large actuators.

X
X

—a —b R(s)

m Integral feedback, D(s) = TL e, = 0.
IS5

Lecture notes prepared by and copyright © 1998-2021, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, ROOT-LOCUS CONTROLLER DESIGN 7-6

I(s)
m Increasing K to increase the

' speed of response pushes
—a —b R(s) the pole toward the
imaginary axis = oscillatory.

X
X
e

3) Proportional-integral (Pl) control

= Now, D(s) = K [1 + L} =K [S + (I/TI)]. Both a pole and a zero.

T;s S
I(s)
= Combination of proportional
5 5 and integral (Pl) solves many
T2 | R of the problems with just (1)
integral.

4) Phase-lag control

= The integrator in Pl control can cause some practical problems; e.g.,
“integrator windup” due to actuator saturation.

= P| control is often approximated by “lag control.”
(s — 20)

(s — po)’
That is, the pole is closer to the origin than the zero.

D(s) =

|pol < |20l

m Because |zo| > |pol, the phase ¢ added to the open-loop transfer
function is negative. .. “phase lag”

m Pole often placed very close to the origin (s = 0). e.g., po ~ 0.01.
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= Zero is placed near pole. e.g., zo ~ 0.1. We want |D(s)| ~ 1 for all s to
preserve transient response (and hence, have nearly the same root
locus as for a proportional controller).

m |dea is to improve steady-state error but to modify the transient
response as little as possible.

e That is, using proportional control, we have pole locations we like
already, but poor steady-state error.

e S0, we add a lag controller to minimally disturb the existing good
pole locations, but improve steady-state error.

I(s)
» Good steady-state error

without overflow problems.
—a  —b R(s) Very similar to proportional
control.

X
X
()
X

» The uncompensated system had loop gain Kpefore = }1_1)1(1) G(s).
= The lag-compensated system has loop gain
Kafier = lim D(s)G (s) = (zo/ Po) him G(s).
m Since |zo| > |pol, there is an improvement in the position/velocity/etc.
error constant of the system, and a reduction in steady-state error.

m Transient response is mostly unchanged, but slightly slower settling
due to small-magnitude slow “tail” caused by lag compensator.
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7.3: Improving transient response

= We have a number of options available to us if we wish to improve
transient response

1) Proportional feedback
= Again, we could use a proportional feedback controller.

= |t has the same benefits and limitations that we’ve already seen.

2) Derivative feedback
D(s) = Tps, u(t) = KTpe(t).

m Does nothing to help the steady-state error. In fact, it can make it
worse.

m But, derivative control provides feedback that is proportional to the
rate-of-change of e¢(¢) ™ control response ANTICIPATES future errors.

= Very beneficial—tends to smooth out response, reduce ringing.
1

(s +a)(s +b)
I(s)

EXAMPLE: G(s) =

D(s) = Tps.

X
X

PR R(s) = No ringing. “Very” stable.

3) Proportional-derivative (PD) control
» Often, proportional control and derivative control go together.

D(s) =1+ Tps.
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I(s)
= No more zero at s = 0.

()
X
X

u = R(s) m Therefore better steady-state
response.

4) Phase-lead control
m Derivative magnifies sensor noise.

m Instead of D-control or PD-control use “lead control.”

D)=L <l
(s — po)’

That is, the zero is closer to the origin than the pole.
= Same form as lag control, but with different intent:

« Lag control does not change locus much since py ~ zo & 0.
Instead, lag control improves steady-state error.

» Lead control DOES change locus. Pole and zero locations chosen
so that locus will pass through some desired point s = s;.

DESIGN METHOD I: Sometimes, we can be successful by choosing the
value of z, to cancel a stable pole in the plant.

= Then, we solve for K and p, such that

[1+ KD(s)G(s)|

s=s1
m That is, we force one closed-loop pole to be at s = ;.

m This does not ensure that other poles do anything reasonable, so we
must always test design.
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= And, what about pole-zero cancelation? Can it occur?

If our zero is too far left If our zero is too far right
P1 P1
h @b - h % o

= Either way, the locus is still okay. (What if we tried to cancel an
unstable pole?)

DESIGN METHOD II: If there is no stable real pole to cancel, we can still
use similar approach.

= Use somewhat modified version of lead compensator form
ais + aop

D(s) = |
) =357

= Choose gy to get specified dc gain (e.g., open-loop gain=K ,, K,, .. .)
= dc gain.

|:als + a0i| G(s)
s=0

blS —I—l
lap||G (0)] = dc gain.

Desired dc gain
apgp =

|G (0)]
m ¢, and b, are chosen to make locus go through s = sy,
ais| + aop
— |G = —1
|:b1S1 + 1 :| (Sl)

for that point to be on the root locus.
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. apsy +aop
m Magnitude |————| |G =1
g v |G (s1)]
w Phase / | 2511490 + /G (s1) = 180°.
b1S1 + 1

(math happens)

4 - sin(f) + aolG(s1)| sin(f — y) | |
LT T NG IsinGy) L s = Isile”
o - S+ y) +aolGs)lsin(h) [ G(sy) = |G(s))le’”.
1 — 3

—|s1] sin(y)

5) Proportional-integral-derivative (PID) control

m There is a similar design procedure for PID control:

1 K
D(s)=K[1—i———|—TDs} =K, + — 4 Ks.
T;s S

—sin(f + y) _ 2K, cosf
|G (s1)] sin(B) |51
sin(y) K
s Compute: K,; = _ + ,
PUIE: R = TG G sin(B)  Jsi?
G(s1) = |G(s1)|e’" for both cases.

= Compute: K, =

where s, = |s;|e’# and

» 77 chosen to match some design criteria. e.g., steady-state error.
= Convert to firstformvia K = K,; T; = K/K;; Tp = Kq4/K.

6) Lead-lag control

= |f we must satisfy both a transient and steady-state spec:

1. Design a lead controller to meet transient spec first;
2. Include lead controller with plant after its design is final;

3. Design a lag controller (where “plant” = actual plant and lead
controller combined) to meet steady-state spec.
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7.4: Examples (a)

1
(s +1)(s +3)
» The open-loop step response for G(s) is plotted to the left.

EXAMPLE I: We start with the plant G(s) =

= The root locus (assuming proportional control) is plotted to the right.

Step response of open-loop plant . Root locus
1 ............................................................................................... 3 b
0.8 » 2t
x
8 S 1)
206 2
= @ Qe VA N, N N
2 £
(@]
0.4 @ -1r
= E
2r
0.2r
S3F
0 L L L L -4 L L L 1
0 2 4 6 8 10 -6 -5 4 -3 -2 -1 0 1
Time (s) Real axis

= WWe see that the open-loop response is smooth (good), slow (bad),
and has very large steady-state error (bad).

= But, root locus shows that proportional control moves pole locations.

= The plot to the right shows step 12 teR response of closed-loop system
responses of closed-loop ' f
systems with proportional 8o ]
control. T%Zj

m Changing K “shapes” the 02
transient response. % 2 4 5 8 10

Time (s
» Higher values of K speed up the closed-loop response(\;vhen
compared to the open-loop response (good), decrease steady-state
error (good), but also add ringing to the transient response (bad).
s+2
(s+D(s+4)

EXAMPLE 11: We start with the plant G(s) =
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m Using proportional control, we wish to solve for the value of K that
places a closed-loop pole at s = —5.

1 Rqot quus
= First, we draw the locus to 05
ensure that it does pass through &
g () [romm— G_ ...........................
s = —5. E
§ -0.5
= |t does! Looking good so far.
1 5 4 3 P | 0 1
Real axis
= Next, we remember that the root-locus “magnitude condition” gives us
1
K =
|G () ]5=—s
s+ D(s+4)
Bl s + 2 s=-—5
_[=HED
(=3)
4
-3

= We’re done, but we can further double-check that s = —5 is a point on
the root locus using the “angle condition”

[£G($)s=s = [£(s +2) = L(s + 1) = L(s + Ds=—s
= 180° — 180° — 180° = —180°.

m So, the angle condition is satisfied as well (meaning we didn’t have to
draw the root locus to ensure that s = —5 was a valid locus point).

EXAMPLE IlI: We start with the plant
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= Our goal is to have closed-loop
1. M, < 16%. This means that ¢ > 0.5.

2.1, < 10 secs to 1%. This means that \ {
o > 0.46.

3. e, for ramp input< 0.01 when slope BRAEE .
of ramp= 0.01. This means that / -
K, =0.01/0.01 = 1.0.

m Since we need to change transient response, we choose to use a
lead controller.

» Since the plant has a stable real pole, we choose D(s) to
approximately cancel plant pole.

= |nitially, choose s; = —0.5 + j to be a point on the locus. So, we want

|: (10s—|—1) ( 1 )
1+ K
s + po s(10s + 1) J |,

, 10s + 1 1
lims | K > 1
5—0 s + po s(10s + 1)

m The steady-state error spec gives K > p,. For simplicity, choose
K = Po-

and

» The transient spec gives
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1
|:1 " po (S(S + PO)) s=s1

s1(s1 + po) +po=0

=0

st 4 s1po+ po=0

po(l +s1) = —s;

Po

= Solving gives po = 1.1 — 0.2j. This is not a feasible design since p,
must be real.

= Modify py to po = 1.1. This gives
K =1.1, K, = 1, and poles at
—0.55 +£0.893;.

X
N

= This gives w, =~ 1 for pole locations,
sot ~ 1.8s.

» Could choose slightly larger K, still achieve transient-response specs,
but have better steady-state response since K > py.
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7.5: Examples (b)

: 1
EXAMPLE IV: Consider the plant G(s) = —.
\)

= We want to design a compensator
ais + aop
blS + 1

D(s) =

so the closed-loop system has a pole at s; = 2+/2¢/'3 = —2 4+ 2.
(The point s is chosen to achieve ¢ = 0.707 and 7 = 0.55s.)

m Here, there is no stable real pole in G(s), so we use the second
design method for a lead compensator.

. 1
= Step 1, compute ao: We cannot compute ao since — — 00. So,
S71s=0
arbitrarily choose ay = 2.

m Step 2, compute a;: Note, f = 135°, w = —270° because
1 1

G(sy) = — = —e /20",
A) §=2+/2¢i135° 8

_sin(135°) +2(1/8)sin(45°)  (1/¥2)(1+1/4) 5

(2+/2)(1/8) sin(—270°) J2/4 2

m Step 3, compute by:
sin(—135°) +2(1/8)sin(135°)  —(1/+/2)(1 —1/4) 3
1= = = —.

—(2+/2) sin(—270°) —22 16

= S0, the compensator is:

~ (5/2)s+2
- (3/16)s+ 1

D(s)
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Example locus passing through (-2,2)

Imag Axis
B w N - o — N w B
X

‘e 5 4 5 2 1 o0 i
Real Axis
EXAMPLE Vv: An alternative way to solve the prior problem uses

coefficient matching.

as + 2

bis+1

= \We want two closed-loop poles at s = —2 + 2, but recognize that
there will be a total of three closed-loop poles (because of the added

compensator pole).

1
= We have that G(s) = —, and have assumed that D(s) =
A

m S0, we can specify a desired characteristic equation
i) =G6+a)s+2+2j)(s+2—-2))
= (s +a)(s> +4s + 8)
=53+ @+ a)s’ + (8 +4a)s + 8a = 0,
where s = —a is the (unknown a priori) location of the third pole.

» The actual characteristic equation is

xa(s) =14+ D(s)G(s) =0

as + 2 1
- (b1s+ 1) (s_z)

= b’ +s*+as +2=0.
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» The coefficient-matching method forces the polynomial coefficients of
the desired and actual characteristic equations to be the same.

= Looking at the s* coefficients, we could set b, = 1, but then we would
have problems because we cannot simultaneously have

4+0=1 and 8a = 2.

= So, we divide y,(s) by by, without changing its meaning:
2

1 a
3 2 | 1 |
a __ - - - __ Ol
X (S) S bls bls bl

= This has given us another degree of freedom when solving. Now, we

have

1 a 2
4+a=—, 8+4a=— and 8a=_.
ta=gs sFse=g “=p

1 1 1
= Combining the first and third equations gives

2(4+a) = 8a
8 = ba

4

o= —.

3

= With this value of «, we have by =3/16 and a; = 5/2, as before.

EXAMPLE VI: Consider the compensated system of Example lll.
1.1

s(s +1.1)
= We like the transient response (so want to leave it alone), but wish to
improve the steady-state response by a factor of 10.

G(s) =

= This calls for a lag controller. Recall that

K atter = (20/ Po) Kbefore

so, we want zy/po > 10.
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s + 0.01
m Choose pg = 0.001. Then, zo = 0.01 and D(z) = ——.
Po 0 © = TFooor
Lag shifts locus slightly to the right
15 , ! ! ! ! ;
) M -
| ] P EITTITS STTHIPRREITY EORYRIT: SRR P R P PROOYY 444444
x :
<C z
o O % &1
© :
£ osb b o
B D S TP P PPYsPRTE
15 -1 —058 —056 -054 -052 o
Real Axis

m Plots of error versus time without and with the new lag compensator

(simulated using Simulink):
Uncpmpensated

0.014

0.012

0.01}

S

50.008 F

S

S

LL10.006
0.004

0.002

00 é 1IO 1I5 2I0 25
Time (s)
= Notice the different time scales:

time constant to the output.

0.014

0.012

0.01

©0.008 |

p -

S

LLl0.006 |
0.004 |

0.002

. With Iag compensator

A

v

0 200 400 600 800 1000

Time (s)

The lag adds a small-amplitude slow
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7.6: Compensator implementation

= Analog compensators commonly use op-amp circuits.

= See the following pages. ..

Ii(s) 1
1 ||
K K
TR - el
Ii(s) . 1
Fany E
T R(S) —Ks Vl V2
I(s) 1
K
<, Ro) K+ Vet v,
1/(Kz1)
K
I(s)
Vs —K
—D ING) s+ pi
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I(s)
—351 R(s)
I(s)
T R(s)
or
I(s)
| R
or
I(s)
X R(s)
I(s)
X R(s)

K 1
P1
—Ks K
s + p1 2
- K
P1
1
_Ks+m 1
s+ pi v, O__{:i;\/wi »
any p; and z; — P 2
1
a 1
_KS + 21 K1 KIZI
s+ Ppi
K,
_ Kl Vl V2
= K2 1
any p; and z; Kap1 =
Vi o—>J,@ Vs
s+ 23
1
s + P1 1 1
71 >
L= I a-DP LAG
S +Z1 1
s + pi 1 —{}—o
— AN~
71 > <1 — P1
L= m 1 1 LaG
P1
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I(s)

* R(s)
I(s)

X R(s)
I(s)

—(JZ\1 R(s)

s+ 21
s+
P1 > 2

P1

K =—
<1

K

s+ 21
s+ p1
P1 > 21

P1

K =—
<1

K(s+2z1)

<1

LEAD
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