
ECE4510/5510: Feedback Control Systems. 7–1

ROOT-LOCUS CONTROLLER DESIGN

7.1: Using root-locus ideas to design controller

■ We have seen how to draw a root locus for given plant dynamics.

■ We include a variable gain K in a unity-feedback configuration—we

know this as proportional control.

■ Sometimes, proportional control with a carefully chosen value of K is

sufficient for the closed-loop system to meet specifications.

■ But, what if the set of closed-loop pole location does not

simultaneously satisfy the geometry that defines the specifications?

■ We need to modify the locus itself by adding extra dynamics—a

compensator or controller D(s):

r (t) y(t)K G(s)D(s)

■ We redraw the locus and pick K in order to put the poles where we

want them. HOW?

T (s) D
K D(s)G(s)

1C K D(s)G(s)
. Now, let G̃(s) D D(s)G(s)

D

K G̃(s)

1C K G̃(s)
➠ We know how to draw this locus!

■ Adding a compensator effectively adds dynamics to the plant.
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Adding a left-half-plane pole or zero

■ Two questions: (1) What types of compensation should we use, and

(2) how do we figure out where to put the additional dynamics?

■ In ECE4510/5510, the methods we discuss are “science-inspired art.”

� We need to get a “feel” for how the root locus changes when poles

and zeros are added, to understand what dynamics to use for D(s).

■ In more advanced courses, we learn more powerful methods:

� In ECE5520, we learn how to put all closed-loop poles exactly

where we want them (but, where do we want them?)

� In ECE5530, we learn how to find the optimal set of pole locations.

■ But, for us to get started, speaking in generalities, adding a

left-half-plane pole pulls the root locus to the right.

� This tends to lower the system’s relative stability and slow down

the settling of the response.

� But, providing that the closed-loop system is stable, the pole can

also decrease steady-state errors.

� In first plot: The system is stable for all K , responses are smooth.

� In second plot: System also stable for all K , but when poles

become complex, response shows overshoot and oscillations.
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� In third plot: The system is stable only for small K , and oscillations

increase as the poles approach the imaginary axis.

� But, steady-state error improves from left to right (assuming the

closed-loop system is stable).

■ Again, generally speaking, adding a left-half-plane zero pulls the root

locus to the left.

� This tends to make the system more stable, and speed up the

settling of the response.

� Physically, a zero adds derivative control to the system, introducing

anticipation into the system, speeding up transient response.

� However, steady-state errors can get worse.

� In first plot: System is stable only for small K , and oscillates as

poles approach imaginary axis.

� In second plot: System is stable for all K , but still oscillates.

� In third and fourth plots: More stable, less oscillation.

� But, steady-state error degrades from left to right.

■ Can’t physically add a zero without a pole: Must put pole very far left

in s-plane so we don’t deteriorate desired impact of zero.
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7.2: Reducing steady-state error

■ We have a number of options available to us if we wish to reduce

steady-state error.

1) Proportional feedback

D(s) D 1. u(t) D K e(t)

T (s) D
K G(s)

1C K G(s)
.

■ Same as what we have already looked at.

■ Controller consists of only a “gain knob.”

� Increasing gain K often reduces steady-state error, but can

degrade transient response.

� We have to take the locus “as given” since we have no extra

dynamics to modify it.

� Can’t independently choose steady-state error and transient

response. Can design for one or other, not both.

■ Usually a very limited approach, but a good place to start.

2) Integral feedback

D(s) D
1

TI s
u(t) D

K

TI

∫ t

0

e(τ ) dτ

T (s) D

K
TI

G(s)
s

1C K
TI

G(s)
s

.

■ Usually used to reduce/eliminate steady-state error. i.e., if e(t)

constant, u(t) will become very large and hopefully correct the error.

■ Ideally, we would like no error, ess D 0. (Maybe 1 % to 2 % in reality)
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ANALYSIS: For a unity-feedback control system, the steady-state error to

a unit-step input is:

ess D
1

1C K D(0)G(0)
.

■ If we make D(s) D
1

TI s
, then as s ! 0, D(s)!1

ess !
1

1C1
D 0.

■ Adding the integrator into the compensator has reduced error from
1

1C K p

to zero for systems that do not have any free integrators.

■ Adding the integrator increases the system type, but as steady-state

response improves, transient response often degrades.

EXAMPLE: G(s) D
1

(s C a)(s C b)
, a > b > 0.

■ Proportional feedback, D(s) D 1, G(0) D
1

ab
, ess D

1

1C K
ab

.

�a
�b

I(s)

R(s)

■ We can make ess small by

making K very large, but this

often leads to poorly-damped

behavior and often requires

excessively large actuators.

■ Integral feedback, D(s) D
1

TI s
, ess D 0.
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�a
�b

I(s)

R(s)

■ Increasing K to increase the

speed of response pushes

the pole toward the

imaginary axis ➠ oscillatory.

3) Proportional-integral (PI) control

■ Now, D(s) D K

[
1C

1

TI s

]
D K

[
s C (1/TI )

s

]
. Both a pole and a zero.

�a
�b

I(s)

R(s)

■ Combination of proportional

and integral (PI) solves many

of the problems with just (I)

integral.

4) Phase-lag control

■ The integrator in PI control can cause some practical problems; e.g.,

“integrator windup” due to actuator saturation.

■ PI control is often approximated by “lag control.”

D(s) D
(s � z0)

(s � p0)
, jp0j < jz0j.

That is, the pole is closer to the origin than the zero.

■ Because jz0j > jp0j, the phase φ added to the open-loop transfer

function is negative. . . “phase lag”

■ Pole often placed very close to the origin (s D 0). e.g., p0 � 0.01.
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■ Zero is placed near pole. e.g., z0 � 0.1. We want jD(s)j � 1 for all s to

preserve transient response (and hence, have nearly the same root

locus as for a proportional controller).

■ Idea is to improve steady-state error but to modify the transient

response as little as possible.

� That is, using proportional control, we have pole locations we like

already, but poor steady-state error.

� So, we add a lag controller to minimally disturb the existing good

pole locations, but improve steady-state error.

�a
�b

I(s)

R(s)

■ Good steady-state error

without overflow problems.

Very similar to proportional

control.

■ The uncompensated system had loop gain Kbefore D lim
s!0

G(s).

■ The lag-compensated system has loop gain

Kafter D lim
s!0

D(s)G(s) D (z0/p0) lim
s!0

G(s).

■ Since jz0j > jp0j, there is an improvement in the position/velocity/etc.

error constant of the system, and a reduction in steady-state error.

■ Transient response is mostly unchanged, but slightly slower settling

due to small-magnitude slow “tail” caused by lag compensator.
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7.3: Improving transient response

■ We have a number of options available to us if we wish to improve

transient response

1) Proportional feedback

■ Again, we could use a proportional feedback controller.

■ It has the same benefits and limitations that we’ve already seen.

2) Derivative feedback

D(s) D TDs, u(t) D K TD Pe(t).

■ Does nothing to help the steady-state error. In fact, it can make it

worse.

■ But, derivative control provides feedback that is proportional to the

rate-of-change of e(t) ➠ control response ANTICIPATES future errors.

■ Very beneficial—tends to smooth out response, reduce ringing.

EXAMPLE: G(s) D
1

(s C a)(s C b)
, D(s) D TDs.

�a
�b

I(s)

R(s)
■ No ringing. “Very” stable.

3) Proportional-derivative (PD) control

■ Often, proportional control and derivative control go together.

D(s) D 1C TDs.
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�a
�b

I(s)

R(s)

■ No more zero at s D 0.

■ Therefore better steady-state

response.

4) Phase-lead control

■ Derivative magnifies sensor noise.

■ Instead of D-control or PD-control use “lead control.”

D(s) D
(s � z0)

(s � p0)
, jz0j < jp0j.

That is, the zero is closer to the origin than the pole.

■ Same form as lag control, but with different intent:

� Lag control does not change locus much since p0 � z0 � 0.

Instead, lag control improves steady-state error.

� Lead control DOES change locus. Pole and zero locations chosen

so that locus will pass through some desired point s D s1.

DESIGN METHOD I: Sometimes, we can be successful by choosing the

value of z0 to cancel a stable pole in the plant.

■ Then, we solve for K and p0 such that

[1C K D(s)G(s)jsDs1
D 0.

■ That is, we force one closed-loop pole to be at s D s1.

■ This does not ensure that other poles do anything reasonable, so we

must always test design.
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■ And, what about pole-zero cancelation? Can it occur?

If our zero is too far left If our zero is too far right

p1

p2z0p0

p1

p2z0p0

■ Either way, the locus is still okay. (What if we tried to cancel an

unstable pole?)

DESIGN METHOD II: If there is no stable real pole to cancel, we can still

use similar approach.

■ Use somewhat modified version of lead compensator form

D(s) D
a1s C a0

b1s C 1
.

■ Choose a0 to get specified dc gain (e.g., open-loop gain=K p, Kv, . . .)∣∣∣∣
[

a1s C a0

b1s C 1

]
G(s)

∣∣∣∣
sD0

D dc gain.

ja0jjG(0)j D dc gain.

a0 D
Desired dc gain

jG(0)j
.

■ a1 and b1 are chosen to make locus go through s D s1,[
a1s1 C a0

b1s1 C 1

]
G(s1) D �1

for that point to be on the root locus.
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➠ Magnitude

∣∣∣∣
a1s1 C a0

b1s1 C 1

∣∣∣∣ jG(s1)j D 1

➠ Phase 6

[
a1s1 C a0

b1s1 C 1

]
C

6 G(s1) D 180Æ.

(math happens)

a1 D
sin(β)C a0jG(s1)j sin(β � ψ)

js1jjG(s1)j sin(ψ)

b1 D
sin(β C ψ)C a0jG(s1)j sin(β)

�js1j sin(ψ)





s1 D js1je
jβ

G(s1) D jG(s1)je
jψ.

5) Proportional-integral-derivative (PID) control

■ There is a similar design procedure for PID control:

D(s) D K

[
1C

1

TI s
C TDs

]
D K p C

K I

s
C Kds.

■ Compute: K p D
� sin(β C ψ)

jG(s1)j sin(β)
�

2K I cosβ

js1j

■ Compute: Kd D
sin(ψ)

js1jjG(s1)j sin(β)
C

K I

js1j
2
, where s1 D js1je

jβ and

G(s1) D jG(s1)je
jψ for both cases.

■ TI chosen to match some design criteria. e.g., steady-state error.

■ Convert to first form via K D K p; TI D K/K I ; TD D Kd/K .

6) Lead-lag control

■ If we must satisfy both a transient and steady-state spec:

1. Design a lead controller to meet transient spec first;

2. Include lead controller with plant after its design is final;

3. Design a lag controller (where “plant” = actual plant and lead

controller combined) to meet steady-state spec.
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7.4: Examples (a)

EXAMPLE I: We start with the plant G(s) D
1

(s C 1)(s C 3)
.

■ The open-loop step response for G(s) is plotted to the left.

■ The root locus (assuming proportional control) is plotted to the right.
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■ We see that the open-loop response is smooth (good), slow (bad),

and has very large steady-state error (bad).

■ But, root locus shows that proportional control moves pole locations.

■ The plot to the right shows step

responses of closed-loop

systems with proportional

control.

■ Changing K “shapes” the

transient response. 0 2 4 6 8 10
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■ Higher values of K speed up the closed-loop response when

compared to the open-loop response (good), decrease steady-state

error (good), but also add ringing to the transient response (bad).

EXAMPLE II: We start with the plant G(s) D
s C 2

(s C 1)(s C 4)
.
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■ Using proportional control, we wish to solve for the value of K that

places a closed-loop pole at s D �5.

■ First, we draw the locus to

ensure that it does pass through

s D �5.

■ It does! Looking good so far.
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■ Next, we remember that the root-locus “magnitude condition” gives us

K D

1

jG(s)j

∣∣∣∣
sD�5

D

∣∣∣∣
(s C 1) (s C 4)

s C 2

∣∣∣∣
sD�5

D

∣∣∣∣
(�4)(�1)

(�3)

∣∣∣∣

D

4

3
.

■ We’re done, but we can further double-check that s D �5 is a point on

the root locus using the “angle condition”

[ 6 G(s)jsD�5 D [ 6 (s C 2)� 6 (s C 1)� 6 (s C 4)jsD�5

D 180Æ � 180Æ � 180Æ D �180Æ.

■ So, the angle condition is satisfied as well (meaning we didn’t have to

draw the root locus to ensure that s D �5 was a valid locus point).

EXAMPLE III: We start with the plant

Lecture notes prepared by and copyright © 1998–2021, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, ROOT-LOCUS CONTROLLER DESIGN 7–14

G(s) D
1

s(10s C 1)
.

■ Our goal is to have closed-loop

1. Mp < 16%. This means that ζ � 0.5.

2. ts < 10 secs to 1%. This means that

σ � 0.46.

3. ess for ramp input< 0.01 when slope

of rampD 0.01. This means that

Kv D 0.01/0.01 D 1.0.

�2 �1.5 �1 �0.5

1

�1

■ Since we need to change transient response, we choose to use a

lead controller.

■ Since the plant has a stable real pole, we choose D(s) to

approximately cancel plant pole.

D(s) D
10s C 1

s C p0

.

■ Initially, choose s1 D �0.5C j to be a point on the locus. So, we want
[

1C K

(
10s C 1

s C p0

)(
1

s(10s C 1)

)∣∣∣∣
sDs1

D 0

and

lim
s!0

s

[
K

(
10s C 1

s C p0

)(
1

s(10s C 1)

)]
� 1.

■ The steady-state error spec gives K � p0. For simplicity, choose

K D p0.

■ The transient spec gives
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1C p0

(
1

s(s C p0)

)∣∣∣∣
sDs1

D 0

s1(s1 C p0)C p0 D 0

s2
1 C s1 p0 C p0 D 0

p0(1C s1) D �s2
1

p0 D �
s2

1

1C s1

.

■ Solving gives p0 D 1.1� 0.2 j . This is not a feasible design since p0

must be real.

■ Modify p0 to p0 D 1.1. This gives

K D 1.1, Kv D 1, and poles at

�0.55� 0.893 j .

■ This gives ωn � 1 for pole locations,

so tr � 1.8 s.

■ Could choose slightly larger K , still achieve transient-response specs,

but have better steady-state response since K � p0.
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7.5: Examples (b)

EXAMPLE IV: Consider the plant G(s) D
1

s2
.

■ We want to design a compensator

D(s) D
a1s C a0

b1s C 1

so the closed-loop system has a pole at s1 D 2
p

2e j135Æ
D �2C 2 j .

(The point s1 is chosen to achieve ζ D 0.707 and τ D 0.5 s.)

■ Here, there is no stable real pole in G(s), so we use the second

design method for a lead compensator.

■ Step 1, compute a0: We cannot compute a0 since
1

s2

∣∣∣∣
sD0

!1. So,

arbitrarily choose a0 D 2.

■ Step 2, compute a1: Note, β D 135Æ, ψ D �270Æ because

G(s1) D
1

s2

∣∣∣∣
sD2

p

2e j135Æ

D

1

8
e� j270Æ.

a1 D
sin(135Æ)C 2(1/8) sin(45Æ)

(2
p

2)(1/8) sin(�270Æ)
D

(1/
p

2)(1C 1/4)
p

2/4
D

5

2
.

■ Step 3, compute b1:

b1 D
sin(�135Æ)C 2(1/8) sin(135Æ)

�(2
p

2) sin(�270Æ)
D

�(1/
p

2)(1� 1/4)

�2
p

2
D

3

16
.

■ So, the compensator is:

D(s) D
(5/2)s C 2

(3/16)s C 1
.
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EXAMPLE v: An alternative way to solve the prior problem uses

coefficient matching.

■ We have that G(s) D
1

s2
, and have assumed that D(s) D

a1s C 2

b1s C 1
.

■ We want two closed-loop poles at s D �2� 2 j , but recognize that

there will be a total of three closed-loop poles (because of the added

compensator pole).

■ So, we can specify a desired characteristic equation

χd(s) D (s C α)(s C 2C 2 j)(s C 2� 2 j)

D (s C α)(s2
C 4s C 8)

D s3
C (4C α)s2

C (8C 4α)s C 8α D 0,

where s D �α is the (unknown a priori) location of the third pole.

■ The actual characteristic equation is

χa(s) D 1C D(s)G(s) D 0

D 1C

(
a1s C 2

b1s C 1

) (
1

s2

)

D b1s3
C s2

C a1s C 2 D 0.

Lecture notes prepared by and copyright © 1998–2021, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, ROOT-LOCUS CONTROLLER DESIGN 7–18

■ The coefficient-matching method forces the polynomial coefficients of

the desired and actual characteristic equations to be the same.

■ Looking at the s3 coefficients, we could set b1 D 1, but then we would

have problems because we cannot simultaneously have

4C α D 1 and 8α D 2.

■ So, we divide χa(s) by b1, without changing its meaning:

χa(s) D s3
C

1

b1

s2
C

a1

b1

s C
2

b1

D 0.

■ This has given us another degree of freedom when solving. Now, we

have

4C α D
1

b1

, 8C 4α D
a1

b1

and 8α D
2

b1

.

■ Combining the first and third equations gives

2(4C α) D 8α

8 D 6α

α D
4

3
.

■ With this value of α, we have b1 D 3/16 and a1 D 5/2, as before.

EXAMPLE VI: Consider the compensated system of Example III.

G(s) D
1.1

s(s C 1.1)
.

■ We like the transient response (so want to leave it alone), but wish to

improve the steady-state response by a factor of 10.

■ This calls for a lag controller. Recall that

Kafter D (z0/p0) Kbefore,

so, we want z0/p0 � 10.
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■ Choose p0 D 0.001. Then, z0 D 0.01 and D(z) D
s C 0.01

s C 0.001
.
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Lag shifts locus slightly to the right

■ Plots of error versus time without and with the new lag compensator

(simulated using Simulink):
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■ Notice the different time scales: The lag adds a small-amplitude slow

time constant to the output.
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7.6: Compensator implementation

■ Analog compensators commonly use op-amp circuits.

■ See the following pages. . .
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