
ECE4510/5510: Feedback Control Systems. 6–1

ROOT-LOCUS ANALYSIS

6.1: Manually plotting a root locus

■ Recall step response: transfer-function pole locations determine

performance characteristics such as rise and settling time, overshoot.

■ We have also seen that feedback can change pole locations in the

system transfer function and therefore performance is changed.

■ Suppose that we have a single variable design parameter in our

control system and we wish to select its value.

� We could consider making a parametric plot of the system’s pole

locations as that parameter’s value changes.

� Then, select the value that gives “best” combination of pole

locations (w.r.t. desired performance specs.).

■ Poles are the roots of the denominator of the transfer function

(a.k.a. the “characteristic polynomial.”), and we are plotting all

possible sets of locations (i.e., a locus) of these poles versus a single

parameter, the resulting plot is called an Evans root-locus plot.

VERY IMPORTANT NOTE: Root locus is a parametric plot (vs. K ) of the

roots of an equation

1C K
b(s)

a(s)
D 0 or a(s)C K b(s) D 0.

■ For now, we specialize to a common control configuration: unity

feedback, proportional gain (we’ll generalize configuration later)
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R(s) Y (s)K G(s)

� Closed-loop transfer function

T (s) D
K G(s)

1C K G(s)
.

� Poles = roots of 1C K G(s) D 0.

■ Assume plant transfer function G(s) is rational polynomial:

G(s) D
b(s)

a(s)
,

such that

b(s) D (s � z1)(s � z2) � � � (s � zm) (b(s) is monic.)

a(s) D (s � p1)(s � p2) � � � (s � pn) n � m (a(s) is monic.)

[a(s) may be assumed monic without loss of generality. If b(s) is not

monic, then its gain is just absorbed as part of K in 1C K G(s) D 0]

� zi are zeros of G(s), the OPEN-LOOP transfer function.

� pi are poles of G(s), the OPEN-LOOP transfer function.

■ CLOSED-LOOP poles are roots of equation

1C K G(s) D 0

a(s)C K b(s) D 0,

which clearly move as a function of K .

■ Zeros are unaffected by feedback.
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EXAMPLE: G(s) D
1

s(s C 2)
. Find the root locus.

■ a(s) D s(s C 2); b(s) D 1.

■ Locus of roots: (aside: stable for all K > 0 .)

s(s C 2)C K D 0

s2
C 2s C K D 0.

■ For this simple system we can easily solve for the roots.

s1,2 D
�2�

p

4� 4K

2
D �1�

p

1� K .

■ Roots are real and

negative for 0 < K < 1.

■ Roots are complex

conjugates for K > 1.

s1 at K D 0

s2 at K D 0K D 1

I(s)

R(s)

■ Suppose we want damping ratio ζ D 0.707. We can recall that

s2
C 2ζωns C ω2

n D 0

m

s2
C 2s C K D 0









K D 2

or we can locate the point on the root locus where

jRfpolesgj D jIfpolesgj.

j � 1j D j
p

1� K j

2 D K .

(or, K D 0, not an appropriate solution).
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6.2: Root-locus plotting rule #1

■ Factoring a quadratic is okay; factoring a cubic or quartic is painful;

factoring a higher-order polynomial is not possible in closed form, in

general.

■ So, we seek methods to plot a root locus that do not require actually

solving for the root locations for every value of K .

■ Assuming still that a(s) and b(s) are monic (which may mean that a

gain factor is absorbed into K ), we first consider plotting the locus of

roots for 0 � K � 1.

� This is a standard “180Æ” root locus.

� If �1 � K � 0, then a similar procedure will yield a “0Æ” root locus.

■ A point s1 is on the root locus if 1C K G(s1) D 0.

■ Equivalently, K D
�1

G(s)
. Because G(s) is complex, this is really two

equations!

jK j D

∣
∣
∣
∣

1

G(s)

∣
∣
∣
∣

(6.1)

6 G(s) D 6

(
�1

K

)

. (6.2)

■ Since K is real and positive, 6 K D 0.

Therefore, 6 G(s) D 180Æ � l360Æ, l D 0, 1, 2, . . .

■ So once we know a point on the root locus, we can use the

magnitude equation Eq. (6.1) to find the gain K that produced it.

■ We will use the angle equation Eq. (6.2) to plot the locus. i.e., the

locus of the roots = all points on s-plane where 6 G(s) D 180Æ � l360Æ.
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NOTES:

1. We’ll learn techniques so we don’t need to test each s-plane point!

2. The angle criteria explains the term “180Æ root locus” when K � 0.

3. It also explains the term “0Æ root locus” when K � 0.

KEY TOOL: For any point on the s-plane

6 G(s) D
∑

6 (due to zeros)�
∑

6 (due to poles).

EXAMPLE: G(s) D
(s � z1)

(s � p1)(s � p2)
.

θp1θp2θz1

Test point
s1

I(s)

R(s)
6 G(s1) D θz1

� θp1
� θp2

.

Locus on the real axis

■ Consider a test point s1 on the real axis.

■ If the point is right of all poles

and zeros of G(s), then

6 G(s) D 0.

■ NOT ON THE LOCUS.

6 G(s) D 6 z1 �
6 p1 �

6 p2 �
6

Np2

D 0� 0� 6 p2 �
6

Np2

D 0.

z1 p1

Test point
s1

p2

Np2

I(s)

R(s)
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OBSERVATION: If test point is on the real axis, complex-conjugate roots

have equal and opposite angles that cancel and may be ignored.

■ If the test point is to the left of ONE pole or zero, the angle will be

�180Æ or C180Æ (D �180Æ) so that point IS on the locus.

■ If the test point s1 is to the left of

� 1 pole and 1 zero: 6 G(s1) D 180Æ � (�180Æ) D 360Æ D 0Æ.

� 2 poles: 6 G(s1) D �180Æ � 180Æ D �360Æ D 0Æ.

� 2 zeros: 6 G(s1) D 180Æ C 180Æ D 360Æ D 0Æ.

➠ NOT ON THE LOCUS.

GENERAL RULE #1

All points on the real axis to the left of an odd number of poles and zeros

are part of the root locus.

EXAMPLE:

G(s) D
1

s(s C 4C 4 j)(s C 4� 4 j)
.

I(s)

R(s)

EXAMPLE:

G(s) D
s C 8

s C 1
.

I(s)

R(s)
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6.3: Root-locus plotting rule #2

Locus not on the real axis

OBSERVATION: Because our system models are rational-polynomial with

real coefficients, poles must either be real or come as conjugate pairs.

■ Thus, the root locus is symmetric with respect to the real axis.

■ This helps, but is not sufficient for filling in what happens with

complex-conjugate poles as K varies from 0 to1.

■ As a first step in doing so, we consider what happens at limiting

cases K D 0 and K D 1. Note, we can write 1C K G(s) D 0 as

(s � p1)(s � p2) � � � (s � pn)C K (s � z1)(s � z2) � � � (s � zm) D 0.

■ At K D 0 the closed-loop poles equal the open-loop poles.

■ As K approaches1, we can rewrite the expression as

(s � p1)(s � p2) � � � (s � pn)

K
C (s � z1)(s � z2) � � � (s � zm) D 0I

the n closed-loop poles approach the zeros of the open-loop transfer

function, INCLUDING THE n � m ZEROS AT C
1.

■ The m closed-loop poles going to the m open-loop zeros are “easy.”

■ The n �m remaining poles going to C
1 are a little more tricky. (Plug

s D 1 into G(s) and notice that it equals zero if m < n.)

■ The idea of1 in the complex plane is a number with infinite

magnitude and some angle.

■ To find where they go as K !1, consider that the m finite zeros

have canceled m of the poles. Looking back at the remaining n �m
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poles (standing at C1), we have approximately

1C K
1

(s � α)n�m
D 0,

or n � m poles clustered/centered at α.

■ We need to determine α, the center of the locus, and the directions

that the poles take.

■ Assume s1 D Re jφ is on the locus, R large and fixed, φ variable. We

use geometry to see what φ must be for s1 to be on the locus.

■ Since all of the open-loop poles are at approximately the same place

α, the angle of G(s1) is 180Æ if the n � m angles from α to s1 sum to

180.

(n � m)φl D 180Æ C l360Æ, l D 0, 1, . . . , n � m � 1

or

φl D
180Æ C 360Æ(l � 1)

n � m
, l D 1, 2, . . . , n �m.

■ So, if

n � m D 1I

φ D C180Æ.

There is one pole going to C
1

along the negative real axis.

n � m D 2I

φ D �90Æ.

There are two poles going to

C
1 vertically.

n � m D 3I

φ D �60Æ, 180Æ.

One goes left and the other two

go at plus and minus 60Æ.

(etc)
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■ To find the center, α, note that roots of denominator of G(s) satisfy:

sn
C a1sn�1

C a2sn�2
C � � � C an D (s � p1)(s � p2) � � � (s � pn)

➠ a1 D �

∑

pi .

■ Note that the roots of the denominator of T (s) are

sn
C a1sn�1

C a2sn�2
C � � � C an C K (sm

C b1sm�1
C � � � C bm) D 0.

If n � m > 1 then the (n � 1)st coefficient of the closed loop system is

such that a1 D �

∑

ri where ri are the closed-loop poles.

■ We know that m poles go to the zeros of G(s), and assume the other

n �m are clustered at
1

(s � α)n�m
. Therefore, the asymptotic sum of

roots is (n � m)α C
∑

zi .

■ Putting this all together,
∑

ri D (n � m)α C
∑

zi D

∑

pi

or

α D

∑

pi �
∑

zi

(n �m)
.

GENERAL RULE #2

■ All poles go from their open-loop locations at K D 0 to:

� The zeros of G(s), or

� To C
1

.

■ Those going to C
1

go along asymptotes

φl D
180Æ C 360Æ(l � 1)

n � m

centered at

α D

∑

pi �
∑

zi

n � m
.
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EXAMPLES:

➀ ➁

➂ ➃

➄
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6.4: Additional techniques

■ The two general rules given, plus some experience are enough to

sketch root loci. Some additional rules help when there is ambiguity.

(As in examples ➁, ➄)

Departure angles; arrival angles

■ We know asymptotically where poles go, but need to know how they

start, and how they end up there.

■ Importance: One of the following systems is stable for all K > 0, the

other is not. Which one?

I(s)

R(s)

I(s)

R(s)

■ We will soon be able to answer this. Consider an example:

EXAMPLE:

G(s) D
1

s(s C 4C 4 j)(s C 4� 4 j)
.

■ Take a test point s0 very close to

p1. Compute 6 G(s0).
Nφ1

φ2

p1

Np1

p2

I(s)

R(s)
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■ If on locus

�90Æ � φ1 � 135Æ D 180Æ C 360Æl l D 0, 1, . . .

where

Nφ1 D Angle from Np1 to s0 � 90Æ.

φ1 D Angle from p1 to s0.

φ2 D Angle from p2 to s0 � 135Æ.

➠φ1 D �45Æ.

■ Can now draw “departure of poles” on locus.

■ Single-pole departure rule:

φdep D

∑

6 (zeros)�
∑

6 (remaining poles)� 180Æ � 360Æl.

■ Multiple-pole departure rule: (multiplicity q � 1)

qφdep D

∑

6 (zeros)�
∑

6 (remaining poles)� 180Æ � 360Æl.

■ Multiple-pole arrival rule: (multiplicity q � 1)

qψarr D

∑

6 (poles)�
∑

6 (remaining zeros)C 180Æ � 360Æl.

■ Note: The idea of adding 360Æl is to add enough angle to get the

result within �180Æ. Also, if there is multiplicity, then l counts off the

different angles.

Imaginary axis crossings

■ Routh stability test can be run to find value for K D K 0 that causes

marginal stability.
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■ Substitute K 0 and find roots of a(s)C K 0b(s) D 0.

■ Alternatively, substitute K 0, let s D jω0, solve for

a( jω0)C K 0b( jω0) D 0. (Real and Imaginary parts)

Points with multiple roots

■ Sometimes, branches of the locus intersect. (see ➁, ➄ on pg. 6–10).

■ Computing points of intersection can clarify ambiguous loci.

■ Consider two poles approaching each other on the real axis:

I(s)

R(s)

■ As two poles approach each other gain is increasing.

■ When they meet, they break away from the real axis and so K

increases only for complex parts of the plane.

■ Therefore gain K along a branch of the locus is maximum at

breakaway point.

■ Gain K is minimum along a branch of the locus for arrival points.

■ Both are “saddle points” in the s-plane.

■ So,

dK

ds
D 0,

where 1C K G(s) D 0

K D
�1

G(s)
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or,
d

ds

(
�1

G(s)

)

sDs0

D 0 ➠ multiple root at s0.

[must verify that s0 is on the root locus. May be an extraneous result.]

■ Some similar loci for which knowing saddle points clarifies ambiguity:

I(s)

R(s)

I(s)

R(s)

I(s)

R(s)

I(s)

R(s)

Finding K for a specific locus point

■ Recall the governing rules for a point to be on the root-locus

(Eqs. (6.1) and (6.2))

jK j D

∣
∣
∣
∣

�1

G(s)

∣
∣
∣
∣

and 6 G(s) D 6

(
�1

K

)

.

■ The phase equation is used to plot the locus.

■ The magnitude equation may be used to find the value of K to get a

specific set of closed-loop poles.

■ That is, K D

∣
∣
∣
∣

�1

G(s0)

∣
∣
∣
∣

is the gain to put a pole at s0, if s0 is on the locus.
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Summary: Root-locus drawing rules (180Æ locus)

■ The steps in drawing a 180Æ root locus follow from the basic phase definition. This is the locus of

1 C K
b(s)

a(s)
D 0, K � 0

(

phase of
b(s)

a(s)
D �180Æ

)

.

■ They are

� STEP 1: On the s-plane, mark poles (roots of a(s)) by an � and zeros (roots of b(s)) with an Æ.

There will be a branch of the locus departing from every pole and a branch arriving at every zero.

� STEP 2: Draw the locus on the real axis to the left of an odd number of real poles plus zeros.

� STEP 3: Draw the asymptotes, centered at α and leaving at angles φ, where

n � m D number of asymptotes.

n D order of a(s)

m D order of b(s)

α D

∑

pi �
∑

zi

n � m
D

�a1 C b1

n �m

φl D
180Æ C (l � 1)360Æ

n � m
, l D 1, 2, . . . n � m.

For n � m > 0, there will be a branch of the locus approaching each asymptote and departing to

infinity.

� STEP 4: Compare locus departure angles from the poles and arrival angles at the zeros where

qφdep D

∑

ψi �

∑

φi � 180Æ � l360Æ

qψarr D

∑

φi �

∑

ψi C 180Æ � l360Æ,

where q is the order of the pole or zero and l takes on q integer values (l D 0, 1, . . . , q � 1) so

that the angles are between �180Æ . ψi is the angle of the line going from the i th zero to the

pole or zero whose angle of departure or arrival is being computed. Similarly, φi is the angle of

the line from the i th pole.

� STEP 5: If further refinement is required at the stability boundary, assume s0 D jω0 and

compute the point(s) where the locus crosses the imaginary axis for positive K .

� STEP 6: For the case of multiple roots, two loci come together at 180Æ and break away at �90Æ.

Three loci segments approach each other at angles of 120Æ and depart at angles rotated by 60Æ.

� STEP 7 Complete the locus, using the facts developed in the previous steps and making

reference to the illustrative loci for guidance. The loci branches start at poles and end at zeros or

infinity.

� STEP 8 Select the desired point on the locus that meets the specifications (s0), then use the

magnitude condition to find that the value of K associated with that point is

K D

1

jb (s0) /a (s0)j
.
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6.5: Some examples

EXAMPLE:

R(s) Y (s)K
(s C 1)(s C 2)

s(s C 4)

I(s)

R(s)

EXAMPLE: This example is NOT a unity-feedback case, so we need to

be careful.

R(s) Y (s)K
s C 2

s � 10

s C 3

s C 1

■ Recall that the root-locus rules plot the locus of roots of the equation

1C K
b(s)

a(s)
D 0.

■ Compute T (s) to find the characteristic equation as a function of K .

T (s) D
K sC2

s�10

1C K (sC2)(sC3)
(sC1)(s�10)

D

K (s C 2)(s C 1)

(s C 1)(s � 10)C K (s C 2)(s C 3)
.

■ Poles of T (s) at (s C 1)(s � 10)C K (s C 2)(s C 3) D 0 or

1C K
(s C 2)(s C 3)

(s C 1)(s � 10)
D 0.
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I(s)

R(s)

1) “Open loop” poles and zeros:

2) Real axis

3) Asymptotes

4) Departure angles

5) Stability boundary: Note, characteristic equation

D (s C 1)(s � 10)C K (s C 2)(s C 3)

D s2
� 9s � 10C K s2

C 5K s C 6K

D (K C 1)s2
C (5K � 9)s C 6K � 10

Routh Array

s2 K C 1 6K � 10 K > �1

s1 5K � 9 K >
9

5
D 1.8  stability criterion

s0 6K � 10 K >
10

6
D 1.66

■ When K D 9/5, the s1 row of the Routh array is zero—top row

becomes a factor of the characteristic equation. Imag.-axis crossings

where
(

9

5
C 1

)

s2
C

(

6
9

5
� 10

)

D 0

Lecture notes prepared by and copyright © 1998–2021, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, ROOT-LOCUS ANALYSIS 6–18

14s2
C 4 D 0 . . . s D � j

√

2

7
.

I(s)

R(s)

6) Breakaway points

K (s) D
�(s C 1)(s � 10)

(s C 2)(s C 3)
D

�(s2
� 9s � 10)

s2
C 5s C 6

d

ds
K (s) D

�(s C 1)(s � 10)(2s C 5)� (�2s C 9)(s C 2)(s C 3)

(den)2
D 0

D

(

�2s3
C 18s2

C 20s � 5s2
C 45s C 50

)

�

(

�2s3
� 10s2

� 12s C 9s2
C 45s C 54

)

D 0

D (�2C 2)s3
C (18� 5C 10� 9)s2

C

(20C 45C 12� 45)s C (50� 54) D 0

D 14s2
C 32s � 4 D 0

s D
�32�

√

322
� 4(14)(�4)

28
D

�32�
p

1248

28

roots at f0.118, �2.40g. Now we can complete the locus:

I(s)

R(s)
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6.6: A design example, and extensions

EXAMPLE:

R(s) Y (s)K
1

s C a

C

s C 1

s2

■ Two design parameters: K , pole location �a.

G(s) D
s C 1

s2(s C a)
.

■ Test a D 2, a D 50, a D 9.

1) Poles and zeros of G(s).

I(s)

R(s)

2) Real axis.

3) Asymptotes:

n �m D 2

α D

∑

pi �
∑

zi

2
D

0C 0C (�a)� (�1)

2
D

1� a

2

α D f�0.5, �24.5, �4g

φl D
180Æ C 360Æ(l � 1)

2
D �90Æ.

4) Departure angles for two poles at s D 0.

2φdep D

∑

6 (zeros)�
∑

6 (remaining poles)� 180Æ � 360Æl
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D 0� 0� 180Æ � 360Æl

φdep D �90Æ �
360Æ

2
l D �90Æ.

5) Will always be stable for K > 0.

6) Breakaway points:

K (s) D
�s2(s C a)

s C 1

d

ds
K (s) D �

(
(s C 1)(3s2

C 2as)� s2(s C a)(1)

(s C 1)2

)

D 0

D s
(

2s2
C (a C 3)s C 2a

)

D 0

breakaway at

{

0,
�(a C 3)�

√

(a C 3)2 � 4(2)(2a)

2(2)

}

saDf2,50,9g D
{

�1.25� j
√

7/16
︸ ︷︷ ︸

not on locus

, (�2.04 and � 24.46), �3
}

and 0

I(s)

R(s)

a D 2

D

D

I(s)

R(s)

D

a D 9

D

I(s)

R(s)

D

D

a D 50
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Matlab and root loci

■ If G(s) D
b(s)

a(s)
D

b0sm
C b1sm�1

C � � � C bm

a0sn
C a1sn�1

C � � � C an

.

b = [b0 b1 b2 . . . bm];

a = [a0 a1 a2 . . . an];

rlocus(b,a); % plots the root locus

■ Also, k=rlocfind(b,a); returns the value of K for a specific point on the

root locus (graphical, with a mouse).

Extensions to root-locus method—Time delay

■ A system with a time delay has the form

G(s) D e�τdsG 0(s)

where τd is the delay and G 0(s) is the non-delayed system.

■ This is not in rational-polynomial form. We cannot use root locus

techniques directly.

METHOD 1:

■ Approximate e�τds by

[
b0s C b1

a0s C 1

]

, a polynomial.

■ Padé approximation.

e�τds
�

1� (τds/2)

1C (τds/2)
First-order approximation

�

1� τds/2C (τds)2/12

1C τds/2C (τds)2/12
Second-order approximation.

�

1

1C τds
Very crude.

■ Extremely important for digital control!!!
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METHOD 2:

■ Directly plot locus using phase condition.

■ i.e., 6 G(s) D (�τdω)C 6 G 0(s) if s D σ C jω.

■ i.e., look for places where 6 G 0(s) D 180Æ C τdω C 360Æl.

■ Fix ω, search horizontally for locus.

Summary: Root-locus drawing rules (0Æ locus)

■ We have assumed that 0 � K <1, and that G(s) has monic b(s) and

a(s). If K < 0 or a(s)/b(s) has a negative sign preceding it, we must

change our root-locus plotting rules.

■ Recall that we plot

1C K G(s) D 0

G(s) D
�1

K

6 G(s) D

{

180Æ, if K positiveI

0Æ, if K negative.

■ In the following summary of drawing a 0Æ root locus, the steps which

have changed are highlighted.

■ The steps in drawing a 0Æ root locus follow from the basic phase definition. This is the locus of

1 C K
b(s)

a(s)
D 0, K � 0

(

phase of
b(s)

a(s)
D 0Æ

)

.

■ They are

� STEP 1: On the s-plane, mark poles (roots of a(s)) by an � and zeros (roots of a(s)) with an Æ.

There will be a branch of the locus departing from every pole and a branch arriving at every zero.

� STEP 2: Draw the locus on the real axis to the left of an even number of real poles plus zeros.
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� STEP 3: Draw the asymptotes, centered at α and leaving at angles φ, where

n � m D number of asymptotes.

n D order of a(s)

m D order of b(s)

α D

∑

pi �
∑

zi

n � m
D

�a1 C b1

n � m

➠ φl D
(l � 1)360Æ

n � m
, l D 1, 2, . . . n � m.

For n � m > 0, there will be a branch of the locus approaching each asymptote and departing to

infinity.

� STEP 4: Compare locus departure angles from the poles and arrival angles at the zeros where

➠ qφdep D

∑

ψi �

∑

φi � l360Æ

➠ qψarr D

∑

φi �

∑

ψi � l360Æ,

where q is the order of the pole or zero and l takes on q integer values so that the angles are

between �180Æ . ψi is the angle of the line going from the i th zero to the pole or zero whose

angle of departure or arrival is being computed. Similarly, φi is the angle of the line from the i th

pole.

� STEP 5: If further refinement is required at the stability boundary, assume s0 D jω0 and

compute the point(s) where the locus crosses the imaginary axis for positive K .

� STEP 6: For the case of multiple roots, two loci come together at 180Æ and break away at �90Æ.

Three loci segments approach each other at angles of 120Æ and depart at angles rotated by 60Æ.

� STEP 7: Complete the locus, using the facts developed in the previous steps and making

reference to the illustrative loci for guidance. The loci branches start at poles and end at zeros or

infinity.

� STEP 8: Select the desired point on the locus that meets the specifications (s0), then use the

magnitude condition to find that the value of K associated with that point is

K D

1

jb (s0) /a (s0)j
.
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