
ECE4510/5510: Feedback Control Systems. 4–1

BASIC PROPERTIES OF FEEDBACK

4.1: Setting up an example to benchmark controllers

■ There are two basic types/categories of control systems:

OPEN LOOP:

Ctrlrr (t) y(t)

Disturbance

Plant

CLOSED LOOP:

Ctrlrr (t) y(t)

Disturbance

Plant

Sensor

■ This chapter of notes is concerned with comparing open-loop and

closed-loop control, and showing the potential benefits (and some

pitfalls) of closed-loop (i.e., feedback) control.

■ We evaluate these two categories of controller in a number of ways:

disturbance rejection, sensitivity, dynamic tracking, steady-state error,

and stability.

DC motor speed control

■ In order to compare open- and closed-loop control, we will use an

extended example.
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■ Recall equations of motion for a dc motor (pg. 2–19) but add a load

torque.

ea(t) eb(t)

ia(t) Ra La b

J
θ(t), τ (t)

︸ ︷︷ ︸

Armature
︸ ︷︷ ︸

Load

τl, load

■ Assume that we are trying to control motor speed:

J Rθ C b Pθ

ke
Pθ C La

dia

dt
C Raia

D

D

kτ ia C τl

ea







let output y D Pθ,

disturbance w
4

D τl.

J Py C by

key C La

dia

dt
C Raia

D

D

kτ ia Cw

ea







s JY (s)C bY (s) D kτ Ia(s)C W (s)

keY (s)C sLa Ia(s)C Ra Ia(s) D Ea(s)

■ Solving the mechanical equation for Ia(s) gives

s JY (s)C bY (s) D kτ Ia(s)C W (s)

kτ Ia(s) D s JY (s)C bY (s)� W (s)

Ia(s) D
(s J C b) Y (s)� W (s)

kτ

.

■ Substituting into the electrical equation gives

keY (s)C sLa Ia(s)C Ra Ia(s) D Ea(s)

keY (s)C (sLa C Ra)
(s J C b) Y (s)� W (s)

kτ

D Ea(s).

■ Some algebra then yields
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keY (s)C (sLa C Ra)
(s J C b) Y (s)� W (s)

kτ

D Ea(s)

kτkeY (s)C (sLa C Ra) (s J C b) Y (s) D kτ Ea(s)C (Ra C Las) W (s)

(

J Las2
C (bLa C J Ra) s C (bRa C kτke)

)

Y (s) D kτ Ea(s)C (Ra C Las) W (s).

■ Dividing both sides by bRa C kτke gives
(

J La

bRaCkτke

s2
C

bLaCJ Ra

bRaCkτke

s C 1

)

Y (s) D
kτ

bRaCkτke

Ea(s)C
RaCLas

bRaCkτke

W (s).

■ The left-hand-side can be factored into two parts:
(

J La

bRa C kτke

s2
C

bLa C J Ra

bRa C kτke

s C 1

)

D (τ1s C 1) (τ2s C 1) .

� Roughly, one of these time constants is mechanical; the other is

electrical.

■ If we assume that the mechanical time constant is much larger than

the electrical, the right-hand-side can be approximated by

kτ

bRa C kτke

Ea(s)C
Ra C Las

bRa C kτke

W (s) � AEa(s)C BW (s),

where

A D kτ/(bRa C kτke)

B � Ra/(bRa C kτke).

■ Then, we have overall relationship

(τ1s C 1)(τ2s C 1)Y (s) D AEa(s)C BW (s).

■ So,

Y (s) D
A

(τ1s C 1)(τ2s C 1)
Ea(s)C

B

(τ1s C 1)(τ2s C 1)
W (s).
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4.2: Advantage of feedback: Disturbance rejection

■ We look at how the open-loop and feedback systems respond to a

step-like disturbance.

■ If ea(t) D ea � 1(t) (constant) and w(t) D w � 1(t) (constant), What is

steady state output?

■ Recall Laplace-transform final value theorem:

If a signal has a constant final value, it may be found as

yss D lim
s!0

sY (s).

Note: A signal will have a constant final value iff all of the poles of Y (s)

are strictly in the left-half s-plane, except possibly for a single pole at

s D 0.

■ For the input signals ea(t) and w(t), we have

Ea(s) D
ea

s
, W (s) D

w

s
.

■ So,

yss D lim
s!0

s

(
A

(τ1s C 1)(τ2s C 1)

ea

s
C

B

(τ1s C 1)(τ2s C 1)

w

s

)

D Aea C Bw.

■ This is the response of the open-loop system (without a controller).

■ Let’s make a simple controller for the open-loop system. The block

diagram looks like:

Ctrlrr (t) y(t)

Dist. w(t)

A

(τ1s C 1)(τ2s C 1)

B

A

ea(t)

Motor
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■ We will design the controller to be a gain of Kol such that

ea(t) D Kolr(t),

■ Choose Kol so that there is no steady-state error when w D 0.

yss D AKolrss C Bwss

) Kol D 1/A.

■ Is closed-loop any better? The block diagram looks like:

Ctrlrr (t) y(t)

Dist. w(t)

A

(τ1s C 1)(τ2s C 1)

B

A

ea(t)

Tachometer

1

■ Let’s make a similar controller for the closed-loop system (with the

possibility of a different value of K .)

ea(t) D Kcl(r(t)� y(t)).

■ The transfer function for the closed-loop system is:

Y (s) D
AKcl

(τ1s C 1)(τ2s C 1)
(R(s)� Y (s))C

B

(τ1s C 1)(τ2s C 1)
W (s)

D

AKcl

(τ1s C 1)(τ2s C 1)
R(s)�

AKcl

(τ1s C 1)(τ2s C 1)
Y (s)

C

B

(τ1s C 1)(τ2s C 1)
W (s).

■ Combining Y (s) terms
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Y (s)

(

1C
AKcl

(τ1sC1)(τ2sC1)

)

D

AKcl

(τ1sC1)(τ2sC1)
R(s)C

B

(τ1sC1)(τ2sC1)
W (s)

Y (s)

(
(τ1sC1)(τ2sC1)CAKcl

(τ1sC1)(τ2sC1)

)

D

AKcl

(τ1sC1)(τ2sC1)
R(s)C

B

(τ1sC1)(τ2sC1)
W (s).

■ This gives

Y (s) D
AKcl

(τ1s C 1)(τ2s C 1)C AKcl

R(s)C
B

(τ1s C 1)(τ2s C 1)C AKcl

W (s).

■ Employing the final-value theorem for w D 0 gives

yss D
AKcl

1C AKcl

rss

D

1

1C 1

AKcl

rss.

■ If AKcl � 1, yss � rss.

■ Open-loop with load:

yss D AKolrss C Bwss D rss C Bwss

δy D Bwss.

■ Closed-loop with load:

yss D
AKcl

1C AKcl

rss C
B

1C AKcl

wss

δy �
B

1C AKcl

wss.

which is much better than open-loop since AKcl � 1.

ADVANTAGE OF FEEDBACK: Better disturbance rejection (by factor of

1C AKcl).
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4.3: Advantage of feedback: Sensitivity and dynamic tracking

■ The steady-state gain of the open-loop system is: 1.0

■ How does this change if the motor constant A changes?

A ! A C δA

Gol C δGol D Kol(A C δA)

D

1

A
(A C δA)

D 1C
δA

A︸︷︷︸

gain error

.

■ In relative terms:
δGol

Gol

D

δA

A
D 1.0︸︷︷︸

sensitivity

δA

A
.

■ Therefore, a 10 % change in A results in a 10 % change in gain.

Sensitivity=1.0.

■ Steady-state gain of closed-loop system is:
AKcl

1C AKcl

.

Gcl C δGcl D
(A C δA)Kcl

1C (A C δA)Kcl

.

■ From calculus (law of total differential)

δGcl D
dGcl

dA
δA

or

δGcl

Gcl

D

(
A

Gcl

dGcl

dA

)

︸ ︷︷ ︸

sensitivity S
Gcl
A

δA

A
.
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■ To calculate this, we first compute

dGcl

dA
D

d

dA

(
AKcl

1C AKcl

)

D

(1C AKcl)Kcl � Kcl(AKcl)

(1C AKcl)2

D

Kcl

(1C AKcl)
2
.

■ Then,

δGcl

Gcl

D

(
A

Gcl

dGcl

dA

)
δA

A

S
Gcl

A D

A

AKcl/(1C AKcl)

Kcl

(1C AKcl)2

D

1

1C AKcl

.

ADVANTAGE OF FEEDBACK: Lower sensitivity to modeling error (by a

factor of 1C AKcl)

Dynamic Tracking

■ Steady-state response of closed-loop better than open-loop: Better

disturbance rejection, better (lower) sensitivity.

■ What about transient response?

■ Open-loop system: Poles at roots of (τ1s C 1)(τ2s C 1)

➠ s D �1/τ1, s D �1/τ2.

■ Closed-loop system: Poles at roots of (τ1s C 1)(τ2s C 1)C AKcl.

➠ s D
�(τ1 C τ2)�

√

(τ1 C τ2)2
� 4τ1τ2(1C AKcl)

2τ1τ2

.
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■ FEEDBACK MOVES POLES

� System may have faster/slower response

� System may be more/less damped

� System may become unstable!!!

� Often a high gain Kcl results in instability.

� For this dc motor example, we can get step responses of the

following form:

0 2 4 6 8 10

0

0.5

1

1.5

High Kcl

Low Kcl

Time (sec)

y
(t

)

■ So, we see the first potential downside of feedback—if the controller

is not well designed, it may make the plant’s response worse than it

was to begin with.

■ Designing controllers is a main focus of the rest of this course (and of

follow-on courses). It’s not a trivial task.

■ But, we can get a really good start toward improving the dynamic

response of the closed-loop system with a very simple controller

■ We look next at the PID controller, then return to exploring (potential)

advantages of feedback.
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4.4: Proportional-integral-derivative (PID) control (a)

■ General control setup:
replacements

D(s)R(s)
U(s)

Y (s)

Disturbance

G(s)

■ Need to design controller D(s).

■ One option is PID (Proportional Integral Derivative) control design.

� Extremely popular. 90C% of all fielded controllers are PID.

� Doesn’t mean that they are great, just popular.

■ We just saw proportional control where u(t) D K pe(t), or D(s) D K p.

■ Proportional control tends to increase speed of response, but:

� Can allow non-zero steady-state error.

� Can result in larger transient overshoot.

� May not eliminate a constant disturbance.

■ Integral control, where D(s) D
Ki

s
, can eliminate steady-state error,

� But, transient response can get worse, and

� Stability margins can get worse.

■ Derivative control, where D(s) D Kds, can reduce oscillations in

dynamic response, but

� Steady-state error can get worse.

■ In the next sections, we look at each of these controllers separately,

then consider how to use them together.
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Proportional control

■ Proportional controllers compute the control effort such that

u(t) D K p(r(t)� y(t)) D K pe(t) . . . D(s) D K p.

IDEA: For plants with positive gain, if e(t) D r(t)� y(t) > 0, then I’m not

“trying hard enough.” Multiply error by (positive) K p to “try harder.”

■ Also, if e(t) < 0, then I’ve tried too hard already. Multiply (negative)

error by (positive) gain K p to try to pull response back.

EXAMPLE: Determine behavior of closed-loop poles for the dc motor.

Y (s)

R(s)
D

AK p

(τ1s C 1)(τ2s C 1)C AK p

.

■ Poles are roots of (τ1s C 1)(τ2s C 1)C AK p.

■ Without feedback, K p ! 0.

s1 D �1/τ1, s2 D �1/τ2.

■ With feedback,

Y (s)

R(s)
D

AK p

(τ1s C 1)(τ2s C 1)C AK p

D

AK p

τ1τ2s2
C (τ1 C τ2) s C

(

1C AK p

).

■ Solving for root locations gives

s1, s2 D
�(τ1 C τ2)�

√

(τ1 C τ2)2
� 4τ1τ2(1C AK p)

2τ1τ2

.

■ We can plot the locations of the poles (a “root locus” plot)

parametrically as K p changes
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K p D 0K p D 0

�

1

τ1

�

1

τ2

K p D
(τ1 � τ2)

2

4τ1τ2 A

�

τ1 C τ2

2τ1τ2

R(s)

I(s)

■ For 0 < K p <
(τ1 � τ2)

2

4τ1τ2 A
, poles move horizontally toward each other

along the real axis.

� Rise time gets faster since dominant pole moves farther from

origin, natural frequency increases.

� Settling time gets faster since real part of dominant pole moves

farther from origin.

� Damping remains same (no overshoot).

■ For K p >
(τ1 � τ2)

2

4τ1τ2 A
, the poles gain imaginary part.

� Settling time remains same since real part of pole locations is

unchanged.

� Rise time decreases since natural frequency increases.

� Overshoot increases since damping ratio decreases.

■ For systems having more poles than this example, increasing K p

often leads to instability.

■ How do we improve accuracy, but keep stability?
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4.5: Proportional-integral-derivative (PID) control (b)

Integral and proportional-integral control

■ Pure integral controllers compute the control effort such that:

u(t) D
K p

Ti

∫ t

0

e(τ ) dτ, D(s) D
K p

Ti s
.

� Ti D “Integral time” D time for output D K p with input e(t) D 1(t).

� An alternate formulation has

u(t) D Ki

∫ t

0

e(τ ) dτ, D(s) D
Ki

s
.

■ Integral feedback can give nonzero control even at points of time

when e D 0 because of “memory.”

� In many cases this can eliminate steady-state error to step-like

reference inputs and step-like disturbances.

IDEA: To avoid instability or oscillations with proportional control, the

proportional gain K p must be kept “small.”

■ But, then when error gets small, we no longer try very hard to correct

it—leads to finite steady-state error.

■ Also, some nonlinearities (e.g., coulombic friction) can cause output

to get stuck even if control effort is nonzero.

■ Integral control can help: If we integrate the error signal, the

integrated value will grow over time if the error is “stuck”.

■ This increases the control signal u(t) until the error starts

decreasing—making the error converge to zero.

EXAMPLE: Substitute: u(t) D
K p

Ti

∫ t

0

(r(τ )� y(τ )) dτ into dc-motor eqs.
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τ1τ2 Ry(t)C (τ1 C τ2) Py(t)C y(t) D A

[
K p

Ti

∫ t

0

(r(τ )� y(τ )) dτ

]

C Bw(t).

■ Differentiate,

τ1τ2

...
y(t)C (τ1 C τ2) Ry(t)C Py(t) D

AK p

Ti

(r(t)� y(t))C B Pw(t)

τ1τ2

...
y(t)C (τ1 C τ2) Ry(t)C Py(t)C

AK p

Ti

y(t) D
AK p

Ti

r(t)C B Pw(t).

■ If r(t) D cst, w(t) D cst, Pw(t) D 0,

AK p

Ti

yss D
AK p

Ti

rss ➠ no error.

■ Steady-state tracking improves, but dy-

namic response degrades, especially

after poles leave real axis.

� Very oscillatory; possibly unstable.

■ Can be improved by adding proportional

term to integral term.

KiD0KiD0

�

1

τ1

�

1

τ2

D

�

�

C R(s)

I(s)

u(t) D K pe(t)C
K p

TI

∫ t

0

e(τ ) dτ, D(s) D K p

(

1C
1

Ti s

)

.

■ Poles are at the roots of

τ1τ2s3
C (τ1 C τ2)s

2
C (1C AK p)s C

AK p

Ti

D 0.

Two degrees of freedom.

Derivative and proportional-derivative control

■ Pure derivative controllers compute the control effort such that:

u(t) D K pTd Pe(t), D(s) D K pTds,

where Td = “derivative time”.
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■ An alternate formulation has

u(t) D Kd Pe(t), D(s) D Kds.

IDEA: Would like to anticipate “momentum,” which mechanically is

proportional to velocity, and subtract out its predicted contribution.

■ Contribution to control effort acts as braking force when approaching

reference value quickly.

WARNING: PURE DERIVATIVE CONTROL IMPRACTICAL SINCE

DERIVATIVE MAGNIFIES SENSOR NOISE!

■ Practical version = “lead control,” which we will study later.

■ Derivative control tends to stabilize a system.

■ Does nothing to reduce constant error! If Pe(t) D 0, then u(t) D 0, even

if e(t) 6D 0.

■ Motor control: Poles at roots of τ1τ2s2
C (τ1 C τ2 C AK pTd)s C 1 D 0.

� Td enters ζ term, can make damping better.

■ PD = Proportional plus derivative control where

D(s) D K p(1C Tds) or D(s) D K p C Kds.

■ Root locus for dc motor, PD control.

�

1

τ1

�

1

τ2

�

1

Td

R(s)

I(s)

■ Great damping, possibly poor steady-state error.
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4.6: Proportional-integral-derivative (PID) control (c)

Proportional Integral Derivative Control

■ D(s) D K p

(

1C
1

Ti s
C Tds

)

or D(s) D K p C Ki

1

s
C Kds.

■ Need ways to design parameters fK p, Ti , Tdg or fK p, Ki , Kdg.

■ In general (i.e., not always),

K p, Ti " () error #, stability #

Td " () stability "

■ For speed control problem,

u(t) D K p

[

(r(t)� y(t))C
1

Ti

∫ t

0

(r(τ )� y(τ )) dτ C Td(Pr(t)� Py(t))

]

.

(math happens). Solve for poles

τ1τ2Tis
3
C Ti((τ1 C τ2)C AK pTd)s

2
C Ti(1C AK p)s C AK p D 0

s3
C

[
τ1 C τ2 C AK pTd

τ1τ2

]

s2
C

[
1C AK p

τ1τ2

]

s C
AK p

τ1τ2Ti

D 0.

■ Three coefficients, three parameters. We can put poles anywhere!

Complete control of dynamics in this case.

■ Entire transfer functions are:

Y (s)

W (s)
D

Ti Bs

Tiτ1τ2s3
C Ti(τ1 C τ2)s2

C Ti(1C AK p)s C AK p

.

Y (s)

R(s)
D

AK p(Tis C 1)

Tiτ1τ2s3
C Ti(τ1 C τ2)s2

C Ti(1C AK p)s C AK p

.

■ We can plot responses in MATLAB:
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num = [TI*B 0];

den = [TI*TAU1*TAU2 TI*(TAU1+TAU2) TI*(1+A*KP) A*KP];

step(num, den)
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a
d
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e
c
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d
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e
c
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Step Disturbance Response

Ziegler–Nichols tuning of PID controllers

■ “Rules-of-thumb” for selecting K p, Ti , Td .

■ Not optimal in any sense—but often provide good performance.

METHOD I: If system has step response like this,

Slope, A/τ

A

τd τ

Y (s)

U (s)
D

Ae�τds

τ s C 1
,

(first-order system plus delay)

■ We can easily identify A, τd, τ from this step response.

■ Don’t need complex model!

■ Tuning criteria: Ripple in impulse response decays to 25 % of its value

in one period of ripple
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Period1

0.25

RESULTING TUNING RULES:

P PI PID

K p D

τ

Aτd

K p D

0.9τ

Aτd

Ti D
τd

0.3

K p D

1.2τ

Aτd

Ti D 2τd

Td D 0.5τd

METHOD II: Configure system as

Kur (t) y(t)Plant

■ Turn up gain Ku until system produces oscillations (on stability

boundary) Ku = “ultimate gain.”

Period, Pu

1
RESULTING TUNING RULES:

P PI PID

K p D 0.5Ku

K p D 0.45Ku

Ti D
1

1.2
Pu

K p D 0.6Ku

Ti D 0.5Pu

Td D

Pu

8

Practical Problem: Integrator Overload

■ Integrator in PI or PID control can cause problems.

■ For example, suppose there is saturation in the actuator.

� Error will not decrease.

� Integrator will integrate a constant error and its value will “blow up.”
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■ Solution = “integrator anti-windup.” Turn off integration when actuator

saturates.

K

Ka

K

TI s

e(t) u(t) umin

umax

■ Doing this is NECESSARY in any practical implementation.

■ Omission leads to bad response, instability.
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4.7: Steady-state error (a)

■ System error is any difference between r(t) and y(t). Two sources:

1. Imprecise tracking of r(t).

2. Disturbance w(t) affecting the system output.

Steady-state error (w.r.t. reference input)

■ We have already seen examples of CL systems that have some

tracking error (proportional ctrl) or not (integral ctrl) to a step input.

We will formalize this concept here.

■ Start with very general control structure with “closed-loop” transfer

function T (s) that computes Y (s) from R(s):

T (s)r (t) y(t)

■ We don’t care what is inside the box T (s). It could be any block

diagram, and we may need to compute T (s) from the block diagram.

■ The error is

E(s) D R(s)� Y (s)

D R(s)� T (s)R(s)

D
[1� T (s)] R(s).

■ Assume conditions of final value theorem are satisfied (i.e.,

[1� T (s)]R(s) has poles only in LHP except perhaps for a single pole

at the origin)

ess D lim
t!1

e(t) D lim
s!0

s[1� T (s)]R(s).
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■ When considering steady-state error to different reference inputs, we

restrict ourselves to inputs of the type

r(t) D
tk

k!
1(t)I R(s) D

1

skC1
.

■ The first few of this family are drawn below:

t

1(t)

�

� t

t � 1(t)

� t

�

t2

2
� 1(t)

■ As k increases, reference tracking is progressively harder. (It is easier

to track a constant reference than it is to track a moving reference.)

■ We define a concept called system type to describe the ability of the

closed-loop system to track inputs of different kinds.

� If system type = 0, constant steady-state error for step input,

infinite s.s. error for ramp or parabolic input.

� If system type = 1, no steady-state error for step input, constant

s.s. error for ramp input, infinite s.s. error for parabolic input.

� If system type = 2, no steady-state error for step or ramp inputs,

constant s.s. error for parabolic inputs.

� And so forth, for higher-order system types.

■ To find the system type in general, we must compute the following

equation for values of k D 0, 1, . . . until we calculate a finite nonzero

value for ess:

ess D lim
s!0

1� T (s)

sk
D









0, type > kI

constant, type D kI

1, type < k.
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■ As an example, consider ramp responses of different system types:

t

t
Type 0 System

t

t
Type 1 System

t

t
Type 2 System

DANGER: Higher order sounds better but they are harder to stabilize and

design. Transient response may be poor.

■ Summary table for computing steady-state error for different system

types (where the limits evaluate to finite nonzero values)

Steady-state tracking errors ess for generic closed-loop T (s)

Sys. Type Step Input Ramp Input Parabola Input

Type 0 lim
s!0

(1� T (s)) 1 1

Type 1 0 lim
s!0

1� T (s)

s
1

Type 2 0 0 lim
s!0

1� T (s)

s2

EXAMPLES:

(1) Consider T (s) D
s C 1

(s C 2)(s C 3)
. What is the system type?

■ Try k D 0. Evaluate

lim
s!0

[1� T (s)] D lim
s!0

(s C 2)(s C 3)� (s C 1)

(s C 2)(s C 3)
D

5

6
6D 0.

■ Therefore, the system type is zero, ess D 5/6 to unit step input.

(2) Consider T (s) D
s C 6

(s C 2)(s C 3)
. What is the system type?
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■ Try k D 0. Evaluate

lim
s!0

[1� T (s)] D lim
s!0

(s C 2)(s C 3)� (s C 6)

(s C 2)(s C 3)
D

0

6
D 0.

■ Therefore the system type must be greater than zero.

■ Try k D 1. Evaluate

lim
s!0

1� T (s)

s
D lim

s!0

1

s

(s C 2)(s C 3)� (s C 6)

(s C 2)(s C 3)

D lim
s!0

1

s

s2
C 4s

(s C 2)(s C 3)
D

4

6
6D 0.

■ Therefore, the system is type 1, ess D 2/3 to unit ramp input.

(3) Consider T (s) D
5s C 6

(s C 2)(s C 3)
. What is the system type?

■ Try k D 0. Evaluate

lim
s!0

[1� T (s)] D lim
s!0

(s C 2)(s C 3)� (5s C 6)

(s C 2)(s C 3)
D

0

6
D 0.

Therefore, the system type must be greater than zero.

■ Try k D 1. Evaluate

lim
s!0

1� T (s)

s
D lim

s!0

1

s

(s C 2)(s C 3)� (5s C 6)

(s C 2)(s C 3)

D lim
s!0

1

s

s2

(s C 2)(s C 3)
D

0

6
D 0.

Therefore, the system type must be greater than one.

■ Try k D 2. Evaluate

lim
s!0

1� T (s)

s2
D lim

s!0

1

s2

(s C 2)(s C 3)� (5s C 6)

(s C 2)(s C 3)

D lim
s!0

1

s2

s2

(s C 2)(s C 3)
D

1

6
6D 0.

Therefore, the system type is two, ess D 1/6 to unit parabola input.
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4.8: Steady-state error w.r.t. reference input, unity feedback

WARNING: The following method is a special case of the above general

method. Always use the appropriate method for the problem at hand!

■ Unity-feedback is when the control system looks like:

Gol(s)r (t) y(t)

■ That is, the feedback loop has a gain of exactly one.

■ If we are fortunate enough to be considering a unity-feedback

scenario, the prior rules have a simpler solution.

■ But, if there are any dynamics in the feedback loop, we DO NOT have

a unity-feedback system, and must use the more general rules from

Section 4.7.

■ For unity-feedback systems, there are some important simplifications:

T (s) D
Gol(s)

1C Gol(s)

1� T (s) D

[
1C Gol(s)

1C Gol(s)

]

�

Gol(s)

1C Gol(s)

D

1

1C Gol(s)
.

So,

E(s) D
1

1C Gol(s)
R(s).

■ For test inputs of the type R(s) D
1

skC1

ess D lim
s!0

s E(s) D lim
s!0

1

[1C Gol(s)]sk
.
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■ For a system that is type 0,

ess D lim
s!0

1

1C Gol(s)
D

1

1C K p

, K p D lim
s!0

Gol(s).

■ For a system that is type 1,

ess D lim
s!0

1

1C Gol(s)

1

s
D lim

s!0

1

sGol(s)
D

1

Kv

, Kv D lim
s!0

sGol(s).

■ For a system that is type 2,

ess D lim
s!0

1

1C Gol(s)

1

s2
D lim

s!0

1

s2Gol(s)
D

1

Ka

, Ka D lim
s!0

s2Gol(s).

These formulas meaningful only for unity-feedback!

K p D lim
s!0

Gol(s). “position error constant”

Kv D lim
s!0

sGol(s). “velocity error constant”

Ka D lim
s!0

s2Gol(s). “acceleration error constant”

Steady-state tracking errors ess for unity-feedback case only.

Sys. Type Step Input Ramp Input Parabola Input

Type 0
1

1C K p

1 1

Type 1 0
1

Kv

1

Type 2 0 0
1

Ka

EXAMPLES:

(1) Consider Gol(s) D
s C 1

(s C 2)(s C 3)
. What is the system type?

Gol(0) D
1

2 � 3
D

1

6
.
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■ Therefore, system typeD 0, ess to unit stepD
1

1C 1/6
D

6

7
.

(2) Consider Gol(s) D
(s C 1)(s C 10)(s � 5)

(s2
C 3s)(s4

C s2
C 1)

. What is the system type?

Gol(0) D
1 � 10 � (�5)

0 � 1
D 1 ➠Type > 0.

sGol(s) D
(s C 1)(s C 10)(s � 5)

(s C 3)(s4
C s2

C 1)

sGol(s)jsD0 D
1 � 10 � (�5)

3 � 1
D

�50

3
.

■ Therefore, system typeD 1, ess to unit rampD
�3

50
.

(3) Consider Gol(s) D
s2
C 2s C 1

s4
C 3s3

C 2s2
. What is the system type?

Gol(0) D
1

0
D 1 ➠Type > 0

sGol(s) D
s2
C 2s C 1

s3
C 3s2

C 2s

sGol(s)jsD0 D
1

0
D 1 ➠Type > 1

s2Gol(s) D
s2
C 2s C 1

s2
C 3s C 2

s2Gol(s)
∣
∣
sD0

D

1

2
➠Type D 2.

■ Therefore, system typeD 2, ess to unit parabolaD 2.

KEY POINT: Open-loop Gol(s) tells us about closed-loop s.s. response.

KEY POINT: For unity-feedback systems, number of poles of Gol(s) at

s D 0 is equal to the system type.
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EXAMPLE: DC-motor example with proportional control, D(s) D K p.

Ctrlrr (t) y(t)
A

(τ1s C 1)(τ2s C 1)

D(s)G(s) D
K p A

(τ1s C 1)(τ2s C 1)
, lim

s!0
D(s)G(s) D K p A.

■ So system is type 0, with s.s. error to step input of
1

1C K p A
.

■ This agrees with prior results.

EXAMPLE: DC-motor example with PI control, D(s) D K p

[

1C
1

Tis

]

.

D(s)G(s) D
K p A C

K p A

Ti s

(τ1s C 1)(τ2s C 1)
.

lim
s!0

D(s)G(s) D 1

lim
s!0

s D(s)G(s) D
K p A

Ti

.

■ System is type 1, with s.s. error to ramp input of
Ti

K p A
.

EXAMPLE: DC-motor with two-integrator controller,

D(s) D K p

[

1C
1

Tis
C

1

Ti s2

]

.

D(s)G(s) D
K p A C

K p A

Ti s
C

K p A

Ti s2

(τ1s C 1)(τ2s C 1)

lim
s!0

s2D(s)G(s) D
K p A

Ti

.

■ System is type 2, with s.s. error to parabolic input of
Ti

K p A
.
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4.9: Steady-state error w.r.t. disturbance

■ Recall, system error is any difference between r(t) and y(t).

■ We have just spent considerable time considering differences

between r(t) and y(t) because the system is not capable of tracking

r(t) perfectly.

� This is an issue with T (s) for the general case, or Gol(s) for the

unity-feedback case.

■ But, another source of steady-state error can be uncontrolled inputs

to the system—disturbances.

EXAMPLE: Consider a vehicle cruise-control system. We may set the

reference speed r(t) D 55 mph, but we find that the steady-state

vehicle speed yss is affected by wind and road grade (in addition to

the cruise-control system’s ability to track the reference input.)

■ We can think of a system’s overall response to both the reference

input and the disturbance input as

Y (s) D T (s)R(s)C Tw(s)W (s).

■ We find the system type with regard to the reference input by

examining T (s); similarly, we find the system type with respect to the

disturbance input by examining Tw(s).

■ Due to linearity, we can consider these two problems separately.

� When thinking about system type with respect to reference input,

we consider W (s) D 0 and follow the procedures outlined earlier.

� When thinking about system type with respect to disturbance

input, we consider R(s) D 0 and follow the procedure below.
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■ We do not wish the output to have ANY disturbance term in it, so the

output error due to the disturbance is equal to whatever output is

caused by the disturbance.

ess D rss � yss D 0� lim
s!0

sTw(s)W (s).

■ We say that the system is type 0 with respect to disturbance if it has

nonzero steady-state error when the disturbance is 1/s.

� Type 0 system (w.r.t. disturbance) has constant ess D � lim
s!0

Tw(s).

■ We say that a system is type 1 with respect to disturbance if it has

nonzero steady-state error when the disturbance is 1/s2.

� Type 1 system (w.r.t. disturbance) has constant ess D � lim
s!0

Tw(s)

s
.

■ We say that a system is type 2 with respect to disturbance if it has

nonzero steady-state error when the disturbance is 1/s3.

� Type 2 system (w.r.t. disturbance) has constant ess D � lim
s!0

Tw(s)

s2
.

■ Summary table for computing steady-state error for different system

types with respect to disturbance (where the limits evaluate to finite

nonzero values)

Steady-state errors ess due to disturbance for generic closed-loop Tw(s)

Sys. Type Step Input Ramp Input Parabola Input

Type 0 � lim
s!0

Tw(s) �1 �1

Type 1 0 � lim
s!0

Tw(s)

s
�1

Type 2 0 0 � lim
s!0

Tw(s)

s2
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NOTE: There are no special cases for unity feedback when computing

system type with respect to disturbance.

■ You must always compute the closed-loop transfer function

Tw(s) D Y (s)/W (s), and then perform the tests.

EXAMPLE: Consider the motor-control problem from before.

replacements

Ctrlrr (t) y(t)

Dist. w(t)

A

(τ1s C 1)(τ2s C 1)

B

A

ea(t)

Tachometer

1

■ We’ll use a proportional controller with gain Kcl, so

ea(t) D Kcl(r(t)� y(t)).

■ When we looked at the example earlier, we found that

Y (s) D
AKcl

(τ1s C 1)(τ2s C 1)C AKcl

R(s)C
B

(τ1s C 1)(τ2s C 1)C AKcl

W (s).

■ From this equation, we gather

T (s) D
AKcl

(τ1s C 1)(τ2s C 1)C AKcl

Tw(s) D
B

(τ1s C 1)(τ2s C 1)C AKcl

.

■ Starting with system type 0, test for finite nonzero steady-state error:

ess D � lim
s!0

Tw(s) D
�B

1C AKcl

6D 0.

■ Therefore, the system is type 0 with respect to disturbance (it’s also

type 0 with respect to reference input, but the two system types ARE

NOT the same in general).
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